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1. Introduction 

1.1. Background 

Recent work of Heywood [21] has drawn attention (a) to questions of uniqueness 

of Navier-Stokes solutions for certain unbounded domains ~ in R N that  can be regarded 

as models of channels, tubes, or conduits of some kind, and (b) to the importance of 

prescribing, not merely the fluid velocity u on the boundary ~ ,  but also some quanti ty 

like the flux M (that is, the total volumetric flow rate, defined for N = 2  by (1.3b) 

below) or the overall pressure difference. However, the existence theory for such domains 

(which have boundaries that  are not compact) seems somewhat sparse relative to that  

for bounded and for exterior domains. (By an exterior domain we mean a connected open 

set that  is the complement of a bounded set.) If we set aside the explicit (or nearly explicit) 

solutions for special cases in which, by virtue of a particular boundary ~ ,  the non-linear 

terms vanish (as in the parallel Poiseuille velocity field appropriate to infinite cylinders), 

or a similarity situation allows reduction to ordinary differential equations (as in the 

Jeffery-Hamel solutions for source or sink flow in plane wedge-shaped domains), then, as 

far as we are aware and according to what is stated in [9], [10], [23] and [26], the only 

existence theorems for steady flow in domains of the class in question are as follows. We 

state restrictions in terms of the Reynolds number: for N = 2  (in two space dimensions), 

R =M/~, is the ratio of flux to kinematic viscosity; for N = 3 ,  we introduce a length l 

characteristic of some cross-section of the domain, and define R=M/rl. 

(i) For the case of a smooth tube ~ c R 3 consisting of two semi-infinite circular cy- 

linders joined by an arbitrary central bounded portion, one prescribes zero velocity on 

the boundary ~ and the appropriate Poiseuille velocities at  infinity upstream and down- 

stream. P. Patterson proved existence of a solution to this problem for sufficiently small 

Reynolds numbers, and obtained rates at which the Poiseuflle velocities are approached 

far upstream and far downstream. (We have not seen these unpublished results, and can 

refer only to their description in a review article by Finn, [9], p. 150; there, the critical 

Reynolds number is not characterized in any way.) 

(ii) In  [4] and [5] both the two- and three-dimensional versions of the foregoing 
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problem are treated, and for N = 3  the cylinders may  have non-circular cross-sections. 

Existence, exponential approach to the Poiseuille velocities, and regularity properties of 

the solution are established for R <R0, where the critical Reynolds number  R e is 116.5 

for N = 2, is 127.9 for N = 3  and cylinders of circular cross-section, and is somewhat larger 

for domains symmetrical  about a streamwise axis. The number  l/R0, which re-appears in 

certain results of the present paper, is the supremum over the unit sphere in a Hilbert 

space of a quadratic functional, and also marks a stability boundary of Poiseuille flow in 

an infinite strip (N=2)  or cylinder (X=3) ;  in this stability context, it was first computed 

for N =2  by  W. Orr in 1907. 

(iii) Symmetrical  channels g 2 c R  e with slowly curving walls are considered in [12] 

and [14], the product of local channel width and local wall curvature being bounded by a 

small parameter  ~ >0.  Under certain restrictions on Reynolds number and the local 

divergence angle of the channel walls, solutions are constructed as explicit asymptotic  

series, to a finite number  of terms, in powers of ~, plus a remainder tha t  is proved to be 

smaller; these solutions exhibit 'flow separation' from the walls. 

(iv) In  [21], pp. 98-100, Heywood proves existence, for sufficiently small Reynolds 

numbers, of steady generalized solutions representing flow through certain apertures and 

ducts in R a tha t  widen strongly at  infinity.(x) 

1.2. The boundary-value problem 

By a channel we mean an unbounded domain ~ c R  2 tha t  (a) is simply connected, 

(b) has a boundary ~ ,  of class C ~176 consisting of two unbounded components F_ and F+ 

(the channel walls) such tha t  dist ( F ,  F+) > 0. In  the present paper we tackle the general 

problem of steady Navier-Stokes solutions for such domains. To specify the flux we let 

y denote any smooth simple arc, in ~ ,  directed from a point of F_ to a point of F+, with 

unit normal n such tha t  a positive (anti-clockwise) rotation through ~/2 transforms n into 

the (directed) unit tangent,  and with dl denoting an element of arc length. We seek a 

solution (u, p) of the steady Navier-Stokes equations, 

-vD2u + (u. D)u = -- Dp in ~,  (1.1) 

div u ~ D . u  = 0  in ~ ,  (1.2) 

where ~ is a channel, such tha t  

u[an=O, / ~ , u . n d l = M > O .  (1.3a, b) 

(1) F o r  a f i f t h  i t e m ,  see t h e  n o t e  Re]erences added in proo]. 
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Here ~ denotes the kinematic viscosity, a given (strictly) positive constant; 

D = (D1, D2)= (8/~x, 8/8y) the gradient operator, and D ~ the Laplacian; u = (u 1, u~): ~ -~R  ~ 

the fluid velocity; and p: ~ - ~ R  the ratio of modified pressure to constant density, 

'modified' pressure meaning that  the scalar potential of a given irrotational force field may  

be included. 

When the local channel width tends to infinity far upstream and far downstream, 

we add the condition 
a s  o o  i n  (1.4a) 

Here z denotes points (x, y ) E R  ~, which we identify with points x + iy  E C wherever this is 

appropriate. When the width tends to (positive) limits at a certain rate, we demand tha t  

the appropriate Poiseuille velocities be approached, as in [4]. ( lAb) 

In what follows, '(1.4)' will mean either (1.4a) or (1.4b), according to the form of ~.  The 

words 'local channel width', 'far upstream' and 'far downstream' will be given precise 

meaning presently; nevertheless, (1.4a) is to be interpreted loosely until we come to 

section 5. Definition 1.1 (a) will state tha t  the 'local channel width tends to infinity' in an 

averaged sense, and in Definition 3.1 a flux-carrying velocity field will be required to 

satisfy (1.4a) only in the same averaged sense. 

The restriction to the case N = 2  is made for two reasons, as follows. 

(i) Let  S denote the strip R • ( - 1 ,  1) and let ~ be a channel (Fig. 1). Then there 

exists a one-to-one conformal transformation, say 

with 
z=2"($), z=x+iy and r  / 

dz _ 2",= he, O (h= IF'I), I (1.5) 
dE 

of ~ onto • such that  F_ and F+ are the images of R • { -  1} and R x {1}, respectively; 

the function F is unique if ~0=Re F-l(zo) is specified for one point z06~. (Here Re and 

Im denote the real and imaginary parts respectively. The existence of F follows from the 

Riemann mapping theorem and two elementary conformal transformations that  map the 

unit disk, with e ~ and e ~ representing the infinitely distant ends of ~,  onto S in the manner 

Stated. To prove uniqueness, we consider two such maps F 1 and F~, and apply the 

Phragm4n-LindelSf principle as in [25], pp. 97-99, to show that  the function Im F~lo FI: 

~ - ~ [ - 1 ,  1] can only have the values 7- A more elementary uniqueness proof, based on 

the fact tha t  a conformal one-to-one map of the unit disk onto itself is a MSbius transforma- 

tion, is also possible.) The map 2' allows definition of types of channel, and construction of 
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1 ~ v~ 
0 /~ 

F + : ~ / = ] /  ~ F _ : ~ = - I  

/ 
Fig. 1. Notation for the conformal map F. The velocity components vl and 8~, in the directions hD~ and 
hD~, are introduced in section 2.3. The particular channel f2 in the figure is of type III ,  but  is on the 

borderline with type I (section 1.3 and Appendix A, (i)). 

certain flux-carrying velocity fields essential to our proofs, with generality and ease, in a 

manner that  has no obvious analogue in higher dimensions. We call the length ]1_1 h(~, ~/) d~/ 

of an arc $(x, y) =const.  in f2 the local channel width; by limiting values jar upstream (or 

Jar downstream) we mean limits as ~ - > -  oo (or ~-~ oo). 

(ii) For exterior domains ~e the analogue of (1.4), tha t  u is to tend to a prescribed 

constant velocity at  infinity, demands treatments that  are quite different for N =2 and 

for N = 3 .  In the two-dimensional case, the question of whether a generalized solution 

satisfies this condition remains open, [10], [17], [18], except for sufficiently large 

viscosity v, [11]; in the three-dimensional case, the question has been settled completely, 

[6]. (One basic difference is in the space H(f2) of divergence-free vector fields v that  

vanish on ~ ,  with the Dirichlet norm: Ilvll ~ = ~n IDvl ~. For N = 2 ,  there exist fields v in 

H(Oe) such that  [v(z)l ~oo  as Izl-~oo; for _N=3, H(f2e) is embedded in Le(Oe->R~).) 

This feature of the exterior problem has an easier, but still serious, counterpart for 

channels and tubes whose width tends to infinity far upstream or downstream, and proofs 

that  (1.4) holds pointwise form a substantial part  of the present paper. 

1.3. Channels of various types 

I t  will be convenient to distinguish the gradient operator D in f2 from that  in S; we 

write V = (V1, V~)= (~/a~, ~/~/) for the latter. 
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De/inition 1.1. Let h: S-~ (0, 0o) be the are-length function introduced in (1.5). We shall 

say tha t  a channel ~ is 

(a) o/ type I if 1/h and [V(1/h) l belong to L2(S); 

(b) o/type I I  if IV log h(~, ~)] -+0 pointwise as [~] -+ co, uniformly with respect to ~, 

and IV(l/h)] eL2(S); 

(c) o/ type I I I  if it is of type I I  and also ] V log h I eL2(S), I Vh] eLr for some 

q>2,  and h(~=,U)~<const. ]~[�89 for [~] >1. 

We hasten to give intuitive meaning to this definition, and to indicate under what 

circumstances a given channel belongs to one of these types; further details are presented 

in Appendix A. Note first that  h EC~176 and that,  on any compact subset of S, h is 

bounded away from zero. (This may be proved by combining a classical theorem on 

conformal mapping, [7], pp. 96-97, with regularity theory for the solution of the Diriehlet 

problem D2~=0 in ~,  ~ ] r _ = - I  and ~ [ r + = l .  Observe that  1/)~=[D~][ if we write 

h =]~oF.) Therefore the definition restricts only the behaviour of h(~:, ~) as 1~[ -+ co. Now 

consider symmetrical channels 

where 

~ =  {(~, y) em[zca, -/(x)<y</(x)}, (1.6a) 

Iconst. ( - x )  k' for x <  - 1 1 -  1, (1.6b) 
[(x) = [const. x e~ for x > le + 1, 

kj and lj (j = 1, 2) being non-negative constants. Examples and a theorem in Appendix A 

show that  ~)r is of type I if k~ > 1, of type I I  if kj < 1, and of type I I I  if kj ~< �89 (j = 1, 2 

throughout). Thus the sets I and I I  (of channels of types I and I I  respectively) intersect; 

but I and I I I  are disjoint because 1/hCL2(S ) when h(~,~)~<const. ]~[t for 1~1 >1. We 

have already defined local channel width as twice the mean value )~(~)=�89 $1_1 h($, ~)d~; 

if for the moment we ignore restrictions on Vh, we may loosely describe channels o/type I 

as those which widen strongly at in/inity (kj > �89 and channels o/type I I I  as those which widen 

/eebly there (kj <<. �89 

Regarding Vh. Recalling from (1.5) that  log h +iO is a holomorphic function on S, we 

define 
~ = h J h = O ~ ,  ~ = h ~ / h = - O ~ ,  (1.7) 

where (.)~=~(.)/a~. The mean value ~(~)=�89 S1_1 g(~, ~)d~ then represents half the local 

divergence angle, 0(~, 1 ) - 0 ( ~ , - 1 ) ,  of the channel walls, and -V(1/h)=(O~,-O~)/h re- 
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presents the curvatures of the arcs ~ = const, and ~7 = const, in ~ .Accordingly, channels o] 

type 11 have local divergence angles that tend to zero at infinity, and (like those o] type I) 

have eonformal coordinate lines ~ = const, and ~ = const, in ~ whose curvatures are in L2(S). 

For type I I I  these conditions are strengthened. Mote that ,  if h and the curvatures are re- 

garded as functions on ~ ,  say h o F - l = ~  and - V ( 1 / h ) o F- I = ( K ,  L), then it  is merely 

K/~ and L/h tha t  are required to be in L2(~), because d~d~ =dxdy/[t2; and ]~(z)~ c~ for 

m o s t  c a s e s .  

1.4. Results and methods 

(i) For channels ~ of type I,  a weak solution is obtained in section 3 for every 

Reynolds number by a variant  of an artifice tha t  originates in early work of Leray and 

is now standard for compact boundaries (see, for example, [9], pp. 128-129). Smoothness 

of weak solutions, for all types of channel, on compact subsets of ~ is established by  

standard methods in section 4. There remains the question of the pointwise decay of u 

at  infinity in ~;  adopting slightly stronger hypotheses about  h (the channel is then of 

type I ') ,  we prove in section 5 tha t  (1.4a) holds, and tha t  the pressure p tends uniformly 

to finite limits far upstream and far downstream. This is done by use and extension of 

the considerable machinery built by Gilbarg and Weinberger [17], [18] for the two- 

dimensional exterior problem; an essential tool in [17] is a one-sided maximum principle 

for the function p + �89 2. Thus, /or channels o/ type I '  and /or every Reynolds number 

R=M/v ,  a classical (pointwise) solution o/ (1.1) to (1.4a) is established. However, our 

a t tempts  to obtain a rate of decay for the velocity in this case have been wholly un- 

successful. 

(ii) For channels o/ types I I  and I I I ,  solutions are obtained only ]or R < R0, where R 0 is 

the critical Reynolds number described in (ii) of section 1.1. For type I I I  there emerges a 

rather precise description o/the velocity and pressure at large distances. The dominant par t  

of the velocity far upstream and downstream is a slightly distorted Poiseuille velocity q 

of magnitude ~M(1-~2)/h($, ~?) and direction D~(z) in ~ ,  and the departures from this 

velocity, due to geometrical effects represented by Vh, can also be estimated. Note tha t  

the factor 1/h(~, ~]) implies a rate of decay when the local channel width tends to infinity. 

I t  is also shown tha t  p(z)-+ • c~ as ~-~ T ~ ,  respectively, and the pressure gradient is 

estimated. 

Our method is as follows. In  section 3 a weak solution u = g + v  is obtained for 

channels of type I I  by  a variant  of the method in [4]; the velocity field g is constructed 

a priori to satisfy (1.2) to (1.4). On a certain compact subset of ~ ,  g has the form used for 

type I;  at  sufficiently large distances, g is the distorted Poiseuille velocity q described 
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above. The Gilbarg-Weinberger approach to analysis of the far field is no longer applicable, 

because the pressure p need not tend to limits far upstream and far downstream for 

channels of type I I .  On the other hand, the type of decay theory used in [5], which 

exploits the Green function of the linearization of the Navier-Stokes equations about the 

Poiseuflle solution, requires, for control of the non-linear terms, not merely a bound for 

the Dirichlet integral j'n ] Dv 12 of the second par t  v of the weak solution, but a bound for 

Sns ~, where ~(z)=hoF-l(z)~oo in most cases. Such a bound is obtained in 

section 3 for channels of type I I I .  In  section 6, the Green-function operator is used to 

analyse the far field and to obtain the foregoing results. 

(iii) I t  is perhaps worth stressing tha t  the boundary between types I' and I I I  has a 

physical signi/icanee: /or channels o/type I', the pressure p tends to a ]inite limit ]ar upstream, 

and to another ]ar downstream, while/or channels o/type I I I  it tends to plus in/inity /ar 

upstream and to minus in]inity /at downstream. This seems satisfactory because Definition 

1.1 was dictated entirely by the need to bound terms resulting from the definition of 

weak solution in section 3, and there the pressure T does not appear. (The further con- 

ditions defining channels of type I '  correspond to the transition, in section 5, from an 

averaged, or integral, t rea tment  of the far field to a pointwise treatment,  and these 

additional conditions seem natural  in the light of examples in Appendix A.) 

The two kinds of behaviour of p are easily explained for channels ~z, as in (1.6), 

with k r  (]=1,  2). For these, the distinctions between hd~ and dx, between h($, U)and 

/(x), and between U and y//(x), are not important  at  large distances, and a physicist would 

not hestitate to assert tha t  the longitudinal velocity component u 1 has the asymptotic  

form g(y//(x))//(x) as Ix I -> ~ ,  by conservation of mass (div u = 0 )  and because ](x) is the 

only 'natural  length' at  large distances. (As has been mentioned, we prove such a result 

in section 6 for channels of type I I I ;  it is also known to be true for certain rather  special 

channels of type I ' ,  [12], [14]). Now the Navier-Stokes equations state tha t  at  a channel 

wall the tangential  pressure gradient, essentially -9p /~x  > O in the present case, balances 

the normal gradient of viscous shear stress, essentially -v~ul /~y  ~ here; hence -~p/~x is 

asymptotical ly proportional to 1/](x) a. For a channel ~ / ,  this is integrable on t t  if and 

only if /cj > �89 and then ~2f is of type I ' .  

(iv) Various extensions of the results are immediate; we mention three. 

(a) I f  k l ~  �89 and /c2>~1 in (1.6), then ~ s  does not belong to any of the types in 

Definition 1.1. I t  does not seem worth while to define channels of mixed type, but 

results for such channels can be inferred for R < R 0 from the theorems in this paper. A 

weak solution can be found by  an easy modification of the velocity fields g in section 3 

to suit upstream and downstream geometries of different types; thereafter, what is proved 
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about the solution far upstream is independent of conditions far downstream, and vice 

versa. 

