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1. Introduct ion  

The classical Yosida-Malmquis t  theorem [24] states t h a t  if R(z, y) is a rat ional  

function of z and y, and if the differential equat ion (y')m=R(z, y), where m is a positive 

integer, possesses a t ranscendental  meromorphic  solution in the plane, then  the equat ion 

mus t  be of the form, 
(y,)m = Ro(Z ) § Rl(z ) y +... + Rn(z ) yn, (1) 

where n<~2m. The same conclusion holds (e.g. see [2]) if the equat ion possesses a mero- 

morphic solution in a neighborhood of co whose Nevanl inna characteristic is no t  0 (log r) 

as r - ~ .  Similarly, the  same conclusion holds if R(z, y) is a rat ional  funct ion of y whose 

coefficients are analyt ic  functions of z in a neighborhood of ~ having no essential 

singularity a t  ~ .  Other  proofs and  other  generalizations of these theorems have been 

obtained by  various authors  including H. Wit t ich  [20], [21], E. Hillo [6], [7], Sh. Strelitz 

[17], I. Laine [12], [13], F. Gacksta t ter  and I. Lainc [3], and  N. Steinmetz [16]. (Hille 

[8], [9] has also done extensive work on Br io t -Bouquet  equations Q(w, w (k)) =0 ,  where Q 

is a polynomial.)  

I n  the case when m = 1 in equat ion (1), it was proved by  Wit t ich  [23] t h a t  the order 

of growth of any  solution yo(z) which is meromorphic  in a neighborhood of ~o a n d f o r  

which T(r, Yo)~0  (log r) as r-~ co, mus t  be a positive integral multiple of �89 However,  this 

result does no t  extend to  the case m > 1. I t  was shown several years ago by  the authors  

[1, p. 298] t h a t  in the  case m =2 ,  the  equat ion (1) can possess t ranscendental  meromorphic  

solutions whose order of growth is zero, a l though subsequent  investigation revealed t h a t  

in this case, the order of growth could no t  be str ict ly between zero and �89 
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I n  this paper ,  we consider the  general case of equat ions (1), where m is an a rb i t r a ry  

posit ive integer,  and  the  Rj(z) are analyt ic  functions in a neighborhood of co having no 

essential s ingular i ty  a t  co. I t  is shown (see w 2 below) t h a t  the  order of growth of a 

meromorphic  solution in a neighborhood of co, is ei ther zero, a posit ive integral  mult iple  

of �89 or a posit ive integral  mult iple  of {r Conversely,  we show t h a t  a n y  such n u m b e r  is the  

order of growth  of a t ranscendenta l  meromorphic  solution in the  plane of an equat ion of 

the  fo rm (1). I n  addition, our  methods  permi t  us to  determine the  form of any  mero- 

morphic  solution yo(Z) in a neighborhood of co, whose order of growth is not  a posit ive 

integral  mult iple  of �89 and  for which T(r, yo):#O (log r) as r-~ co. We show (see w 5 below) 

t h a t  for some constants  a, b, c, d with ad-bc~O,  the funct ion (ayo(z) +b)/(eyo(z ) +d) has 

one of the  four  forms, (i) ~(g(z); 61, 62) , (ii) lo'(g(z); 61, 62), (iii) ~(g(z);  61 62) , (iv) ~3(g(z); (~1' 62)' 

where ~(z; 61, 62) is the  Weierstrass  to-function with  certain pr imi t ive  periods 61, 63, and  

where g(z) is an analyt ic  funct ion in a slit region D={z: Iz[ > K ,  a r g z : # ~ }  for some 

K>O, with the  p rope r ty  t h a t  the  funct ion (g'(z)) q (where q=2, 3, 4, or 6 depending 

respect ively  on the  forms (i), (ii), (iii), (iv)) can be extended to  an analyt ic  funct ion in 

] z l > K  having no essential s ingulari ty a t  co. I n  our final result  (w 6), we show t h a t  for 

such a funct ion g(z), there  aIways exist  pr imi t ive  periods 61, 63, such t h a t  the funct ions 

given b y  (i), (fi), (ifi), (iv) (depending respect ively  on whether  q=2, 3, 4, or 6) can be 

extended to be meromorphic  functions in a neighborhood of co. I n  addition, for any  

elliptic funct ion w(z) and a n y  analyt ic  funct ion g(z) in the  slit region D, which has the  

p rope r ty  t h a t  for some posit ive integer q the  funct ion (g'(z)) q can be extended to be 

analyt ic  in I zl > K  having no essential s ingulari ty a t  oo, we derive a necessary condit ion 

(which is a lways satisfied if q is 2, 3, 4, or 6) for the  funct ion w(g(z)) to be extendable  to a 

meromorphic  funct ion in a neighborhood of co. 

