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1. Introduction

L.1. Background

Recent work of Heywood [21] has drawn attention (a) to questions of uniqueness
of Navier-Stokes solutions for certain unbounded domains 2 in RY that can be regarded
as models of channels, tubes, or conduits of some kind, and (b) to the importance of
prescribing, not merely the fluid velocity 4 on the boundary 8, but also some quantity
like the flux M (that is, the total volumetric flow rate, defined for N=2 by (1.3b)
below) or the overall pressure difference. However, the existence theory for such domains
(which have boundaries that are not compact) seems somewhat sparse relative to that
for bounded and for exterior domains. (By an exterior domain we mean a connected open
set that is the complement of a bounded set.) If we set aside the explicit (or nearly explicit)
solutions for special cases in which, by virtue of a particular boundary 2€2, the non-linear
terms vanish (as in the parallel Poiseuille velocity field appropriate to infinite cylinders),
or a similarity situation allows reduction to ordinary differential equations (as in the
Jeffery-Hamel solutions for source or sink flow in plane wedge-shaped domains), then, as
far as we are aware and according to what is stated in [9], [10], [23] and [26], the only
existence theorems for steady flow in domains of the class in question are as follows. We
state restrictions in terms of the Reynolds number: for N =2 (in two space dimensions),
R=M/y is the ratio of flux to kinematic viscosity; for N =3, we introduce a length !
characteristic of some cross-section of the domain, and define R =M.

(i) For the case of a smooth tube Q<R3 consisting of two semi-infinite circular cy-
linders joined by an arbitrary central bounded portion, one prescribes zero velocity on
the boundary 8Q and the appropriate Poiseuille velocities at infinity upstream and down-
stream. P. Patterson proved existence of a solution to this problem for sufficiently small
Reynolds numbers, and obtained rates at which the Poiseuille velocities are approached
far upstream and far downstream. (We have not seen these unpublished results, and can
refer only to their description in a review article by Finn, [9], p. 150; there, the critical
Reynolds number is not characterized in any way.)

(ii) In [4] and [5] both the two- and three-dimensional versions of the foregoing
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problem are treated, and for N =3 the cylinders may have non-circular cross-sections.
Existence, exponential approach to the Poiseuille velocities, and regularity properties of
the solution are established for R < R,, where the critical Reynolds number R, is 116.5
for N =2, is 127.9 for N =3 and cylinders of circular cross-section, and is somewhat larger
for domains symmetrical about a streamwise axis. The number 1/R;, which re-appears in
certain results of the present paper, is the supremum over the unit sphere in a Hilbert
space of a quadratic functional, and also marks a stability boundary of Poiseuille flow in
an infinite strip (N =2) or cylinder (¥ =3); in this stability context, it was first computed
for N=2 by W. Orr in 1907.

(iti) Symmetrical channels Q<R? with slowly curving walls are considered in [12]
and [14], the product of local channel width and local wall curvature being bounded by a
small parameter £>0. Under certain restrictions on Reynolds number and the local
divergence angle of the channel walls, solutions are constructed as explicit asymptotic
series, to a finite number of terms, in powers of ¢, plus a remainder that is proved to be
smaller; these solutions exhibit ‘flow separation’ from the walls.

(iv) In [21], pp. 98-100, Heywood proves existence, for sufficiently small Reynolds
numbers, of steady generalized solutions representing flow through certain apertures and

ducts in R?® that widen strongly at infinity.(%)

1.2, The boundary-value problem

By a channel we mean an unbounded domain Q< R? that (a) is simply connected,
(b) has & boundary 8Q, of class C®, consisting of two unbounded components I'_ and I',
{(the channel walls) such that dist (I'_, I, ) >0. In the present paper we tackle the general
problem of steady Navier-Stokes solutions for such domains. To specify the flux we let
y denote any smooth simple arc, in Q, directed from a point of I'_ to a point of T',, with
unit normal » such that a positive (anti-clockwise) rotation through /2 transforms » into
the (directed) unit tangent, and with dl denoting an element of arc length. We seek a
solution (u, p) of the steady Navier-Stokes equations,

~v D+ (u+ D)u =~ Dp in Q, (1.1)
divu=D-u=0in Q, (1.2)
where  is a channel, such that

ulpa=0, fu-ndl=M>O. (1.3a,b)
4

(1) For a fifth item, see the note References added in proof.
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Here v denotes the kinematic viscosity, a given (strictly) positive constant;
D =(D,, D,)=(9/0x, 8/0y) the gradient operator, and D? the Laplacian; u = (u,, u,): Q—R?
the fluid velocity; and p: Q—~R the ratio of modified pressure to constant density,
‘modified’ pressure meaning that the scalar potential of a given irrotational force field may
be included.

When the local channel width tends to infinity far upstream and far downstream,

we add the condition
[u(z)| >0 as [z] >coin Q. (14a)

Here z denotes points (x, y) €R?, which we identify with points x + iy €C wherever this is
appropriate. When the width tends to (positive) limits at a certain rate, we demand that

the appropriate Poiseuille velocities be approached, as in [4]. (1.4b)

In what follows, ‘(1.4)" will mean either (1.4a) or (1.4b), according to the form of Q. The
words ‘local channel width’, ‘far upstream’ and ‘far downstream’ will be given precise
meaning presently; nevertheless, (1.4a) is to be interpreted loosely until we come to
section 5. Definition 1.1(a) will state that the ‘local channel width tends to infinity’ in an
averaged sense, and in Definition 3.1 a flux-carrying velocity field will be required to
satisfy (1.4a) only in the same averaged sense.

The restriction to the case N =2 is made for two reasons, as follows.

(i) Let 8 denote the strip R x(—1, 1) and let Q be a channel (Fig. 1). Then there
exists a one-to-one conformal transformation, say

. z=F({), z=x+iy and =&y,

with dz ; (1.5)
JE=F'=M° (h=|F]),
of § onto ) such that I'_ and I', are the images of Rx {—1} and R x {1}, respectively;
the function F is unique if &,=Re F-1(z,) is specified for one point z,€€. (Here Re and
Im denote the real and imaginary parts respectively. The existence of F follows from the
Riemann mapping theorem and two elementary conformal transformations that map the
unit disk, with ¢ and €' representing the infinitely distant ends of Q, onto § in the manner
stated. To prove uniqueness, we consider two such maps F; and F, and apply the
Phragmén- Lindeldf principle as in [25], pp. 97-99, to show that the function Im Fz'o F,:
S8-[—1, 1] can only have the values 7. A more elementary uniqueness proof, based on
the fact that a conformal one-to-one map of the unit disk onto itself is a Mébius transforma-

tion, is also possible.) The map F allows definition of types of channel, and construction of
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I'i:ig=1 @ :ig=-1

Fig. 1. Notation for the conformal map F. The velocity components &, and ,, in the directions DE and
hDn, are introduced in section 2.3. The particular channel () in the figure is of type III, but is on the
borderline with type I (section 1.3 and Appendix A, (i)).

certain flux-carrying velocity fields essential to our proofs, with generality and ease, in a
manner that has no obvious analogue in higher dimensions. We call the length [, A(&,#)dn
of an arc &(x, y) =const. in Q the local channel width; by limiting values far upstream (or
far downstream) we mean limits as £ — oo (or £-> o),

(ii) For exterior domains 2, the analogue of (1.4), that » is to tend to a prescribed
constant velocity at infinity, demands treatments that are quite different for N =2 and
for N=3. In the two-dimensional case, the question of whether a generalized solution
satisfies this condition remains open, [10], [17], [18], except for sufficiently large
viscosity #, [11]; in the three-dimensional case, the question has been settled completely,
[6]. (One basic difference is in the space H(Q) of divergence-free vector fields » that
vanish on 8Q, with the Dirichlet norm: ||v||2 = fq | Dv|2. For N =2, there exist fields v in
H(Q,) such that |v(z)|>co as [z]—+co; for N=3, H(Q,) is embedded in Lg(Q,—~>R3).)
This feature of the exterior problem has an easier, but still serious, counterpart for
channels and tubes whose width tends to infinity far upstream or downstream, and proofs
that (1.4) holds pointwise form a substantial part of the present paper.

1.3. Channels of various types

It will be convenient to distinguish the gradient operator D in Q from that in S; we
write V =(V,, V,) =(8/0&, &/on) for the latter.



88 C. J. AMICK AND L. E. FRAENKEL

Definition 1.1. Let h: S~ (0, ©°) be the arc-length function introduced in (1.5). We shall
say that a channel Q is

(a) of type I if 1/h and |V(1/h)| belong to Ly(S);

(b) of type II if |V log h(&,n)| 0 pointwise as |&| o, uniformly with respect to 7,
and |V(1/h)| €Ly(S);

(c) of type III if it is of type II and also |V log h[€Ly(S), |VA|€L,S) for some
q>2, and h(&, ) <const. |£[* for |£| >1.

We hasten to give intuitive meaning to this definition, and to indicate under what
circumstances a given channel belongs to one of these types; further details are presented
in Appendix A. Note first that #€0°(S) and that, on any compact subset of S, h is
bounded away from zero. (This may be proved by combining a classical theorem on
conformal mapping, [7], pp. 96-97, with regularity theory for the solution of the Dirichlet
problem D?y=0 in Q, 5|r_=—1 and 7|y, =1. Observe that 1/h=|Dg| if we write
h=hoF.) Therefore the definition restricts only the behaviour of k(£, ) as |£] - . Now

consider symmetrical channels

Q= {(, y) ER*|2€R, —f(z) <y <[(2)}, (1.6a)

where

const. (—x)* forz< —1I —1,
) = - (1.6b)

const. ™ for x>1,+1,

k, and I; (=1, 2) being non-negative constants. Examples and a theorem in Appendix A
show that Q is of type I if k;>4, of type II if k; <1, and of type IILif k, <% (j=1,2
throughout). Thus the sets I and II (of channels of types I and II respectively) intersect;
but I and III are disjoint because 1/h¢L,(S) when A(£, ) <const. |&|* for |&] >1. We
have already defined local channel width as twice the mean value A(&)=1} {1, R(&, )dn;
if for the moment we ignore restrictions on VA, we may loosely describe channels of type 1
as those which widen strongly at infinity (k,> 1) and channels of type 111 as those which widen
feebly there (k;< %).

Regarding Vh. Recalling from (1.5) that log 10 is a holomorphic function on S, we

define
%=k§/h=0”, A Zhﬂ/h= *05, (1.7)

where (.),=&(.)/0&. The mean value #(&)=1% (1, %(& 7)dn then represents half the local
divergence angle, 0(,1)—0(5, —1), of the channel walls, and —V(1/k)=(8,, —0;)/h re-
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presents the curvatures of the arcs &=const. and 9 =const. in Q .Accordingly, channels of
type I1 have local divergence angles that tend to zero at infinity, and (like those of type I)
have conformal coordinate lines £ =const. and ) =const. in Q whose curvatures are in Ly(S).
For type I11 these conditions are strengthened. Note that, if A and the curvatures are re-
garded as functions on Q, say hoF-1=k and —V(1/h)o F-1=(K, L), then it is merely
K[k and L[k that are required to be in Ly(Q), because d&dn=dxdy/h?; and h(z)— oo for

most cases.

1.4. Results and methods

(i) For channels Q of type I, a weak solution is obtained in section 3 for every
Reynolds number by a variant of an artifice that originates in early work of Leray and
is now standard for compact boundaries (see, for example, [9], pp. 128-129). Smoothness
of weak solutions, for all types of channel, on compact subsets of Q is established by
standard methods in section 4. There remains the question of the pointwise decay of u
at infinity in Q; adopting slightly stronger hypotheses about % (the chanmnel is then of
type I’), we prove in section 5 that (1.4a) holds, and that the pressure p tends uniformly
to finite limits far upstream and far downstream. This is done by use and extension of
the considerable machinery built by Gilbarg and Weinberger [17], [18] for the two-
dimensional exterior problem; an essential tool in [17] is a one-sided maximum principle
for the function p+ §|u|2 Thus, for channels of type I' and for every Reynolds number
R=Mly, a classical (pointwise) solution of (1.1) fo (1.4a) ¢s established. However, our
attempts to obtain a rate of decay for the velocity in this case have been wholly un-
successful.

(ii) For channels of types I1 and 111, solutions are obtained only for B < R,, where R, is
the critical Reynolds number described in (ii) of section 1.1. For type 111 there emerges a
rather precise description of the velocity and pressure at large distances. The dominant part
of the velocity far upstream and downstream is a slightly distorted Poiseuille velocity ¢
of magnitude 2M(1—#?)/h(&, n) and direction DE(z) in Q, and the departures from this
velocity, due to geometrical effects represented by VA, can also be estimated. Note that
the factor 1/A(£, ) implies a rate of decay when the local channel width tends to infinity.
1t is also shown that p(z)— + oo as &— F oo, respectively, and the pressure gradient is
estimated.

Our method is as follows. In section 3 a weak solution u=g+v is obtained for
channels of type II by a variant of the method in [4]; the velocity field g is constructed
a priori to satisfy (1.2) to (1.4). On a certain compact subset of Q, ¢ has the form used for
type I; at sufficiently large distances, ¢ is the distorted Poiseuille velocity ¢ described
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above. The Gilbarg-Weinberger approach to analysis of the far field is no longer applicable,
because the pressure p need not tend to limits far upstream and far downstream for
channels of type II. On the other hand, the type of decay theory used in [5], which
exploits the Green function of the linearization of the Navier-Stokes equations about the
Poiseuille solution, requires, for control of the non-linear terms, not merely a bound for
the Dirichlet integral (g | Dv|2 of the second part v of the weak solution, but a bound for
fo B2| Dv|?, where h(z)=hoF-1(z)—>co in most cases. Such a bound is obtained in
section 3 for channels of type III. In section 6, the Green-function operator is used to
analyse the far field and to obtain the foregoing results.

(iii) It is perhaps worth stressing that the boundary between types I' and 111 has a
physical significance: for channels of type I', the pressure p tends to a finite limit far wpstream,
and to another far downstream, while for channels of type I11 it tends to plus infinity far
upstream and to minus infinity far downsiream. This seems satisfactory because Definition
1.1 was dictated entirely by the need to bound terms resulting from the definition of
weak solution in section 3, and there the pressure p does not appear. (The further con-
ditions defining channels of type I’ correspond to the transition, in section 5, from an
averaged, or integral, treatment of the far field to a pointwise treatment, and these
additional conditions seem natural in the light of examples in Appendix A.)

The two kinds of behaviour of p are easily explained for channels €, as in (1.6),
with £;<1 (j=1, 2). For these, the distinctions between Adé and dz, between h(£, ) and
f(x), and between % and y/f(x), are not important at large distances, and a physicist would
not hestitate to assert that the longitudinal velocity component u; has the asymptotic
form g(y/f(x))/f(x) as |x|— oo, by conservation of mass (div »=0) and because f(z) is the
only ‘matural length’ at large distances. (As has been mentioned, we prove such a result
in section 6 for channels of type III; it is also known to be true for certain rather special
channels of type I, [12], [14]). Now the Navier-Stokes equations state that at a channel
wall the tangential pressure gradient, essentially —&p/ox >0 in the present case, balances
the normal gradient of viscous shear stress, essentially —y2%u,/0y? here; hence —op/ox is
asymptotically proportional to 1/f(x)3. For a channel Q,, this is integrable on R if and
only if k,>}, and then Q, is of type I

(iv) Various extensions of the results are immediate; we mention three.

(a) If ;<1 and k,>1 in (1.6), then Q, does not belong to any of the types in
Definition 1.1. It does not seem worth while to define channels of mixed type, but
results for such channels can be inferred for R <R, from the theorems in this paper. A
weak solution can be found by an easy modification of the velocity fields g in section 3

to suit upstream and downstream geometries of different types; thereafter, what is proved
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about the solution far upstream is independent of conditions far downstream, and vice
versa.

(b) Rotational force fields f can be added to the right-hand side of (1.1), in which
irrotational forces are already included, under the following restrictions: f€C°(Q-R2);
for channels of type I, f has compact support in Q; for channels of type II (or III),
|/(z)| >0 sufficiently fast as |z]—>oo. (For the analysis in section 5 of the far field in
channels of type I’, rapid decay of f is not enough, because the maximum principle for
p+3%|u|? is essential.)