(b) Rotational force fields I can be added to the right-hand side of (1.1), in which 

irrotational forces are already included, under the following restrictions: f EC~(~-*R2); 

for channels of type I, ] has compact support in ~; for channels of type I I  (or III) ,  

I](z)]--->O sufficiently fast as I z l - ~ .  (For the analysis in section 5 of the far field in 

channels of type I', rapid decay of / is not enough, because the maximum principle for 

p + �89 l 2 is essential.) 

(c) To describe flow past obstacles within a channel, one may pose a boundary-value 

problem in the domain ~ '  = ~ . K ,  where K is a compact subset of a channel ~2, with 

a boundary ~K that  is of class C ~ when regarded as ~ (int K), and has components 

F1 ..... Fro, say. The additional boundary conditions can take the form 

U]r~=a~(x), where fra~.ndl=O, ~=1 . . . . .  m, 
t 

and where a~EC~(Fj~R2). (For vector fields, superscript letters are mere labels, not  

exponents.) The eonformal map F for ~ can still be used, the inverse image F-I(K) being 

what it will; to construct a flux-carrying field g satisfying all the boundary conditions, one 

merely adds terms which are familiar in Navier-Stokes theory for domains with compact 

boundaries, and whose contributions to the various estimates are easily bounded. 

2. Preliminaries 

2.1. Further notation and terminolob~ f 

In what follows, symbols for functions composed with the conformal map F, or its 

inverse, will usually be abbreviated: for example, hoe -1 and u j o F  ( j = l ,  2) will be 

shortened to h and uj; adjacent symbols (s z, D or S, ~, V) will prevent confusion. 

In the context of R N, integrals are with respect to N-dimensional Lebesgue measure 

unless the contrary is displayed. In particular, 

f ( ) = f  ()dxdy, 

and, since the Jaeobian J(z/$)=h 2, while 

(scalar-valued) 1, 

fo 

z( )= fz( )d~d~7, 

D / I  = ]v/I/h for any smooth real-valued 

()= f()h f IDIp-- f IWP- (2.,) 
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In  addition to the various notations for partial derivatives introduced already, in- 

cluding the suffices in (1.7), we shall have occasion to use D~= D~' D ~-~, where aq, aN 
"*" 27 ~176 

are non-negative integers, and a = (a~ ..... a~) is a multi-index of order [ a [ =  a~ § ... + aN. 

Similarly, V~=V~'V~ ~. Let  U be an open set in RN; by the Sobolev space W~(U) we mean 

the real Banach space of functions [: U-->R such tha t  / and its generalized derivatives 

n~[, [~[ 4 m ,  belong to L~,(U), p>Jl ;  the norm is 

Note tha t  I1. denotes the norm of Lp(U). The closure in W~(U) of the set C~(U), 

of real-valued functions having derivatives of all orders and compact support  in U, will be 

denoted by VV~(U). 

As elsewhere, J ( ~ ) =  C~'~~ denotes the set of infinitely differentiable vector 

fields v =(vl,  v2) tha t  are solenoidal (div v = D l v  1 +D2v2 =0) and have compact support  in 

~ .  Where convenient, functions in J ( ~ )  are defined to be zero in t t 2 ~ .  We write 

2 

Dv:.Dw= ~ (D~vj)(D~w~), IDvl2=Dv:Dv, 
t j = l  

for vector fields, and, when we transform to S, t reat  v 1 =v. Dx and v 2 = v . D y  like other 

scalars. Thus 

For any smooth solenoidal velocity field v defined on ~ ,  whether in J ( ~ )  or not, 

we can define a stream/unction ~v by the line integral, along an arbi trary smooth simple 

are in ~ from a fixed reference point a, 

f[ ~ = f v ndl. ~(zo) = (v 1 dy - v2 dx) �9 (2.2) 

The necessary and sufficient condition for this is div v =0,  and then v = (~vy, -~vx). For the 

desired solution u of (1.1) to (1.3), we write u=(~'~, -gJ'~); the flux condition (1.3b) be- 

c o m e s  

~Flr = c  and ~ ] r . = c + M ,  (2.3) 

where c is a constant depending on the reference point of ~F. 

We define triple products by 

v, w} -~ ( u -  (v. D) w {u, 
J n  
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whenever the vector  fields u, v and w are such t h a t  the  integral has meaning. I f  

d i v v = 0 ,  and  u.(v.n)w is zero on ~ and o(1/h) o n  arcs ~=cons t .  in ~ as [$[ -+c~ (all 

these conditions need hold only in a generalized sense), then  

so tha t  {w, v, w} = 0. (2.5) 

2.2. The spaces H(~ )  and V(~) 

The real Hilbert  space H ( ~ )  is the completion of J ( ~ )  in the Dirichlet norm: 

fo,ov, = f 
the inner product  being <v, w} = ~n Dr: Dw. Here we have applied (2.1) to  v 1 and v s. 

Funct ions  in H ( ~ )  are weakly solenoidal ([23], [26]), and vanish on ~ under  the 

action of the trace operator:  H(f~)~L~(~) (more precisely, L 2 ( 0 ~ R ~ ) ) ;  for the construc- 

t ion of this operator  we use the norm of H ( ~ )  and (2.8) below. (Trace operators are 

discussed in [1] and [24], for example.) For  any  fixed arc ~, as in (1.3b), we can use (2.6) 

or (2.8), and the  fact  t ha t  h is bounded on ~, to construct  a trace operator:  H(~) -~LI(?)  , 

and it follows t h a t  velocity/ields v in H(~) carry no flux: 

rv .ndl=O,  V v e H ( ~ ) .  

I t  suffices to prove this for vfiJ(~), and we do so by  means of a smooth  simple closed 

curve F such t h a t  7 c F, while F ~ ?  lies outside the  support  supp v of v. Then 

because div v =0.  

The following properties involve the form of ~ more closely; their analogues for 

bounded domains are stronger, and those for exterior domains in R 2 are weaker. 

L E M ~ A  2.1. Let ~ be a channel. Then, /or every vEH(~), 

f ~ =  4 ..v..~, 

five= fslvl  < K llvll (27) 
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where the constant K~ depends only on p; also, 

and 

_ ( lvl  J (v+ 1) <411vll ' (2.8) 

f: lv(~,~)]2d~O as I~]-~ ~ .  (2.9) 
1 

Proo[. To prove (2.6) we integrate over S first with respect to ~, apply the celebrated 

one-dimensional inequality ([20], Theorem 257) 

f i t ( t )2dt< ~ Jol'(t)2dt, Vle ~VI(0, l), (2.10) 

and then integrate with respect to ~. The inequality (2.7) is a result of Sobolev embedding 

for IVy(S) ([1], [24]). For (2.8) we can use another standard inequality ([20], Theorem 253), 

but a naive form of this is easily derived for functions in J(~):  

,V]2 d ~1 1 ~ 2 I (  1 [v122dl]~1/2I(11,v~i2dl]11/2 " J [ J -  J (~J-~ v=J-~-~712v'v'dn t3-,(n+ 1) 

Dividing through by the first bracket on the right, squaring, integrating with respect to 

and extending the result to H(~) by continuity, we obtain (2.8). For (2.9), which refers 

to the L2 trace on an arc ~=const.,  we again take v in J(~);  then 

f/ ;~ Iv(~o,~)12=-2 v.v~d~<<. ([vl~+l~12)d~. 
o o 

Let So={~ES]~>~o}; then by (2.10) 

; ,v(~o,,)I2d,< ~ (lull+ Iv~,~)< ~. (~lv'I~+Iv~l') ' 

which tends to zero as ~0-~ ~ .  The result for H(~) then follows by continuity. Q.E.D. 

If vEJ(~) and if in (2.2) the reference point a E ~ ,  then ~EC~(~). Conversely, to 

every ~0 E C~(~) there corresponds an element (yJy, -~v~) of J(~).  Let w EJ(~) have stream 

function Z; then 

(v, w} = [ (~Px~ Z~x + 2y~ Z~ + yJy~ Zyy) = [ (D2Y j) (9  2 Z) (2.11) 
g~ J~ 

upon integration by parts of the middle term. We introduce 
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(%X)v(a)= f (D%2) (D~)'~)= fsh~(V%P) (V~) ,  (2.12) 

where V2y~ = ~  + y ~ ,  and de/ine V(~) to be the completion o/ C~(~) in the corresponding 

norm. The map y~->(~u, -~0~) defines an isometric isomorphism between V(s and H(/~). 

When the local width of /s is bounded, V(/~) is equivalent to the Sobolev space 

I/V~(~), because ~ I D~0[~ and ~ V ~ can then be bounded in terms of I]vll~(~) by means of 

(2.10), but in general W~(~) is a proper subset of V(~). 

2.3. Identities implied by the conformal map F 

In this section velocity fields need not belong to H(~),  nor stream functions to V(~). 

(i) When a stream function is given as a function of ~ (is given on S), as are those of 

the flux-carrying velocity fields g in section 3, it is useful to define not  only v = (Vy, -Vx) 

but also 
Vi = ~)y/h, V2 = --y~Jh. (2.13) 

Then v 1 + iv 2 = e~O(~ 1 + i~2), (2.14) 

where 0 is as in (1.5) and (1.7). Although at a fixed point in ~ the pairs (v 1, v2) and 

(Vl, v2) [more precisely, (~1oF-1, ~2 o F-l)]  are representations of the same vector relative 

to different orthonorm~l bases (respectively Dx, Dy and hD~, hD~), the fact tha t  the 

second basis rotates as we pass to other points makes it safer to regard ~ = (vl, v2) always as 

an ordered pair, related to v=(vl ,  v2) by (2.14). From (2.13) and (1.7) we find that  

A 2 ~2 ~2 • /?~2 
IVv l  = V l ~ + V l ,  T 2,77- 2. 

_- 12 ( ( ~ -  z ~ )  ~ + ( ~ ,  - uW,) 2 + ( ~ ,  - ~W~) ~ + ( ~  - 2~,)~}.  

For computations like the next  one, the (~-valued function V(v~ § iv2) = (vl~ + iv2~, v~ § iv2v ) 

is more convenient, because of the complex scalar e ~0, than the Ra-valued function 

V(v~, v2); the norms are, of course, equal. Thus (2.14) and (1.7) yield 

IVv] 2 =  (v15+~?~$)2+ (?~2~- J~Vl)2+ (Vl~; ~ 2 - zv~) + (v~, + ~ ) ~  

1 ( = ~ { ~ - z ~  + ~ , ) ~  + 2 ( ~ ,  - z ~ ,  - ~ ) ~  + ( ~ , ,  - ~ ,  + z ~ ) 2 } .  (2.15) 

(ii) We shall use, at  least once, each of the following forms of the Iqavier-Stokes 

equation (1.1). With u=(~F~, -W~), . the vortieity eo is defined by 

= u~, - u~ = - D 2"~ = - ~2 V2 ~- 
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I n  t e rms  of this, and because div u = 0 ,  (1.1) m a y  be wri t ten  

We obtain  the  first  

- h sin 0), mul t ip lying (2.16b) b y  h sin 0 (by h cos 0),  and adding; there  results 

"P(A)~] - -  (UlU2y --U2Ul~]) = - - p ~ ,  

- ~ w ~ + ( u~ u ~  - u~ u~ ~ ) = - p ~ . 

ro)y  - (u 1 u2y - u2 u ~ )  = - p ~ ,  ( 2 . 1 6  a )  

-ueo~: § (u~ u ~ -  u~u~:)  = - - p ~ .  (2.16b) 

(second) of the  nex t  pair  upon  mul t ip lying (2.16a) by  h cos 0 (by 

(2.17a) 

(2.17b) 

Now observe t h a t  u 1 u2v - u e Ulv = I m  (Ul - i u  2) (u l~  + iu2v) .  Using (2.14), we obta in  

- vco~ + ~1 (~2~  - 2 4 1 )  - ~2(u1~ + ~u 2 )  = - Pv" ( 2 . 1 8 b )  

(iii) As before, let v and  w have  respective s t ream functions ~v and 7.. Mult iplying 

(2.18a) by  vl and (2.18b) by  v2, and recalling t h a t  (2.18) corresponds to  h t imes (1.1), we 

infer t h a t  

( 2 . 1 9 )  

1 , 1 

(2.20) 

(iv) I f  we t ake  the  curl of (1.1) (or el iminate p f rom (2.16) by  cross-differentiation),  

there  results the  v o r t i c i t y  e q u a t i o n ,  four  forms of which are 

~D2w - u .  De) = O, (2.21 a) 

(2.21d) 
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The fact tha t  V ~ (log h)=0  (that n~+2v=0), which has been used here, also allows us to 

obtain results in section 3 without assumptions about second derivatives of h. 

2.4. Two properties of ehamaels of type II 

We recall that  V (log h)=@, 4). Neither of the following results uses the second 

condition, x/h and 2{hEL2(S), defining channels of type II; tha t  will be used only in 

Lemma 3.3. 

L~MMA 2.2. I /  2(~,~)-+0 as [~l-+0% uni/ormly over ~, then the limit in/erior 

Proo/. Since 2 =h~/h, 

limlr h($) >I �89 dist (F_, P+) > 0. 

h(L ~2) '~ 
o g ~ -  fi~ 2(~,~)d~-~0 

(2.22) 

uniformly over ~1 and ~hE[-1 ,  1], as [r co, and so 

h(~,~) 
sup - -  ~ 1. 

m.n~t-l,1] h(~, ~/1) 
Then 

(P_,P+) ~< [z(~, 1)-z(~,  - 1)1~< f~h(~,~l)drl dist 

~<2(1+o(1)} rain h(~e,r/), 
"q e E - - l , 1 ]  

and a lira h(~) smaller than that  in (2.22) would contradict this. Q.E.D. 

L~,MMA 2.3. Let ~ be a channel such that ~(~,~?)~0 and 2(~,~1)-~0 as I~[ ~ co, uni- 
/ormly over ~. De/ine 

&= (r >n}, 12($)1}, 

a~ul let n be so large that a(n) <~z~/4. Then, /or all ~ ~ V(O), 

256 
f , .  (rlh)~ < (V,,,/h) ~. 

7 -  792901 Acta mathematica 144. Imprim6 le 13 Juin 1980 

16 

1 
1 

(2.23) 
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This implies that 

where ~o~r162 ~ ~ 

v = ( % ,  -~o~) and k is an absolute constant (independent o[ ~, n and ~p). 

(2.24) 

Pro@ I n  this proof c-~4/7~ 2, a = (Z(n) and  all integrals are over  Sn; we use repea ted ly  

(2.10), wi th  t = ~  + 1  and  l = 2 ,  and  the  inequal i ty  2ab<.a2+b 2. Thus  

and,  since ~2 < ~2 there  results 

2C 2 
f (~Jh)2<- l_~co:2 f (w~,/h) , 

which is the  first inequal i ty  of (2.23); note  t h a t  a ~<~/4 makes  1 - 2 c ~  2 ~> �89 The  o ther  two 

are proved  in the  same way. 

Fo r  (2.24), we refer to the  formula  (2.15) for I Vvl ~ in t e rms  of ~0. The  t e rms  

~p~:r 2 are left as t hey  are; for the  others,  we use [g(~)l ~< a, z($)2 ~< ~ / 4 ,  (2.23) and any  one 

of a n u m b e r  of algebric inequalities for p roduc t  terms.  Q.E .D.  

3. Existence of weak solutions 

3.1. A priori bounds 

Definition 3.1. For  any  channel ~ ,  a vector  field will be called a flux carrier if i t  

belongs to  C~176 2) and satisfies (1.2) to  (1.4).(1) 

A veloci ty  field u = g + v is a weak, (or generalized) solution of (1.1) to  (1.4) if g is a f lux 

carrier, v EH(~) and 

~ f a D w : D u + { w , u , u } = O ,  u  (3.1 a) 

or, equivalent ly ,  

+ v, v} + {w, v, g} = - v ;a  nw: n g -  {w, g, g} (3.1 b) y~w,  Y~ + {w, g 

for  all w6J(~) .  

(i) Regaxd ing  (]..4) we recall  t he  r e m a r k s  m a d e  there .  
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Fig. 2. The four mollifiers used in section 3o 
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The condition vEH(~) implies weak forms of (1.2) to (1.4); for the weak form of (1.4) 

we refer to (2.9). Eq. (3.1) correspond to (1.1): if u is a classical solution, we obtain (3.1) 

upon multiplying (1.1) by any wEJ(Y~) and integrating by parts; the converse, tha t  (3.1) 

implies (1.1), will be shown in section 4. 

LEMMA 3.2. For channels ~ o/ type I and any Reynolds number M/~,E(O, ~ ) ,  there 

exists a flux carrier g such that, i/ vEH(~) and 

~lfvll ~ - {g, v, v} = - ~ f ~  Dv:  D g -  {v, g, g}, (3.2) 

then ]lvll ~< const., (3.3) 

where the constant depends only on the data ~, ~, and M. 

Proo/. (i) The velocity g will be that  of two jets, each near a channel wall, tha t  are 

narrow relative to the local channel width and are fast wherever h(~, ~/) is not large. 

For  any e>O, le t /z( . ,  e)EC~176 oo)-+ [0, 1]) be the usual mollifier (Fig. 2) used in 

Navier-Stokes problems for extending boundary-value functions ([4], p. 483; [9], p. 129; 

[13], p. T9; [16], p. 72): #(t, e) =1 at, and sufficiently near, t=O; tz(t, e) =0 for t>~e; and 

for t > 0  
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/~(t, e) ~< eft, 0 < --#'(t, e) ~< eft, (3.4) 

where #' denotes the derivative with respect to t. 