2. The main  result 

We now s ta te  our main  result.  The  proof will be completed in w 4. 

T ~ E O ~ M  1. Let m be a positive integer, and let Q(z, y) be a polynomial in y o/degree 

at most 2m, whose coe//icients are analytic /unctions in a neighborhood o/ co having no 

essential singularity at co. Let yo(z) be a meromorphic /unction in a neighborhood o/co which is 

a solution o/the differential equation, 

and/or which 

(y,)m = Q(z, y), 

T(r, Yo) ~ 0 (log r) as 

(2) 

r -+ oo. (3) 
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Then the order o/growth o/yo(z) is either zero, a positive integral multiple o/�89 or a positive 

integral multiple o/~.  Conversely, any such number is the order o/growth o/ a transcendental 

meromorphic solution in the plane o / a n  equation o/ the/orm (2). 

3.  P r e l i m i n a r i e s  

I f / ( z )  is a meromorph ic  funct ion in a neighborhood of 0% say [z I ~> K, and  if ;~ is a 

complex number  or oo, we will use the  s tandard  no ta t ion  for the  Nevanl inna  functions 

T(r,/) ,  m(r, ,~, ]), n(r, t , / )  and  N(r, 1 , / )  (see [22, p. 49] or [2, p. 98]). ( In the  definitions of 

n(r, ,~, ]) and N(r,  2 , / ) ,  only the  k-points  lying in K ~< ]z I ~< r are considered.) The  order of 

growth  of / is l im SUpr-~ log T(r,/)/log r. 

We  will denote  b y  ~/, the  field of all funct ions which are analyt ic  in a neighborhood of 

cr and  have  no essential s ingulari ty a t  0% As usual,  we ident i fy two elements  of ~ if they  

agree on a neighborhood of ~ ,  and  we will call an  e lement  of ~4 nontrivial if it is no t  

identically zero. 

We  will require the  following results  concerning the  Wiman-Va l i ron  theory  (see [19], 

[22], or [23].) I f  w(z)=~n~-~ anz n is an  analyt ic  funct ion in a neighborhood of co such 

t h a t  T(r, w) 4=0 (log r) as r-> co, let  Ml(r ) denote  max,zl=r ]W(Z) [ and  let /c(r) denote  the  

eentrat index of w(z). Then  the  following hold: 

(a) For  every  a>~0, Ml(r)/ra~ + ~  as r ~ + r  

(b) I f  q is a posit ive integer, there  exists a set  E in (0, c~) having  finite logari thmic 

measure,  such t h a t  if t e e  and  z is a poin t  on Izl = r  a t  which [w(z)[ = M l ( r  ), then  for 

] = 1  . . . . .  q, 

w(~>(z) = (Ic(r)/z)Jw(z) (1 +~j(z)), (4) 

where (~j(z)=o(1) as r->c~. I n  addit ion,  for  some a > 0 ,  

k(r) = 0((log Ml(r))a ) as r-+ 0% rCE. (5) 

The  order of w(z) is also given b y  lim supr~oo (log k(r)/log r). 

(c) I f  Q(z, w, w', .... w (~)) is a nontr iv ia l  polynomial  in w, w', .... w (n>, whose coefficients 

belong to  ~4, and  if Q possesses only one nontr ivia l  t e rm  of  m a x i m u m  to ta l  degree in 

w, w', ..., w (~), then  the  differential equat ion Q(z, w, w', ...~ w(n))=O cannot  possess a 

solution w(z) which is analyt ic  in a neighborhood of co and  for  which T(r, w) 4:0  (log r) 

as r-~ 0% (This follows easily, e.g. see [22, pp. 64-65], f rom Par t s  (a) and  (b), since k(r) is an 

unbounded  increasing funct ion for all sufficiently large r.) 
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4. Proof of Theorem 1 

We will now prove a sequence of lemmas from which the theorem will immediately 

follow. 