{¢) To describe flow past obstacles within a channel, one may pose a boundary-value
problem in the domain Q' =QON\ K, where K is a compact subset of a channel Q, with
a boundary 8K that is of class C* when regarded as & (int K), and has components
Iy, ..., Iy, say. The additional boundary conditions can take the form

u|p,=a’(x), Where f a ndl=0, j=1,...,m,
Ty

and where @’ €C®([",~R2). (For vector fields, superscript letters are mere labels, not

exponents.) The conformal map F for Q can still be used, the inverse image F~*(K) being

what it will; to construct a flux-carrying field g satisfying all the boundary conditions, one

merely adds terms which are familiar in Navier-Stokes theory for domains with compact

boundaries, and whose contributions to the various estimates are easily bounded.

2. Preliminaries

2.1. Further notation and terminology

In what follows, symbols for functions composed with the conformal map F, or its
inverse, will usually be abbreviated: for example, ho F-! and wu,0F (j=1,2) will be
shortened to % and u; adjacent symbols (Q, 2, D or §,¢, V) will prevent confusion.

In the context of R¥, integrals are with respect to N-dimensional Lebesgue measure

unless the contrary is displayed. In particular,

Jo=[ Oaean, [ O=] Oasan

and, since the Jacobian J(z/()=h? while |Df|=|Vf|/k for any smooth real-valued

(scalar-valued) f,
f ( )=f( YA, f lDf|2=f | V1. @2.1)
Q s Q §
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In addition to the various notations for partial derivatives introduced already, in-
cluding the suffices in (1.7), we shall have occasion to use D*=Dj* ... D7¥, where &, ..., aty
are non-negative integers, and o=(x,, ..., ay) is a multi-index of order |o| =a +... +oy.
Similarly, V*=V{V$:. Let U be an open set in R"; by the Sobolev space W3 (U) we mean
the real Banach space of functions f: U—~R such that f and its generalized derivatives
Df, || <m, belong to L,(U), p>1; the norm is

- {z.a.gm f U!D"‘flp}m.

Note that ||. ||y, denotes the norm of L,(U). The closure in W5 (U) of the set C2(U),
of real-valued functions having derivatives of all orders and compact support in U, will be
denoted by Wn(U).

As elsewhere, J(Q)=0F*(Q—R?) denotes the set of infinitely differentiable vector
fields v =(v,, v,) that are solenoidal (div v=D,;v, + D,v,=0) and have compact support in
. Where convenient, functions in J(Q) are defined to be zero in R*\ Q. We write

2
Dv: Dw= 3 (D;v;) (D;w;), |Dv|*=Dv:Dw,
ij=1
for vector fields, and, when we transform to S, treat v, =v- Dx and v,=v- Dy like other

scalars. Thus
[ Vo2 = v +2f, + o8 + 05,

For any smooth solenoidal velocity field » defined on Q, whether in J(Q) or not,
we can define a stream function v by the line integral, along an arbitrary smooth simple

arc in {2 from a fixed reference point a,

P(zg) = fzn (v, dy — vodz) = fv- ndl. (2.2)

The necessary and sufficient condition for this is div » =0, and then v =(y,, —y,). For the
desired solution » of (1.1) to (1.3), we write w={V;, —¥,); the flux condition {1.3b) be-

comes
Ylr.=¢ and W|p, =c+M, (2.3)

where ¢ is a constant depending on the reference point of ‘.

We define triple products by
{u,v,w}zf w- (- D)w
o
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whenever the vector fields %, v and w are such that the integral has meaning. If
div =0, and u-(v-n)w is zero on #Q and o(1/k) on arcs £=const. in Q as [£] >co (all

these conditions need hold only in a generalized sense), then
2
{u,v,w}= > | wDww)=—-> | wv,Dyu,=—{w,v,u}, (2.4)
1,j=1J Q 1,7 JQ
so that {w, v, w} =0. (2.5)

2.2, The spaces H(Q) and V(Q)
The real Hilbert space H({)) is the completion of J(£2) in the Dirichlet norm:

Ioff= [ 1ol | vl
Q S

the inner product being <v, w) = [ Dv: Dw. Here we have applied (2.1) to v, and v,.

Functions in H(Q) are weakly solenoidal ([23], [26]), and vanish on 8€) under the
action of the trace operator: H(Q)—>L,(0Q) (more precisely, L,(0Q—R2)); for the construc-
tion of this operator we use the norm of H(Q) and (2.8) below. (Trace operators are
discussed in [1] and [24], for example.) For any fixed arc y as in (1.3b), we can use (2.6)
or (2.8), and the fact that % is bounded on v, to construct a trace operator: H(£2)~L,(y),
and it follows that velocity fields v in H(Q) carry no flux:

f v-ndl=0, VYvEH(Q).
v

It suffices to prove this for v€J(Q), and we do so by means of a smooth simple closed
curve I' such that y<I', while I"™\y lies outside the support supp » of v. Then

fvondl=f vendl=0
v I

The following properties involve the form of Q more closely; their analogues for

because div v =0.

bounded domains are stronger, and those for exterior domains in R2 are weaker.

LEMMA 2.1. Let Q be a channel. Then, for every v€H(Q),
v[? 4
[ L= o< S, 20

»
[ [ ob<mlolr, 2<p<en, @)
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where the constant K, depends only on p; also,

|of? _J [of®
Joror i Lo =l 2)

and

1
f lo(&,m)|dn->0 as |&|~co. 2.9)

-1

Proof. To prove (2.6) we integrate over § first with respect to 5, apply the celebrated

one-dimensional inequality ([20], Theorem 257)
! l2 ! .
f f)Edt< ?f f ()2 dt, YFEW3(0,1), (2.10)
0 0

and then integrate with respect to &. The inequality (2.7) is a result of Sobolev embedding

for WQ(S) ([1], [24]). For (2.8) we can use another standard inequality ([20], Theorem 253),
but a naive form of this is easily derived for functions in J(€):

Lo el 1] 1|yl 12( 1 R
(- = “Undn < dnt .
f~1(71+1)2d77 f—l"]‘i‘lzv O 2U_1(n+1)2d"} U_llvnl n}

Dividing through by the first bracket on the right, squaring, integrating with respect to &
and extending the result to H(2) by continuity, we obtain (2.8). For (2.9), which refers

to the L, trace on an arc & =const., we again take v in J(Q); then

lo(Eom)E= ~2 f

=)

v vedé< fw(|v|2+[vglz)d§.
&
Let S,={C€8|&>&,}; then by (2.10)

1 »
[/ Jeempans [ o+ loslr< |
-1 S

So

4
(Bl 125P).

0

which tends to zero as &,— co. The result for H(Q) then follows by continuity. Q.E.D.

If v€J(Q) and if in (2.2) the reference point ¢ €0Q, then p€CP(Q). Conversely, to
every v ECP(Q2) there corresponds an element (y,, —y,) of J(Q). Let w€J(2) have stream

function y; then

(o= f o 2y oy i o) = fg (D) (D*7) (@.11)

upon integration by parts of the middle term. We introduce
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W= [ @0 [ L0 ), (2.12)

where V2p =y, +v,,, and define V(Q) to be the completion of CF(2) in the corresponding
norm. The map pr>(yp,, —p,) defines an isometric isomorphism between V(£2) and H(L).

When the local width of Q is bounded, V() is equivalent to the Sobolev space
W¥Q), because fo|Dy|? and g y? can then be bounded in terms of ||| v, by means of
(2.10), but in general WXQ) is a proper subset of V(Q).

2.3. Identities implied by the conformal map F

In this section velocity fields need not belong to H(Q), nor stream functions to V(£2).
(i) When a stream function is given as a function of { (is given on §), as are those of
the flux-carrying velocity fields g in section 3, it is useful to define not only v=(yp,, —v,)

but also
By =yylh, Gy = —y/h. (2.13)

Then vy + 10y = e"0(D; +15,), (2.14)

where 0 is as in (1.5) and (1.7). Although at a fixed point in  the pairs (v, v,) and
(%, 05) [more precisely, (6,0 F-1, ,0 F-1)] are representations of the same vector relative
to different orthonormal bases (respectively Dx, Dy and hDE, hDp), the fact that the
second basis rotates as we pass to other points makes it safer to regard ¢ =(4,, 4,) always as
an ordered pair, related to v=(v, v,) by (2.14). From (2.13) and (1.7) we find that

[ V6= 8 + 05, + 63, + 65,
1
=22 {(Wes = 592" + (Yen — 290)" + (Y5 — M0)” + (P — A"}

For computations like the next one, the C2-valued function V(v; +ivg) = (v1¢ + 10y, vy, +105,)
is more convenient, because of the complex scalar ¢%, than the Ri-valued function

V(v;, v5); the norms are, of course, equal. Thus (2.14) and (1.7) yield
|V’UI2 = (515 + 162)2 + (625 o 161)2 + (’51,7 bl %’62)2 + (132,1 + %131)2
1
= s L 0es = o9 o)+ 2y — 5y — Ay + (g — Mpy + )% (2-15)

(il) We shall use, at least once, each of the following forms of the Navier-Stokes
equation (1.1). With »=(¥,, —¥,), the vorticity w is defined by

O =g, —upy= —D*¥ = —hle“P'.
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In terms of this, and because div =0, (1.1) may be written
VO, — (1 Uy — UpUyy)) = — P (2.16a)
— V0, + (Uy Ugy —~UgUy) = — Py (2.16b)

We obtain the first (second) of the next pair upon multiplying (2.16a) by A cos 0 (by
— h sin 6), multiplying (2.16b) by A sin 8 (by % cos 8), and adding; there results

VW, — (Uy Ugy — UpUyy) = — P (2.17a)
— v+ (Uy Uog —UpUyg) = — P, (2.17Db)
Now observe that u,u,, —usu,, =Im (u; —iu,) (u, +iu,,). Using (2.14), we obtain
vy — Uy (Tyy +lly) +8y(thy, — #ils) = —pg, (2.18a)
(2.18Db)

—vwy+ ﬁ1(?22§ —Ay) — ﬁz(ﬁlg + ) = ~p,-

(iii)) As before, let v and w have respective stream functions y and y. Multiplying
(2.18a) by 4, and (2.18b) by ¥, and recalling that (2.18) corresponds to % times (1.1), we
infer that

1 7] 0
v- Dzw:——?{y)n(é‘;?”‘2l) sz—i-tpf(a—g— 2%) sz}, (2.19)

1 5 1
v (w-D)yw= 74 ¥ {20 2Xen — A T — 2(Xz + X3} + v {Xn Hee — Xe Hen -+ AUE+ 23)}-

(2.20)

(iv) If we take the curl of (1.1) (or eliminate p from (2.16) by cross-differentiation),

there results the vorticity equation, four forms of which are

vD*w—u- Do =0, (2.21a)
vD?— (IP Q—‘If 3) D*¥=0 (2.21Db)
Yoxr oy ’ '
1{ ., 2 2\ (VY _
B2 {’VV (\Fﬂéz: Téé)_n)} (?) =0, (2.21 C)

1{ [, 8 .0 @ 8
Z‘l{i’ [V - 4(%8—5“‘18—17) + 4(%24‘22)] — l:qfn(a—é— 2%) —\Fé(%— 22)]}V2“F= 0.

(2.21d)
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The fact that V2 (log 2) =0 (that », 41, =0), which has been used here, also allows us to

obtain results in section 3 without assumptions about second derivatives of A.

2.4. Two properties of channels of type II

We recall that V (log b)=(x, 2). Neither of the following results uses the second
condition, »/h and A/h€L,(S), defining channels of type II; that will be used only in
Lemma 3.3.

Lemma 2.2, If A&, )0 as [§| — oo, uniformly over v, then the limit inferior

limg 00 A(C) >  dist (I"_, I",) > 0. (2.22)
Proof. Since h:h”/h,
h(&,m,) _ f
1 A dn—-0
h(&,my) (&) dy

uniformly over 7, and 7,€[—1,1], as |£] > o, and so

h(§3722)
su -1
o Lo h(E,my)
Then
1
dist (I_,T',) < |2(&,1) —2(¢ —1)|<f k(&,m)dn
<2{1+o(1)} min A(,7),
nel-1,11
and a lim A({) smaller than that in (2.22) would contradict this. Q.E.D.

LemmA 2.3. Let Q be a channel such that x(&, 7))~ 0 and ME, 1) >0 as |&] - o0, uni-
formly over 7. Define

= {Le8]|¢]>n}, aln) = supy-n {[#(0)], |AO)]},

and let n be so large that o(n) <m|4. Then, for all y€V(Q),

f (welh< f (WeulDP f (pal< 2 j "<wm/h)2,1
f Be< 256 f ol J

7~792901 Acta mathematica 144, Imprimé le 13 Juin 1980

(2.23)
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This implies that

1 1
-k} [ Zvto< [ 1W< liviom) | pvie @224
S, S, S
where Yo =P+ 208 + Y

v=(1,, —y,) and k is an absolute constant (independent of Q, n and ).

Proof. In this proof ¢ =4/n2, c=a«(nr) and all integrals are over S,; we use repeatedly
(2.10), with t=%+1 and 1=2, and the inequality 2ab<a?+-b2. Thus

J‘(%/h)2 <c¢ f(fl)en — M)l < 2¢ f (i + A yR)A,

and, since A2< a2, there results

2
f('/’é/h)z < 1— 26(:“2 f(WSﬂ/h)Z:

which is the first inequality of (2.23); note that « <z/4¢ makes 1 —2cx?>$. The other two
are proved in the same way.

For (2.24), we refer to the formula (2.15) for [Vv|? in terms of y. The terms
Wi /B? are left as they are; for the others, we use |%(0)| <a, #({)?<an/4, (2.23) and any one

of a number of algebric inequalities for product terms. Q.E.D.

3. Existence of weak solutions
3.1. A priori bounds

Definition 3.1. For any channel Q, a vector field will be called a flux carrier if it
belongs to C°(Q—~R2) and satisties (1.2) to (1.4).(2)

A velocity field u=g-+v is a weak (or generalized) solution of (1.1) to (1.4) if g is a flux
carrier, v € H(Q) and

vf Dw: Du+{w,u,u}=0, YweJ(Q), (3.1a)
Q
or, equivalently,
ww, o)+ {w,g+ 0,0} + {w,v,9} = — VI Dw: Dg—{w,g,9} (3.1b)
Q

for all w€J(Q).

(*) Regarding (1.4) we recall the remarks made there.
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Fig. 2. The four mollifiers used in seetion 3.

The condition v € H(Q)) implies weak forms of (1.2) to (1.4); for the weak form of (1.4)
we refer to (2.9). Eq. (3.1) correspond to (1.1): if » is a classical solution, we obtain (3.1)
upon multiplying (1.1) by any w€J(Q) and integrating by parts; the converse, that (3.1)

implies (1.1), will be shown in section 4.

Lemma 3.2. For channels Q of type I and any Reynolds number M[v€(0, oo ), there

exists o flux carrier g such that, if v€H(Q) and

””””2“{9:?’,”}= _vaDO:Dg—{@vgsg}s (32)

then llv|| < const., (3.3)
where the constant depends only on the data Q, v and M.

Proof. (i) The velocity g will be that of two jets, each near a channel wall, that are
narrow relative to the local channel width and are fast wherever h(£,#) is not large.

For any ¢>0, let u(., &)€C®([0, =)~ [0, 1]} be the usual mollifier (Fig. 2) used in
Navier-Stokes problems for extending boundary-value functions ([4], p. 483; [9], p. 129;
[13], p. T9; [16], p. 72): u(t, ¢)=1 at, and sufficiently near, t=0; u(t, &) =0 for ¢ >¢; and
for t>0
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pit,e) <eft, 0< —u'@t, &) <gft, (3.4)

where ' denotes the derivative with respect to ¢.

We define g=(G,, —G,), where the stream function

G, &) = —3M{pn+1, &)—pu(l -7, &)},

and where ¢ <1 will be chosen presently. In view of the form (2.3) of the flux condition
(1.3b), and the formula [recall (2.13) and (2.14)]

P

M
06,00 =~ (W L o)+ (L=m,e)), G0, 35)

it is clear that g satisfies (1.2) and (1.3), and (1.4) in the sense explained there.
(ii) Since |g| =4, we obtain from (3.4) and (3.5)

{g,’U,U}:f g(vD)v
Q

1( 12| ﬂ)
<éMszh(m+ 1—n | Do
< 2Mefjol? (3.6)

by the Schwarz inequality and (2.8). We choose ¢ =g, in (0, 1) such that 2Me; <}y, and
let g=g(., &,) henceforth; then the left side of (3.2) is not less than 3» [jv]f2
(iii) With & now fixed, @, and @,, are uniformly bounded pointwise; by (2.15),

1
fslVglz = fsﬁ {(lGn)z + 2(%Gn)2 + (Grm - ZG’n)z}

2

1
<const. | —5{1+»*+ A%} = const.
B h

’
12,8

where 1/h € W3(S) because Q is of type I. Thus | Vg| € Ly(S) and so | Dg| €Ly(Q). Accordingly,

=v [ Do Dg<s olllDglusa =l sa.