We define g=  (Gy, -G~), where the stream function 

G(r e) = - �89 + 1, e) -# (1  - ~ ,  e)}, 

and where e < 1 will be chosen presently. In view of the form (2.3) of the flux condition 

(1.3b), and the formula [recall (2.13) and (2.14)] 

1 M  
gl(~, e) = -- ~ h ( ~  .{ t(~ j~ 1, e) -~ # ' (1  -- ~, e)}, g2 = 0, (3.5) 

it  is clear that  g satisfies (1.2) and (1.3), and (1.4) in the sense explained there. 

(ii) Since Igl =gl, we obtain from (3.4) and (3.5) 

{g,v,v} = fag .  (v. D)v 

c + lvJ 
<�89 

J n h \ ~ +  1 l - v /  

~< 2Me[[v]l ~ (3.6) 

by the Sehwarz inequality and (2.8). We choose e=e  o in (0, 1) such that  2Meo~<�89 and 

let g=g(. ,  e0) henceforth; then the left side of (3.2) is not less than �89 Hvll 2. 

(iii) With e now fixed, G, and G,v are uniformly bounded pointwise; by (2.15), 

~ 1  +~2}=eonst" i ~ , ~< const. ~ {1 + ~ 
1,2,S 

where 1/h 6 W~(S) because ~ is of type I. Thus ] Vg] 6L2(S ) and so I Dg] 6L2(g2 ). Accordingly, 

- ~  f Dv: Dg<~ v II~llllDgll0~,~ = ~llvil, say, 

- { v , g , g }  <.< coast, f~ I~ IDg] < const. [lv[l = ~ l l v l l ,  say, 

where we have used the Sehwarz inequality and (2.6). I t  follows that  ]]vl] <~2(%+c2)/v. 
Q.E.D. 
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LEM~A 3.3. Let W= W(S) be the set W~(S) normed by 

Ilxll = f (v x) 
so that W is equivalent to ~V~(S), and de/ine 

= s u p .  

where Q01) = ~M(~ - �89  is the stream/unction o/Poiseuille/low in S. ~or channels o/ type I I  

and v>v0, there exists a flux carrier g, di//erent at large distances/tom that in Lemma 3.2, 

such that (3.2) implies (3.3) /or any veH(~2). 

Remark. In [5], careful analysis of the functional whose supremum appears above, 

followed by numerical computation, shows that  v0 =M/116.5. If  only odd functions of ~/ 

are admitted, as is legitimate when one seeks symmetrical velocity fields in a sym- 

metrical channel, then %=M/194.6. 

Proo/o/Lemma 3.3. (i) We construct g to be as in Lemma 3.2 on a certain compact 

subset of ~ and to be a slightly distorted Poiseuille velocity at large distances. To this 

end, we use, in addition to the earlier mollifier /z, a second one ~(., 6)EC~176 1]) 

shown in Fig. 2 and such that  e(~, 6)=0 for l~l ~<2/6 and e(~, 6)=1 for [el >~3/& also, 

le'(~:, 6)] ~< const. 6 and le"(~, 6)1 ~< const. 62 for 2/6 < It/  < 3/6, dashes denoting derivatives 

with respect to 2. We set g=(Gy,- Gx) and define 

G = A + B, A(~, e, 6) = - �89 + 1, e) - /~ (1-7 ,  e)} {1 -~(~, 6)}, 1 

B(~, 6) = Q(~)Q(~, 6). J 
(3.7) 

Further, a=(Ay,-A~) and b=(By,-Bx).  As before, g satisfies (1.2) to (1.4), and c, 6 will 

be assigned positive values in due course. 

(ii) Provided that  [~'1~< 1, we have [a] at most 2�89 times the bound for the It/ of 

Lemma 3.2, and so (3.6) implies that  

{a, v, v} <~ 2a/2MellvII ~. 

Let v = (%,-~oz), then by (2.20) 

{b, v, v}= f~Q~(v2~P~,-~P~P,~) + R,, 

(3.8) 

(3.9) 



102 O. J. AMICE AED L. E. F~AEl~KEL 

where remainder terms .Rj, containing the functions ~', u and 2 that  are small on supp ~(., 8) 

when 8 is small, are recorded in Appendix B. Let  

~.(~) = s u p .  ~\,o, f~ eQ,(x, x+, - x~ x~)lllxll~; (3.10) 

it is proved in [4], p. 510, that  ~,(8)-§ as 8-~0, and we plan to use v,(8) to bound 

{b, v, v}. Introducing a third mollifier ~(~, 6) (Fig. 2), even in ~ and such that  a(~, 8) = 

~(~+1/8, 8) for ~>~0, we define r and ]=a~. 

Assume for the moment tha t  ~0CC~~ then CEC~~ and 

and 

by integration by parts; here (.)(r is as in Lemma 2.3. Let  ~ bound u and ~ as in that  

lemma; we apply 2ab <~a e +b e (say) and (2.23) repeatedly, first to the factors of u, ~, u~ . . . .  

above and then to the o' and G" terms arising f r o m / = a F .  There results 

1 2 11r (1 + const. ~(1/($)+ const. ~) -.J i~1>1/~ ~?1)(~) 

{1 + ~o(~)} Ilvlt ~ (3.11) 

where f10(8)-->0 as 8-+0, and similarly for other fit below. This inequality now extends to 

vEH(~). The mollifier a plays no further part, because its value on supp ~ is one. 

If we apply (3.10) as it stands to r =mp/h, second derivatives of h will appear; therefore 

we integrate by parts. By (3.9), 

{b,v,v}-~ 

Also, 

where R, ~< fl,(8)llvip, j = 1 to 3, by inspection of these terms (Appendix B) and Lemma 2.3. 

Now using (3.10) and (3.11), and adding the estimate (3.8), we have 
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8 

{g, v, v} 4 {const. e +~,(a)[1 +flo(($)] + ~. fls(a)} llvll ~ 

< 1(~ +,o)llvll ~ (3.12) 

if we choose e = e  0 and 8 =80 to be sufficiently small; henceforth g=g(., %, 80). 

(iii) With e and 8 now fixed, not only are the values of G and each of its ~-derivatives 

bounded, but  so are the set, say S', on which ] ~1 < 3/80 and G#Q, and the values of h on tha t  

set. Hence the Dirichlet integral of v over ~2' =F(S') is equivalent, by  Lemma 2.1, to the 

square of the norm of v in W~(~'-+R2), and the contribution of ~ '  to the right-hand side 

of (3.2) is at  most Klllvll, for some (possibly enormous) constant K1. 

Let  S " = S ~ S '  and g2"=/~(S"); i t  remains to bound the contribution of ~ "  to the 

right-hand side of (3.2). I t  is only for this tha t  we use the second condition, n/h and 

2/hEL~(S), in the definition of type I I ;  because of Lemma 2.3, this condition allows us 

to bound integrals over S" of nVryJ/h ~ and 2VryJ/h ~, I?l <2,  by  the Schwarz inequality. 

We shall also use the fact tha t  Q ~ v v = - 3 M / 2 .  By (2.19) and (2.20), 

v f n,, v " D~ g = v f s. ~ { ~,( Q,,,  - 2ZQ,,) - w~ 2~Q,,} 

.< const, llvll = k~llvll, say; 

< const. H = k~llvll, say. 

Thus (3.2) implies that  I1~11 < 2(K~ + ks + k~)/(~- v0). Q.E.D. 

3.2. Existence of weak solutions 

THEOREM 3.4. The problem (1.1) to (1.4) has a weak solution u /or each Reynolds 

number R=M/ve(O, ~)  i[ ~ is o/type I, and/or R <M/vo i[ ~ is o/type 1I  0'o being as in 

Lemma 3.3). 

Proo/. Let {~m}, m = 1, 2 ... . .  be an expanding sequence of simply connected, bounded 

subdomains of ~ such tha t  ~2m-+g2 as m-+ ~ and ~-~m is of class C ~ We may,  and shall, 

suppose tha t  s m = F(S,,), where Sa is as in Fig. 3. Consider the problem of finding a 

U m solution (urn, pro) of (1.1) and (1.2) such tha t  Ion =g, this imphes tha t  Um=O on 

~2f)~g2m and tha t  u ~ satisfies (1.3b) for any  a rc? ,  in ~ ,  directed from a point of 
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Fig. 3. A m em ber  of the sequence (Sin} used in the  proof of Theorem 3.4. 

F_ N ~g2 m to one of P+ N ~ m  I t  is known ([9], [16], [23], [26]) tha t  this problem has a weak 

solution u ~ =g  + v ~, defined as above but  with ~m replacing ~;  in particular, v ~ E H ( ~ ) .  

Since (for fixed m) ~m is bounded, (2.7) shows tha t  H(~m) is embedded in L ~ ( ~ - ~ R  ~) for 

all pE[1,  ~ ) ,  and this allows the analogue of (3.1) to be extended to all test functions 

wEH(g2m). For the triple products in this analogue, the integration by parts yielding 

(2.4) and (2.5) is valid; choosing w=v m, we obtain 

vm ~llv~ll~-{g,v~,v,~}= -~, Dv,n:Dg-{ ,g,g}, 

where vmEH(~2) ff we set vm(z)=0 outside g2 m. Thus each v m satisfies (3.2). 

By  Lemmas 3.2 and 3.3, HvmI[ is bounded independently of m. Hence there exist a 

subsequence {v "~) and an element vEH(g2) such tha t  v 'h~v  weakly in H(~)  as n ->c~. 

The verification of (3.1 b), from the corresponding equations for the v m~, is straightforward 

because the test functions w have compact support. For any given wEJ(~) we have 

supp w c ~  k for some k, so tha t  v m. satisfies (3.1b) for tha t  w if mn~>k. With this same w 

fixed, the terms on the left of (3.1 b) tha t  are linear in v define a bounded linear functional, 

say ]w.g: H(~)-+R,  and then /w,g(vm'O->/w.g(v) as n-~c~, by the definition of weak con- 

vergence. Using the compact suppor t of w once more, we write the non-linear term as 

- {v, v, w); it is then easily handled by means of the triple H61der inequality because 

IIvH ~<lim Iiv'~l[ ~< const, and because the embedding of W~(~k-~R 2) in L~(~k->R2)is com- 

pact  for all pE[1,  ~ ) .  Q.E.D. 

3.3. An a posteriori estimate for weak solutions in channels of type I I I  

In  Lemma 3.3 we described Q as the stream function of Poiseuille flow in S, even 

though it is s rather  than  S, tha t  houses the physical flow field. I f  we maintain this 

eccentric but useful point of view, visualizing an actual flow in S, it becomes clear tha t  

the perturbation stream functions y~ of our weak solutions are in too large a function 

space: the square of the norm of V(~), which houses these functions yJ, is Ss (V~.~/h) ~, 

whereas tha t  of V(S) is Sz (V2z) ~. (We have called this latter space W(S) because of I~z~(S), 
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and to avoid confusion with V(~).) For channels of type I I I  (and only for those, it seems) 

we can prove that  the functions ~0 are, in fact, in the smaller space W(S), and this will 

lead to the detailed results, stemming from the notion of 'Poiseuille flow in S', in section 6. 

Although certain estimates in the following proof resemble those in Lemma 3.3, it  

does not  seem possible to by-pass tha t  lemma even for channels of type III;  a bound for 

II~ll~<~) s eems  necessary in what follows. 

THEOREM 3.5. Let ~ be o/type I I I ,  let v >vo, and let ~ F = G + ~  be the stream/unction 

o/ a weak solution u; here G is de/ined by (3.7), with e =e o and ~ =~o in accord with the choice 

made after (3.12). Then ~ (more precisely, v?oF) belongs to the space W(S) defined in 

Lemma 3.3. 

Proo/. (i) The property (3.1a) of a weak solution may be written 

(3.13) 

for all zEC~(S). For the first term, the manipulations in (2.11) and (2.12) are valid even 

though tF q V(~); the slightly tortuous calculation yielding the second term is given in 

Appendix B. Of course, we also obtain (3.13) if we multiply the vorticity equation (2.21c) 

by h2z and integrate over S. 

We introduce a fourth mollifier ~(., 8, n) E C~176 1]), shown in Fig. 2; r(~, 8, n) = 1 

for 3/~ + 1 ~< ]~1 <~ n, and ~(~, ~, n) =0  for I~1 ~< 3/~ and for I~ ] >~ 2n. A value ~t <~0 will be 

chosen in due course, but  estimates are to be independent of n, for n sufficiently large. 

Define/~=T~,  Cn=v2~, z~=h2r 

Then Z, $ C~(S), but  it has bounded support, for fixed n; we can show that  (3.13) holds 

for Z=Zn by a familiar limiting argument, using a sequence {~Pm) in C~~ such that  

~m-+~v in V(g2) as m-+ c~; questions of behaviour at infinity in S do not arise, and (even 

without Lemma 2.2) h and 1/h are bounded on supp Z= for fixed n. 

We omit the label n from /= and r henceforth, and use the notation 

A(X, Z) = ~ fs{(~X~ + ,~Z,) + (~ + 2 3) X} V ~ Z, 

IX, r, Z/= f~ (Z~ Y, -  X, r~) V ~ Z, 

B(X, Y, Z) = 2 f X(z  Y,  - 2 Y~) v 2 Z. 
J s  

Setting Z=Z~ in (3.13) we then obtain 
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~s (V=r =~F) +A(r ~F) + [r ~F, ~F] + B ( r  ~F, ~F) = 0, (3.14) 

where ~F=Q+~p because G=Q on supp r Note tha t  all terms in A and B contain ~ or 2, 

which are small on supp r We recall tha t  Q(~v)=aM(r]-�89 hence 

v f (V~r fs{(r r 

[r Q, Q] = f~ (r Q, Q,,)~ = 0. 

(ii) We wish to bound IIl]l~= S, (V=l)~ independently of n, and begin by putting (3.14) 

into a more revealing form; all integrals and norms will be over the set S~ = {$ e S[ [~] > 3/8}, 

as they are implicitly in (3.14). A calculation (using r = ,~0,  /=~yo) yields 

where 

{'l)ll/[l~ v -  T1} -}- A(r lt2)-{fQ~(/~/~-/~/~)~- T,~ -- [~, '~/), '~1)]} -~- B(r l 'I?)= O, (3.15) 

T2 = + + 

and where the definition of % in Lemma 3.3 shows tha t  

f Q,(/,l~ - 1~/,~) .<  ollll[% (3.16) 

(iii) We now show tha t  

-A(r162 T3-2 f).v~'~,2V2w, (3.17) 

where ?j(8)-~0 as 8->0 ( j = l ,  2), and T 3 is a sum of integrals containing derivatives of 

(as do T 1 and T2) as well as u or ~, and is quadratic in yJ (as are T 1 and T2). In  fact, 

T a =  E const, f l ( ~  or ~t o r . . . ) ( ' ~ '  or . . . )(V~)(Ve~0)l,  < l, .<2, 

where 'or . . . '  refers to terms like n2 +~t~, ~,2, ~, , .  

By  Definition 1.1 and a remark following it, ~ and A are in Lo~(S) for channels of 

type I I ,  and also in L~(S) for type I I I ;  therefore they are in L~(S) for 2 .<p.< ~ .  In  

addition, nh and 2h are now in Lq(S) for some q>2 .  Also, W(S) is embedded in W~(S) 
for 2 .<p < co, and in L~(S) for 2 < p  ~< co. 
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We shall use y(8) as a generic symbol for functions tha t  tend to zero with c~, and 

write t a for any integral contributing to T a. The first term of -A(r Q)/4v is 

The first term of - A ( 5 ,  y)/dv is 

- f~r  = -/~/~V~l+ts, 
where 

Other terms of A(r W) are similar or smaller. Terms in B(r ~F, ~F) are bounded either 

as were those of A(r ~ )  or as follows. 

where t/q+ lit=�89 We now have a choice: either (a) to note tha t  these norms of uh and 

V:~p/h both tend to zero as ~ 0 ,  and to use a bound ~(~, y~)ItfHw, or (b) to note merely tha t  

[[~h[[L-->O and UV~/hU~-<const. by Lemma 3.3 (the constant depending only on the 

data), and to use a bound y(6)II/llw ~n (3.17) we have chosen (b). Next,  

�89162 W, ~)= - [1(~1,- ~1,)v~ - [ ~ ' ~  ~v~, 
where 

~<~(~)11~11~, 

provided tha t  llq+l/r+l/s= �89 A similar estimate holds for the term involving/,~]~. 

The ~ '  term is not absorbed in T s [see (3.17)] because it is cubic in y;. 

(iv) Assembling (3.15) to (3.17), we choose 8=(~x~<a0 so small tha t  y2(c~l)<<.�89 
and it follows tha t  

f �89 ~ T,- [C,~ ,V]-2  ~'~V~W. (3.18) 

I t  remains to bound the terms on the right-hand side, all of which contain derivatives of 

T; hence they come only from the intervals 3]51 <~ <3181 + 1 and n <~ <2n  for ~ > 0  (and 
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for s < 0 the argument is similar). With (~1 now fixed, h is bounded on the former interval, 

the contribution of which can therefore be bounded in terms of II~llv(a). In Sn= 
(n, 2n) • ( -  1, 1), we have 

I T'(~, ~1 n) I ~< eonst./n ~< const./~ ~< const./h(~, ~])2, 

since h(s fl)<const.  1s ~ for channels of type III .  The critical term is 

- [r - f~ (~,~n-end,)V2~ = - 2  f s . z z ' ~ V 2 ~  

< coast. II/Ik.ll,r./hll~. IIV~/hll,., < const. II/llw, 

where we have used (2.7) for y~/h =vl. The last term of (3.18) is of the same type, except 

for an additional factor A. The terms Tj can be bounded similarly. (In fact, a hypothesis 

weaker than h(~, ~])~<const. ]~1�89 would serve for the T~. In T2, for example, 

n n 

~< const. {lllllwllV~/h, llz~ "q-Ilv/h, ll~,llw/a, ll~}, 
where h.(~)= 1~[ ") Q.E.D. 