LEMMA 1. Let m, Q(z, y) and yo(Z) be as in the statement o/the theorem. Then: 

~i) The degree o/ Q(z, y) in y is at least m. 

�9 (ii) Let the/actorization o/Q(z, y) into irreducible /actors (e.g. see [25, p. 31]) be 

Q(z, y) = R(z)Ql(z, y)m, ... Qq(z, y)%, (6) 

where R(z) is a nontrivial element o/ ~,  q >1 1 (by Part (i)), the mj are positive integers, and 

where the irreducible polynomials Qj(z, y) over ~ are monic and distinct. Let ] denote any o/ 

the numbers 1 ..... q. Then the/o/lowing are true: 

(a) I / the/unction Qj(z, yo(z)) has only finitely many zeros in a neighborhood o/ ~ ,  then 

Qj(z, y) is o / the /orm y--a, where a is a constant. 

(b) The /unction Qj(z, yo(z)) cannot be identically zero. 

(c) I /  the meromorphic /'unction Qj(z, yo(z)) has in/initely many zeros, say {z~}, on 

] z ] ~ K / o r  some K, and i /F ( z ,  y) is any polynomial in y, with coe//icients in ~,  which is 

not the zero polynomial and which is relatively prime to Q~ as polynomials in y over ~ ,  then 

/or some n o, F(z~, yo(z~))~O /or all n>~n o. 

(d) I1 mj r {m, 2m}, then Qj(z, y) is o/the ]orm y - a  where a is a constant. 

Proo/. Par t  (i): First, Q(z, y) cannot be the zero polynomial in y, for otherwise yo(z) 

would be a constant function contradicting (3). Let d denote the degree of Q(z, y) in y, and 

assume d <m. Then, in a neighborhood of ~ where the coefficients of Q(z, y) are analytic, 

and the leading coefficient is nowhere zero, the solution yo(z) can have no poles since the 

multiplicity a at such a pole would satisfy the relation ( a+  1 )m =d a  contradicting d < m .  

Hence yo(z) would be analytic in a neighborhood of ~ .  However, if d < m, then equation 

(2) has only one term of maximal total degree in y, y', and hence from w 3, Par t  (c), this 

equation cannot possess any analytic solutions in a neighborhood of ~ satisfying (3). 

This contradiction proves that  d>~m and hence Part  (i) is proved. 

Par t  ii(a): Let  Q~(z, y)=~{=0 ak(z)y ~, where X>0, the ak(z ) belong to :~ and aa(z)-: l .  

Assume that  the function/(z) =Qj(z, yo(z)) has only finitely many zeros in a neighborhood 

of ~ ,  and set w(z)=l/l(z). Then w(z) is analytic in a neighborhood of ~ ,  and since 

(e.g. [2, p. 100]), T(r, w) =~T(r, Yo) + 0  (log r) as r-+ c~, clearly T(r, w)~=O (log r) in view of 
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(3). Hence  the  Wiman-Va l i ron  theo ry  (w 3) is appl icable to w(z). Set Ml(r  ) = m a x  H ~r [W(Z) I 
and  for all sufficiently large r, let z~ denote  a point  on [z I = r  for which ]w(z~)l=M~(r ). 
Then  in view of w 3(a), i t  follows tha t ,  

as foral| >0. (7) 

Since the  coefficients ak(z ) belong to 71, i t  is easy to see t h a t  if ak(z)�9 0 then  there  

are real  constants  ~k, K~, Lk, and  Ak, with Kk, Lk, and A~ positive, such t h a t  

for (s) 

(Of course, ~ z = 0  and we m a y  take  K~ =L~ = 1.) Now ao(Z ) ~0  since Qj(z, y) is irreducible. 