—{v,9,9} < const. fgl—%l | Dg| < const. |[v]| = cofjv|l, say,

where we have used the Schwarz inequality and (2.6). It follows that ||o] <2(c,+¢5)/».
Q.ED.
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LeMma 3.3. Let W=W(S) be the set W3(S) normed by

21l = f (V2"
so that W is equivalent to Wi(S), and define

Vo = SUPy e w\(0} fs QX Xen— Xe xnn)/"x"%V’

where Q(n) =3M(n —Ln?®) is the stream function of Poiseuille flow in S. For channels of type 11
and v>uv,, there exists a flux carrier g, different at large distances from that in Lemma 8.2,
such that (3.2) implies (3.3) for any vEH(Q).

Remark. In [5], careful analysis of the functional whose supremum appears above,
followed by numerical computation, shows that vy=M/116.5. If only odd functions of %
are admitted, as is legitimate when one seeks symmetrical velocity fields in a sym-
metrical channel, then v,=M[194.6.

Proof of Lemma 3.3. (i) We construct g to be as in Lemma 3.2 on a certain compact
subset of Q and to be a slightly distorted Poiseuille velocity at large distances. To this
end, we use, in addition to the earlier mollifier i, a second one g(.,d) EC°(R~[0, 1])
shown in Fig. 2 and such that g(&, 6)=0 for |£]|<2/6 and (&, 8)=1 for |&]|>3/8; also,
|0'(&, 8)| <comst.  and |p”(&, )| <const. 62 for 2/ < |£| < 3/8, dashes denoting derivatives
with respect to £. We set g={(G,, —G,) and define

G=A+B, A(C &0) = —M{um+1,8)—u(l—n, &)} {l—o 0)}, } 3.7)

B(Z, 0) = Qm)a(&; 9).

Further, a=(4,,—A4,) and b=(B,,— B,). As before, ¢ satisfies (1.2) to (1.4), and ¢, § will
be assigned positive values in due course.

(ii) Provided that |o'| <1, we have |a| at most 2} times the bound for the |g| of
Lemma 3.2, and so (3.6) implies that

{a, », v} < 282 Mello|2. (3.8)

Let v=(y,,—,), then by (2.20)

{b’ v, ”} = fs}%Qn(W'r)"l)&] —1/’5"/)77) + By, (39)
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where remainder terms B;, containing the functions g’,  and A that are small on sapp (., d)

when ¢ is small, are recorded in Appendix B. Let

V4(8) = Sup, e w\ 10y f (£l Xen = 2 X | 2[5 (3.10)

it is proved in [4], p. 510, that ».(0)—>», as 6—0, and we plan to use v,(d) to bound
{b, v, v}. Introducing a third mollifier ¢(&, 6) (Fig. 2), even in & and such that o(&, )=
o(é+1/6, 8) for £20, we define ¢=oy/h and f=op.

Assume for the moment that ¢ €C0P(S); then ¢ €CF(S) and

o= [ 5= 20t 4 2+ 02+ 2,

and

1 1, 1
[ = [ oot [ s 0t

by integration by parts; here (.).; is as in Lemma 2.3. Let « bound » and 4 as in that
lemma; we apply 2ab <a?+ b2 (say) and (2.23) repeatedly, first to the factors of x, 4, %4, ...

above and then to the ¢’ and ¢” terms arising from f—gy. There results

ll#]|%< (1 + const. a(1/8) + const. &) —1‘2‘/"(2@)
ISV

< {1+ Bo(0)} ol (3.11)

where £,(6)—~0 as 6—0, and similarly for other 8, below. This inequality now extends to
v€H(Q). The mollifier ¢ plays no further part, because its value on supp ¢ is one.

If we apply (3.10) as it stands to ¢ =oy/h, second derivatives of s will appear; therefore
we integrate by parts. By (3.9),

{b,v,0}= LZ@z QumPe¥n+ By + By,
Also,

[ ctbnser=debm= [ cmbst [ e,
= fsﬁgz Q¥ ¥ — Bs,

where R;< f,(8)|[v][2, =1 to 3, by inspection of these terms (Appendix B) and Lemma 2.3.
Now using (3.10) and (3.11), and adding the estimate (3.8), we have
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3
{9 v, v} < {const. s 49, )1 +AO+ 3 BN} oll*
<3+ |22 (3.12)

if we choose e=¢g, and 6 =34, to be sufficiently small; henceforth g=g(., &, d)-

(iii) With £ and ¢ now fixed, not only are the values of & and each of its {-derivatives
bounded, but so are the set, say &', on which |£] <8/d, and G'4-Q, and the values of % on that
set. Hence the Dirichlet integral of v over Q' =F(8') is equivalent, by Lemma 2.1, to the
square of the norm of v in W3(Q'—R?), and the contribution of Q’ to the right-hand side
of (3.2) is at most K, ||v||, for some (possibly enormous) constant K.

Let 8"=8 8" and Q"=F(8"); it remains to bound the contribution of Q" to the
right-hand side of (3.2). It is only for this that we use the second condition, »/k and
AR E€L,(S), in the definition of type II; because of Lemma 2.3, this condition allows us
to bound integrals over S” of xV”y/h? and AV?y/h%, |y| <2, by the Schwarz inequality.
We shall also use the fact that Q,,,~=—3M/2. By (2.19) and (2.20),

1
”f Ra D*g= ”fs” 72 {wn(Qmm — 22Qn) — ¢ 25 Qny}

i 1
- —v{3M f 2 f =5 (2, + 2eye) Q,,,,}
4 S*

< const. |[v]| = kyl|o]l, say;

1
~{v.9.9}r = L 72 Pnx =) @

< const. [|v]| = kyf|v]|, say.

Thus (3.2) implies that {|v]] <2(K;+k,+kg)/(v — ). Q.E.D.

3.2. Existence of weak solutions

TaEOREM 3.4. The problem (1.1) to (1.4) has a weak solution w for each Reynolds
number R =M v€(0, ) if Q is of type I, and for R<M v, if Q is of type II (v, being as in
Lemma 3.3).

Proof. Let {Q,,}, m=1, 2, ..., be an expanding sequence of simply connected, bounded
subdomains of Q such that Q,~Q as m— oo and 6Q,, is of class C®. We may, and shall,
suppose that Q, =F(S,), where S, is as in Fig. 3. Consider the problem of finding a
solution (u™, p,) of (L.1) and (1.2) such that w”|,, =g; this implies that »™=0 on
2QN38Q,, and that w™ satisties (1.3b) for any arcy, in Q,, directed from a point of
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n

S( S, ﬁ £

T
m

Fig. 3. A member of the sequence {S,,} used in the proof of Theorem 3.4.

I'_né&Q,, to one of I, N 62, It is known ([9], [16], [23], [26]) that this problem has a weak
solution %™ =g +v™, defined as above but with Q,, replacing ; in particular, v™€H((,).
Since (for fixed m) €),, is bounded, (2.7) shows that H(Q,) is embedded in L,(£2,,~R?) for
all p€[1, o), and this allows the analogue of (3.1) to be extended to all test functions
w€H(Q,). For the triple products in this analogue, the integration by parts yielding

(2.4) and (2.5) is valid; choosing w=v", we obtain

o= {973 = = | Do D=7, 0,03,
Q

where v"€H(Q) if we set v™(z) =0 outside ,. Thus each +™ satisfies (3.2).

By Lemmas 3.2 and 3.3, ||v™| is bounded independently of m. Hence there exist a
subsequence {v™} and an element v€H(Q) such that v™—>v weakly in H(Q) as n—> .
The verification of (3.1b), from the corresponding equations for the ™, is straightforward
because the test functions w have compact support. For any given w€J(Q) we have
supp w< Q, for some k, so that v™ satisfies (3.1b) for that w if m,=>k. With this same w
fixed, the terms on the left of (3.1b) that are linear in v define a bounded linear functional,
say fog H(Q)—R, and then f, (v™)—>f, (v) as n—>oo, by the definition of weak con-
vergence. Using the compact support of w once more, we write the non-linear term as
—{v, v, w}; it is then easily handled by means of the triple Hélder inequality because
lv|| <lim ||v™{| <const. and because the embedding of Wj(C,—~R?) in L,(C,—~R?) is com-
pact for all p€[1, oo). Q.E.D.

3.3. An a posteriori estimate for weak solutions in channels of type III

In Lemma 3.3 we described ¢ as the stream function of Poiseuille flow in 8, even
though it is €, rather than S, that houses the physical flow field. If we maintain this
eccentric but useful point of view, visualizing an actual flow in S, it becomes clear that
the perturbation stream functions ¢ of our weak solutions are in too large a function

space: the square of the norm of V(Q), which houses these functions v, is [ (Vy/h)?,
whereas that of V(S) is f5 (V2y)2. (We have called this latter space W (8) because of WE(S),
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and to avoid confusion with V{(Q).) For channels of type III (and only for those, it seems)
we can prove that the functions y are, in fact, in the smaller space W(S), and this will
lead to the detailed results, stemming from the notion of ‘Poiseuille flow in §’, in section 6.

Although certain estimates in the following proof resemble those in Lemma 3.3, it
does not seem possible to by-pass that lemma even for channels of type IIT; a bound for

llw]|vq) seems necessary in what follows.

TrEOREM 3.5. Let Q be of type 111, let v>v,y, and let ¥ =G +vp be the stream function
of a weak solution u; here G is defined by (8.7), with ¢ =&, and 6 =8, in accord with the choice
made after (3.12). Then  (more precisely, poF) belongs to the space W(S) defined in
Lemma 3.3.

Proof. (i) The property (3.1a) of a weak solution may be written
1 1
v ng (V22) (V2 + Lzz AWy 1, V) VP =0 (3.13)

for all y€CF(S). For the first term, the manipulations in (2.11) and (2.12) are valid even
though ¥ ¢ V(Q); the slightly tortuous calculation yielding the second term is given in
Appendix B. Of course, we also obtain (3.13) if we multiply the vorticity equation (2.21¢)
by h?y and integrate over §.

We introduce a fourth mollifier (., , n) €C°(R~[0, 1]), shown in Fig. 2; z(§, §,n»)=1
for 3/6+1< || <n, and (&, 8, n) =0 for |&] <3/8 and for |£| >2n. A value § <8 will be
chosen in due course, but estimates are to be independent of #, for n sufficiently large.
Detine f, =19, ¢n=7"9; 0 =h*¢,.

Then y, ¢ C3(S), but it has bounded support, for fixed n; we can show that (3.13) holds
for y=y, by a familiar limiting argument, using a sequence {y,} in CF(Q) such that
P~y in V() as m— oo; questions of behaviour at infinity in § do not arise, and (even
without Lemma 2.2) & and 1/k are bounded on supp , for fixed n.

We omit the label » from f, and ¢, henceforth, and use the notation
AX,Z)=4» L{(%XE +AX,)+ (P + A X} V2 Z,
XY, 20- | (X7, X,79 V7,
B(X,Y,Z)=2LX(%Y,,—ZYg)sz.

Setting y =2, in (3.13) we then obtain
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4 .fS (V2¢) (quj‘) +A(¢a IP) + [‘l” lFa IF] +B(¢> \F’ lF) = O’ (314)

where W' =@+ because G =@ on supp ¢. Note that all terms in 4 and B contain x or 4,
which are small on supp ¢. We recall that Q(n)=3M(n—$5®); hence

v L(V%) (V*Q)=» L{(%an)g—{-(ﬁ@n,}m}:o,
#.0.01- [ ($,0me-0.

(ii) We wish to bound ||f||% = fs (V?f)? independently of n, and begin by putting (3.14)
into a more revealing form; all integrals and norms will be over the set S;={{ €S| |&| >3/6},

as they are implicitly in (3.14). A calculation {using ¢ =12y, f=1y) yields
Yy b y L2 Y

{v“f”%"_ Tl} + A(¢’ lF) - {fQﬂ(f’l ffﬂ - f{-‘ fﬂﬂ) + T2 - [¢> Y, 1/)]} + B(‘ﬁ’ IF’ ‘P) =0, (315)

where

T,=—v f{2r’21pV21p — (2t e+ T"9)},
T,= JTT'QW{?}’? + 2005+ (295~ Pan)

and where the definition of v, in Lemma 3.3 shows that

f Qulinfen— e ) < woll (3.16)

(iiif) We now show that

—A($, V)= B, U, V) <1 )Ifllw + 7O F5+ T — 2 fﬁff'wzvzw, (3.17)

where y;(0)—0 as 6—0 (j=1,2), and 7' is a sum of integrals containing derivatives of T

(as do T'; and T';) as well as x or 4, and is quadratic in v (as are T, and 7). In fact,
Ty=> const. f](x orAor...)(r7" or...) (V*u) (VPo)|, |a|<1, |B]<2,

where ‘or ...” refers to terms like »2412, 72, 17".

By Definition 1.1 and a remark following it, » and 4 are in L(8) for channels of
type II, and also in L,(S) for type III; therefore they are in L,(S) for 2<p<oo. In
addition, xh and Ak are now in L,(S) for some ¢>2. Also, W(S) is embedded in W}(S)
for 2<p<oo, and in L,(8) for 2<p < oo,
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We shall use y(d) as a generic symbol for functions that tend to zero with J, and
write t; for any integral contributing to 7;. The first term of —A(¢, Q)[4 is

- J"‘S(’E Qm=— J.”(Tfs +7'f) @y < const. “”"L:(“]‘&"h + iz

<y O)l[fll-
The first term of — A(¢, y)/dv is

- [uteviy= = [sv1 48

where
~ [ote7 1< ol I < O
ty= fx {77 (29t —pVPy) + 202y + TT" gy + T T Y

Other terms of A($, V) are similar or smaller. Terms in B(¢, V', ¥') are bounded either
as were those of A($, V') or as follows.

Lr' Vztp/h”h’

~1B($, Q.v)= — f 21%@, V3 < const. |, |

where 1/g+1/r=1. We now have a choice: either (a) to note that these norms of xh and
V2p/h both tend to zero as §—0, and to use a bound p(8, y) ||f]lw, or (b) to note merely that
[I5A(|.,~0 and ||VZp/h|;,<const. by Lemma 3.3 (the constant depending only on the
data), and to use a bound y(d) ||f||w- In (3.17) we have chosen (b). Next,

— 1By, )= — ff(”fn =) Viy— Jﬂﬂ'szz%
where
— [ a0 < ol U, W 9,
<y©Ifll%,
provided that 1/g+1/r+1/s=4%. A similar estimate holds for the term involving fAf..
The 77’ term is not absorbed in T; [see (3.17)] because it is cubic in .

(iv) Assembling (3.15) to (3.17), we choose §=0,<4, so small that ,(5;) <3(¥—1,),
and it follows that

3
1o =20l =71 G0lfllws 2 Ti= 4. p,9] 2 f Aty V. (3.18)

It remains to bound the terms on the right-hand side, all of which contain derivatives of

7; hence they come only from the intervals 3/6, <£<3/6;, +1 and n<&<2n for £>0 (and
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for £ <0 the argument is similar). With , now fixed, A is bounded on the former interval,
the contribution of which can therefore be bounded in terms of |jy|wq)y In S,=

(m, 2n) x (—1, 1), we have
|T'(&, 8, )| < const./n < const./& < const.[R(E, )2,

since h(&, ) <const.|&|? for channels of type IIL. The critical term is

—[é,9,9]s,= — L (e — bnyps) Vip= —2 L TP, Vi
< const. [|f|z, llwn/B]| 2| V2 9/R] 2. < const. ||l

where we have used (2.7) for y,/h=4,. The last term of (3.18) is of the same type, except
for an additional factor 2. The terms 7', can be bounded similarly. (In fact, a hypothesis

weaker than A(&, ) <const. |£|* would serve for the T',. In T, for example,

f '”'Qn’/)?:f T'ans%—f T2 Qnyye
Sy S S

< const. {||fllwllvelhullz. + lp/hallz.lpelbol .}
where hy(&)=|&|.) Q.E.D.