4. Regularity of the weak solution 

In this section we examine the regularity of the weak solution u, the existence of 

which was shown in Theorem 3.4. We shall show that  uEC~176 ~) for all bounded 

domains U c ~,  and that  there exists an equally smooth pressure p such that  (u, p) 

satisfies (1.1) to (1.3) pointwise. Such results are absolutely standard for weak solutions of 

the steady Navier-Stokes equations in two and three dimensions (see, for example, [8], 

[16], [26]), and so we shall only sketch an argument which makes use of the 

representation u = (1Fy, -~Fz). 

The proofs of Lemmas 3.2 and 3.3 show that  ~F has the form ~F=G+~,  where 

G E C~176 was constructed a priori and yJ E V(~). The use of this representation in (3.1 a) 

(or direct use of (2.21b)) and various integrations by parts show that  ~ satisfies 

(4.1) 
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for all r176 Eq. (4.1) can be examined with the L~ estimates due to Agmon 

([2], pp. 428-431) and the arguments in [5]. 

THEOREM 4.1. I f  yJEV(~) satis/ies (4.1), then yJEC~~ /or all bounded domains 

U ~ .  

In  fact, one can use [15] to show tha t  tF is analytic (i) in gs and (ii) a t  any point 

z 0 E ~ such tha t  the boundary ~ is an analytic curve at  z 0. 

THEOR]~M 4.2. I t U is a weak solution o] (1.1) to (1.4), then u E C ~ ( U ~ R  ~)/or all 

bounded domains U c ~.  Furthermore, there exists a pressure p, with p E G~176 U--> R) /or all 

bounded domains U ~ fs such that (u, p) satis/ies (1.1) to (1.3) pointwise. 

Proo/. The smoothness of u follows immediately from Theorem 4.1 and the represen- 

tat ion u=(tF~,- tFx) .  Since u is smooth, we may  integrate by  parts  in (3.1a): 

f w.  ( - v D 2 u +  (u. D)u} = O, u  (4.2) 

By application of a standard result ([26], p. 14) to (4.2), there exists a distribution 

p E D'(g/) such tha t  
-~D~u + (u. D)u = - Dp 

in the sense of distributions. Since u is smooth, the same is true of p, and so (u, p) 

satisfies (1.1) pointwise. The verification tha t  u satisfies (1.2) and (1.3) is standard. Q.E.D. 

5. Pointwise  decay at inifinity for channels  of type I' 

5.1. Channels  of  type I' 

In  section 3, we proved the existence of a weak solution u to the steady Navier- 

Stokes equations in channels ~t of types I to I I I ,  subject to ~>% for types I I  and I l l .  I t  

was shown in section 4 tha t  the velocity u is smooth on bounded subsets of ~ and tha t  a 

smooth pressure p exists such tha t  (u, p) satisfies (1.1) to (1.3) pointwise. The final two 

sections of this paper deal with the behaviour of u and p at  infinity in ~2. The present 

section is concerned with channels of type I ' ;  such channels are of type I and have the 

additional properties in Definition 5.1 below. Domains of type I may  be regarded, at  least 

roughly, as those for which h(~) grows asymptotically at  least like I~1 ~, ~>�89 since 

1~he W~(S). In  section 6, we examine (u,p)  for channels of type I I I ,  and these may  be 

regarded as domains for which h grows no faster than  [~]~, where 0 ~< ~ < �89 Hence, the 

results in sections 5 and 6 together cover most cases of h which might arise; exceptions are 
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h(~),~ [~ [�89 log log [~] and functions h t h a t  oscillate very  rapidly at  infinity. The methods  

for examining u and p at  infinity for channels of type  I '  and for those of type  I I I  are ve ry  

different; for channels of type  I ' ,  we shah follow a long and tor tuous  route whose final 

result  is t ha t  u tends to  zero uniformly a t  infinity in ~ .  This shows t h a t  there exists a 

classical solution (u, p) satisfying ( 1 . 1 ) -  (1.4) pointwise for all v > 0  in the  case of channels 

of type  I ' ;  however, we are unable to  give a ra te  at  which u tends to  zero. I n  section 6, 

we examine channels of type  I I I ,  and Theorem 3.5 will allow us to  prove (provided t h a t  

v>%)  not  only t h a t  u tends to  zero uniformly whenever the  local channel width tends 

to  infinity, but  also tha t  the decay occurs a t  a certain rate. Throughout  the rest of this 

section, we restrict a t tent ion to  domains of type  I ' .  The viscosity v > 0  is arbi trary,  bu t  

fixed. 

Ore" initial concern is to prove certain results for the  s t ream function ~ and the  cor- 

responding vort ic i ty  co ----- -- V2~F/h ~. We shall then be in a position to handle the velocity u 

and the pressure p.  Certain of the proofs in this section are suggested by  those of Gilbarg 

and Weinberger in [17]; however, the  task at  hand  is different since we shall have to  deal 

with various functions on the  lines ~/= _+ 1. 

I n  order to  derive certain est imates for ~F and its derivatives near  ~/= ___ 1, we need 

fur ther  assumptions on h t h a t  exclude highly oscillatory behaviour.  

De/in#ion 5.1. A channel ~ c  R 2 is said to be o/ type I '  if it is of type  I and the 

following additional conditions hold. For  each 20ER, let D(20)=(20 -1 ,  2 0 + 1 ) •  1). 

(i) There exist constants  c~, c z > 0  (independent of 20) such t h a t  

h(2,n) 
0 < cl ~< h($0 ' _ 1) ~< c~, V(2, ~1) ED(20); (5.1) 

(ii) lim [n(~)]' [~(~)]-  0, (5.2) 

where z=hJh  and ~=h,/h. 

The conditions (5.1) and (5.2) are easily satisfied if h behaves asymptot ical ly  as for 

almost  all the channels of type  I in Appendix A. 

We can combine (5.1) with the proper ty  1~hE W~(S) to  prove tha t  

or, equivalently, 

lim h(~) = 0% (5.3) 

hm k(2) = 0, where k(2) = l/h(2, - 1). (5.4) 
1~1->oo 

Indeed,  the assumption (5.1) gives 
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[[ 1/hllo~ ~.~(~)>/4c~2k(~) ~, (5.5) 

and (5.4) then follows immediately since [[1/hllo.2.D(W-->O as ~ - ~ .  

The velocity u has the form u =g + v  = (1Fy, -~F~), where XF = G +~o and G:is a function 

only of ~ for large [~], while ~oe V(~2). Since 1/heL2(S),  it follows tha t  

s(V2G2)2/h ~ < c~, (5.6) 

and if we combine this with the definition of V(fs then we have 

fs(v2,V)~/a~= f s h ~  < ~. (5.7) 

The properties of G and h ensure tha t  

f lVGl~/h~< co pe[2 ,  oo), (5.8) for a l l  

and if we combine this with a similar estimate for yJ (via the representation v = (%, -yJ~) 

and Lemma 2.1), then we have 

/IV'FI~/h,< ~ pe [u ,  ~ ) .  (5.9) for a l l  

Finally, note tha t  (iii) in the proof of Lemma 3.2 gives 

f lvgIs<  const. II l/hll~.~,~ < oo, 

and since v E H ( ~ ) ,  it follows tha t  

f. lVul2= foiDul  < (5.10) 

5.2. Estimates in a boundary neighbourhood 

Let k(~) = 1/h(~, - 1) and define 

A -  = {~1 - c o  < r  - 1  <~/< - 1+ra in  (�89 k(r 

A§ ~=: {~[ - ~o <~ < ~ ,  1 - rain (�89 k(~)) <~  < 1}. 

(The domains A -  and A+ may  be viewed as the images under the map F -1 of boundary 

strips of width order one adjacent to the components of Of 2.) I f  we set u~=~F + M/2,  then 

(2.21 c) and the fact tha t  vl~ = G = -5 M / 2  on ~/= -5 1 give 
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{~V~- ~J'n ~ + ~ r  12 V2 ~ = 0 i n A - ,  (5.11a) 

17F =gF, = 0 o n e =  - 1 ,  (5.11b) 

and similarly in A+ for iF-M~2. 
We now prove that  

hl-lallVZ~" I eL~(A-) for Ifll <2.  (5.12) 

Since Theorem 4.1 shows that  ~ is smooth on compact subsets.of ~,  we shall restrict our 

attention to large values of I~l, say, those for which k(~)<�89 For each such ~0, set Do= 

D(~o) N A-  = (~0-1, ~0 + 1) • ( - 1, - 1 + k(~o)), where D(~o) is given in Definition 5.1. Since 

~F~ =0 on ~ = 1, it follows that  

a n d  so ,  

f Do~ <~ k('o)~ {2 ~Do (~'Fml -- 21Fn + ~,)2 § 2 f D (')~ xFn -- ~l~,) 2} 

<~ c~ [2 f Do { (vF,m-- 2~F,~ + u~F~)~/h~) + 4 f D~ (ZeF,jh)~ + 4 f D ~ 

by (5.1). Similarly, 

(-~Fdh) ~] 

(5.13a) 

If we add (5.13a) and (5.13b) and use (2.15) and (5.2), then we have 

~0 =M,  M + 2 ,  ..., to 

= -  1, and so 

for all sufficiently large ~o. Now sum this final inequality over suitable integers ~0, say, 

obtain V1FeL2(A-), since VueL2(A-) by (5.10). Now W = 0  on 

whence 

/ t'-l+k(~~ I~F,(L t) ldt) 2 

h(~)z k(~:o)  IvF,(#,t)l'dt, < V~EDo, 

f.~ IvY I 
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lWl 6L~(A-), this inequality gives h~FeL~(A-).  For the case Ifl[ =2  in (5.12), we 

<2J" IVuI'+const. f._Iv rI'< oo 
since ~/h, i / h  6L~(S)  by (5.2). Similar estimates hold for the other second derivatives of ~F. 

With the use of (5.12), equation (5.11) can be examined by the methods in Theorem 

3.6 of [5] with the inequalities due to Agmon [2]; after long but  routine labours there results 

TH]~OREM 5.2. ;Let ~ = ~ F + M / 2 .  Then /or each multi-index fl, 0<~ lfl] <3, 

(a) hl-'~'[W~l e;L~(A-), 
(b) (h I/2-'~' IWql)l,o-  6L2(R), 

(c) h-I~lVZ~;'-~0 uni/ormly as I~[ ~ in A'=. 

Similar results hold in A + / o r  ~ - M / 2 .  

Since k(~)-~0 as I~l _~oo by (5.4), Theorem 5.2 only provides information about ~F 

near ~ ~ • 1. For the rest of section 5, we shall restrict attention to 

Sa={(~,~)la<~<~ % - - 1 < ~ < 1 } ,  

where a is so chosen tha t  k(~)<�89 for all ~ >a.  Similar results will hold for large negative ~. 

Theorem 5.2(c) shows that  

Iv~zp =o(h), 

and (b) shows that  

~o te  also that  

~o=o(1) in S : O A  + and S ~ N A - ,  (5.14) 

(h ~~ ) I ~=• ~ ). 

a)y  = ( - -  h -2V2~J ' )~ ]  = - h - 2 V 2 x I 2 ,  - 2 t t (o ,  

and the use of (5.2) and Theorem 5.2 (b) together gives 

(5.15a) 

(h-�89 I ~=• 1 6L~(a, oo). 
Finally, we have 

o~ = ( - h - W 2  W)~ = - h - W ~ W  ~ -  2zoJ, 

and the use of (5.2) and Theorem 5.2(c) together gives 

(h-la)~)l,=• as ~-+ ~ .  

8 -  792901 Acta mathematica 144. Imprim6 le 13 Juin 1980 

(5.15b) 

(5.16) 
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5.3. Estimates o|  the vorticity 

The following lemma shows that  the velocity u is o(h) in Sa, and this result will be 

needed in Theorem 5.4 to prove that  [Vco[ EL2(S ). 

LwMMA 5.3. ]u(~)[ ]V~F(~)[_+0 as [~]-~oo in S a. 
h(~) h(~) ~ 

Proo/. We shall prove the lemma for the case ~ E ( - 1, 0] since an analogous argument 

holds for [0, 1). Let  ~oESa he fixed, and note that  if ~0+1 </C(~o), then ~oEA -, and (5.14) 

and (5.3) give I V~F(~o) [ ~ const, h(~o) = o(h(~o)2). Hence, it  suffices to take ~o ~> - 1 +/C(~o). 

Define the open ball U c Sa by  

V(~o) = {~] ]r <�89 

We wish to use (2.21 c) to examine ltz in U; however, the Agmon estimates are for balls of 

a fixed size, and so the following affine transformation is needed: 

2 2 
s = ~ ( ~ -  ~o), t = ~ ( v -  Vo). (5.17) 

For each rE(0, 1], let B(r)={(s,  t)[s2+t2<r2}, and note that  B--B(1)  is the image of U 

under the map in (5.17). 

If we define/(s, t) =~F(~o + �89 Uo + �89 and g(s, t) = (o(~ o + �89 Vo + �89 

then (2.21c) becomes 
~'(gss+gtt)--/tgs + ]sgt = 0 in B. (5.18) 

The use of (5.18) and an integration by parts give 

and so, for all CEC~(B), 

I f ,  g(r § r < ~-ligHo.~.,{]]r II/&,., § I1r 11/,11o.,.,}. 

If  we apply results of Agmon ([2], pp. 428-429) to this inequality, there results 

]]g]J1.4/B,B(1]2) ~ c--0nst--Ilg]]0,2.B{ 1 2i-I]/,ll0.,., + II/~11o ~.}, (5.19) 

and the constant is independent of v, 20, g, a n d / .  We now estimate the right-hand side 

of (5.19): 
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llgll0...B = 2h(~o, - 1 ) I 1 ~ 1 1 0 . . , ~  < 2 c p  IIh~ll0,. .~ < const . ,  (5 .20a)  

where we have used (5.17), (5.1) and (5.7). A similar argument gives 

II/,11o., B + II/,11o.,., < const .  Vh(~o, - 1)IIV~/hll0.~.u = o(h(~o)), (5 .20b)  

where we have used (5.17), (5.1), (5.9), and (5.3). 

The definitions of ] and g show that  

L~ +/tt = ~k(~Q) 2 V 2~F = - �88 

and a simple argument using (5.1)and (5.2) then gives 

Combin ing  this final inequality with (5.19) and (5.20), we obtain 

II l,~ + l,, 111,,/3.~,1/. = o(h(;0)). (5.21) 

The Agmon theory now gives 

IIlll~.,,3..,.,, -< const. {111.. +1.11~.~,~.~,.~, + II1110.,.,.~,}, (5.22) 

where the constant is independent of 1. Now ~F(~, - 1 ) = - M / 2 ,  and so 

o 1 i .dO 11~ = IW(~,,) + MI2] < F~ ~(~'t)ldt<c2h(~"- 1) (~-1h2 [~F~(~'t) o(h(~) )  

by (5.1), Lemma 2.1, and the fact that  G v is bounded. I t  fottows that  11/llo.2,.(~)=o(h(~o)), 
and the use of this with (5.21) in (5.22) yields [I/U3.413,-(u4~ =~ The embedding 

W]Ia(B(�88 is bounded, and so 

I ~ ( c o } l  = 2h(~o, - 1) II~(o) I < const ,  h(~o, - 1 ) I l l l l~ , ,~ . , , - , ,  = o(h(Co)~). 

and similarly for ~F~. Q.E.D. 

THEOREM 5.4. The vorticity co= ~V2~tZ/h 2 is such that IVeol CL2(S ). 

Proo/. I t  was shown in section 4 that  1FCC~(~)) for all bounded domains U~S, and 

so it suffices to prove that  I V~ol eL.(S~). (A similar argument holds for large negative ~.) 

Recall that  S~=(a, oo)x (--1, 1), with k(~) <�89 there. 

Let XEC~~ 1]) be such tha t  g(r)=0 for r < 0  and %(r)=1 for r > l .  For each 

positive integer n/> a + 1, def ine /~  E C~(R-~ [0, 1]) by 
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{ Z(~-a) ,  ~ < a + l ,  

/~(~) = 1, a + l < ~ < n ,  

1 - Z ( ~ - n ) ,  n~<~< ~ .  

An integration by parts shows that  

v f ;d~ ?xn(~ ) {w(~, 1) w~(~, 1) - e9(~, - 1) c%(~, - 1)}. (5.23) + 

Since he9 eL2(S ) and h(~)-+ ~ as I$1 -+ ~ ,  we have co eL~(S), and so the second term on the 

right of (5.23) is bounded independently of n. Eq. (5.15) shows that  the final term is also 

bounded. Hence 

v f  , lVepl  <v] fsgnepV epl+ const. (5.24) 

=lfslt,,.o:,(W, Tep~-tF~ ep~) l + const. 

by the vorticity equation (2.21c). Integrating by parts, we have 

r 1 - ep~tF~djun + const. ( 

<. const. { f a<,<o+ l l ,l + f n<,<o+ ep' l V, l + l }. (5 25) 

:Now co and LF~ are bounded for ~E(a, a +  1), and Lcmma 5.3 and (5.7) give 

f~<~<.+lep' ltF, l < c~ f.<~<.+ h~ ep' <<" c~ " 

The theorem then follows. Q.E.D. 