I n  view of (7) and (8), i t  easily follows t h a t  for all sufficiently large r, say r>~ro, we have  

[a0(zr) I >/Ko r~~ > I/(~,) I, and  hence yo(Z,)~0. I f  we set tF~(z)= (a~(z)/az(z))yo(z) ~-~, then  we 

have 

Let  I denote  the  set of all kE{0, 1 . . . .  , ~ - 1 }  for which ak(z)$0,  and  let B denote  the  set 

of all r >~ r 0 for which I Yo(ZT) I ~- k > ()~ + 1) Lk g ~  1 r ~k-~, for all k E I .  Then  clearly f rom (8), 

if f e B ,  we have  [~Irk(zr) ] < ( 1 / ( 2 +  1)) for all k, and  hence f rom (9) (and the  fact  t h a t  0 e I ) ,  

we obta in  ]](zr) l>~Lor~. This, of course,  contradicts  the  definit ion of r 0. Hence  B m u s t  

be the  e m p t y  set, and  thus  if r ~> r0, there  is an  index k E I ,  depending on r, for which 

lyo(z~)]~-k<().+l)LkK-~Irak-~. Hence  if L denotes the  m a x i m u m  of the  numbers  

((~ + 1)L~K~I) 1/(~-k) for k e 1, and  if a denotes the  m a x i m u m  of the  numbers  ( a z -  ~;.)/(~ - k) 

for k E I ,  t hen  

[y0(zr)[ <Lr ~ for all r>~r o. (10) 

Now let Qjl(z, y) denote  ~Qj(z, y)/~z, and let Qj2(z, y) denote ~Qj(z, y)/~y. Then  clearly, 

w' (z) = - w(z)2(Qjl(z, yo(z) ) + Q j2(z, yo(z) ) yo(z) ). (11) 

We dist inguish three  possibilities: (A) The  polynomia l  Qn(z, y) is the  zero polynomial ;  

(B) Qjl(z, y) is no t  the  zero polynomial ,  bu t  Qj(z, y) and Qn(z, y) are not  re la t ively pr ime as 

polynomials  over  7/; (C) Qn(z, y) is no t  the  zero polynomial ,  bu t  Qj(z, y) and Qjl(z, y) are 

re la t ively  pr ime as polynomials  over  7/. 

I n  Case (A) clearly Qj(z, y) has  cons tant  coefficients, and  since it is irreducible over  7/, 

i t  mus t  have  the  form y - a  which is the  conclusion of P a r t  ii(a). Case (B) is easily seen to  
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be impossible because the  irreducibil i ty of Qj(z, y) would imply  t h a t  Qt(z, y) divides 

Qji(Z, y) (aS polynomials  over  7/), while Qjl(z, y) is clearly of smaller  degree in y t h a n  

Qj(z, y) since Qj(z, y) is monic. Thus  to prove  P a r t  if(a), i t  suffices to show Case (C) is 

impossible. I f  we assume Case (C) holds, then  there  exist  polynomials  Gl(z , y) and  G2(z, y) 
over  ~ / s u c h  t h a t  

G~(z, y)Qj(z, y)+ a2(z, y)Qj~(z, y) = 1 (12) 

as polynomials  in y over  ~/. We observe first  t h a t  if D(z, y) denotes a n y  of the  polynomials  

Qjl(z, y), Qj2(z, y), GI(z, y), G2(z , y), or Qk(z, y) for k = l  . . . .  , q, then  since D(z, y) has 

coefficients in ~ ,  it easily follows f rom (10) t h a t  there  are real constants  c > 0  and  a~ such 

t h a t  

[ D(Zr, yo(zr)) [ < cra', for  all sufficiently large r. (13) 

Since/(zr)  =Q~(z. yo(Zr)) satisfies (7), i t  now follows f rom (12), t h a t  

[ G2(z. Yo(Z~)) Qn( z .  Yo(Zr)) I >~ �89 for  all sufficiently large r. 

Applying (13) wi th  D=G2, we obtain,  

]Qil(Zr, yo(zr))l ~ (1/2c)r ~' ,  (14) 

for  all sufficiently large r. Since each factor  Qk in Q satisfies (13), while the  factor  Qj 

satisfies (7), we see t h a t  r~ ]Q(zr, y0(Zr)) I -+0 for  each a > 0 as r-+ + re. F r o m  the differential 

equat ion (2), i t  then  follows t h a t  r ~ lyo(z~) I ~ 0  for each a > 0  as r-~ + 0% I n  view of (13) for  

D = QJ2, we thus see t ha t  for all sufficiently large r, we have  [Qj2(zr, yo(zr)) y~(zr) [ < (1/4c) r -" ' .  