4. Regularity of the weak solution

In this section we examine the regularity of the weak solution %, the existence of
which was shown in Theorem 3.4. We shall show that u€C®(U->R2) for all bounded
domains U< (), and that there exists an equally smooth pressure p such that (u, p)
satisfies (1.1) to (1.3) pointwise. Such results are absolutely standard for weak solutions of
the steady Navier-Stokes equations in two and three dimensions (see, for example, [8],
[16], [26]), and so we shall only sketch an argument which makes use of the
representation u =¥, —¥",).

The proofs of Lemmas 3.2 and 3.3 show that ¥ has the form ¥'=G+y, where
G€C>(U) was constructed a priori and w€V(Q). The use of this representation in (3.1a)
(or direct use of (2.21b)) and various integrations by parts show that y satisfies

v L (D*¢) (D) + fg ¥y b= =y b)) Dy + L (Gy b — G, 8,) Dy

— 20y — 2 _ E_ 2)} 2
+fﬂ(’/’y¢z Yo b)) D°G fgq&{'»D (Gz/ay G’@y DG

(4.1)
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for all €CP(Q—-R?). Eq. (4.1) can be examined with the L, estimates due to Agmon
([2], pp. 428-431) and the arguments in [5].

THEOREM 4.1. If pE€V(Q) satisfies (4.1), then w€C®U) for all bounded domains
UcQ.

In fact, one can use [15] to show that ¥ is analytic (i) in Q, and (ii) at any point
25€ Q) such that the boundary 6Q is an analytic curve at z,.

THEOREM 4.2. I} u is a weak solution of (1.1) to (1.4), then uw€C=(U->R2) for all
bounded domains U<Q. Furthermore, there exists a pressure p, with p€C°(U—R) for all
bounded domains U <€, such that (u, p) satisfies (1.1) to (1.3) pointwise.

Proof. The smoothness of « follows immediately from Theorem 4.1 and the represen-

tation u=(%,,—¥,). Since » is smooth, we may integrate by parts in (3.1a):
f w-{—vD*u+ (u-D)u}=0, Yw€J(Q). (4.2)
Q

By application of a standard result ([26], p. 14) to (4.2), there exists a distribution

PED'(Q) such that
~yD*u+ (u-Dyu = —Dp

in the sense of distributions. Since % is smooth, the same is true of p, and so (u, p)
satisfies (1.1) pointwise. The verification that u satisfies (1.2) and (1.3) is standard. Q.E.D.

5. Pointwise decay at inifinity for channels of type I’
5.1. Channels of type I

In section 3, we proved the existence of a weak solution u to the steady Navier-
Stokes equations in channels Q of types I to II1, subject to v >y, for types IT and IIT. It
was shown in section 4 that the velocity » is smooth on bounded subsets of € and that a
smooth pressure p exists such that (u, p) satisfies (1.1) to (1.3) pointwise. The final two
sections of this paper deal with the behaviour of 4 and p at infinity in Q. The present
section is concerned with channels of type I'; such channels are of type I and have the
additional properties in Definition 5.1 below. Domains of type I may be regarded, at least
roughly, as those for which h({) grows asymptotically at least like [{|*, x>}, since
1/h€ WS). In section 6, we examine (u, p) for channels of type III, and these may be
regarded as domains for which h grows no faster than [Z]|* where 0 < «<$. Hence, the

results in sections 5 and 6 together cover most cases of » which might arise; exceptions are
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ME)~ [{]tloglog || and functions kb that oscillate very rapidly at infinity. The methods
for examining % and p at infinity for channels of type I’ and for those of type III are very
different; for channels of type I’, we shall follow a long and tortuous route whose final
result is that u tends to zero uniformly at infinity in £2. This shows that there exists a

" classical solution (u, p) satisfying (1.1) —(1.4) pointwise for all »>0 in the case of channels
of type I’; however, we are unable to give a rate at which « tends to zero. In section 6,
we examine channels of type III, and Theorem 3.5 will allow us to prove (provided that
v>9,) not only that u tends to zero uniformly whenever the local channel width tends
to infinity, but also that the decay occurs at a certain rate. Throughout the rest of this
section, we restrict attention to domains of type I'. The viscosity » >0 is arbitrary, but
fixed.

Our initial concern is to prove certain results for the stream function ¥ and the cor-
responding vorticity w = — V2¥'/k2. We shall then be in a position to handle the velocity «
and the pressure p. Certain of the proofs in this section are suggested by those of Gilbarg
and Weinberger in [17]; however, the task at hand is different since we shall have to deal
with various functions on the lines = +1.

In order to derive certain estimates for W' and its derivatives near = +1, we need

further assumptions on & that exclude highly oscillatory behaviour.

Definition 6.1. A channel Q<R? is said to be of type I' if it is of type I and the
following additional conditions hold. For each &,€R, let D(&,)=(&—1, &+1) x(—1,1).
(i) There exist constants ¢;, ¢,>0 (independent of &;) such that

h
00 g < VIEMED(ED) 1)
) @), (40 _ ,
(i) lim ER ), 5.2)

where » =h;/h and A=h,[h.

The conditions (5.1) and (5.2) are easily satisfied if & behaves asymptotically as for
almost all the channels of type I in Appendix A.

We can combine (5.1) with the property 1/h€ W3(8) to prove that

lim A({) = oo, (6.3)
{¢[->a0
or, equivalently,
lim k(&) =0, where k(&)=1/R(&, —1). (5.4)

|él>0

Indeed, the assumption (5.1) gives
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[1/313 2.0 > 42 K(8)?, (5.5)

and (5.4) then follows immediately since [|1/A|q, 5 pe—>0 as £—oo.
The velocity u has the form =g +v=(¥,, —¥,), where ¥'=G +y and G,is a function
only of % for large |£], while € V(Q). Since 1/h€L,(S), it follows that

L (V2G*PIR? < oo, (5.6)
and if we combine this with the definition of V({), then we have
L(V“Ff/m: fsh2w2< oo, (6.7)
The properties of @ and h ensure that
LWGI”/’»” < oo for all p€[2, o), (5.8)

and if we combine this with a similar estimate for v (via the representation v=(yp,, —%,)

and Lemma 2.1), then we have
LW‘FP/M < oo for all p€[2, ). (5.9)
Finally, note that (iii) in the proof of Lemma 3.2 gives
LlVg]2< const. || 1/k|f2,s< oo,
and since v€H(Q), it follows that
[ 1vup= [ |pup <o (5.10)
5.2. Estimates in a boundary neighbourhood

Let k(&)=1/h(&, —1) and define
A= ={{| -0 <f<oo, —1<y<—1+min (}, k&))},
At < {{]| -0 <g<oo, 1—min (}, k(&) <n<1}.

(The domains A~ and A+ may be viewed as the images under the map F~* of boundary

strips of width order one adjacent to the components of 6Q.) If we set Vg M /2, then
(2.21c) and the fact that ¥'=QG= 1+ M/2 on 5= +1 give
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= 9 a 011 e .
{”Vz—?”ea_qufa_y;}ﬁVZT:O in 4-, (6.11a)
V=¥,=0 ony=-1, (5.11Db)
and similarly in 4+ for ¥ —M/2.
We now prove that .
M- VA | €Ly(A-) for |B] <2. (5.12)

Since Theorem 4.1 shows that ¥ is smooth on compact subsets_ of ), we shall restrict our
attention to large values of ||, say, those for which k(&) <3}. For each such &;, set Dy~
DEIN A~ =(&,—1, &+ 1) x (=1, —1+k(&,)), where D(&,) is given in Definition 5.1. Since
¥, =0 on n=1, it follows that

7

V()= f: Wo(&,2)dt= f (V= A+ 2¥e) + f :71 (A, ~x¥), VIED,,

and so,

W < k(&,)? {2 f

Do

(IFW - }.IP.,? + %‘“Ff)z +2 f (AIF,] — %“Ifg)z}
Dy

Dy
<é [2 {(Wy— AP, + W )2 B2} + 4f (A¥,/R)* + 4f (%‘Fs/h)z]
Do Do Da
(5.13a)
by (5.1). Similarly,

f i<l [2 f {(We,— 2V, — AVe)? 1%} + 4 f (¥, R+ 4 f (AlIf;/h)Z] . (5.13Db)
Dg Dy Dy Dy

If we add (5.13a) and (5.13b) and use (2.15) and (5.2), then we have

flVT‘2<2c§f |vu|2+1f VP
Dy Dy 2 Dy

for all sufficiently large &,. Now sum this final inequality over suitable integers &, say,

Eo=M,M+2, .., to obtain VWV EL,(A), since Vu€L,(A4A") by (5.10). Now ¥ -0 on
7= —1, and so

- —1+k(0) 2
POy < (h(é') f_l L) dt)

—1+k(&)
< B k(E) f e npa, veen,
whence

f EFyP<E | |[VPE
Dy Do
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Since |VW|€Ly(4"), this inequality gives RY €L,(A47). For the case |81 =2 in (5.12), we

have

[ ovmrsz | qovn-2w, e opgmpen | (0%~ ooy
A~ A~ A-
<2]_|Vu|2+const.J_lV‘F|2<oo

since s/h, A/h € L(8) by (5.2). Similar estimates hold for the other second derivatives of ¥".
With the use of (5.12), equation (5.11) can be examined by the methods in Theorem
3.6 of [5] with the inequalities due to Agmon [2]; after long but routine labours there results

THEOREM 5.2. Let U =¥ + M/2. Then for each multi-index B, 0<|B) <3,

(a) VI VAT | €Ly(40),

(b) (B VAE )|, s EL(R),

(c) B IPIVAP 0 uniformly as |{| o in 4-.
Similar results hold in A+ for V' — M/2.

Since k(&)—~0 as [£]->o0 by (5.4), Theorem 5.2 only provides information about ¥
near 1=+ 1. For the rest of section 5, we shall restrict attention to

S,={(&n]|a<E<oo, —1<y<1},

where a is so chosen that %(£) <} for all £ >a. Similar results will hold for large negative &.
Theorem 5.2(c) shows that

|[V¥|=oh), w=0(1) in S,NA* and 8,04, (5.14)

and (b) shows that
(hEw)|,ei1 €Ly(a, o). (5.15a)
Note also that
w0, = (~h2V2E), = — B2V, ~2]0,

and the use of (5.2) and Theorem 5.2(b) together gives
(htw,) | )esa €Ly(a, o). (5.15b)
Finally, we have
wg = (—h2V), = b2V, — 200,
and the use of (5.2) and Theorem 5.2(c) together gives
(h10g) | goss >0 as &> oo, (5.16)

8 — 792901 Acta mathematica 144, Imprimé le 13 Juin 1980
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5.3. Estimates of the vorticity

The following lemma shows that the velocity u is o(h) in S,, and this result will be
needed in Theorem 5.4 to prove that |V | €Ly(S).
[u(©)| _ V¥ Q)]

LeMMma 5.3. =

RC)  R(E)?

-0 as|l|>c inS,.

Proof. We shall prove the lemma for the case #€(—1, 0] since an analogous argument
holds for [0, 1). Let ,€S8, be fixed, and note that if 7y +1 <k(&,), then ,€4~, and (5.14)
and (5.3) give |V¥'(Z,)| <const. k(L) =0(h((,)?). Hence, it suffices to take 5,> —1+&(&,).
Define the open ball U< S, by

U(Lo) = {C] 18~ Co| <3k(&0)}-

We wish to use (2.21¢) to examine W in U; however, the Agmon estimates are for balls of

a fixed size, and so the following affine transformation is needed:

2 2
k(fo) (5—50)’ t"mm“no)- (5'17)

s§=

For each r€(0, 11, let B(r)={(s, t)|s>+t2<r?}, and note that B=B(1) is the image of U
under the map in (5.17).
If we define f(s, {) =W'(&o +3sk(&,), 10+ 5tk(&,)) and g(s, &) =w(&o -+ 35k(&,), 1o +5tk(&))),

then (2.21¢) becomes
Ygss +9u) —f19s + f:9. =0 in B. (5.18)

The use of (5.18) and an integration by parts give

y Lg(@sww - ngsn—@m, V4 EC(B-R),

and so, for all ¢ €CP(B),

l f R (s T dis)| < % llgllo.2.5{)|bsllo.e.51l7lo.0.5 + lipello.e.n lfsllo.e.53-

If we apply results of Agmon ([2], pp. 428-429) to this inequality, there results

lolhsmsam < 2 glloa.s{d + | llosn+ Ifloss}. (5.19)

and the constant is independent of », {,, g, and f. We now estimate the right-hand side
of (5.19):
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l7llo.2.5 = 2R(&0, —1) [|@]lo. 2,0 < 261 |Jhw]|o, 2,u < const., (5.20a)

where we have used (5.17), (5.1) and (5.7). A similar argument gives
Wello.a.z+ 1fsllo.a.z < const. VA(&,, —1)||VF/h|jg.40 = 0o(A(y)), (5.20b)

where we have used (5.17), (5.1), (5.9), and (5.3).
The definitions of / and ¢ show that

fos + e =10(E)* VY = — 1h(&0)2R(C0o)?g,
and a simple argument using (5.1) and (5.2) then gives

[fss+ Futll 103, 80/2) < const. [|g||1,e/3,200/2-

Combining this final inequality with (5.19) and (5.20), we obtain

s +ftt”1.4/3.3(1/2) = o(h({y))- (5.21)
The Agmon theory now gives
17 lls.ai8.5/0 < const. {||fss+Feell1.a8.80/2 + |Fllo.2.80/2} (5.22)

where the constant is independent of f. Now ¥'(£, —1)= —M/2, and so

it 0 1/2
|F(&,n)+ M/[2|< f ll‘Fn(f,t)Idt<czh(§, -1) (J_I%ZI‘F,,(&t)th) = o(h(L))

by (5.1), Lemma 2.1, and the fact that G, is bounded. It follows that |[f{|g, 2, /2 =0(~(Co))s
and the use of this with (5.21) in (5.22) yields ||f|s.4/3.0/01=0(A((o)). The embedding
Wis(B(}))=>C(B(Z)) is bounded, and so

[Fe(lo)| = 2h(&q, —1)|£:(0)] < comst. A&y, —1) ||lls.473,80/0 = 0(R(Le)?),
and similarly for ¥,. Q.E.D.
THEOREM 5.4. The vorticity o= — V¥V [h? is such that |V | €Ly(S).

Proof. It was shown in section 4 that ¥ €0=(U) for all bounded domains U< 8, and
so it suffices to prove that | Vo | €Ly(S,). (A similar argument holds for large negative &.)
Recall that 8, =(a, o) x(—1, 1), with k() <} there.

Let y€C*(R—[0, 1]) be such that y(r)=0 for r <0 and y(r)=1 for r>1. For each
positive integer n=a + 1, define u,€CF(R—[0, 1]) by
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2(E—a), (<a+1,
ﬂﬂ(&) = 1: a+1 <E<n:

1—y(é—n), n<gE<eoo,

An integration by parts shows that
2 _ _ 2 4 2‘?}‘_7;
vfsﬂn]Vw] = vJ.S‘unwV w+2fsw i
+Vf dE pp(EH{@(E,1) 0,8, 1) — (&, —1)w,(&, ~ 1)}, (5.23)

Since hw € Ly(S) and A(l)— oo as |{]| oo, we have w €L,(S), and so the second term on the
right of (5.23) is bounded independently of #. Eq. (5.15) shows that the final term is also

bounded. Hence
f Un V3
S

= ( Lﬂnw(‘ﬂ,ws —Yewy)

-+ const. (5.24)

v ‘\,un|Vw|2<v
JS

-+ const.

by the vorticity equation (2.21¢). Integrating by parts, we have

+ const.

1 du.
2 - 2 Yn
yfslunlvwl < 2' J;w lIﬂ'l df
<const.{f mzllF,,lJrf m2|11u’,71+1}. (5.25)

a<f<a+l n<f<n+l

Now w and ¥, are bounded for £€(a, a+1), and Lemma 5.3 and (5.7) give

f @?| ¥, < const. f k? w? < const. .
n<f<n+l n<f<nt+l

The theorem then follows. Q.E.D.

Theorem 5.4, (5.7), and (5.14) now enable us to prove that the vorticity w tends to zero
pointwise at infinity in S,.