Theorem 5.4, (5.7), and (5.14) now enable us to prove that  the vorticity w tends to zero 

pointwise at infinity in Sa. 

COI~OLZARY 5.5. ep(~, ~7)--~0 uniformly as ~-> ~. 

Proof. Let e>0  be given. Since ha) and IVepl EL~(S), we can find a positive iateger 

/Y(e) such that  
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The mean-value theorem ensures the existence of ~(n)e(n,  n + 11 such t ha t  

62~ 

and the embedding of W~( -  1, 1) in C [ - 1 ,  1] then  gives 

]w(~(n),V) I <cons t .  e, u  (5.26) 

Fur thermore ,  eq. (5.14) allows us to assume tha t  

[~o(~, 1)[, [w(~, - 1 ) l  ~<e, V~>~N(e). (5.27) 

If  An = (~(n) <~ <~(n + 1), - 1 <~] < 1}, then  (5.26) and (5.27) together  show tha t  leo I • 

const, s on ~An. F rom (2.21 e) it follows t ha t  oJ and - w  satisfy a max imum principle in 

An, and so ]co[ ~<eonst. e in An. This is t rue for all n~>N(~), and so [eo(~,V)l ~<const. e 

for all ~ ~> N(e) § 1. Q.E.D. 

5.4. Averages over arcs of p and [p] 

We are now in a position to  examine the pressure p. Eq. (5.7) gives tha t  ho~ EL2(Sa)  , 

and so 

The mean-value theorem ensures the existence of a number  ~fi(O, 1) such tha t  

f~d~ eo(~, h(~, eo(~, - g)~} = Hhcol]~).e.s. (5.28) + 

Now, by  the  form (2.17a) of the  Navier-Stokes equations, 

d-~ ~ p(~, ~)d~ = - v {co(~, ~) - ~o(~, - ~)} + {ul u2, - u2 u~,} d~'t. (5.29/ 

Since 1~hE WI(S), the  s tandard  theory  of t race yields 

~h(~,~)2 ~<eonst. H1/hH~.e.s, Y~ e ( -  1, 1), 

and the constant is independent  of ~. If we combine this inequali ty with (5.28), there  

results 
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< contr. IIh~'llo.~.~olll/hll,.~.~, 

and similarly for values at ~ = - ~. I t  follows that  the first term on the right of (5.29) is an 

element of Ll(a, co). Next, by the Sehwarz inequality and (2.10), 

If~ {uxu2,-u~u~,}d~l<<. ;x{lUlllu2,l+lu2llu~,l}d~< ~ ; l lVupd~,  (5.30) 

and this last term is in Ll(a , oo), because I Vul EL2(S ). I t  follows that  d(S~_~p(~ :, ~)d~)ld~ 

is in Ll(a, co). Hence, S~_,p(~, ~)d~] has a limit as ~-~oo, and, altering p by a constant, we 

have proved 

LEMMA 5.6 There exists a number ~E(0, 1) such that 

g 

The following result will be needed in the proof of Lemma 5.8. 

I x Ip(~,r])ld~-+O as ~ o o .  L ~ M A  5.7. 
J -  1 

Proo]. (i) Given any e >0, choose a positive integer N =N(e) such that,  for all integers 

m>~N and all t>~V, 

~,'/,>,,,Vto, 2, f,>,nlVUl', ;xlu(t,.)l~d~?, f:p(t,.)d.<~e; <5.31) 
these estimates are possible by Theorem 5.4, (5.10), Lemma 2.1, and Lemma 5.6, respec- 

tively. Eq. (2.17a) implies that  

/rn<~e<m+l l~Od</=.< ~.< m + 1 {'p I V(-D I -F I ul Ivul} '  

and the use of (5.31) and ~he Sehwarz inequality then gives 

f?;  d~ 1 d~ I P~I < V~ + IG. IG < const, v7. (5.32) 

Eq. (5.32) shows that  for any ~, ~lE[m, m + 1], 
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(ii) We now use a weighted form of the Navier-Stokes equations, as in [17], that  

makes p~ and % comparable. Let ~(~)=max~0E-l.l~ {1+ lu(~,V)]~}; then, by (5.31)and 

(2.17b), 

1 

(5.34) 

If we apply the mean-value theorem to (5.34), we see that  there exists ~l(m)6 (m, m + 1) 

such that  
1 1 

f _l {-~l) ,~(~l, rl )2 + , %(~l, ~2) ,2} d~ <~ 5~. (5.35) 

The use of (5.31) and (5.35) with the embedding W~(-1,  1 ) ~ C [ - 1 ,  l] ensures that  

l u(~(~) ,  n) l ~ << oonst. ~, vn e [ -  1, l ] .  

Note that  #(~1) < 1 + const, e, and the use of this in (5.35) gives 

f~l/2~($1' ~2)2 d~/~< const, e. (5 a) .36 

A standard inequality ([24], p. 117) gives 

; , r162162 , u 1 6 2  W~(- 1,1), 

and the constant depends only on the choice of ~6(0, 1). If we combine this inequality 

with (5.31) and (5.36a), there results 

lp(~l(m),~2)2dU const, e. (5.36b) 
1 

By (5.36) and the embedding of W~(-1,  1) into C [ - 1 ,  1], 

Ip(~,U)l~<eonst. 1/~, V~6[--1 ,1] .  (5.37) 

Finally, (5.33) and (5.37) together imply that  

f~llP($,n){ dn < const. V~e[~,m + 1], V;, 

and since the constant is independent of m, the proof of the lemma is complete. Q.E.D. 
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5.5. Pointwise decay of the pressure and velocity 

L e m m a  5.7 now enables us to prove  t h a t  the  pressure p tends to zero a t  infini ty on 

the  lines L ~ = { a < ~ <  ~ ,  fl = •  We shall then  use this result  in Theorem 5.9 to show 

t h a t  p(~)-+0 as [ ~ [ ~ c ~  in S~. 

L~M~A 5.8. p(~, •  as ~-.oo. 

Proof. (i) Le t  ~ > 0  be given. I t  suffices to  work  with  t he  line L - .  Le t  ~0=(~o, - 1 )  

denote  an  a rb i t r a ry  fixed point  on L - .  We define polar  coordinates (~o, r centred a t  ~o, by  

~ - $ o  =Q cos r ~ + 1  = ~  s ine ,  

where 0 ~<r ~ .  We  use ~ to denote  a funct ion wr i t ten  in t e rms  of (s ~); for example ,  

~(~, r  ~). J u s t  as (2.16) leads to (2.17), so (2 .17) impl ies  t h a t  

1 1 
~q = -- ~ 0 O)r + e - -  ~ - {9~19~2r -- 9~2 ~1r (5.38) 

for  e e (0, 2). 

I f  we integrate  (5.38) with respect  to r f rom 0 to ~, there results 

d-~ ~(q,r - ~  {~)(O'~'~g)- (~(0'0)} + l ( r t  {~1~2 . -  a 2 a l r 1 6 2  (5,39) 

We now integra te  (5.39) wi th  respect  to s f rom 0 to any  tE(O, 2): 

t d~ ( t  d~ f:~ 

(5.40) 

The te rms  on the r ight  of (5.40) are small  for all sufficiently large ~0, and we shall p rove  

th i s  in two steps. 

(ii) An a rgumen t  analogous to t h a t  for  (5.30) yields 

d~ 

( ~ ' + ~ d ~  ~ as < const.  IVul~dv---)-O ~o ~ ~ ,  (5.41) 

since. I Vul eL~(S) by  (5.10). 
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(iii) Now oS(q, 7~)-05(q, 0)=eO(}o-O , -1)-r -1 ) ,  and with ho=h(Go, -1), we 

have 
do (1/h~ do~ 

2 

~< h(~o, - 1)I~ ~o]<l/ho 

(5.42a) 
by (5.1) and (5.16). The Schwarz inequality and (5.1) give 

f i '  ~(1~(~:o- e, - 1)l+ t~,(Go + e, - 1)l} 
/ho 

-~ 1/2 

~ const. {h(}o-e , -  U o~(}o-e,- U2 + h(}o + e , -  1)~(}o+ e , -  ~)~} deJ 
-+0 as Go-~ c~, (5.42b) 

by (5.15a). 

(iv) The use of (5.41) and (5.42) in (5.40) ensures that  

Ip($0)l < = ~ f:I~(t, r de + ~, vte(O, 2), (5.43) 

when Go is sufficiently large. If we multiply (5.43) by t and integrate with respect to t from 

zero to two, there results 

]P(~~ 2~Jo tdtJo IP( t , r162 

-<-< ~ J,/o- ~ ,~G J - -  �9 / I v(G,~)l ~ + ~ < const  

for all sufficiently large Go by Lemma 5.7. Q.E.D. 

T~EORE~ 5.9. P(G, ~)-+0 uniformly as G-~ .  

Proo/. (i) Let e > 0  be given. Let ~0--(Go, ~o) ESa be/ixed. We shall prove the theorem 

for the case ~o~( -1 ,0 ]  since the proof for ~oE[0, 1) is analogous. We define polar 

coordinates (~, r centred at $o, by 

~-~o =q  cos r ~7~0 =q  sin r 
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where the variable ~ takes values in the interval [ - z / 2 ,  3z/2). Consider a circle 

0=const .  =0~; if 01>~1 § then it intersects the wall ~ =  - 1 at 

and at 

3 ~  

where T(0) =cos -1 {(~]0 + 1)/~} E[0, ~/2]; if Q~ < 1 +~0, then we define ~(~) =0, ~(~) = -~ /2 ,  

and fl(~l) = 3~/2. 

(ii) We now integrate (5.38) with respect to r from :((~) to fl(~): 

f ~(~) v I f  ~ )  

where 

and we have used the fact that  

f ~(o) ~r r  = ~(0, ~ (0 ) / -  a(O, ~(0/) = O, V 0 S (O j ) ,  
(e) 

by continuity if a(~)=-z~/2 and fl(O)=3~/2, and otherwise by the fact that  (0, fl(q)) and 

(o, ~(p)) correspond to points on ~S, where ~ vanishes. ~ow 

d~ j~<~, ~(e, r de  = p~ de + fl'(e) P(e, fl(e)) - ~'(e) P(e, ~(e)) 
J a(~) 

(5.45) 

for all ~ E (0, 1), where ' denotes differentiation. If we integrate (5.45) with respect to 

from zero to any rE(0, 1), then the use of (5.44) gives 

+ - { ( a l - ~ l ) ~ - ( a , - ; , ) ~ l ~ } d r  (5.46/ 
I Jo ~ J~(e) 

(iii) We proceed to show that  the right-hand side of (5.46) tends to zero as ~0-> ~ ;  

the desired result will then follow easily. The Poineard inequality ([24], p. 16) gives 
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J a(~) 

and similarly for 4~. We can use this inequality to estimate the final term on the right 

of (5.46) in a manner similar to that  for (5.41): 

0 t do ~(Q) q#2) ~1r de 

f~ ffl(O) 
< const, ode [V~l~dr 

J ~(~) 

d ~,-i J -1 
(5.~7) 

by (5.10). We now estimate the second term on the righ~ of (5.46). The definitions of 

and fl ensure that  a' and fl' are one-signed, with 

Hence 

do {fl'(q) p(o,fl(o))- (q) = max  Ip(l, - 1){-~0 
I~-~ol~<O 

as ~ o - ~  (5.48) 

by Lemma 5.8. Finally, we examine the third term on the right of (5.46). Recall that  

~ ( 0 ) = - g / 2  and fl(q)=3z/2 for 0~<~0+l, so that  ~5(0, fl(O))=D(O, a(0)) on this interval. 

Hence the integral may be taken over the interval [~/0§ 1], and on this interval, 

~ fl(0))-~5(0, g(0)) =cO(So-0 sin ~(0), - 1)-w(~o+0 sin ~(0), - 1). Assume for the mo- 

ment that  ~o+1 ~< 1]ho, where h0=h(~o). The Schwarz inequality and a change of var- 

iables give 

fl;~, [~~176 O sin ~(O" -- 1 ' ] ~  <"lJe~ ]11e~(doll'21J~J 

= ( h o - 1 )  ~ --  ~ - -  1)2 [~2 § (~o + 1)~]1/2, I 

where ao={h~2-Olo+l)S} ~ and a l={1- (~o§  �89 If we apply (5.1) and (5.15a) to the 

term above, then 

[~o(~o-osin~(o) , -1)  -~0 as ~ o - ~ ,  (5.49a) 
Iha 

and similarly for the term involving r 0 sin ~(0), -1 ) .  We also have 
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Iw(r ~ sin T(#) , -  t ) - -  o3(r + ~ sin , ( ~ ) , -  1)1 
/ho 

2 
sup lco~(~ : , - l ) {~O as ~o-+C~ (5.49b) 

cy (5.1) and (5.16). If we combine (5.49) with the assumption ~0+l~<l/h0, then 

] c9 (~o-~s inz (Q) , -1 ) - cO(~o+~s in~(~) , -1 ) l  -->0 aS~o->~o. (5.50) 
o+1 

If ~o+l~>l/ho, then the same result holds by (5.49a). If we combine (5.47), (5.48), and 

(5.50), then (5.46) yields 
1 /'p(t) 

Ip(r vtz(o,1), 

when ~0 is sufficiently large. 

(iv) Now multiply the last estimate by t and integrate with respect to t from zero to one, 

to obtain 

{P(~'o)l ~ _1 (Itd t (~(')IP(t, r162 + e 
Jo J~(t) 

1 fr176 f l  
4 - I P(~' ~)1 dr] + s ~ coast. 

:7~ d ~o- I d - 1  

for all sufficiently large ~0 by Lemma 5.7. Q.E.D 

If we define the total head pressure dp by (I)=p + �89 2, then a calculation using (1.1) 

and (1.2) gives 
~D2(I) -q~y(1)~ +~F~(Py = vco 2 ~> 0 in ~,  

where we have used the representation u = (~F~, -~Fx). A change of variables to the strip 

gives 
vV2(I) --I~,/11)~ -/-I-F~ (I)~ = •h2w 2 >/0 in S. 

Note that  ap satisfies a (one-sided) maximum principle. I t  was shown in the proof of Lemma 

5.7 that  for any a E (0, l) there exists a positive integer ~V =N(e) as follows: m >~N implies 

existence of $1(m) C (m, m + 1) such that  

lu(~dm),~)l ~<-s, vr j~[-1,  1]. 

Theorem 5.9 allows us to assume that  Z r has been chosen such that  

(5.51) 

[p(~,n)l <~, v(r oo ) •  i]. (5.52) 
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If  Am =(~l(m ), ~x(m + 1)) x ( - 1 ,  1), then (I) ~<3e/2 on aA~ by  (5.51), (5.52) and the fact tha t  

u vanishes on ~S. The max imum principle ensures tha t  (P(~)=p(~)+ �89 2 ~< 3e/2 in A~, 

and (5.51) then implies tha t  ]u(~)[ 2 ~<5e in A~. Since m may  be taken arbitrarily large, 

we have proved 

T ~ o a ~  5.10. lu(~,V)l-+0 unilormly as ~ -+~.  

If  we recall tha t  p is determined only up to an additive constant and note tha t  all of 

our arguments hold equally well for large negative ~, then Theorems 3.4, 5.9, 5.10, and 

the results in section 4 imply 

THnO~EM 5.11. Let ~ R  2 be a channel o/ type I'. For every v>0 ,  there exists a 

classical solution (u(. ;~), p( .; v)) o] (1.1) to (1.4). The velocity u satis]ies 

Ca)I  IVul < 
and 

(b) u r 1 7 6 1 7 6  ~) /or all bounded domains U c ~ .  

Furthermore, the pressure p satis/ies 

(c) peC~176 /or all bounded domains U ~ ,  

and there exist constants B 1 and B 2 such that 

Ip(z)-B~l, Ip(z)-B~l~O as I z l - ~ i n ~  

upstream and downstream, respectively. 

Under additional (reasonable) ssumptions on the asymptotic behaviour of h, one 

can show tha t  all derivatives of u and p tend to zero a t  infinity. This is the case if h behaves 

asymptotically as for almost all the examples in Appendix A of channels of type I. 

6. Pointwise decay at infinity for channels of type HI 

6.1. Introductory remarks 

In  this section, we examine the behaviour of the velocity u and the pressure p at  

infinity in channels of type I I I .  The velocity u has the representation u = (~Fy, -~Fx) in ~2, 

where ~F has the form tl~=G+yJ. The function G was constructed a priori in section 3 to 

satisfy G(~)=Q(~)=-~M(~I-~I3/3) for all sufficiently large [~l" Hence it suffices to 

examine the perturbation stream function % We shall use Theorem 3.5 and various other 

estimates to show tha t  suitable derivatives of ~v tend to zero uniformly a t  infinity in S. 

We shall also prove tha t  the pressure p(~) tends to ~ oo uniformly as ~-+ _ 0% and an 
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estimate for the rate of growth will be given. Finally, if g({) and 2(~) go to zero like 

[~[-v in S, for some Y >0, then the same decay rate will be shown to hold for various 

derivatives of ~. All of our results for ~o in S may be translated into estimates for ~0 in 

by the relation IDZ l it is importan  to note that 1/h is bounded 

above on S since (2.22) shows that  in fh(~)>0 for channels of type I I  and III .  