I t  now follows f rom (11) and (14) t h a t  

Iw'(zi)/W(Zr) ] >~ Ml(r ) (1/4c) t -"l ,  (15) 

for  all sufficiently large r. Bu t  by  the  Wiman-Va l i ron  theory,  relat ion (4) holds for  all r 

outside of a set  E of finite logar i thmic measure,  and  hence together  wi th  (15), we obtain,  

2k(r)/r >! Ml(r)(I/he)r-% (16) 

for all sufficiently large r which lie outside E,  where k(r) is the  central index of w(z). 
Since k(r) satisfies (5), and Ml(r ) grows fas ter  t h a n  every  power  of r (by w 3(a)), clearly (16) 

is impossible for a rb i t rar i ly  large r. Hence  Case (C) is impossible and  thus  P a r t  if(a) is 

proved.  
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P a r t  ii(b): I f / ( z )  =Qj(z, yo(z)), t hen  since (e.g. [2, p. 100]), T(r , / )  =2T(r ,  Yo) + 0  (log r), 

we cannot  h a v e / ( z ) - 0  in view of assumpt ion  (3). 

P a r t  ii(c): I n  view of P a r t  ii(b), the  sequence {zn} of zeros of Qj(z, yo(Z)) in Izl >~K 

must  t end  to oo. Hence  for all sufficiently large n, the  point  zn cannot  be a pole of yo(Z) 

since the  coefficients of Q~(z, y) are analyt ic  on some neighborhood of 0% and the  leading 

coefficient is 1. I f  F(z, y) is re la t ively pr ime to Qj(z, y) , then as in (12), some linear combi- 

na t ion  of /~  and  Qj is 1, and  it clearly follows t h a t  F(zn, yo(zn)) 4=0 for all sufficiently large n. 

P a r t  ii(d): Suppose now mj r {m, 2m} in (6), and le t / (z )  =Qj(z, yo(Z)) be meromorphic  

on ] z I >~ K for some K > 0. I f / ( z )  has only finitely m a n y  zeros on [z I >~ K,  the  conclusion 

follows f rom P a r t  ii(a). Hence  we m a y  assume t h a t  /(z) has infinitely m a n y  zeros, say 

{z~}, on [z ] >~K. Le t  as denote  the  mult ipl ic i ty  of the zero z~ for/(z) .  I n  view of P a r t  ii(c), 

no other  funct ion Qk(z, yo(z)) can vanish a t  z n if n is sufficiently large (and, of course, in 

some neighborhood of oo the  funct ion R(z) in (6) is analyt ic  and nowhere zero), so 

Q(z, yo(Z)) has a zero of order mja~ a t  z n. Thus  f rom (2), Y0 has a zero a t  Zn, say of order 

~ ,  and  mAn=mja  n. But  since the  degree of Q is a t  mos t  2m, we have  m~<2m b y  our 

assumpt ion  in this case. I t  follows t h a t  As < 2an for all sufficiently large n. I t  is not  possible 

for any  an to be l, since this would imply  An=l ,  and thus  m = m j .  Hence a n > l  for all 

sufficiently large n, and hence/ ' (z~) = 0. Since also yo(Zn) = 0, it follows t h a t  Qjl(zn, yo(Z~)) = 0 

for all sufficiently large n, where as in P a r t  ii(a), Qjl(z, y) denotes ~Qj(z, y)/~z. I f  Qjl(z, y) 

were not  the  zero polynomial ,  i t  would follow f rom Pa r t  ii(c), t h a t  Qj(z, y) and Qjl(z, y) 

cannot  be re la t ively prime. Since Qj(z, y) is irreducible over  ~4, it would follow t h a t  Qj 

mus t  divide QJl as polynomials  over  ~/, and this would be impossible since the  degree of 

QJl is smaller t han  t h a t  of Qj because Qj is monic. Hence  Qjl(z, y) must  be the  zero poly- 

nomial  over  ~4, and  hence Qj(z, y) has constant  coefficients. Since Qj(z, y) is irreducible 

over  ~/, i t  mus t  have  the  form y - a  and this proves  P a r t  ii(d). 