COoROLLARY 5.5. w(&, ) =0 uniformly as & oo,

Proof. Let >0 be given. Since hw and |Vw| €Ly(S), we can find a positive integer
N(g) such that

n+1 1
f df‘f dn{w®+wi}<e, Vn>N().
n ~1
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The mean-value theorem ensures the existence of é(n)e(n, 7+ 1) such that

1 ~ -
Ldn {w(&, 1)+ 0,7} <&,

and the embedding of W3(—1,1) in C[—1, 1] then gives

|w(&(n), n)| < const.e, VYn€[—1,1]. (5.26)
Furthermore, eq. (5.14) allows us to assume that

|w(& |, |oE, —1)| <e, V&= DN(e). (6.27)

If A,={én)<&<€mn+1), —1<n<1}, then (5.26) and (5.27) together show that [w] <
const. ¢ on 84,. From (2.21c¢) it follows that w and —w satisfy a maximum principle in
4,, and so |w| <const. ¢ in A4,. This is true for all n>N(e), and so |w(&, )| <const. &
for all £=N(eg)+1. Q.E.D.

5.4. Averages over arcs of p and |p|

We are now in a position to examine the pressure p. Eq. (5.7) gives that hw € Ly(S,),

and so

1 e}
[Lan [ aztnienr ot n - hie, ~mrote, ) = Prolas, < .
o a
The mean-value theorem ensures the existence of a number «€(0, 1) such that

f dE{M(E, a)? (&, )+ h(E, — ) w(&, — 0)*} = [|hol[ 2., (5.28)

a

Now, by the form (2.17a) of the Navier-Stokes equations,

d -4 @
&Ef, p& n)dn=—v{nE )~ o, *Of)}+J. {00y 1ty — Ug sy} d. (5.29)
Since 1/h€ Wi(8S), the standard theory of trace yields

foo —ié@ <const. [|1/|}2s, Y7€(—1,1),
~ooh(§,77) -

and the constant is independent of #. If we combine this inequality with (5.28), there

results
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lew(f a)|dé< (fwh(f aP w(& a)zdg)m (fw_@g_)m
e ’ « ’ o hE @)
< const. “kw“o‘zy,ga”l/hul.2.Sa

and similarly for values at = — a. It follows that the first term on the right of (5.29) is an
element of L,(a, o). Next, by the Schwarz inequality and (2.10),

o 1 2 1
f_ {uluzn—uzul,,}dnl< f all] + [l gl < 2 f IVaPa,  (530)

and this last term is in L;(a, o), because | Vu| €L,(S). It follows that d( %, p(§, n)dn)/dé
is in Ly(a, =°). Hence, |*, p(&, 7)dn has a limit as £— oo, and, altering p by a constant, we

have proved

Lremma 5.6 There exists a number «€(0, 1) such that

f p{é,n)dn—>0 as &— oo,

~a

The following result will be needed in the proof of Lemma 5.8.

1
LeMMa 5.7. f |p(& n)|dn—>0 as &—oo.
1

Proof. (i) Given any &>0, choose a positive integer N =N(g) such that, for all integers
m=N and all t= N,

1 (3
o rvor, [ pvar [ wenran, [ peman<s eay
&>m E>m -1

-

these estimates are possible by Theorem 5.4, (5.10), Lemma 2.1, and Lemma 5.6, respec-
tively. Eq. (2.17a) implies that

| twl<[ _ wivaltlaliva,
m<é<m+1 m<é<m+1l

and the use of (5.31) and the Schwarz inequality then gives

m+1 1 .
f dff dn|pe| < V2e+ Ve Ve< const. Ve. (5.32)
m -1

Eq. (5.32) shows that for any &, & €[m, m+1],
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1 1
[ 1ste.nrtaz< [ 1ptesmlan+const. (5.33)

(ii) We now use a weighted form of the Navier-Stokes equations, as in [17], that
makes p, and , comparable. Let u(£) =max, ;1.1 {1 + |u(&,1)|?}; then, by (5.31) and
(2.17D),

m+1 1
f dff {_Lp§+[uﬂ[2}dn<2p2f [Vwi2+2f [Vu‘2+f iVuFéSe.
m ~1 4“(5) E>m Eom eom
(5.34)

If we apply the mean-value theorem to (5.34), we see that there exists & (m)€(m, m + 1)
such that

11
f l{mpn(&,n)2+ Iun(fl,n)lz}dn < Be. (5.35)

The use of (5.31) and (5.35) with the embedding W3(—1, 1) >C[—1, 1] ensures that

|u(&y(m), n)|? < const. &, Vp€[-1,1].
Note that u(&)<1+const. e, and the use of this in (5.35) gives
1
f Pn(&1,m)%dn < const. ¢, (5.36a)
-1

A standard inequality ([24], p. 117) gives
1 o 2 1
J‘ ¢2dn<eonst.{(J. qun) +f ¢3d11}, VHEWS(—1,1),
-1 - -1

and the constant depends only on the choice of a€(0, 1). If we combine this inequality
with (5.31) and (5.36a), there results

1
f p(&1(m),n)?dn < const, ¢. (5.36b)

By (5.36) and the embedding of W3(—1,1) into C[~1, 1],
|p(&:,m)| < const. Ve, Vre[—1,1]. (5.37)
Finally, (5.33) and (5.37) together imply that

1 _
f |p(&,m)| dn <const. Ve, VEE[m,m+1],
-1

and since the constant is independent of m, the proof of the lemma is complete. Q.E.D.
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5.5. Pointwise decay of the pressure and velocity

Lemma 5.7 now enables us to prove that the pressure p tends to zero at infinity on

the lines L* ={a <& <co, = +1}. We shall then use this result in Theorem 5.9 to show
that p(0)—~0 as |{| -+ in 8,.

LeMMA 5.8, p(&, +1)—>0 as £ co.

Proof. (1) Let £>0 be given. It suffices to work with the line L~. Let Co=(&, —1)

denote an arbitrary fized point on L~. We define polar coordinates (p, ¢), centred at {,, by
E—&,=pcosd, n+1l=psing,
where 0<¢ <m. We use ™ to denote a function written in terms of (g, ¢); for example,

Plo, $)=p(&, ). Just as (2.16) leads to (2.17), so (2.17) implies that

- R
Po= —véwd,-ké{ulugqs—uzuw} (538)

for g€(0, 2).
If we integrate (5.38) with respect to ¢ from 0 to =, there results

d [ 1/
@fo plo, $)dp= —%{@(g,n)—d)(g,O)}-}-éL {1y tizg — Ty g} dp. (5.39)

We now integrate (5.39) with respect to ¢ from 0 to any t€(0, 2):
£ . ‘ tdQ . N td@ 4 . .
P(t,‘ﬁ)d?S_”p@o): -V _{w(g,n)—w(g,O)}-i- e {u1u2¢_—u2u1¢} d¢
0 00 00 Jo
(5.40)

The terms on the right of (5.40) are small for all sufficiently large &, and we shall prove
this in two steps.

(ii) An argument analogous to that for (5.30) yields

v

td 1
f£ J. {ity fag — Wy Urg} d‘/’l
00 Jo

i 7
<const.f gd@f |Vii|*dé
0 0
&o+2 1
<const.f dEf [VulPdnp—~0 as §— oo, (5.41)
f-2 J-1

gince |Vu| €Ly(S) by (5.10).
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(iii) Now @(g, m) —d(e, 0) =w{éy—o, —1)—w(&y+e, 1), and with hy=h(&,, —1), we

have
1/hy d
J

[~

l/h(,d
[@(0,7) — @(e,0)| <f0 f]w(éo—g, ~1)—w(+o, —1)]

o |

2
<—— su we(&, —1)|=>0 as &y~ oo,
h(&o, — 1) |5—En|gllhol o | °

(5.42a)
by (5.1) and (5.16). The Schwarz inequality and (5.1) give

2 g
f o -0, —1)[+ o+, ~ D)}
i/he @
2 1/2
< [2k(§0, - l)fo {wE =0, — 1 +w(&+e, ~ 1% d@]

2 1/2
< const. [L W&o —0, — D& -0, 1P + k(& +o, — D w(&+o, —1)%} d@]

~0 as &> oo, (5.42b)

by (5.15a).
{(iv) The use of (5.41) and (5.42) in (5.40) ensures that

1 11
|pC)I< = | 3¢ ¢)|dd+e, VEE(,2), (5.43)
T Jo

when &, is sufficiently large. If we multiply (5.43) by ¢ and integrate with respect to ¢ from

zero to two, there results

1 2 7T
w5 [ ede [0 4)ldg+2

1 Eo+2

1
< dff | p(&,m)|dn + e < const. ¢
2 -1

o)
for all sufficiently large &, by Lemma 5.7. Q.E.D.
TuroreM 5.9. p(&, 1)—~0 uniformly as &— oo,

Proof. (i) Let >0 be given. Let {y=(&,, 1,) €S, be fized. We shall prove the theorem
for the case 7,€(—1,0] since the proof for 5,€[0,1) is analogous. We define polar
coordinates (g, ¢), centred at {,, by

E—by=pcosd, n-—n,=p>sind,
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where the variable ¢ takes values in the interval [—m/2, 37/2). Consider a circle

o=const. =gy; if 9, 1+, then it intersects the wall n= —1 at

$=—F+mle)=aley),

and at

3
$=" — (e =Hley),

where 7(g) =cos™ {(1,+ 1)/o} €[0, 7/2]; if o, <1 +1,, then we define 7(o,) =0, x(9,) = —7/2,
and f(o,)=3x/2.
(ii) We now integrate (5.38) with respect to ¢ from w«(p) to S(o):

Ble) _ _
( {(@y — )ty — (G — o) Tag} A, (5.44)
(@)

B p 1
f Fadh =~ {aleflo) - ale. KN} + 5

a(e)
where

B B>
(0) = {Ble)— (o)}~ f ate. )24,

and we have used the fact that

B(e) .
f tig(0, ) do =1i(o, B(0)) — %0, %(0)) =0, Y@€(0,1),

Q)

by continuity if a{p)= —x/2 and f(p) =37/2, and otherwise by the fact that (g, 8(g)) and

{0, afp)) correspond to points on 08, where 4 vanishes. Now

(o)

d Ao P s
70 17(0,¢>)d¢=f Do dd + B'(0) Blo, Ble)) — «'(e) Ble, (o)) (5.45)
0 J e al@)

for all p€(0, 1), where ' denotes differentiation. If we integrate (5.45) with respect to o
from zero to any ¢€(0, 1), then the use of (5.44) gives

B(L) t
27| p(Lo)| < ‘ f © ﬁ(tnﬁ)dqi‘ + UO do {B'(0) Ble, B(e)) — (o) ﬁ(e,rx(e))}|
14
+?’L ?Q (e, Ble)) — @(e, x(0))]

+

t B(e) -
fo ‘%’ f g{(’[il—'l:cl)’ﬁzqs“(dz—dz)'ﬁ'w}d‘}s’- (5.46)

a(Q)

(iii) We proceed to show that the right-hand side of (5.46) tends to zero as £,— <°;
the desired result will then follow easily. The Poincaré inequality ([24], p. 16) gives
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B ~ Bl
- {iy(0, )~ "7«1(9)}2 de < const. f tiip A,
Q o

o (o)

and similarly for 4,. We can use this inequality to estimate the final term on the right
of (5.46) in a manner similar to that for (5.41):

14 d_@ 5103

0 @ Ju@

t B
<const.f ngf | Vi |* dg
Q o)

{(dl - "71) 722¢ - (”7'2 - 722) al¢} d¢l

&,+1 1
< const. f dé f [Vulpdy—0 as &> oo (5.47)
Eo—1 -1

by (5.10). We now estimate the second term on the right of (5.46). The definitions of o

and § ensure that o' and p’ are one-signed, with

1 , 1 -
f | (e)lde=f |8 (@)de<3-
Y 0

Hence

¢
‘ fode {80 (e, B0) — o (0) ﬁ(e,um)}\@;_n;golao(s, =1){>0 as fg>oo (5:48)
by Lemma 5.8. ¥inally, we examine the third term on the right of (5.46). Recall that
ofo) = —mx/2 and B(o)=3n/2 for p<ny+1, so that &(g, Blo)) =a(p, x(e)) on this interval.
Hence the integral may be taken over the interval [5,+1,1], and on this interval,
@lo, Ble)) — e, a(e)) =w(&y—p sin (o), —1)—w(é,+o sin 7(p), —1). Assume for the mo-
ment that #9,+1<1/hy, where hy=n((,). The Schwarz inequality and a change of var-

f " o —gsint(e), — 1|2 < { f o? de}m Ud—@}'
1/he Q 9

& odo 1z
~{om [ttt

iables give

where og={kho*— (1o +1)2}} and o, ={1— (5,+1)?}}. If we apply (5.1) and (5.15a) to the
term above, then

! . do
f |w(50—esmr(9),~1)lz—>0 as &= oo, (5.49a)

1/he

and similarly for the term involving w(&,+p sin 7(g), —1). We also have
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! . . do
Lh {w(&y~ g sin 7(g), — 1) — (&4 + @ sin T(g), — 1)|§
2
<2 sup |ogé —1)[>0 as oo (5.49b)
by 16-gar<iine

¢y (5.1) and (5.16). If we combine (5.49) with the assumption n,+1<1/h,, then

1 d
f [ (& — o sin 7(p), — 1) — w(&, + 0 sin 7(p), — l)lf -0 asgy—>oo. (6.50)
7o+l
If 5, +121/hy, then the same result holds by (5.49a). If we combine (5.47), (5.48), and
(5.50), then (5.46) yields

1 (B0

2ol < 2—f |B(t, $)|dg +e, VIEWOD),

T J aty

when &, is sufficiently large.
(iv) Now multiply the last estimate by ¢ and integrate with respeet to ¢ from zero to one,

to obtain

1 B

< [ ear [l dlas e
T Jo alt)
1 bo+1 1
<—f dff | p(&,m)|dn+ e < const. &

T J -1 -1

for all sufficiently large &, by Lemma 5.7. Q.E.D

If we define the fotal head pressure ® by ®=p+4|u|?, then a calculation using (1.1)

and (1.2) gives
yD2Q -V, 0,4+, P, =vw?>0in Q,

where we have used the representation 4 =(Y,, —¥,). A change of variables to the strip
gives

W2 -V, 0, +¥; O, =vh’0w*>0in §.

Note that @ satisfies a (one-sided) maximum principle. It was shown in the proof of Lemma
5.7 that for any £€(0, 1) there exists a positive integer N =N(¢) as follows: m > N implies

existence of & (m)€(m, m+1) such that
Iu(&l(m), 7;)[2 <e, Vpe[-1,1] (5.51)
Theorem 5.9 allows us to assume that N has been chosen such that

[pE )| <e, V(EnEW, *)x[—1,1] (5.52)
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If 4, =(&(m), &(m+1)) x (=1, 1), then ® <3¢/2 on 94, by (5.51), (5.52) and the fact that
u vanishes on 88. The maximum principle ensures that ®(0) =p(Z) +§|u(()|2<3¢/2 in 4,
and (5.51) then implies that |u({)|2<5¢ in A4,,. Since m may be taken arbitrarily large,

we have proved

TurorEM 5.10. |u(&, n)| >0 uniformly as &0,
If we recall that p is determined only up to an additive constant and note that all of
our arguments hold equally well for large negative &, then Theorems 3.4, 5.9, 5.10, and

the results in section 4 imply

TarorEM 5.11. Let Q<R? be a channel of type I'. For every v>0, there exists a
classical solution (u(.;»), p(.;»)) of (1.1) to (1.4). The velocity w satisfies

(a)fq |Vu|2<eo,
and

(b) w€C(U—~R2) for all bounded domains U<Q.
Furthermore, the pressure p sotisfies

(e) p€C°(T-~>R) for all bounded domains U<Q,

and there exist constants B, and B, such thot
[p()—B;|, |p(R)—B,| =0 as |z|—>c0 inQ

upstream and downstream, respectively.

Under additional (reasonable) ssumptions on the asymptotic behaviour of %, one
can show that all derivatives of 4 and p tend to zero at infinity. This is the case if A behaves

asymptotically as for almost all the examples in Appendix A of channels of type I.

6. Pointwise decay at infinity for channels of type III

6.1. Introductory remarks

In this section, we examine the behaviour of the velocity » and the pressure p at
infinity in channels of type III. The velocity » has the representation v =(¥",, —¥,) in Q,
where V" has the form ¥ =G +y. The function ¢ was constructed @ prior: in section 3 to
satisfy G(0)=Q(n)=3}M(n—?/3) for all sufficiently large |&|. Hence it suffices to
examine the perturbation stream function y. We shall use Theorem 3.5 and various other
estimates to show that suitable derivatives of ¢ tend to zero uniformly at infinity in 8.