Throughout this section, the viscosity v will be fixed and will satisfy v>v0 (el. 

Theorem 3.4). For convenience, we now list those properties of domains of type I I I  which 

will be used in this section: 

g(~) 2(~)-+0 uniformly as [~[-+ o% (6.1) 

z, ~ EL2(S); (6.2) 

h(~) 4cons t .  (14  151) �89 u (6.3) 

I t  is property (6.3) that  prevents us from applying the methods of section 5 to the 

~avier-Stokes equations in a channel of type III;  indeed, (6.3) gives .Is (l/h) 2= ~ ,  and 

then ha) CL~(S), because Qw/h r while V~y/hEL2(S). Similarly, 

fal Dul ~= f lVul ~= ~ -  (6.4) 

In section 5, we used the fact that  he), ]VulEL2(S ), and other estimates, to prove that  the 

pressure/~ has finite limits at  infinity in S. This result was then used with a maximum 

principle for the total head pressure (I)=p + �89 2 to prove that  u goes to zero uniformly 

at  infinity. However, for the present problem, the condition (6.3) will be used in 

Theorem 6.3 to show that  p is unbounded at infinity, and so the maximum principle for 

O cannot be used to estimate u. Although we know that  hco=-(V2G+V2~f)/hqL2(S), 

Theorem 3.5 shows that  the perturbation stream function yJ satisfies the stronger estimate 

f s (V ] (~v~ e ~ (6.5) = + 2~v~ + ~ )  < ~ ,  
Js 

and it is this estimate which will be used throughout this section. Since yJ =yJv =0  on ~S, 

the inequality (2.10) shows that  

f ( w  § I vwl ~< const, fs  (~v~ + 2~v~, + v/~,) < co, 

and so ~ E I)V~(S). 
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6.2. Estimates from the vortieity equation 

I t  will suffice to work in the domain 

s~ ={(~,/]) l a < ~ <  oo, - 1  </] < 1}, 

where ~ > 0 has been so chosen that  

G($,/]) =Q(/]) = ~M(/]-/]3/3) for $>d .  

Similar results will always hold for large negative $. If  we use the representation ~F = G + y~ 

in (2.21 c) and recall that  h~ =h~ and h2 =hv, then we find that  ~ satisfies the equation 

= ( y J , ( ~ - 2 ~ ) - ~ f ~ ( ~ - 2 ~ ) } V 2 y j + B ( ~ ) + F  in S~, (6.6a) 

yJ = F,j = 0 on/]  = ___ 1, (6.6b) 

where V4= (V2) ~ denotes the biharmonic operator, and 

a n d  

Let  J he any fixed positive integer greater than g. For each integer ~ >~J, set 

sj  = { ] < ~ < J + L  - 1  </]< l} 
and 

S~ = {]-- 1 < $ < i + 2 ,  - 1 </] < 1}. 

Assume that  i ~> J + 1, multiply (6.6 a) by any r E C~(S~-+It), so that  integration only over 

S] is implied in what follows, and integrate by parts: 

v f r I 
+ I 

+lf+'l 
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We now estimate the terms on the right of (6.7). Up to the s tatement  of Theorem 6.2, the 

norms of W~(S~) and W'~(Sj) will be denoted by 1] "Hm.~ and l l ' l k~z j ,  respectively. 

Since ~, 2EL2(S)NL~(S ) by (6.1) and (6.2), it follows tha t  

I fCF ~< const. Ilglo ~<ll~llo 2 + I1~[[o 2), +8) 

and the constant is independent of j and r We now estimate the integral involving B(~0). 

First, recall tha t  ~ + l v = 0 ,  so tha t  

fC(~v:~,+ ~v=w,) =/v:~(~Cv+ ~r < const, l[~ll=.=[[r 

I f  we combine this estimate with ones for the other terms in B(~), then it  follows tha t  

f eB(y)) <~ const. H~0l]2.e HCHI.e, (6.9) 

and the constant is independent of r and j. For the other terms in (6.7), we have 

I.I(Q,r Q,,,r <const. I1~'1[~.~[1r (6.10) 
and 

W2(S~) r Wt (S~) is bounded where 1/s + lit  = �89 Standard theory shows tha t  the embedding e 1 1 1 

for all t >~ 1, and so 

/ ( r 1 6 2 1 6 2  <con~t. ll~,ll~.~llr v ~ > 2 ,  (6.11) 

and the constant depends only on s. I f  we use the estimates (6.8) to (6.11) in (6.7), then 

.fwv' r < ~(1; ~)11r vr e c~(s; + m, (6. 12) 

and for all s > 2 .  Since ~ e  I~(S)  and ~, 2EL2(S), the constants c(j: s) satisfy 

c(?'; s)2 < c~. (6.13) 
Jf f i /+ l  

Applying to (6.12) the arguments in [2], pp. 428-431, we find tha t  
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Ilwll~ ~,.,, < const. (c(j; s )+  IMI~.~), (6.14) 

where 1Is + l /s '= 1 and the constant depends on s', but not on ]. Since s >2  is arbitrary, 

it  follows that  s' E (1, 2). The embedding W~.(Sj) ~ Cl(~qj) is bounded, and so (6.13) and (6.14) 

give the following lemma (also stated for large negative $). 

L E ~ I A  6.1. Let ~ be a channel o/type I I I  and let yJ denote the perturbation stream 

/unction. Then 
~(t,~), Iv~(~,fi)[~0 uni/ormly~ I~l~oo. 

If we combine this lemma with the result from section 4 that  ~ e C~176 for all bounded 

domains U ~ S ,  we see that  [V~v I is bounded on ~. This enahles us to improve (6.11): 

f (r  r 2~r 2~r w < const Ilwl12211r + V 2 

and the constant is independent of r and j. Use of this inequality with (6.8) to (6.10) in 

(6.7) yields 

I f~v' r I < d(j)[[r vr eC~(S,~a), 

where the constants d(j) satisfy 

d(i )  2 < oo. 
1=J~1 

Standard theory gives 

Ilvl!~,2.s~ ~< const. (d(j) + Ilvll=,~), 

TtlEORI~M 6.2. The perturbation stream/unction ~v is an element o/ W~s( S) /or all s~>2, 

and/or each multi-index o~, 0 <~ ] ~ [ <~ 3, 

w~(~,v)-~0 u n i / o r m l y  as I~] ~ ~.  

9 -  792901 Acta  mathemat ica 144. I m p r i m 6  10 13 Ju in  1980 

and so it follows that  

IMI 2 .< 
]+ 1 \ 7 +  1 + 

since ~E t~(S).  A similar argument holds for large negative ~, and so we have shown 

that  ~EWa2(S). By use of this fact in (6.6a), it follows that  V4~fEL2(S), and standard 

theory then gives ~fl C W~(S). The embedding W~(S) ~ W~s(S) is bounded for all s >~ 2, and so 

(6.6a) ensures that  V4~vELs(S) for all s~>2. I t  follows that  ~oEW~(S) for all s>~2. The 

embedding W~(S)~CZ(~q) is bounded for all s>2 ,  and so for each multi-index g with 

[~] <3, we have V~p($,fl)-~0 uniformly as ]~]-~oo. We summarize our results in the 

following theorem. 
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If the behaviour of suitable derivatives of ~ and )t is known, then results for higher 

derivatives of ~v can be gained; for example, if all derivatives of u and 2 are in L2(S), 

then all derivatives of ~ are in L2(S) and tend to sero at infinity. 

The vdoci ty  u has the representation u=g+v in f2, where 9=(G~,-G~) and 

v=(%,  -y~).  Recall tha t  G(~) is constructed explicitly in section 3, and so g is known 

explicitly when the conformal mapping between ~ and S is known; however, since we are 

interested in the behaviour at iafinity, it suffices to know the asymptotic form of the 

mapping function. Now 
Ivl = IDw{ = IVwl/h =o(1/h) 

by Theorem 6.2 with 1~{ = 1, while 

I gl = { V e l / h  = I M ( ~ - V ~ ) / h  

sufficiently for upstream and downstream. If h(~)-+ co as [$1-~ co in S, then clearly 

{ul-+0 like 1/h. If h(~) goes to a finite (non-zero) limit, then g behaves like a Poiseuille 

velocity field. In either case, v goes to zero uniformly at  infinity. 

We now examine the pressure p at  infinity in S. Recall tha t  (6.3) gives ~s 1/h2 = oo. 

T~EOREM 6.3. The pressure p satis/ies 

p~(~), p~($)+aM~/2h($) ~ =o(1/h(~) ~) as I$l-~ ~ ~n s .  

2'urthermore, p(~, ~7)-+ "~ co uni/ormly as ~--* +_ co and 

/ ; "d~  ; l~d~---> 3 uni/ormly as - p($0) M ~  IE01 ~ c o .  
1 

Pro@ Eq. (2.18) gives 

S, 
J 

(6.15) 

(6.16a) 

(6.16b) 

where co=-V21F/h 2, 4l=VF~/h and u 2 = - ~ J h .  Let  N be a large positive integer such 

that  G(~)=~M(~-~a/3) in A==-S• {[~{ >lV}. At points in A, we have 

3 

= 3Mv/2h 2 + o(1/h 2) 

by (6.1) and Theorem 6.2. Analogous estimates for the other terms in (6.16) give the 

first result of the theorem. 
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Eq. (2.22) shows that 1/h is bounded on ~q, and so 

[Vp[ ~< const, in 6. (6.17) 
We have 

Pg:~ Jo ~(~,~)d~,  

= p(0, ~ ) -  .f: ' {3Mv/2h ~ + o(1/h~)} d~, 
and so the mean value 

i 1 1 1 

l f ]P(~o,~)d~= ~ f _lP(O,~7)d~- f f  d~ f _l{3MH4h2 + ~ d~. S~g:O) = ~ _ 

I t  follows that  
& ] 1 

i:0ilmo- 15(~0) / ( f :  d~Lx~ud~)=3M,. (6.18) 

Eq. (6.17) gives 

b(~:o, Vo)- ~(~o) I < j~i I~,,,(~o, v)l@ < r vno e [ -  1,1], 

and the use of this with (6.18) immediately gives (6.15). Q.E.D. 

6.3. Decay rates 

We now examine the asymptotic behaviour of ~(~) as ~ oo when n(~) and ~(~) are 

known to decay like some power of ~ as ~ oo; more precisely, we shall assume for the 

rest of ~his section that  there exist constants C, y > 0  such that  

I~(~)l, [~(~)l <C~-v, v(~,~)Es~, (6.19) 

where S t = { t < ~ <  0% - 1  <~ < 1}, t>O, and ~ > 3  has been chosen so large that  G~Q in 
S~. We shall prove that (6.19) implies that  suitable derivatives of V grow no faster than 

~-7 in S~. (For the channels of type III ,  with nonoscillatory boundaries, in Appendix A, 

y ~> 1.) Similar results hold for large negative ~ when an analogous version of (6.19) is true. 

For each fixed a > ~  and for n = l  or 2, define the Banach spaces C. and E~ by  

G = G(&)= {/e c(&~R~)I ll/b~-sup I/(01 < ~}, 

Eq. (6.6) gives 

(6.20) 
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y ~ = ~ = 0  o n B = + l ,  
where 

and the definitions of B(yJ) and F appear immediately after (6.6). Theorem 6.2 ensures 

that  the first three derivatives of yJ are bounded on ~q, and inspection of the definitions 

of B(~) and F shows that  
.~ E E~(S<,) (6.21) 

for each a i>d. 

In order to examine (6.20), we shall use the Green function for the adjoint operator 

L*, where 
L*r = ~V'r + V~(Q,r - Q,,,r 

I t  was shown in section 4 Of [5] that  if v>v0 (which is the present case), then for each 

fixed $0eS, there exists a Green function K(~0, .)e W~(S) such that  

L*K($o, ~) = 5 ($ -  $o) in S, 1 (6.22) 
K($0, ~) = K,($ 0, $) = 0 on U = + 1, J 

where (~ denotes the Dirac distribution. The following lemma is Theorem 4.1 of [5]. 

LEMMA 6.4. Let S = R  • ( - 1 ,  1) and assume that v>vo. Then /or each toES, 

(a) there exists a Green/unction K(~o,.)E W~(S) which satisfies (6.22); 

(b) there exist positive constants C=C(v), b=b(v) and c=c(~) independent o/ $o, such 

that, with ~ = l $ -  $o I, 
C/r e /or I ~ -- ~ol < e, 

]V~V~K($0,;)I< C e x p { - b ( ~ 0 - ~ ) }  ] o r ~ - ~ o < - 2 ,  

C exp { - c(~ - ~e)} /or ~ - 2o >~ 2, 

where ~ and fl are any multi-indices sat i#ying I~1 + IZl =4. 
(e) Analogous bounds hold lot derivatives of K ol order 3, 2, 1 or 0 with C/r ~ replaced by 

C/r, C(1 + / l o g  rl), C and C, respectively,/or [~o-~l <2. 

For each a>~d+l ,  let #=~( . ;  a)eC~(R-~[0, 1]) be a mollifier such that  ~(t; a) =1 

for t>~a and if(t; a) =0  for t < a -  1. If  we multiply (6.20) by ff(~; a)K(~ o, $), integrate over 

Sz, and apply Lemma 6.4, then we have for ~:o>a 

fa-l<~ fig(So, ~) (~,V~P~- ~ V ~ ,  + = ~($0) ~-l<~<a ~fn*(/~g($~ $)) (d~ dr), ~) d$ + d~ d$ 
d a  

or equivalently 



S T E A D Y  S O L U T I O N S  OF T H E  I~AV~ER-STOK:ES :EQUATIONS 133 

v2(~~ = fs  ( K , ~ -  K~v2, ) V~y~ d~ + T($o) (~o > a), (6.23) 
a 

where 

LEM~A 6.5. Define 

(A~Pr (r = j's: r V~y~(~)VSVZK(~0, ~)dr 

/or all r in C,(Sa) or E,(S~). Then 

(b) IIA=#II~, -<e(a)I1r 
and e(a)~O as a-~oo. 

Proo/. The proof of (a) appears in the proof of Lemma 4.3 in [5], and so we shall 

prove only (b). Let r e E r Then A~Pr e Cl@a) by (a), and we estimate [[A~r , in three 

stages. Set W($0, $)=V~VPK(~o, ~). 

(i) [f~o+~< r C)<[<eonst ilCll~,s e-,IV~le-~+,o)d~ 

(ii) [fr176162162162 

~eonst.[lr . .  r162 

.< coast. I I r  o. 

and an integration by parts gives 

f~~ ~< ~ e-2b(s~ o -- 2)-y +-~ ;~~ 
b3~ 

~< const. ~ ,  

where the constant is independent of a and ~=0. Use of this in (6.24) gives 
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;) 

a n d  IlV2vllc,-~o as a-~ co by Theorem 6.2. Q.E.D. 

I f  we use Lemma 6.4 and arguments similar to those in Lemma 4.4 of [5], then a 

straightforward (but tedious) argument gives 

L E P T A  6.6. Let T be as in (6.23); then V:TeE~(S:),  /or ]a] ~<1. 

The proof of the following theorem is almost identical to tha t  of Theorem 4.5 in [5]. 

T,]~OR~M 6.7. -7] I a] is su//iciently large, then V~veE~(S~) for Ig[ =1.  

Proo/. Using the representation formula (6.23) for ~0 and the definition of A ~  and T 

in Lemma 6.5 and (6.23), respectively, we have for tESs  and [~[ =1,  

V ~ ( ~ ) =  ~ a ~ , ( A ~ V " ~ )  (~) + V~T(~) (6.25) 

for certain constants a ~ o =  +1  or 0. I f  we let g=V~0 and h = V T ,  then (6.25) can be 

written as 
g - A 9  = h. (6.26) 

For a ganach  space B, let g(B) denote the Banaeh space of bounded linear maps B-+B. 

By Lemma 6.6, we have h = V T E E z ,  and standard theory shows tha t  the equation 

r - A r = h ,  for heE2, has a unique solution 

(a) in C2, if a is so large tha t  IIAII=(  )< a, 
(b) in E2, if a is so large tha t  HAlic<E:)< 1, 

and by Lemma 6.5, the number  a can, and will, be so chosen. Since E 2 c  C2, these two 

solutions are identical. Theorem 6.2 shows tha t  V~pEC 2, and so we have V~fiE 2. Q.E.D. 

By continuity on the set {a<~<a}, we have V~EE2(S:) for all a>~5. I f  we apply 

this result to (6.20), then it follows tha t  I~EE~(Sa) for all a>~5, and one can then prove 

T ~ o ~  6.8. Assume that 

/or constants ~, y > O. Then the perturbation stream/unction y~ satis/ies 

Iv~y(~,~)l  ~<coust. ~-v, ~>1 ,  

/or each multi-index ~ with I o:I <~ 3. 
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If u and ~ decay exponentially at infinity (as is the case when sufficiently far up- 

stream, and sufficiently far downstream, the channel walls F+ and F_ are exactly 

parallel), then one can use the methods in [5] to prove corresponding results for various 

derivatives of yJ. 

Appendix A. On the conformal mapping of a strip onto a channel 

A.I. Examples of maps F 

Notation. Throughout this Appendix a, b, c, k, m, fl and V will denote real non- 

negative constants; in a~ldition to the complex variables z = x  + iy and ~=2 + iT, we shall 

use w = u + i v  and t=r+is ;  and the symbols u, v, w, G, ~0 . . . .  do not have the meanings 

assigned to them in the main text.  For functions ] of one variable, /(~1 denotes the nth 

derivative. 'S3~nmetry' means symmetry with respect to a streamwise axis. 