We will require the  following form of Wit t ich ' s  t heorem [23]. We omit  the  proof  

since it is exac t ly  the  same as the  proof given in [23] for the  case when the  Riccati  equat ion 

has ra t ional  functions for coefficients. (We r emark  t h a t  if the  Riccat i  equat ion is ac tual ly  

linear, the  result  follows immedia te ly  f rom the Wiman-Va l i ron  theory  (w 3).) 

LEMMA 2. (~Tittich [23]). Given a Rieeati equation, 

u' = Ro(z ) + Rl(z  ) u + R2(z ) u 2, (17) 

where the Rj(z) belong to :H. Let Uo(Z ) be a solution o/ (17) which is meromorphie in a neighbor- 

hood o/ 0% and such that T(r, %)4=0 (log r) as r-~ oo. Then the order o/ growth o/ uo(z ) is a 

positive integral multiple o/�89 
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Using this result, we can now prove: 

LEMMA 3. Let m, Q(z, y), and yo(Z) be as in the statement o/ Theorem 1. Then, at least 

one o/the/ollowing holds: 

(a) The order o/growth o/yo(Z) is a positive integral multiple o] �89 

(b) The polynomial Q(z, y) is o/the ]orm, 

Q(z, y) = R ( z ) ( y - a l )  m' ... (y -aq)  ~,  (is) 

where R(z) is a nontrivial element o/ ~;  al, ..., aq are distinct complex numbers, and 

m 1 ..... mq are positive integers satis/yin9, 

m<~m1+...+mq<~2m, and mj${m, 2m) /oral l j .  (19) 

Proo/. I f  (b) fails to be true, then it follows easily f rom Lemma 1, Par t s  (i) and ii(d), 

t ha t  in the representat ion (6), we must  have mjE{m, 2m) for some j E{1 ... . .  q). By  

renmnbering if necessary, we m a y  assume m 1 E {m, 2m}. I n  this case we will show t h a t  

the  order of growth of Y0 is a positive integral multiple of �89 

Suppose first t ha t  m l = 2 m .  Since the degree of Q(z, y) is at  mos t  2m, clearly Qi(z, y) 

must  be linear in y. Hence the equat ion (2) is of the form, (y,)m= R(z)(y + B(z)) 2m, where 
r 2 R(z) and B(z) belong to :H. If  we set V=yo/ (yo+B) ,  then  V(z) is meromorphic  in a 

neighborhood of ~ .  But  since yo(z) satisfies (2), we have Vm= R, and hence V is actual ly  

analyt ic  in a neighborhood of co, having no essential singulari ty a t  co. Since yo(z) satisfies 

the  Riccati  equation, y '  = V(y + B) ~ whose coefficients belong to ~4, it follows from L e m m a  

2, t h a t  (a) holds in this case. 

Now assume tha t  m 1 = m, and we consider the possibilities for q in the representat ion 

(6). I f  q = 1, then  since the  degree of Q(z, y) cannot  exceed 2m, equat ion (2) mus t  have 

one of the forms, 

(y,)m = R[z)(y+ B(z))m or (y,)m = R(z)(y2 + B(z)y+ A(z))m (20) 

where A, B and R belong to ~/. As above, it again follows from Lemma 2 tha t  the order of 

V ' Yo is a positive integral multiple of ~,1 by  setting =yo/(yo+B) in the  first ease, and 
2 V = Yo/(Yo + Byo + A) in the second case. 

Hence we are left with the  case m I = m and q >~ 2. Of course Ql(z, y) must  be linear in y, 

or the  degree of Q(z, y) would exceed 2m. We distinguish two subscases. Suppose first t h a t  

for some j>~2, we have mr 2m). Then we mus t  have q=2, ms=m,  and Q2(z, y) is 

linear in y. Hence equat ion (2) is of the form (y,)m = R(y + B) m (y +A)  m, where A, B, and R 
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belong to :~. As before, b y  sett ing V=yo/ (yo+B)(yo+A) ,  it follows f rom L e m m a  2 t h a t  

conclusion (a) holds. 

I n  the only case remaining, we have m l = m ,  q>~2, and ms~(m , 2m} for all j~>2. 