We shall also prove that the pressure p({) tends to F oo uniformly as §—+ + oo, and an
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estimate for the rate of growth will be given. Finally, if »({) and A({) go to zero like
[Z]-7 in 8, for some y >0, then the same decay rate will be shown to hold for various
derivatives of . All of our results for p in 8 may be translated into estimates for ¢ in O
by the relation | Déy|=|VAyp| /A, |f] <1; it is important to note that 1/ is bounded
above on S since (2.22) shows that infA()>0 for channels of type II and III.
Throughout this section, the viscosity » will be fixed and will satisfy »>w, (cf.
Theorem 3.4). For convenience, we now list those properties of domains of type IIT which
will be used in this section:

#(C). M()—~0 uniformly as [£]— oo; (6.1)
#, AELy(S); (6.2)
R() <conmst. (1+ [Z])Y, V(€S. (6.3)

It is property (6.3) that prevents us from applying the methods of section 5 to the
Navier-Stokes equations in a channel of type III; indeed, (6.3) gives ¢ (1/h)2=0co, and
then how ¢€Ly(8S), because @,,/h ¢ Ly(S) while V2y/h€L,(S). Similarly,

fg|pu|2=f |Vuft = oo. 6.4)

In section 5, we used the fact that kw, | Vu| € Ly(S), and other estimates, to prove that the
pressure p has finite limits at infinity in 8. This result was then used with 2 maximum
principle for the total head pressure ® =p-+1|u|? to prove that u goes to zero uniformly
at infinity. However, for the present problem, the condition (6.3) will be used in
Theorem 6.3 to show that p is unbounded at infinity, and so the maximum principle for
@ cannot be used to estimate w. Although we know that hw = —(V2G+V2p)/h ¢ L,(S),

Theorem 3.5 shows that the perturbation stream function ¢ satisfies the stronger estimate

L (V)= L (Wi + 298, +yp,) < oo, (6.5)

and it is this estimate which will be used throughout this section. Since p =y, =0 on o8,
the inequality (2.10) shows that

f (1/)2 —+ quplZ) < const. f (1/)?5 + 21/)?,7 + "/’511) < oo,
N s

and so € Wi(S).
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6.2, Estimates from the vorticity equation

It will suffice to work in the domain
Sz ={(&,p|a<E<oo, —1<y<1},
where & >0 has been so chosen that
G n) =Qm) =M n—n?3) for &>a.

Similar results will always hold for large negative £. If we use the representation ¥' =G +y
in (2.21¢) and recall that hx =k and hi=F,, then we find that y satisfies the equation

L‘PE”V4"/) - anz"l)f + Qo We
(2 2) — w2 — 2 in S 6.6a
{%(85 274) %(877 21)}V p+By)+F in S, ( )
y=v,=0 ony=*l, (6.6D)

where V*=(V2)? denotes the biharmonic operator, and

Byp)=4» {(n — 4 la%) — (*+ /12)} V2 —2xQ, Vi y — 2Q,,(xy, — Jys),
and

F=4y {2567—7 — (s + /12)} Qi — 20Qy Q.

Let J be any fixed positive integer greater than &. For each integer j>J, set
S;={<&<j+1, —1<n<1}
and
Sf={j—1<&<j+2, —1<y<l1}
Assume that j>J + 1, multiply (6.6a) by any ¢ €CP(S}—R), so that integration only over

S} is implied in what follows, and integrate by parts:

v

wa“ ¢

<| [(@s:vp t Qi

+ \ f(qSe Yy = Py e+ 2udp, — 244y;) Vzw}

+,f¢B(1p)‘+‘f¢Fl. (6.7)
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We now estimate the terms on the right of (6.7). Up to the statement of Theorem 6.2, the
norms of Wp(Sj) and W3(S,) will be denoted by |‘|lm, and ||-|m.s; respectively.
Since x, A€L,(S) N L (S) by (6.1) and (6.2), it follows that

Jor

and the constant is independent of j and ¢. We now estimate the integral involving B(y).

First, recall that »;+1,=0, so that

< const. [[$lo.2 ([|]lo.2 + | llo.2), (6.8)

< const. ||1p||2,2 ”‘f’“l2

} f¢(xV2V)E + Wz%) = ‘ JWTP(’“I’E + }'?517)

If we combine this estimate with ones for the other terms in B(y), then it follows that
| [ 8500 <const. el ©9)
and the constant is independent of ¢ and §j. For the other terms in (6.7), we have

< const. || y||z.2l|#]l1.2 (6.10)

‘ f (@ $: VP9 Qo d2)

and

< const. ||plls.o||pllv. il

l J‘(¢e Yy — bu s+ 2y, — 2Adye) V2

where 1/s+1/t=1}. Standard theory shows that the embedding W3(S7) <> W1(8S;) is bounded

for all t>1, and so

< const. |[y[52[|¢llus, Vs>2, (6.11)

‘ f(qﬁe Yo — b e+ 2y, — 2A9y:) Vi

and the constant depends only on s. If we use the estimates (6.8) to (6.11) in (6.7), then

’ wa‘ ¢

and for all s>2. Since p€ I;Vg(S) and »x, A€Ly(S), the constants ¢(j: s) satisfy

<c(f;8)|pllss YHECT(S ~R), (6.12)

§ c(j; 8)F < oo. (6.13)

j=J+1

Applying to (6.12) the arguments in [2], pp. 428431, we find that



STEADY SOLUTIONS OF THE NAVIER-STOKES EQUATIONS 129

l¥lls.sr.s; < comst. (c(j; 8) + [f]2. 2), (6.14)

where 1/s+1/s"=1 and the constant depends on ¢, but not on j. Since s >2 ig arbitrary,
it follows that s’ €(1, 2). The embedding W3 (S,) = C,(S,) is bounded, and so (6.13) and (6.14)
give the following lemma (also stated for large negative £).

LeEM™A 6.1. Let Q be a channel of type I1I and let y denote the perturbation stream

function. Then
Y& n), [V, )| =0 uniformly as |&[— .

1f we combine this lemma with the result from section 4 that y € C(U) for all bounded
domains U< S, we see that |Vy| is bounded on S. This enables us to improve (6.11):

l J(¢E Yn— 9577 Ye + 2”#”/)17 - 21‘)51/)5) & | < const, ”"/)”22 ”95”1,2’

and the constant is independent of ¢ and 4. Use of this inequality with (6.8) to (6.10) in

(6.7) yields
s

where the constants d(j) satisfy

<dj)| @2, YHECTES] >R),

0

> d(j)?<oo.

1=7+1
Standard theory gives

”1/)”3,2.37- < const. (d(j) + ”‘P"z,z),
and so it follows that

> Il < const. 3 a1+ 3 [l < o
J+1 J+1 J+1

since € W%(S). A similar argument holds for large negative &, and so we have shown
that p€W3(S). By use of this fact in (6.6a), it follows that V*weELy(S), and standard
theory then gives € W4(S). The embedding W(S) = W3(S) is bounded for all s >2, and so
(6.6a) ensures that V'p€L,(S) for all s>2. It follows that w€ Wi(S) for all s>2. The
embedding Wi(8) < C3(8) is bounded for all s>2, and so for each multi-index & with
[« <3, we have Voy(&, 7)->0 uniformly as |&|—>co. We summarize our results in the

following theorem.

THEOREM 6.2. The perturbation stream function y is an element of W(8) for all s>2,

and for each multi-index o, 0<|a| <3,
Vo, m) =0 uniformly as |£]— oo.

9—792901 Acta mathematica 144. Imprimé le 13 Juin 1980
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If the behaviour of suitable derivatives of x and A is known, then results for higher
derivatives of y can be gained; for example, if all derivatives of % and A are in L,(S),
then all derivatives of i are in L,(S) and tend to sero at infinity.

The velocity # has the representation w=g+v in €, where ¢=(G, —@,) and
v=(y,, —,). Recall that G({) is constructed explicitly in section 3, and so ¢ is known
explicitly when the conformal mapping between  and § is known; however, since we are
interested in the behaviour at infinity, it suffices to know the asymptotic form of the
mapping function. Now

o] = [ Dy| = V| /b =o(1]R)
by Theorem 6.2 with || =1, while
lgl =V@|/h =M1 -n?)h

sufficiently for upstream and downstream. If h({)~>oo as ||-—oco in S, then clearly
|#] 0 like 1/h. If A({) goes to a finite (non-zero) limit, then g behaves like a Poiseuille
velocity field. In either case, v goes to zero uniformly at infinity.

We now examine the pressure p at infinity in S. Recall that (6.3) gives {s1/h2=oo.

TuroREM 6.3. The pressure p satisfies
P4(0), Pg(0)+3My[2h(L)? = o(1/R(L?) as [{|—coin 8.

Furthermore, p(E,n)—~ F oo uniformly as £—+ o and

& 1
—p(é‘o)/f dff igdn» §Mv uniformly as |&y|— oo. (6.15)
0 -1k 4

Proof. Bq. (2.18) gives

Y, — ﬁ’l(’aﬁn + 2ty )+ ﬁz(ﬁ’ln —llg) = — Pe } in S (6163’)
— Vg + Gy (flge — Ally) — Bo(Bire + Aiy) = — P, 7 (6.161b)

where o = —V2¥'/h%, 4, =¥, /h and d4,= —¥;/h. Let N be a large positive integer such
that G()=3M(n—n?/3) in A=SN{|£| >N}. At points in 4, we have

0,75 L (= (Pt 0K = (V= J) [1 4 20Ty 4 G
=3 M»[2h% + o(1/R?)

by (6.1) and Theorem 6.2. Analogous estimates for the other terms in (6.16) give the

first result of the theorem.
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Eq. (2.22) shows that 1/k is bounded on S, and so

| Vp[ < const. in S. (6.17)
We have

(&) =p(0,7)+ j af(f,n)dﬁ

p(0,71)— f n {8M»/[2k* + o(1/1%)} dE,
0

and so the mean value

&
lim p{-‘o)/(f d{-’f hzd'r])——Mv (6.18)
[éo]>0
Eq. (6.17) gives

| (€0 m0) — Do) < f_llpn@o,n)ldn@onst., Vo €[ - 111,

1 1 & 1
#60=; | pewman=3 [ pomar— | ae [ s onpipan

It follows that

and the use of this with (6.18) immediately gives (6.15). Q.E.D.

6.3. Decay rates

We now examine the agymptotic behaviour of w({) as £—o° when () and A(l) are
known to decay like some power of & as £—co; more precisely, we shall assume for the

rest of this section that there exist constants C, » >0 such that
[#(0)], |AQ)| <C&*, V(& n)€S;s, (6.19)

where S;={t <§<eo, —1<9n<1}, >0, and @>3 has been chosen so large that G =@ in
8z. We shall prove that (6.19) implies that suitable derivatives of ¢ grow no faster than
&7 in S;z. (For the channels of type III, with nonoscillatory boundaries, in Appendix A,
v 21.) Similar results hold for large negative £ when an analogous version of (6.19) is true.
For each fixed a>@ and for n=1 or 2, define the Banach spaces C, and E, by

Cn=CulS,) = {f€0(8,~R")| le.=suplfO)] < ==},
E,= En(Sa) = {feO(Sa—»R") | ”f“E'nE ?usl‘) |§"f(§)| < oo}
Eq. (6.8) gives ’
Ly =9V —Q, Viyr + Quyye = v, Vi —p: Viy, + F in §;, (6.20)
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p=y,=0 onn=r+l,
where
F = B(y) + F — 2, V2 + 20y, V2,

and the definitions of B(y) and F appear immediately after (6.6). Theorem 6.2 ensures
that the first three derivatives of ¢ are bounded on S, and inspection of the definitions

of B(y) and F shows that
FeE(S,) (6.21)
for each a>4a.

In order to examine (6.20), we shall use the Green function for the adjoint operator

L*, where
L¥$ =vV'¢+ V3Q ) — Quay be-
Tt was shown in section 4 of {5] that if »>», (which is the present case), then for each

fixed {,€8, there exists a Green function K({,, .) GW%(S) such that

L*K (0, ) =0(0~&,) in &8, } (6.22)

K(Co,8) = Ky(£0, ) =0 onn=+1,

where § denotes the Dirac distribution. The following lemma is Theorem 4.1 of [5].

LeEMMA 6.4. Let S=Rx(—1, 1) and assume that v>v,. Then for each [ €S,

(a) there exists a Green function K(C,, .)€ W3(S) which satisfies (6.22);
(b) there exist positive constants C=C(v), b=b(y) and c=c(v) independent of ,, such
that, with r=|{—(y,
Clr* for |E—&| <2,
|VEVIK (Lo, D) < Cexp{—b&,— &)} for E—E< -2,
Cexp{—c(E—&)} for E—§,>2,

where o and f§ are any multi-indices satisfying || + |B| =4.
(c) Analogous bounds hold for derivaiives of K of order 3, 2, 1 or 0 with Cr? replaced by
Clr, C(1+[logr|), C and O, respectively, for |&,—&| <2.

For each azd+1, let y=u(.; a)€C®(R~[0, 1]) be a mollifier such that u(l; ) =1
for t=a and u(f; a) =0 for t <a—1. If we multiply (6.20) by u(; @) K(C,, {), integrate over
Sz, and apply Lemma 6.4, then we have for £,>a

L_k L) (9 V2 pe — peVip, + F)dl = p(lo) + J WI*uK(Co, 0))dE (dC=dEdn),

a-l<é<a

or equivalently
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V(Co) = f (B,pe— Kepy) Vipd+ T(C)) (&> a), (6.23)

where

1) [ W) ), eIV [ G R

LeMMA 6.5. Define
(A2P$) (Lo) = Js, B V2R(L)VEVER (Lo, £)AL, Co€S, || =|B] =1,
for all ¢ in Cy(S,) or Ey(S,). Then

(a') ”A“"qu”Cx <€(a)”¢”¢:’
(b) [|4#4( 5, <e(@)|$|z.

and g(a)->0 as a—+ oo,
Proof. The proof of (a) appears in the proof of Lemma 4.3 in [5], and so we shall

prove only (b). Let ¢ € By. Then A*$€Cy(S,) by (a), and we estimate || 4*44| s, in three
stages. Set W({,, {)=V5VEK((,, {).

i) f SV (G0 L) de
&+2<&

< const. ”¢||Elf £7|Vip|e¢-2gg
Eo+2<§
< const. [[¢]|z, &7 [|V*9]lo.2..,

and [|V2pllg,q,5,—>0 as a— o since p€ W%(S).

(i) j ViYW (L, C)dé‘
- 2<E<Ee+2
< const. |4l f £ |Vl (1 + |log| £~ &l dL
Eo—2<&<be+2
< const. || ||z, &7 | V2llo.2.5,e
(i) f SVEpW (Lo, ) dE| < const. ||l |V>9]le, f " ereneogs (6.24)
a<b<fe—2 a

and an integration by parts gives

So—

£0-2 1 ,y 2
f E—ye—-b(én—f)dé < 5 6_2b(§0 _ 2)—y+ l_) f E—l—ye—b(éo—@dé

a a

< const. &7,

where the constant is independent of a and &, Use of this in (6.24) gives
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[ . #7vwio | < const. gl 567 IVl

and || V3ypllc,~0 as a—oco by Theorem 6.2. Q.E.D.

If we use Lemma 6.4 and arguments similar to those in Lemma 4.4 of [5], then a

straightforward (but tedious) argument gives

LemMma 6.6. Let T be as in (6.23); then V*TEE(S,), for |a| <1.
The proof of the following theorem is almost identical to that of Theorem 4.5 in {5].

TurorEM 6.7. If |a| is sufficiently large, then Vop€E\(S,) for |a|=1.

Proof. Using the representation formula (6.23) for y and the definition of A*# and T
in Lemma 6.5 and (6.23), respectively, we have for €S, and |[«|=1,

Vep(l)= hg!=‘ZI=1a,‘,,,9z,(f_l"“3V"?p) (&)Y + V1) (6.25)

for certain constants a,s,=+1 or 0. If we let g=Vy and h=VT, then (6.25) can be

written as
g—Ag =h. (6.26)

For a Banach space B, let £(B) denote the Banach space of bounded linear maps B— B.
By Lemma 6.6, we have h=VT€F, and standard theory shows that the equation

r—Ar=h, for h€ E,, has a unique solution

(a) in Oy, if @ is so large that || 4| cc,y <1,
(b) in By, if a is so large that [|4|lz, <1,

and by Lemma 6.5, the number @ can, and will, be so chosen. Since E,=(,, these two

solutions are identical. Theorem 6.2 shows that Vy€C,, and so we have Vyp€ E,. Q.E.D.