In  examples (i) to (vii), channels are of type I '  (Definition 5.1) whenever they are 

of type I, and type I '  will not be mentioned there. In examples (i) to (iv), the function 

/~ will be defined not merely on S, but  as a conformal, one-to-one map on an open set 

containing ~q. 

(i) A ]amily o] asymmetrical channels. Let  the transformation z =F(~) be 

1 
Z=m(~+ib)m , l~<m~<2, b > l ,  ]~+ib]>0 ,  O<arg(~+ib)<27e/m.  

The asymmetrical channels of the title are those with m >  1; the case m=3/2,  b =3/2 was 

shown in Fig. 1. For ]21-+ oo in S, we have 

h(~) = Idz/d~l ,,~ 121 m-i (A.la) 

I v  log h(OI = I (0 - i,t(O I = I d~zld$~l " "  t m -  1 ) 1 2 1 - 1  . ( A . l b )  

I t  follows that  s  is of type I if m>3/2 ,  of type I I  for all mE[ l ,2 ] ,  and of 

type  H I  if 1<~m~3/2. 

(ii) A /amily o] symmetrical channels with boundaries y,,~ • const. ] x ]u, 0 ~< k < 1. 

(The symbol ~ of asymptotic equality re~ers to Ixl->c~.) Now let F be given by 

z=c~(~2+b~) ~(m-l~, m > ~ l , b > l , c > 0 ,  ] 

- ~ / 2  < arg (~+ib) <3~/2, - 3 ~ / 2  <arg  (~- ib)  <~/2. ~ (A.2) 

These restrictions of arg (~+_ib) ensure that  arg (~2+b2)=0 on the real axis and on the 

line segment 2=0,  ]~[ <b; also, dz/d~>O on the real axis. 
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F(A) 
2 5 /  a ib/m 112 

~-plane 

z-plane 

F i g .  4. T h e  c a s e  m = 3, b = 3 of  t h e  m a p p i n g  in  e x a m p l e  (if), 

The condition b >  1 is not enough, in general, to  make  F :  N---~ a diffeomorphism; 

we have dz/d~=O at  $ =  +_ib/m�89 and denote the images of these points by  z= +-ia. 

Therefore we require at  least t ha t  b >m+. To discover the largest set on which the  map  

(A.2) is one-to-one, we trace the  inverse image, say A, of the lines x = 0 + ,  ]y[ ~>a, and 

use a classical theorem ([27], p. 201) to the effect that ,  under  mild restrictions, a funct ion 

holomorphic in a bounded, s imply-connected open set B is one-to-one o n / ]  if it is one- 

to-one on OB. I t  is sufficient to consider t ha t  par t  of the first quadran t  of the S-plane 

which lies below the upper component  of A; one can prove tha t  A does not  cross itself, 

h vanishes on the upper  component  of A only at  ~=ib/m+, and  the nature  of F as 

I~l-"  oo is clear. The theorem then  shows t h a t  F is one-to-one (and it is certainly con- 

formal) on the  open set between the  two components  of A. For  m = 2 or 3, the  set A is a 

hyperbola:  
~ 2 = ~ + � 8 9  i r m a 2 ,  or ~ = � 8 9  if m = 3 ;  

for a rb i t rary  values of m, exploration of A is an arduous affair. I t  turns out  that ,  ff m ~<5, 

then ~2>~b2/m on A, but,  if m > 5 ,  then ~2<b2/m on a par t  of A. We choose b so large that 

~2>1 on A; for m~<5 this means b>m+, for m > 5  such a ehoiee is possible. 

Fig. 4 shows the case m = 3 ,  b =3 .  Since x,,,c~ m and y,~cm~"-l~ as ~-+ oo with ~ fixed, 

the exponent  in the  title is k=(m-1) /m.  Essentially as in (i), F(S) is of type  I if 

m > 3/2, of type  I I  for all m >~ 1, and of type  I I I  if 1 ~< m ~<3/2. 
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8=b - - - 0 ) ~  

z-plane 

v=O, 8=0 

w-plane 

Fig.  5. The  bend i ng  ~ rans fo rmat ion  in e x a m p l e  (iv). The  case d r a w n  is 7 =~/4. 

s=b 

s = 0  

~-~-~ m a 

t-plane 

(iii) Channels bounded by hyperbolae. The well known transformation 

z=s inhf l r  0<f l<g /2 ,  ~ER• 

maps S onto the channel ~ between the branches (components) of the hyperbola 

y 

Such a channel is of type I and not of type II; x(~)- i2(~)=fl  tanhfl~-> ~fl as ~-~__ ~ .  

(iv) Bending an initially symmetrical channel. The transformation (Fig. 5) 

for which 

= f : ~  f iyw 1 
z(w o) l(w  )l, ldw, 

dz i~,w 
lOgdw- (w ~ + 1) 1/2' 

- g/2 < arg (w + i) < 3g/2, - 3a/2 < arg (w - i) < ~/2, 

(A.3) 

bends the axis v = 0  into a curve C: x=x(u, 0), y=y(u, 0) such that  the tangent to C 

makes an angle ~u/(uZ+l) ~ with the horizontal. If  s is a channel in the w-plane that  is 

symmetrical about the axis v=0 ,  then the transformation bends ~0 correspondingly into 

a new channel ~ r  in the z-plane, provided that  ~0 lies in an open set on which the 

map (A.3) is one-to-one. 

10--792901 Acza mathematica 144. Imprim61e 13 Juin 1980 
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Denote the transformation (A.3) by z=G(w); then, as Iw]-+co in the cut w-plane, 

]G'(w)] = l + O ( w  -~) and ]G~(w)] =O(w-3). Let  w=H($)  map S onto g20 in the standard 

manner; then ~ = G o H  maps S onto ~r" 

I t  ~o~lows that, i] H'2=o(H3H"), then ]F ' (~ ) ]~ ]H ' (~ ) ]  and ]F"(~)],,,IH"(~)] as 

I ~ ]-+ co in S, so that ~r  and ~o are o/ the  same type. 

This condition is amply satisfied if f~0 is one of the channels in (fi) with m >  1. I f  

m = 1 in (ii), so tha t  ~0 is the strip R x ( - c, c), then our estimates of G' and G" show tha t  

g2v is, like g/o, of type I I I .  

We must  find a large domain in which G is one-to-one. I t  is helpful to introduce the 

auxiliary transformation 
w = sinh t (t = r + is), - :~/2 < s < ~/2. 

Then 
e 

z(to) = exp (i V tanh t) cosh t dt. (A.4) 

We seek the largest horizontal strip in the t-plane on which ]arg dz/dt I <7r/2; denote it by  

S ~ b = R x ( - a , b ) ,  where a, bE(O, rr/2). Then the map (A.4) is one-to-one on S~, by  

the theorem ([27], p. 201) cited in (ii) and the fact tha t  Idz/dt] ~=0 on 3Sa~. Note tha t  in the 

w-plane the image of Sa~ is a domain between branches of hyperbolae. To calculate a and 

b, it is sufficient to take r>~0. One finds tha t  arg dz/dt> - ~ / 2  on [0, c~) x (-7~{2, ~/2), so 

tha t  only the condition arg dz/dt <~/2 determines a and b. Define a = a(V) by: sin 2a =2y{~ 

and :r ~/2). A calculation shows tha t  aE(~, ~r/2), tha t  a is the solution of a certain 

unpleasant equation, and tha t  b = z r / 2 - y < a ( y  ). 

Finally, we note tha t  (A.4) maps the strip R x ( - f l ,  fl) into a bent form ~]r of a 

hyperbolic channel ~0 as in (iii), provided tha t  f l < m i n  {a, b}. The condition f l+V<rr/2 

is necessary and sufficient for this. The channels ~ and ~20 are both of type I and not 

of type I I .  

A.2. End maps 

By a downstream end map E / o r  a channel f2 = F(S) we mean an asymptot ic  approxi- 

mation to F; tha t  is, F(~)~  E(~) on ~q as ~ ~ .  Upstream end maps are defined similarly 

for ~--> - co, but  we shall mainly consider the former case, and shall then omit the word 

downstream. The type of a channel is implied by  sufficiently accurate upstream and 

downstream end maps. Jus t  as the exact maps F in (i) to (iv) were defined as conformal, 

one-to-one functions on open sets containing ~q, so we shall define end maps E, wherever 

possible, as such functions on open sets containing the closure ~qa of a half-strip 

So=(a, oo) x (-1, ]).  
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In  (v) to (vii), we construct functions E which we hope to be useful end maps for the 

channels s defined by  (1.6); for these channels, the exact mapping functions F are, of 

course, unknown, since / has not been specified completely. Theorem A.3 and its corollaries 

will show tha t  these functions E are indeed sufficiently accurate end maps, with room 

to spare. The downstream par t  of a channel ~ is now denoted by  

~ = {zlx>const .>~l ,  - A x ? < y < A x ~ } ,  A>O,  k>~0. (A.5) 

In  (viii) and (ix), we characterize new families of channels by means of end maps 

tha t  are sufficiently accurate by  hypothesis, in order to display certain admissible (and 

certain inadmissible) oscillations of the boundary ~ .  

(v) A n  end map /or ~k, k < 1, and /or the channels in (ii). The obvious choice of 

transformation z=E(~)  is 

z = c ~  m, m>~l ,c>O,  ] ~ l > 0  , - ~ / m < a r g ~ < ~ / m .  (A.6) 

The domain of E is the sector indicated in (A.6), and contains the closure ~q~ of a 

half-strip if a > 0  when l~<m~<2, or if a>co tT l /m  when m>~2. We have 

X = c ~ m P l ( ~ / ~ ) ,  y = cm~m-~P2(~/~) ,  

where Pj(t) denotes a function tha t  may  be expanded as a series 1 +const .  t2+ ... in 

powers of t 2, with leading term 1 and radius of convergence 1. 

To make the images of the lines ~ = _ 1 close to ~ ,  we choose m so tha t  ]c = ( m -  1)/m 

and c so tha t  c l - k = A / m .  To examine the precise difference between the inverse image 

E - l ( ~ k )  and the lines ~ = • 1, we consider the upper boundary component, define 

r (~, ~) = (Y - Axk)/cm~ m-1 = ~P2(~?/~) - PI(~/~)k, 

and seek the solution of r Since (I)(~, 1 )=0(~  -2) and r 1)=1+O(~-2)~ it is 

not difficult (see (vii)) r define, for a sufficiently large, a contraction mapping tha t  

implies existence of a solution ~ = 1 +/(~), ~ ~>a, such tha t  fl~)(~)= O(~-2-n), n =0,  1 . . . . .  

The contraction mapping also implies uniqueness of / in a certain ball, but a stronger 

uniqueness result is available. Recall tha t  ~ k c  ~I ,  and observe that ,  in the z-plane and 

for sufficiently large values of a, each component of ~ r  intersects exactly once each of 

the arcs onto which E maps the line segments ~=const.~>a, [arg ~1 <<.a/2m. 

For the channels in (if), the exact mapping function Y is known; it is clear tha t  

F(~)~E(~)  on ~q as ~ - ~ ,  and it is easily verified tha t  I m ( E - l o F ) ( ~ + i )  has the 

properties just established for 1 +/(~). 
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0 c m 

/ 
z-p!ane 

o< 

w-plane 

Fig. 6. I tem (vii): an end map for ~k, k > 1. 

S 

~-plane 

(vi) An end map /or ~k, k=l,  and/or the channels in (iii). In  (A.5), let A = t a n / 7 ,  

0 < f l < z ] 2 ;  an appropr ia te  m a p  E is given by  

z=�89 ~eR• 

This is exact  for ~k, and  has exponent ia l ly  small  error for the  hyperbol ic  channels in (iii). 

(vii) An end map/or f2g, k > 1. I n  this case we define E b y  combining the  t ransforma-  

t ions (Fig. 6) 
z=w m, m > l ,  -Tr/m<argw<~/m, (A.7a) 

and  

w = e x p ~ + c ,  c > 0 ,  ~ e R •  (A.7b) 

Choose m so t h a t  ]c=m/(m-I), and in (A.5) set  A = b  -k. The no ta t ion  ps=~r(m--])/2m, 

~=0,  1, 2, will be convenient;  we emphasize that po=Vr/2 and pO/pl=IC. 

As in (v), we examine  the  inverse image E- l (a~k) .  Eq.  (A.7) imply  t h a t  

z=~"~+m~";+~(m--1)~'~"; (1-,) l+~exp~--~)  / e,, 

and  it  follows t h a t  
(I)(~, ~/) = x - b y  ilk = 4(~, 7) +R(~ ,  ~), 

where 
r 7) = e~~ ~ cos p0~/+ e ~' ~ {mc cos p l ~ / -  b (sin p0~/)~l~~ 
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while R and all its derivatives are 0(e v'*). We choose c = b/m cos 101, noting that  0 <Pl  <~/2; 

then 
r 1) = 0  and (I)~(~, 1) = -poeVO~+O(eV~). 

The solution of (I)(~,~)=0 will have the form ~=1+/ (~) ;  to house /, we introduce a 

Banach space, with weight function Q, of functions having bounded continuous deriva- 

tives to order q on In, oo): 

= Oeoo([ , Ilgllo.o.o = s u p  < 
~)/a, n~q 

where n~q  means n = 0 ,  1, ..., q, and e(~)=exp {(p0-p~)~}=exp (~/m). Our task is to 

find a solution in C~qe of T/=/,  where 

(Tg)(~) O~ , l ) {R(~ , l )+g(~)~; ( l -T )*~(~ , l+~g(~) )d~} .  

Fix the integer q; then there exist numbers a 0 and r o such that  

]JR(., 1) / r  1)]]q.a..q <r0, 

and we let B = B(0, 2r0) denote the ball in C~. e with centre the origin and radius 2r o. I t  is 

a routine matter  to show that,  if a ~>a o is chosen sufficiently large, T is a contraction map 

on the complete metric space/~. Then T has a unique fixed point / in/~,  so that  

/(n)(~) = O(e-~/~), n=O, 1 ..... q. 

We also have a stronger uniqueness result, as in (v). 

(viii) Ends o/type I with oscillatory boundaries. Consider the transformation 

z=l~+btaexp(-b:b-1)c~ a>~0, l < b < 3 ,  R(r } (A.8) 

where arg ~=0  on the positive real axis, and R(n)(~) =o(~ ~-~) uniformly on ~q, for n =0,  1, 2 

and ~-~0o. We have chosen m>3 /2  in order to have a downstream end of type I when 

= 0; b > 1 because rapid oscillations are of interest; and b < 3 because otherwise exp ( - b~ b- ~) 

would have to be replaced by a longer expression for the sake of certain conclusions. 

Henceforth c > 0. 

We note that  

2 exp ( - b ~  ~-1) cos ~b = exp [-b~:~-~(1 +~1) +0(~ ~-a) +i{~ :~ + O(s~-~))] 

+ exp [ - b~-~(1 -~/) + 0(~ ~-s) - i{~ ~ + O(~a-2)}], 
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so that  the oscillatory terms in (A.8) are exponentially small within S, while on ~S 

m - 1  - - C  a . . . . .  y=  •  §  s in (~b§189  . . }§  

(A.9) 

The following results are implied by the formulae for dz/d~ and d~z/d~ ~. 

In order that  the mapping (A.8) be one-to-one on ~q for ~ sufficiently large (hence- 

forth this qualifying phrase is to be understood), we demand that  

a+b<~m, 0 < c < l .  (A.10) 

(The condition a +b < m  would allow any value of c, but would be less informative.) Then 

h(~)/~ m-~ is bounded between positive constants on some half-strip Sa, so that  1/h EL2(S~). 

A calculation shows tha t  ]V(1/h)]eL2(Sa) for some d if and only if 

2a +3b < 4 m - 2 ,  (A.11) 

which is implied by (A.10) when m > 2 ,  but  not when m <2 .  Accordingly, as regards 

its downstream end,  a channel defined by (A.8), and hence having a boundary as in (A.9), 

is o I type I whenever (A.10) and (A.11) hold. When m=2, a=O and b=2 (a+b=m, 

2a+ 3b=4m-2 )  the corresponding channel is not ol type I. 

Now consider membership of the set I'. The first additional condition, bounding the 

ratio h(~)/h(~o, - 1 )  in a neighbourhood on S of the point (~0, - 1 ) ,  is satisfied because 

h(~)/~ m-1 lies between positive constants. The second, that  [V(1/h)($)[->0 uniformly on 

S as ~-~oo, requires that  a+2b <2m. Comparing this with (A.10) and (A.11) (most easily 

by graphs in the ab-plane of the three lines in question), we conclude that,  as regards their 

downstream ends, the present channels of type I are also of type I '  whenever m ~ 2  or 

a > 0 ;  but, i I m > 2 ,  a = 0  and b=m, there results a channel o I type I that is not o I type I'. 

(ix) Ends o I type I I I  with oscillatory boundaries. Since the definition of type I I I  

leads to Poiseuille flow, which is undireetional in its exact setting, we can expect only feeble 

oscillations to be admissible in this case. If we t ry  to proceed with the formula in (A.8), 

now taking 1~<m<3/2 and 0 < b < 3 ,  the condition ]Vh] = ]d2z/d~ ~] ELq for some q > 2  

(which is weakest in the present case when q =  c~) requires tha t  a + 2 b - 2 < 0 ,  hence b~<l. 