By  Lemma 1, Pa r t  ii(d), it follows tha t  for j >~2, each Qs(z, y) is of the form y - a  s, where a s 

is a constant.  Hence yo(Z) satisfies the equation, 

(y')'~ = R(z) (y § B(z)) m (y - a2)m~ ... (y - aq)'~q, (21) 

where B and  R belong to ~ ,  and  a2 .. . . .  aQ are distinct constants.  Since the  degree in y 

of the r ight  side of equat ion (21) is at  most  2m, and since ms~{m , 2m} for ]~>2, we 

obviously have, 

m e + . . . + m q ~ m ,  and m j < m  f o r ? ' = 2  . . . . .  q. (22) 

We now assert t ha t  for each j E{2, ..., q}, the funct ion yo(Z)-a s must  have infinitely 

m a n y  zeros in every neighborhood of oo. I f  we assume the cont rary  for some j, say for 

] = 2 ,  then  Vo(Z ) ~ 1/(yo(z ) -a2)  is analyt ic  in a neighborhood of ~ .  Since Y0 satisfies (21), 

clearly Vo(Z ) satisfies the equation, 

( - 1)'~(v') m = R((a 2 § B)v  § 1)'n(1 -t b3v) m ... (1 +bqv)mqv ~ (23) 

where bs=a2-aj ,  and a = m - ( m 2 + . . . + m q ) .  We observe tha t  each bs~=0 , and a 2 + B ~ 0 ,  

by  tile distinctness of the factors Qk(z, y) in (6). Hence, as a polynomial  in v over ~ ,  the 

degree of the r ight  side of (23) is 2 m - m =  which is greater t han  m by  (22). Hence equat ion 

(23) possesses only one term of maximal  total  degree in v, v', and by  the Wiman-Val i ron  

theory  (w 3(c)), it mus t  follow tha t  for the analyt ic  funct ion Vo(Z), we have T(r, Vo)= 

0 (log r) as r-~ o~. Of course, this leads to an  immediate  contradict ion of our assumption 

(3) for Y0, and thus proves the assertion. 

Returning to equat ion (21), let j>~2, and let z 0 be a zero of yo(z)-as of order dj. I f  

[z01 is sufficiently large, then by  L e m m a  1, Pa r t  ii(c), the r ight side of equat ion (21), when 

y=yo(z), has a zero at  z 0 of multiplici ty msd s. F rom equation (21), Y0 also vanishes at  z 0 

with multiplici ty d s-- 1, so clearly 

d j > l ,  ( m - m j ) d j = m ,  and mj>~m/2, (24) 

for ] = 2  ... .  , q. I n  view of (22), it now easily follows tha t  q~<3, so either q = 2  or q = 3 .  I n  

either case, equat ion (21) has only one term of maximal  total  degree in y, y', so by  the  

Wiman-Val i ron  theory  (w 3(c)), yo(z) must  have infinitely m a n y  poles in every neighborhood 

of (xD 

We now distinguish the  two cases q = 2 and q = 3. If  q = 2 and z 1 is a pole of yo(z) of 
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order (~, then  if ]zl] is sufficiently large, i t  follows f rom equat ion (21) t h a t  

(O+l )m=~(m+me) .  Thus  m = ~ m  2. Since m~<m by  (22), we have  ~ > 1 .  Bu t  since 

m., >~m/2 by  (24), we mus t  then  have  5 =2 ,  so m = 2 m  2. Hence  equat ion (21) has the  form 

(y,)2m~ = R(z) (y + B(z)) ~ (y - a2) ~,  (25) 

where B and R belong to ~/. Set t ing V = ' 2 (Yo) /(yo + B) (yo-a~), and noting t h a t  Vm2= R, 

it follows as before t h a t  V belongs to  ~/. Now if we set u o = Yo/(Yo + B). then  Yo = a~ + (u~[ V). 