By continuity on the set {d<£<a}, we have Vy€Ey(S,) for all a>4. If we apply
this result to (6.20), then it follows that Ly€ E,(S,) for all  >d, and one can then prove

THEOREM 6.8. Assume that
[#(& |, |ME ]| <C&, &>1,
for constants C, y>0. Then the perturbation stream function v satisfies
| Ve, n)| < const. 57, £>1,

for each multi-index o with |e| <3.
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If % and 1 decay exponentially at infinity (as is the case when sufficiently far up-
stream, and sufficiently far downstream, the channel walls ', and I'_ are exactly
parallel), then one can use the methods in [5] to prove corresponding results for various

derivatives of .

Appendix A. On the conformal mapping of a strip onto a channel

A.1. Examples of maps F
Notation. Throughout this Appendix a, b, ¢, k, m, § and y will denote real non-

negative constants; in addition to the complex variables z=wx+1y and { =&+, we shall
use w=u-+1w and {=r+1s; and the symbols «, v, w, G, p, ... do not have the meanings
assigned to them in the main text. For functions f of one variable, f** denotes the nth
derivative. ‘Symmetry’ means symmetry with respect to a streamwise axis.

In examples (i) to (vil), channels are of type 1' (Definition 5.1) whenever they are
of type I, and type I' will not be mentioned there. In examples (i) to (iv), the function
F will be defined not merely on S, but as a conformal, one-to-one map on an open set
containing S.

(1) 4 family of asymmetrical channels. Let the transformation z=F({) be
z=7—;(é’+ By", 1<m<2, b>1, |t+ib|>0, 0<arg(+ib)<2n/m.
The asymmetrical channels of the title are those with m >1; the case m=3/2, b=3/2 was
shown in Fig. 1. For || —<c in S, we have

W) = |dzjds| ~ &1, (A.la)

_|d%=/a?|
|dz/d¢ |

[V 1og B(C)|=|2(C) —iA(L)] (m—1)|&7. (A.1b)
It follows that Q=F(S) is of type I if m>3/2, of type II for all me€[l, 2], and of
type 1T if 1<m<3/2.

(i) A family of symmeirical channels with boundaries y~ +const. |x|¥, 0<k<1.

(The symbol ~ of asymptotic equality refers to |z|->oc.) Now let F be given by

z=cl(C24+B2Rm D m=1, b>1, ¢>0, } (A2)

—7/2 <arg ({+b) <3m/2, —3m[2<arg ({—ib)<m/2.

These restrictions of arg ({+4b) ensure that arg ({2+52)=0 on the real axis and on the

line segment £=0, |n| <b; also, dz/d;>0 on the real axis.
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Q e
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{-plane

F4)

z-plane

Fig. 4. The case m =3, b=3 of the mapping in example (ii).

The condition b>1 is not enough, in general, to make F:S->Q a diffeomorphism;
we have dz/dl=0 at {=+1ib/m?, and denote the images of these points by z= tia.
Therefore we require at least that b>m?. To discover the largest set on which the map
(A.2) is one-to-one, we trace the inverse image, say 4, of the lines z=0+, |y| >a, and
use a classical theorem ([27], p. 201) to the effect that, under mild restrictions, a function
holomorphic in a bounded, simply-connected open set B is one-to-one on B if it is one-
to-one on 0B. It is sufficient to consider that part of the first quadrant of the {-plane
which lies below the upper component of 4; one can prove that 4 does not cross itself,
h vanishes on the upper component of A only at {=1¢b/m?, and the nature of F as
|| oo is clear. The theorem then shows that F is one-to-one (and it is certainly con-
formal) on the open set between the two components of 4. For m=2 or 3, the set 4 is a
hyperbola:

M =&+1+102 ifm=2, or n2=4&+b) ifm=3;
for arbitrary values of m, exploration of A4 is an arduous affair. It turns out that, if m <5,
then #2>b%m on 4, but, if m>5, then #2<b%/m on a part of 4. We choose b so large that
7n?>1 on 4; for m<5 this means b>m?, for m>5 such a choice is possible.

Fig. 4 shows the case m =3, b=3. Since x~c&™ and y~cmé™ 'y as £~ oo with 7 fixed,
the exponent in the title is k=(m—1)/m. Essentially as in (i), F(S) is of type I if
m>3/2, of type II for all m>1, and of type IIT if 1 <m<3/2.
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s=}
S$=
v=0,5=0 T 8=0
s=—a
{-plane
s=—g
z-plane
w-plane

Fig. 5. The bending transformation in example (iv). The case drawn is y =7/4.

(iii) Channels bounded by hyperbolae. The well known transformation
z=sinh §¢, 0<f<m/2, (€Rx(—m/28, n/2p),

maps S onto the channel Q between the branches (components) of the hyperbola

NENREN

Such a channel is of type 1 and not of type IL; »()—iA(l) =0 tanh B+ +p as &~ + oo,
(iv) Bending an initially symmetrical channel. The transformation (Fig. 5)

wWo ’&.yw
2(wy) = fo exp {‘—"(wz v 1)1,2} dw, 0<y<mf2,
for which
. i%_ iyw (A.3)
Ogdw— (w2 F1ye
—m/2 <arg (w+ 1) <3n/2, —3n[2<arg(w—1i)<m[2,

bends the axis v=0 into a curve C: x=xz(u, 0), y=y(u, 0) such that the tangent to C
makes an angle pu/(u?+1)! with the horizontal. If Q, is a channel in the w-plane that is
symmetrical about the axis »=0, then the transformation bends (), correspondingly into
a new channel Q, in the z-plane, provided that Q, lies in an open set on which the
map (A.3) is one-to-one.

10 —792901 Acia mathematica 144. Imprimé le 13 Juin 1980
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Denote the transformation (A.3) by z=@(w); then, as |w|—><c in the cut w-plane,
|&(w)] =1+0(w?) and |G"(w)| =O(w=2). Let w=H({) map 8 onto €, in the standard
manner; then F=GoH maps § onto £,.

It follows that, if H?>=o(H*H"), then |F'(0)|~|H'(C)| and |F"(Q)|~|H"()| as
[&] =0 in 8, so that Q, and Q, are of the same type.

This condition is amply satisfied if €, is one of the channels in (ii) with m>1. If
m=1 in (ii}, so that Q, is the strip R x (—¢, ¢), then our estimates of @' and Q" show that
Q, is, like Qg, of type III.

We must find a large domain in which @ is one-to-one. It is helpful to introduce the

auxiliary transformation
w=sinht (t=r+is), —n2<s<n/2.
Then

to
2(t,) = f exp (¢y tanh ¢) cosh ¢ dt. (A4)
Q

We seek the largest horizontal strip in the ¢-plane on which |arg dz/dt| <sz/2; denote it by
S,=Rx(—a,b), where a,b€(0,n/2). Then the map (A.4) is one-to-one on S, by
the theorem ([27], p. 201) cited in (ii) and the fact that |dz/dt| <=0 on 88,,. Note that in the
w-plane the image of S, is a domain between branches of hyperbolae. To caleulate o and
b, it is sufficient to take r>0. One finds that arg dz/dt > —m/2 on [0, o0) x (—7/2, 7/2), so
that only the condition arg dz/dt <m[2 determines @ and b. Define a=a(y) by: sin 2e=2p/n
and x€(7/4, 7/2). A calculation shows that a€(«, 7/2), that @ is the solution of a certain
unpleasant equation, and that b=n/2—y <aly).

Finally, we note that (A.4) maps the strip R x(—8, §) into a bent form Q, of a
hyperbolic channel Q, as in (iii), provided that §<min {a, b}. The condition 8-y <s/2
is necessary and sufficient for this. The channels Q, and Q, are both of type I and not

of type 1I.

A.2. End maps

By a downstream end map E for a channel Q= F(S) we mean an asymptotic approxi-
mation to F; that is, F({)~ E(Z) on § as £ oo, Upstream end maps are defined similarly
for £~ — o, but we shall mainly consider the former case, and shall then omit the word
downstream. The type of a chanmel is implied by sufficiently accurate upstream and
downstream end maps. Just as the exact maps F in (i) to (iv) were defined as conformal,
one-to-one functions on open sets containing S, so we shall define end maps E, wherever
possible, as such functions on open sets containing the closure S, of a half-strip
8,=(a, ) x(~1,1).
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In (v) to (vii), we construct functions £ which we hope to be useful end maps for the
channels Q, defined by (1.6); for these channels, the exact mapping functions F are, of
course, unknown, since f has not been specified completely. Theorem A.3 and its corollaries
will show that these functions K are indeed sufficiently accurate end maps, with room

to spare. The downstream part of a channel ; is now denoted by
Q; ={z|z>const.>1, —AddF<y<da*}, A>0,k>0. (A.5)

In (viii) and (ix), we characterize new families of channels by means of end maps
that are sufficiently accurate by hypothesis, in order to display certain admissible (and
certain inadmissible) oscillations of the boundary 8Q.

(v) An end map for €, k<1, and for the channels in (ii). The obvious choice of

transformation z=E({) is

z=c™ m=1,¢>0, |{|>0 ,—zn/m<arg(<m/m. (A.6)

The domain of E is the sector indicated in (A.6), and contains the closure S, of a

half-strip if ¢ >0 when 1<m <2, or if a>cot 7z/m when m>2. We have

x = cE"Py(n/&), y= Cm§""177P2(77/5),

where P,(t) denotes a function that may be expanded as a series 1-+const. {2+... in
powers of 12, with leading term 1 and radius of convergence 1.

To make the images of the lines = +1 close to €2, we choose m so that k=(m —1)/m
and ¢ so that ¢'~*=4/m. To examine the precise difference between the inverse image

E-10€);) and the lines =+1, we consider the upper boundary component, define
D, n) = (y—Ax") omE™ " = nPy(n[E) - Pi(n/&)",

and seek the solution of ®(§, %)=0. Since O(, 1)=0(£-2) and ®,(&, 1)==1+0(72), it is
not difficult (see (vii)) to define, for o sufficiently large, a contraction mapping that
implies existence of a solution 5 =1+f(£), £ >a, such that (&) =0(&2%"), n=0,1, ....

The contraction mapping also implies uniqueness of f in a certain ball, but a stronger
uniqueness result is available. Recall that Q,<Q,, and observe that, in the z-plane and
for sufficiently large values of @, each component of 80, intersects exactly once each of
the arcs onto which % maps the line segments £ =const.>a, |arg {| <z/2m.

For the channels in (ii), the exact mapping function F is known; it is clear that
F()~E(l) on 8§ as £—>oo, and it is easily verified that Im (E~lo F)(£+¢) has the
properties just established for 14 f(&).
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z-plane w-plane

Fig. 6. Item (vii): an end map for (, k> 1.
(vi) An end map for Q,, k=1, and for the channels in (iii). In (A.5), let A =tanpg,
0<f<m/2; an appropriate map E is given by
z=1eft, [ERx(—2,2).

This is exact for €),, and has exponentially small error for the hyperbolic channels in (iii).
(vii) An end map for Oy, k>1. In this case we define B by combining the transforma-
tions (Fig. 6)

z=w" m>1, —xm/m<argw<mlm, (A.7a)
and
428
w=exp27b+c, ¢>0, [ERX(—2,2). (A.7b)

Choose m so that k=m/(m—1), and in (A.5) set 4 =>b"". The notation p,==n(m—7§)/2m,
j=0, 1,2, will be convenient; we emphasize that p,=n/2 and pojp,=k.
As in (v), we examine the inverse image E-1(0£),). Eq. (A.7) imply that

1 m—2
2= €™ + mee* + m(m — l)cze”“cf 1-7) {1 + Tcexp (—— 72%)} dr,
0

and it follows that

(D(E’ 77) = x_byl/k = 95(5’ 7]) —-I—R(f, 77)’
where

¢(§’ ,,7) — eP¢ 0og DY 4 gPré {mc cos P71 — b (sin pon)pxlm}’
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while R and all its derivatives are O(e™*). We choose ¢ =b/m cos p,, noting that 0 <p, <7/2;

then
$(61)=0 and @, 1) = —pye™t +0(e™?).

The solution of ®(£,7)=0 will have the form 5 =1+f(£); to house f, we introduce a
Banach space, with weight function g, of functions having bounded continuous deriva-

tives to order ¢ on [a, o):

Cio ={9€C([a, ) [l9]lq.ac = sup 0(€)]g™(&)] < oo},

2a,n<q

where 7 <q means n=0, 1, ..., ¢, and g(&) =exp {(p,—p;)&} =exp (wé/m). Our task is to

find a solution in CF, of Tf=f, where

1 1
(Tg) (&)= — &,E0) {R(E, 1)+g(£)? fo (1-7)D,,(§,1 +Tg(5))d7}-

Fix the integer g¢; then there exist numbers ¢, and 7, such that

1B D/Dy(-5 Dla,ao,e < 7or

and we let B= B(0, 2r,) denote the ball in (¢ , with centre the origin and radius 2r,. Tt is
a routine matter to show that, if @ >a, is chosen sufficiently large, T' is a contraction map

on the complete metric space B. Then T has a unique fixed point f in B, so that
(&) = O(e ™™, n=0, 1, ..., q.

We also have a stronger uniqueness result, as in (v).

(viii) Ends of type I with oscillatory boundaries. Consider the transformation

1, 2
2= —lmt {C“ exp (—bL") cos &+ R(C), (A.8)

m>3/2, a=0, 1<b<3,

where arg { =0 on the positive real axis, and B™({)=0(£™") uniformly on S, for n=0, 1, 2
and §—co, We have chosen m>3/2 in order to have a downstream end of type I when
¢=0; b>1 because rapid oscillations are of interest; and b <3 because otherwise exp ( — b{*~")
would have to be replaced by a longer expression for the sake of certain conclusions.
Henceforth ¢>0.

We note that

2 exp (—bZ"™") cos £ = exp [ —bE* (1 +7) +O(£*~?) +1{& +0(&""3)}]
+exp [—bE 11 —-n) + 0% —i{& + 08" %)},
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8o that the oscillatory terms in (A.8) are exponentially small within 8, while on 88

x=$§"‘+%§“cos{§"+ 3B -1) 82+ L+
(A.9)
y= igm—lxggasin{gu%b(b—l)é”-2+...}+....

The following results are implied by the formulae for dz/d{ and d®z/dZ®.
In order that the mapping (A.8) be one-to-one on S for & sufficiently large (hence-
forth this qualifying phrase is to be understood), we demand that

a+b<m, O0<c<l. (A.10)

(The condition a +b <m would allow any value of ¢, but would be less informative.) Then
h(£)/&™ ! is bounded between positive constants on some half-strip 8, so that 1/h€Ly(S,).
A calculation shows that |V(1/h)| €Ly(S,) for some d if and only if

2a13b < dm—2, (A.11)

which is implied by (A.10) when m>2, but not when m<2. Accordingly, as regards
its downstream end, a channel defined by (A.8), and hence having a boundary as in (A.9),
is of type I whenever (A.10) and (A.11) hold. When m=2, a=0 and b=2 (a+b=m,
20.+3b=4m—2) the corresponding channel is not of type I.

Now consider membership of the set I'. The first additional condition, bounding the
ratio h({)/k(&;, —1) in a neighbourhood on 8§ of the point (&, —1), is satisfied because
B($)[E™" lies between positive constants. The second, that |V(1/k) (¢)| -0 uniformly on
8§ as £— oo, requires that a+2b <2m. Comparing this with (A.10) and (A.11) (most easily
by graphs in the ab-plane of the three lines in question), we conclude that, as regards their
downstream ends, the present channels of type I are also of type I' whenever m<2 or
a>0; but, if m>2, a=0 and b=m, there results a channel of type I that is not of type I'.