There is then no exponential decay within S, and so the condition ] V log h I EL~ requires 

tha t  
a+2b<m+�89 <~ 2, {A.12) 
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since m ~<3/2. Thus b < 1. Accordingly, we are forced to consider 

z=lr ~ cos C~+R(C), ] 

l~<m~<~, a>~O, O < b < l ,  

where arg ~ and R(~) are as for (A.8). The boundary 0~ has the different form 

x= m +~-~  cos (~b+ ...) + .... 

y = -~ ~m-1 ~ 2C~a+b-1 sin (~b + . . .  ) + . . . ,  

and in place of (A.10) we demand that  

a+b <~m, 0<c<�89 (A.13) 

I t  turns out that  (A.12) and (A.13) are sufficient (and virtually necessary) for membership 

of the set III .  

A.3. On pertubations of end maps 

In this section our main tool will be the Green function K(~0, ~) of the Dirichlet 

problem for the Laplace operator - V  ~ in the half-strip S,~=(a, ~)• ( -1 ,  1); for fixed 

~0ES~, this is the solution of 

-V2K--~(C-Co) in S~, K]c~aso=O, 
where (3 denotes the Dirae distribution. If  S replaces Sa, the corresponding Green function 

G is 

G($ 0, ~) = Re 1 Iog 
sinh �89 (z 2o) (A.14a) 

2 sin Y sin Y0 1 (A.14b) 
= l  l~ {l +c~ ( X -  Xo)-c~ ( Y -  Y0)J 

oo 
= 2 ~ 1 e_,~lX_Xo I sin nY sin nYo, (A.14c) 

~ n='~l 2n 

where Z=X+iY=z(~+i)/2,  so that  ZER•  g]. With the notation G(~o,~)= 
G(]X-Xo] ,  Y, Yo), the Green function for the half-strip S~ is 

K($0, ~ ) = ~ ( I X - X 0 ] ,  Y, Yo)-~(X + Xo-zta, Y, Yo), (A.15) 

where ~o, ~ E ~q~. As an introduction to the more elaborate result which follows, we have 
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T~WORW~ A.1. Let ~ and ~ .  be two channcl~ that coincide /rom some cross-section 

onwards. More precisely, let ~ = (F(~)I~ e S), and a~sume that ~ .  intersects every arc 

z =  F(c+i~), c=const.>~a, -1~<~<1 ,  

at its end points, and there only, the component F,+ o / ~ ,  intersecting the end point ~ = 1. 

Let F ,  be such that ~ , = ( F , ( w ) ] w e S ) ,  and de/ine v ,  and yJ on S~ by 

v,(~) -- Im (.F, lo.F)(~) ~ r] -~(~). 

Then, /or each multi-index ~, there exists a constant c~ such that 

[V~y)($) ] ~< c~ exp { -  2 ( ~ -  a)} on ~q~+l. 

Proo/. For any r EC~(Sa)N CI(Sa), Green's identity implies that  

r176 = - f~. K($~ v~r f0~o~ ($~ $) r dl' (A.16) 

where n is the outward unit normal on ass, and ~/~n=n.V. Now consider ~. The hypo- 

thesis about ~ ,  ensures that  F(~qa)c ~ . ,  so that  v.  and y~ are well defined. Applying 

(A.16) to y3, we note that  I~0(~)l <2  on ~q~, because IIm F,l(z)l  <1 on ~ .  and IUI ~<1 

on ~q; that  V~yJ = 0  in S:, because v. and ~ are harmonic there; and that yJ(~, _ 1) =0, ~ ~>a, 

because Im ~ 1 ( ~ 2 . ) =  • 1, with the upper sign corresponding to ~] =1. Hence 

"~)(~0) = ; 1  K~:(~'~ a, ~) 1p(a,/~) d~, 

with lYe(a, ~)1 ~<2. The result now follows from (A.15) (with X=Tea/2) and either (A.14b) 

or (A.14c). Q.E.D. 

We shall need to discuss the potential function 

p(~-0) = fso K(r r162 (A.17) 

of a density function /; for this, a natural setting is the space C~+~'(~qa) of functions 

r ~W~-~R such that V~r 0 ~<1~1 ~<]c, can be extended from S~ to ~q~ as bounded continuous 

functions, derivatives of order/c being Hhlder continuous on ~ with exponent ~uE (0, 1). 
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The norm is 
V ~ I1r sup Iwr r 

where 

[~],,~= sup Iv,($)-~($o)1 o<l~-co[<x, 0<g<l .  

The following result is of a classical type (cf. [19], [22]; also [3]); some steps of the proof 

are given in Appendix B. 

L E P T A  A.2. Let S~ be a half-strip with a~>l; let Q be the weight function defined by 

~(~)=~c, c>~0; and let P be the potential of a density f, as in (A.17). I f  ~feC~ then 

~P~C~§ and there exists a constant k (depending only on c and i x) such that 

We cannot claim that  P E C2+g(~q~), because in general second derivatives of P have a 

logarithmic singularity at the corners (a, +_ 1) of S~. 

THEOREM A.3. Let ~ be an open set in the F-plane that contains the closure Sa, a >~l, 

of a half.strip. Let E be a conformal, one-to.one function on ~ ,  with range "R= E(O) in the 

z-plane, that is related in the following way to a channel ~.  Each component, F+ or F_, o/ 

~ intersects every arc E({~=const.  >~a}) in ~ exactly once, in such a way that E-I(P+ N ~) 

and E-I(F_f~ ~) have respective representations, for $ >~a, 

v = ] +/+(}) a n d  ~ = - 1 - l _ ( } ) ,  I 
(A.18) 

wher~ If(:)(~)l <const. ~-~, c>0 ,  n = 0 ,  1, 2, 3. ! 

Define Qa = {$]~ > a, - 1 - f_(~) < ~ < 1 + f+(~)}, let 2' be such that ~ = {F(w) ] w E S}, and 

define v ,  and ~ on Qa by 
v.(~) = Im (F  - lo  E) (~) = ~ +~p(~). (A.19) 

Then ~oEC~+/*(Qa+~), where # is any exponent in (0, 1), and 0(~)=~c; in particular, 

]Va~v(~)] <const .  ~_c for ~eQa+~ and ]al <~2" 

Remark 1. Let  zo=E(~+i ) and zleF+ be points on the same arc E({~=const.>~a}) 

in ~, and let hE= IE']. In general, the hypothesis (A.18) does not require [zo-zl[ to be 

small, because this distance is approximately hs(~, 1)[f+(~)], which may well tend to 

infinity as ~ oo. 
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Remark 2. In order that  the hypothesis 'intersects ... exactly once' be satisfied, O 

will often be smaller than the largest set on which E is conformal and one-to-one. For 

example, when E is as in (v), one can choose ~ to be the set ~ > a - 1 ,  larg $[ <~r/2m; 

then ~ does not intersect ~ ( ~ )  for sufficiently large values of a. 

Proo/ o/ Theorem A.3. (i) The function v = I m  F -1 is the unique solution of the 

Dirichlet problem 
D2v=O i n ~ ,  V[r + = 1 ,  V [ r _ = - l ,  

subject to the condition Iv(z)[ < 1. We may, and shall, assume a to be so large that  

-<�89 for $>~a; then the hypothesis about ~ ensures that  E ( Q ~ ) ~ ,  so that  v,  and 

to are well defined by (A.19), which implies that  <5/2 on C~o (since lv,(0l ~< 1 and 

I~]l ~3/2 there), and that  
V~0 = 0 in Qa, (A.20a) 

{ -/+($) for$>~a, ~=1+/+($),  (A.20b) 
V'(r /_($) forr r / = - l - - / _ ( r  

Regularity theory for elliptic equations ([3], p. 668) then implies existence of a constant 

k~ such that  
ll~vll~+g.Q,+~ ~<kg, /xe(0, 1), (A.21) 

where we have used the bound I~o($)] 45/2 as well as (A.20). 

(ii) Let a + l  =b. We map Qb onto S b by the coordinate transformation 

r ~ $ ,  s={2~-]+(r162 

(which is not conformal!). Merely for ease of writing, we now suppose that  ]+ = / _ = / ,  

and define 
T(r) = 1 +/(r), q(t) = --sp'(r)/p(r) = -s/ ' (r)/p(r) ,  t = (r, s). 

Then 

and 

where 

' @ p(r)as' 

~ 8 2 ~ ~ 

~ ( 1 ) ~  ~ a 

If c L denotes any coefficient in 15, then it follows from (A.18) that  @cr ECI(~), where 

~(t)= ~c; and (A.21) now implies that  @f~EC0+~(~), where r By (A.20), 
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r162 -- - L r  in &, 

-~[(r) for r>~b, s =  +1  respectively, 
r [ g(s),say, f o r t = b ,  - l ~ < s < l ,  

where Ir l ~<5/2 on &. Then (A.16) shows that  r has the representation, on &, 

where 

3 

r = Z r 
J=l  

r = fsbK(to, t) L6(t), 

r176 = -- [(r~ s~ f s  K(t~ t) ["(r) s, 
b 

Ca(to) = f ~  K~(t o, b, s) {g(s) + [(b) s} ds. 

Here Ca(t0) has the form considered in Theorem A.1, and is exponentially small as r0-* co. 

Application of Lemma A.2 to r and r shows that  pC E C~+g(~qb+l); reversing the coordinate 

transformation, we obtain the result of the theorem. Q.E.D. 

Remark 3. Suppose that  the conditions in (A.18) can be refined to 

{](• -r n = 0 , 1 , 2 , 3 ,  where Cn+l>~en>O , n = 0 , 1 , 2 .  

This is the case in (v), where cn=n+2. Then the result can also be refined; for example, 

V:yJ is 0(~-2c~ -cl) for ]a{ ~2.  To prove this, one uses the theorem as stated and 

with c = c 0, to estimate once more (and more carefully) Lr and other terms in the expres- 

sions for the Cj. In principle, this refinement is useful for applications, but, for simple cases 

like the channels ~r,  it is not needed. 

Remark 4. Let  E and Q~ be as in Theorem A.3. We shall say that  the end map E is o/ 

type T on Q~ (where T =I ,  H,  I I I  or I') if h~-- I E'I  enjoys on Q~ the properties de- 

manded of h on S in order tha t  ~2 be of type T. 

COROLLARY A.4. Under the hypoiheses of Theorem A.3, let E be o/ type T on Q~, 

and let ~(~).~e. Then, as regards its downstream end, the channel ~ is o/type T, provided 

that 

(a ) 1/eh~eL2(Q~) when T = I I  (/or this, it su/]ices that c>�89 

(b) c > �89 when T = I I I .  
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Proo/. Let h(w)= I F ' ( w ) l  = Idzldwl, and define h ,  on ~)~ by 

Id:ld~l 
h,($) = (hoF-% E) (~)= V~w/d~ I 

Idwld$l ~ = ~  +(1 +~,y, 

hE(~) 
Idwtd~t' 

by (A.19). In place of the ]Vhl in Definitions 1.1 and 5.1, we now have 

1 I(h.~. h..)l = ~ 2  (hE,.hE.)-- 4 ~ .  l(h~,ho)l Idwla;l 

where ~F = ( ~ p ~  + (1 +v2~)~,  ~p~p~ + (1 +~p~)~).  

Let  R,~=F-loE(Qa); this is a subset of the strip S in the w-plane that  contains some 

half-strip 2d, and 

dW2d d 
f~o()dudv=fr $V. 

I t  is straightforward to check, by means of these formulae, that  h has the desired pro- 

perties, given our hypotheses on h E and c, and the result of Theorem A.3 for ~. The 

assumptions (a) and (b) are made because of the Y-term above, to ensure that  

I~rJ/h EL2, in order tha t  IVw(1/h) l e L~, when T = II; and to ensure that  EL2, in order 

tha t  I V~ log h I EL2, when T = I I I .  Q.E.D. 

COROLLARY A.5. The channels ~I  de]ined by (1.6) are of type I' i/ks>�89 o/type I I  

i] k/< 1, and o] type 111 i/ ks ~< �89 (j = 1, 2 throughout). 

Proo]. We use the results of (v) to (vii) in Corollary A.4. For ks = 1, Theorem A.1 can 

be used. Q.E.D. 

Appendix B. Some details omitted from proofs 

(i) Remainder terms in the proo/o/Lemma 3.3. We recall that  R 1 comes from (2.20), 

R 2 from integration by parts of the integral in (3.9), and - R a from the same integral when 

1 and tf/h replace 1/h 2 and % respectively. We find that  

f/ 2 2 2 2 /~  = - ~2 Qn ~ ( ~  + ~'n) + ~-2 Q {~% ~o~- ~,~e~ +,~(~,~ + ~o;~)}, 

f~{ ~ ' - 2 ~ -  2 2 ~  ] 
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(ii) The triple product {w, u, u} in terms o/ stream /unctions. Let w = ( z  ~, -Z , )  and 

u = (~Fy, -~F,), where Z e C~(~) because w e J (~)  in (3.1 a). Starting from the definition in 

section 2.1, we obtain 

Now transforming to S, one can use the fact tha t  Z~tzy-Zy~F . is a Jaeobian. 

(iii) Steps in the proo/ o / L e m m a  A.2. Let  ]r =r .  From the formulae (A.14a) 

and (A.15), we deduce that  the Green function K is no worse on ~a • Sa than the funda- 

mental singularity - (1/27t) log r. Indeed, let ~1 and t2 denote the reflections of ~0 in the 

lines ~7=+1, let ~j+a (~=0, 1,2) be the reflection of t j  in the line $ =a ,  and let 

rs = ] ~ -  t~] >~ r (j = 1, ..., 5); then 2~K(~, t0) - log (r 1 r 2 ra/r 4 r 5 r) is real analytic on Sa • Sa. 

Also, (A.14b, e) show exponential decay for large values of I~-~01. Hence there exist 

constants c, c~ and k~p such that  

c(l+llogrl), O<r<3, 

We estimate all integrals but  one by taking the modulus of the integrand, and by 

representing Sa as the union of the (overlapping) subsets characterized by r~<5~ and 

by I~-~01 >~ 1. (Subsets slightly larger than this are considered in (B.1), in order tha t  

K(2~(~1, ~) can be estimated in (B.2) when we partition S a by reference to t0.) 

Now define 

4P(t0) = fz  g(~0, ~) 

16 ~ 1 n~r . n~ 

and let (.)(~ denote any partial derivative of order n with respect to ~o (or, later, with 

respect to tl). The following differentiation formulae are justified, when /E C~ as the 
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limits of finite differences: 

P(1)(Co) = fsoK("(Co, C) /(C), 

P(~)(~o) = ~so K<~)(~~ ~) {1(r t(~o)} + r t(~o), ~0 > a. 

The most  elaborate par t  of our task  is the proof of H61der continuity,  with exponent  

#,  of second derivatives. For  this we consider two points ~1 and C0 such t h a t  ]Cl-~O[ =6,  

0 <6~-<�89 and use the formula 

+ f ,>~ {K(~)(C. ~) - K (~)(co, ~)} { l g )  - l gD}  

- {1(~)  - 1(r f,>2~ K(U)(~~ ~) 

+ r {I(~:) -/(Co)} + {r - r (B.2) 

The two integrals over r <26  can be bounded separately; each is not  greater than  a 

constant  t imes ~c6~,  under  the hypothesis  of Lemma A.2. The third  integral is shown, 

by  the method  mentioned above, to  be of the same order. I t  is the last integral, of 

K(2)(C0, C) alone, t ha t  requires care if the exponent  /~ is to  be recovered for second 

derivatives. Now ~ and ~:o appear in (A.15) only in the combinations ~ o ,  and 

G ~ 0 =  -G~.~o for ~=~o; therefore, we can always write K ~2) as a derivative with respect 

to ~ of some g(x), where /~  is a linear combinat ion of the two functions ~ in (A.15). Hence 

the integral can be reduced to one of/~(x) over the line segment {a) • ( - 1, 1) and over tha t  

par t  of the circle r = 26 within S~; in this form, it is readily bounded by  a constant .  
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The outline of previous existence theory, in section 1.1, should certainly include reference 
to [28]. 

[28] concerns certain domains in R ~ or 1~ 3 with any (finite) number of 'exits '  or ducts ex- 
tending to infinity (a channel has two). The existence of generalized steady solutions is proved 
for arbitrary Reynolds numbers (that is, for arbitrary compatible flux constants and viscosity). 
Our flux carrier in Lemma 3.2 has something in common with those constructed earlier by 
Ladyzhenskay~ and Solonnikov in their  more general setting, but  in their paper the 'exits '  or 
ducts in R 2 must  widen, at  large distances, more strongly than is necessary for our channels of 
type I or type I ' ,  and pointwise decay of the velocity is not  considered. 

[29] and [30] are primarily concerned with Heywood's  question in [21]: for what domains 
does the completion of C~' ~o1(~ _~RN) contain all solenoidal vector fields in the completion 

of Co~176 ~-~ R N) ? (Here completion is either in the Dirichlet norm for both sets, or else in the full 
norm of W~(gt-~R N) for both sets. For  channels, ducts and the like, vector fields in the former 
space carry no flux, while those in the latter space may carry flux for certain domains.) The 
two papers cited add significantly to Heywood's  own answers to this question. As it happens, 
Maslennikova and Bogovskii introduce channels and tubes of ' types I to I I I ' ,  but  their defini- 
tions are entirely different from those in the present paper; they prove (among much else) tha t  
equality of the two function spaces, when ~2 is a symmetrical channel or tube, implies certain 
integral properties of the cross-sectional area. 
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