(ix) Ends of type III with oscillatory boundaries. Since the definition of type IIT
leads to Poiseuille flow, which is undirectional in its exact setting, we can expect only feeble
oscillations to be admissible in this case. If we try to proceed with the formula in (A.8),
now taking 1<m<3/2 and 0<b<3, the condition |Vh|=|d%/d;?|€L, for some ¢g>2
(which is weakest in the present case when ¢=oc) requires that ¢ +2b—2<0, hence b<1.
‘There is then no exponential decay within S, and so the condition |V log k| €L, requires

that
6+2b<m+} <2, (A.12)
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since m <3/2. Thus b <1. Accordingly, we are forced to consider
e=1 {m+ 2—05" cos £+ RB(L),
m b

1<m<3

3 a=>0, 0<b<l1,

where arg { and R([) are as for (A.8). The boundary &Q has the different form
z= lE"‘—i—2—c§“cos (& + ....)+ .
m b
y=FT&TFE2E 0 sin (2+..)+...,
and in place of (A.10) we demand that
a+b<m, O0<e<i. {A.13)

It turns out that (A.12) and (A.13) are sufficient (and virtually necessary) for membership
of the set III.

A.3. On pertubations of end maps

In this section our main tool will be the Green function K({,, ) of the Dirichlet
problem for the Laplace operator —V?2 in the half-strip S,=(a, «) x(~1, 1); for fixed
Lo €S, this is the solution of

=V2K =0((—8y) in8, K|reos, =0,

where d denotes the Dirac distribution. If S replaces §,, the corresponding Green function
G is

1. sinh 3(Z-2Z,)
T =Re— SR N Aol .
(494 Reg—log — - 1(Z=7Z4) (A.14a)
1 2s8in Y sin Y,
=.—...—-l 0 R
4 8 {1+cosh (X —X,)—cos (Y — Yo)} (A.14D)
=2 OZO——I e XXl gin nY sin nY, (A.l4c)
Tcn=12n 0

where Z=X+iY =n{{+1)/2, so that Z€ERx [0, z]. With the notation @, ()=
G(]|X—X,|, Y, Y,), the Green function for the half-strip S, is

Ky O) =G| X-X,|, Y, Yo) - G(X + Xy—ma, ¥, X,), (A.15)

where £, {€S,. As an introduction to the more elaborate result which follows, we have
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TaEOREM A.l. Let Q and Q. be two channels that coincide from some cross-section
onwards. More precisely, let Q={F({)|; €S}, and assume that 92, intersects every arc

z=F(c+1im), c=const.za, —1<7<I,

at its end points, and there only, the component Uy, of 0Q, intersecting the end point n=1.
Let Fy be such that Qu={F(w)|w€S}, and define v, and p on S, by

v4(0) = Im (Fx'o F)({) =7 +9(0).

Then, for each mulli-index «, there exists a constant c, such that

7T
|V“’(/)(C)I < ¢y €Xp {— 5 (5 - a’)} Ol Og+1.
Proof. For any ¢€C2(8,)n C1(S,), Green’s identity implies that

seo=- [ ke, 0vs0- [ Le.osoa, (a16)
where n is the outward unit normal on 88, and 8/on =n-V. Now consider y. The hypo-
thesis about dQ, ensures that F(S,)<Qx, so that v, and y are well defined. Applying
(A.16) to y, we note that |w(()] <2 on §,, because |Im Fi'(z)| <1 on Q, and || <1
on S; that V2p=0 in §,, because v, and % are harmonic there; and that (£, £1)=0, {>a,
because Im Fz'(8Q,)= +1, with the upper sign corresponding to % =1. Hence

1
p(o)= f_lKg(Co, a,n)y(a,n)dn,

with |y(a, )| <2. The result now follows from (A.15) (with X =mna/2) and either (A.14b)
or (A.l4¢). Q.E.D.

We shall need to discuss the potential function

P(Go)= L K&, $Y D) (A.17)

of a density function f; for this, a natural setting is the space C**#(S,) of functions
¢: 8, R such that V*$, 0< || <k, can be extended from §, to S, as bounded continuous

functions, derivatives of order k& being Holder continuous on S, with exponent ©€(0, 1).
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The norm is

Ngllesus, = sup |V*$()|+max[V*$l,.s,
where {eS,lal<k la]=k
(¥]u.s,= sup M, 0<|t—¢l<1, O<pu<l

ntes,  |C—Col*

The following result is of a classical type (cf. [19], [22]; also [3]); some steps of the proof
are given in Appendix B.

Lemma A2, Let S, be a half-strip with a=>1; let o be the weight function defined by
0(0)=¢&°, ¢=0; and let P be the potential of a density f, as in (A.17). If of EC*#(8,), then
oP€C>+H(8, ,,), and there exists a constant k (depending only on ¢ and ) such that

NoPllzns,in < Ellofllovus.:

We cannot claim that P €(2+4(8,), because in general second derivatives of P have a
logarithmic singularity at the corners (a, +1) of S,.

TEEOREM A.3. Let D be an open set in the C-plane that contains the closure S,, a>1,
of a half-strip. Let E be a conformal, one-to-one function on D, with range R=E(D) in the
2-plane, that is related in the following way to a channel Q. Each component, ' or I'_, of
0Q intersects every arc E({&=const. >a}) in R exactly once, in such a way that E-1I', N ‘R)
and EI'_N R) have respective representations, for £>a,

N=1+7,(8) and 5= —-1-f(£), }

(A.18)
where [FP(&)] <const. &, ¢>0,n=0,1,2,3.

Define Q,={C|&>a, —1—f_(&)<n<1+f(&)}, let F be such that Q={F(w)|wES}, and
define vy and w on Q, by
() = Im (F~10 B) () =0 +9((). (A.19)
Then oy € C2+H(Q, ,,), where i is any exponent in (0, 1), and o(C) =&°; n particular,
[Vew(l)| < const. & for [€Q,., and |a|<2.

Remark 1. Let zy=E(£+14) and 2z, €L, be points on the same arc E({& =const. >a})
in R, and let hy=|E’|. In general, the hypothesis (A.18) does nof require |zy—z;| to be
small, because this distance is approximately hg(&, 1)|f,(£)|, which may well tend to

infinity ag £ o0,
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Remark 2. In order that the hypothesis ‘intersects ... exactly once’ be satisfied, D
will often be smaller than the largest set on which F is conformal and one-to-one. For
example, when E is as in (v), one can choose D to be the set £>a—1, |arg {| <a/2m;
then R does not intersect 8(Q N\ ,) for sufficiently large values of a.

Proof of Theorem A.3. (i) The function »=Im F-! is the unique solution of the

Dirichlet problem
Dy=0 inQ, v|p,=1, v|p.=-—1,

subject to the condition |v(z)| <1. We may, and shall, assume @ to be so large that
|/+(&)] <} for £>a; then the hypothesis about Q ensures that E(Q,)<Q, so that v, and
p are well defined by (A.19), which implies that |p(£)| <5/2 on §, (since [v4({)] <1 and
|n] <3/2 there), and that

Viy =0 in@Q, (A.20a)
. —f4(&) for £=a, 77=1+f+(§): A.20b
¥e) ~{ f_(§) for&>a, n=-—-1—f_(%). ( )

Regularity theory for elliptic equations ([3], p. 668) then implies existence of a constant

k, such that
”W”Z‘H‘»Qa-n < }c#’ 1“6(0: 1)’ (AQI)

where we have used the bound |[y(0)| <5/2 as well as (A.20).
(ii) Let ¢ +1=b. We map @, onto S, by the coordinate transformation

r=§ s={2n—f.E) +O}{2+/E+/E}

{which is not conformal!). Merely for ease of writing, we now suppose that f, =f_ =/,

and define
p(r) =1+f(r), qt)= —sp'(r)/p(r) = —sf'(r)[p(r), t=(r,s).
Then
0 0 7] 0 1 o
Z =l tgt) =, —=———
a0t o= oo
and
& P
2. Y , Y Y Y
v a8 ot 6r2+682+L’
where

2* 1 & ]
L=9g-—"— 24— 1) = =,
-‘Iaras+ (q e )6s2+ (qr+qqs)as

If ¢, denotes any coefficient in L, then it follows from (A.18) that pc, €CY(S,), where
o(t)=1° and (A.21) now implies that oL¢ € CO+#(S,), where ¢(t)=w((). By (A.20),
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¢rr+¢ss == _L‘IS in Sb’

&t Ff(r) for r=b, s= +1 respectively,
B g(s), say, forr=b, —1<s<l,

where |$(#)| <5/2 on S,. Then (A.16) shows that ¢ has the representation, on §,,

M e

$(t)=

J

?S]'(t),

1

where

d1lty) = J; K(ty, t) L(t),
at) = ~fimso= | Kto)0)5,
Sp
1
dot= | Kolt2,0)ate) + 101} .

Here ¢,4(ty) has the form considered in Theorem A.l, and is exponentially small ag r,— oo,
Application of Lemma A.2 to ¢, and ¢, shows that pd € C2+4(S, ,,); reversing the coordinate
transformation, we obtain the result of the theorem. Q.E.D.

Remark 3. Suppose that the conditions in (A.18) can be refined to
| f2(8)] < const &, n=0,1,2,3, where ¢,,,>¢c,>0, n=0,1,2.

This is the case in (v), where ¢, =n+2. Then the result can also be refined; for example,
Vey is O(E29+£7%) for || =2. To prove this, one uses the theorem as stated and
with ¢=c,, to estimate once more (and more carefully) Lé and other terms in the expres-
sions for the ¢,. In principle, this refinement is useful for applications, but, for simple cases
like the chanmnels Q,, it is not needed.

Remark 4. Let E and @, be as in Theorem A.3. We shall say that the end map E is of
type T on Q, (where T'=I, 1L, IIT or I') if hz=|E’'| enjoys on @, the properties de-
manded of & on § in order that Q be of type T.

CoroLLARY A.4. Under the hypotheses of Theorem A.3, let E be of type T on Q,,
and let o(C)=8&°. Then, as regards its downstream end, the channel Q is of type T, provided
that

(a) 1/ohg€Ly(Q,) when T =11 (for this, it suffices that ¢>1);

(b) ¢>% when T=II1.
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Proof. Let h(w)=| F'(w)| = |dz/dw|, and define h, on @, by

ho({)= (ko F'0 E) ({)=

where [dw/d]? =2+ (1 +p,)%,

by (A.19). In place of the |VA| in Definitions 1.1 and 5.1, we now have

(e bin)| 1 _ MY
|(hu’hu)|" |dw/d§| - d'w/dCP (hEE,hEn) [dw/d{,'lz )
where Y = (eyee + (L +9)¥ep Veey + (1 +9,)py,)-

Let R,=F-'oE((),); this is a subset of the strip § in the w-plane that contains some

half-strip §;, and
dw|
dudv= f ’—
Lﬂ( ) @,,( )az

It is straightforward to check, by means of these formulae, that » has the desired pro-

2
dEdn.

perties, given our hypotheses on A, and ¢, and the result of Theorem A.3 for y. The
assumptions (a) and (b) are made because of the W-term above, to ensure that
|'¥'|/h€L,, in order that |V,(1/k)| €L,, when T =II; and to ensure that |¥V'| €L, in order
that |V, log h| €L,, when T =III. Q.E.D.

CoroLLARY A5. The channels €, defined by (1.6) are of type I' if k;>%, of type 11
if k;<1, and of type 111 if k;<% (j=1, 2 throughout).

Proof. We use the results of (v) to (vii) in Corollary A.4. For k,=1, Theorem A.l can
be used. Q.E.D.

Appendix B. Some details omitted from proofs

(i) Remainder terms in the proof of Lemma 3.3. We recall that R, comes from (2.20),
R, from integration by parts of the integral in (3.9), and — R, from the same integral when
1 and y/h replace 1/h% and vy, respectively. We find that
e o
&=‘L@%M%+ﬁHLﬁQWw%“%%ﬁM%+ﬁ&

" — 20x 204
R2=f{—g hzg Qn'/’i'i'_h?Qn"/)é'/’n}’
S

Ry= [ &0t~ 201+ [ & Qntorm, + hpp— i),




STEADY SOLUTIONS OF THE NAVIER-STOKES EQUATIONS 149

(ii) The triple product {w,u,u} in terms of stream functions. Let w=(y,, —yx,) and
u=(Y,, —%¥,), where y €C7(Q) because w€J(L}) in (3.1a). Starting from the definition in

section 2.1, we obtain

SRS R A SEFILE BLER)
- f . {39, 4,V ¥y + 2,V Voo — 4,3 ¥}
= L (¥~ 2, F2) D*F.

Now transforming to S, one can use the fact that y, V', —» ¥, is a Jacobian.

(iif) Steps in the proof of Lemma A.2. Let |{—Cy| =r. From the formulae (A.14a)
and (A.15), we deduce that the Green function K is no worse on S, x S, than the funda-
mental singularity —(1/27x) log . Indeed, let £, and {, denote the reflections of {, in the
lines n==1, let ;5 (j=0,1,2) be the reflection of {, in the line &—a, and let
r;=|C—;| =r (j=1, ..., 5); then 27K (C, {,) —log (r, 7, r5/ry r57) is Teal analytic on S, x S,.
Also, (A.14Db, c) show exponential decay for large values of |&—&,|. Hence there exist
constants ¢, c,g and k,z such that

(1 +]|logr]), |e+B]=0, 0<r<3,
caﬂy—laml, la+B]>0, 0<r<3,

|V6 VK (Lo, 0| <
boesp (<3 16-6l). 6=l

(B.1)

We estimate all integrals but one by taking the modulus of the integrand, and by
representing S, as the union of the (overlapping) subsets characterized by r<5% and
by |&é—&,| >1. (Subsets slightly larger than this are considered in (B.1), in order that
K@, £) can be estimated in (B.2) when we partition S, by reference to ,.)

Now define

@@=LK@@

16 1 ,
=3(l—n —g—tgn_léﬁwﬁexp{— %(§o-a)}sm{%(no+ 1)},

and let (.)™ denote any partial derivative of order n with respect to {, (or, later, with

respect to {,). The following differentiation formulae are justified, when f€0%4(S,), as the
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limits of finite differences:

PO, = f KOG,0/0)

POz, = f KLy, ) {1(0) — fCo} + DR H(Ly), &p>a.

The most elaborate part of our task is the proof of Hélder continuity, with exponent
1, of second derivatives. For this we consider two points £; and {, such that ICI——COI =0,

0 <d<4%, and use the formula
PGP = [ EGOUO - [ K00~ 1)

+ {30 — K2 (o, OO — (2}

r>26

—{f(6) — f(Co)} f»% K®(,,0)
+OP(8) {#(81) — H(Co)} +{PP(Ly) — D= (L)} F(Lo)- (B.2)

The two integrals over r<26 can be bounded separately; each is not greater than a
constant times £5°6%, under the hypothesis of Lemma A.2. The third integral is shown,
by the method mentioned above, to be of the same order. It is the last integral, of
K)(£,, Z) alone, that requires care if the exponent y is to be recovered for second
derivatives. Now £ and &, appear in (A.15) only in the combinations &+§, and
Qoo = — G, for [==L,; therefore, we can always write K® as a derivative with respect
to & of some K™, where K is a linear combination of the two functions & in (A.15). Hence
the integral can be reduced to one of K™ over the line segment {a} x (—1, 1) and over that

part of the circle » =20 within S,; in this form, it is readily bounded by & constant.
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The outline of previous existence theory, in section 1.1, should certainly include reference
to [28].

[28] concerns certain domains in R? or R?® with any (finite) number of ‘exits’ or ducts ex-
tending to infinity (a channel has two). The existence of generalized steady solutions is proved
for arbitrary Reynolds numbers (that is, for arbitrary compatible flux constants and viscosity).
Our flux carrier in Lemma 3.2 has something in common with those constructed earlier by
Ladyzhenskaya and Solonnikov in their more general setting, but in their paper the ‘exits’ or
ducts in R? must widen, at large distances, more strongly than is necessary for our channels of
type I or type I’, and pointwise decay of the velocity is not considered.

[29] and [30] are primarily concerned with Heywood’s question in [21]: for what domains
Q does the completion of €3 *'(Q ~R¥) contain all solenoidal vector fields in the completion
of OP(Q ~RY)? (Here completion is either in the Dirichlet norm for both sets, or else in the full
norm of Wi(Q ~RY) for both sets. For channels, ducts and the like, vector fields in the former
space carry no flux, while those in the latter space may carry flux for certain domains.) The
two papers cited add significantly to Heywood’s own answers to this question. As it happens,
Maslennikova and Bogovskii introduce channels and tubes of ‘types I to III’, but their defini-
tions are entirely different from those in the present paper; they prove (among much else) that
equality of the two function spaces, when ( is a symmetrical channel or tube, implies certain
integral properties of the cross-sectional area.
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