Comput ing Y0 and subst i tu t ing into the  definition of V, we see t h a t  the meromorph ie  

funct ion u 0 satisfies the  relation, 

((2u~ V -uoV') /V~) ~ = (a 2 + B + (U2o/V)) ~. (26) 

Hence  u 0 mus t  sat isfy one of the  two Riccat i  equat ions defined b y  (26). Since bo th  of 

these Riccat i  equat ions have  coefficients belonging to the  field ~ ,  and since T(r, Yo)= 

2T(r,  % ) + 0  (log r) as t ->co,  i t  follows f rom L e m m a  2 t h a t  the  order of g rowth  of %,  

and  hence of Y0, is a posi t ive integral  mult iple  of �89 

Finally,  we consider the  case q = 3. In  this case if z 1 is a pole of yo(z) of order ~, 

and if Izll is sufficiently large, then  it follows f rom equat ion (21), t h a t  ( ~ + l ) m =  

5(m+m2+m3), so m=~(m2+m3). Since mj>~m/2 b y  (24), it easily follows t h a t  5 =  1, and  

m2=m3=m/2.  Thus  equat ion (21) is of the  form, 

(y,)2m~ = R(z) (y + B(z)) 2m~ (y - a2) ~ (y -a3) '~. (27) 

Since yo(z) satisfies (27), it easily follows t h a t  yl(z)=l/(yo(z ) -a2) satisfies the  equation,  

(y,)2~ = Rl(z ) (y + B~(z))2m (y _ bl)~, (28) 

where Rl=R(a2+B)~m~(ae-a3) m~, B I=I / (a2+B) ,  and bl=l / (aa-a2) .  Since R 1 and  B 1 

obviously:belong to  ~/, clearly (28) is an equat ion of the  form (25), and  we saw t h a t  any  

solution of (25) whose Nevanl inna  characterist ic is not  0 (log r) as r -~co,  mus t  have  

order of growth equal to a posit ive integral  mult iple  of �89 Since T(r, Yl) = T(r, Yo) + 0 (log r) 

as r-+ co, i t  follows t h a t  the  order of growth  of y~, and  hence of Y0, is a posi t ive integral  

mult iple  of �89 This concludes the  proof of L e m m a  3. 

LEMMA 4. Let m, Q(z, y), and yo(Z) be as in the statement o] Theorem 1. Then, at least 

one o] the ]olIowing holds: 

(a) The order o[ growth o] yo(Z) is a positive integral multiple o/ 1; 

(b) There exist constants a, b, c, d, with a d - b e ~ O ,  such that i] yl(z)=(ayo(z)+b)[ 

(Cyo(z) +d), then yl(z) satis]ies a di]]erential equation o] the ]orm, 
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(y,)m ___ Rl(Z ) (y _ bl)r, ... (y _ bt)r,, (29) 

where R 1 is a nontrivial element of ~4; t<~4; b I . . . . .  b t are distinct complex numbers,  and  

where r 1 . . . . .  r~ are posit ive integers satis/ying the conditions, 

r l + . . . + r t = 2 m  , 1,,<r~<m, and m = ~ j ( m - r j ) ,  (30) 

/or 1 <~ ] <~ t, where 2j is an  integer greater than 1. 

Proo/.  We assume tha t  (a) fails to  hold. Then from Lemma 3, we know t h a t  yo(z) 

satisfies the differential equation, 

(y,)m = R ( z ) ( y - a 1 )  ~' ... (y -aq)mq, (31) 

where R(z)  is a nontr ivial  element of :H, a s . . . . .  aq are distinct complex numbers,  and the 

positive integers mj satisfy (19). 

We first show t h a t  for each j = 1 . . . . .  q, the  funct ion yo(z) - a j  must  have infinitely m a n y  

zeros in every neighborhood of co. This is very  easy to prove, since under  the change of 

variable v =  1 / ( y - a j ) ,  equat ion (31) becomes, 

( - 1) m (v') m = R(z)  v~m-r [ (1 + (a~ - ak) v) ~k (32) 

The degree in v of the  r ight  side of (32) is 2 m - m j  which by  (19) cannot  equal m. Hence 

equation (32) has only one nontrivial  te rm of maximal  total  degree in v, v', and thus by  

the Wiman-Val i ron  theory  (w 3(c)), the Nevanl inna characteristic of any  analyt ic  solution of 

(32) in a neighborhood of c~ mus t  be O (log r) as r-~oo, which proves the assertion in 

view of (3). 

I f  jfi{1 ...... q),  and  z 1 is a zero of y0(z)-a~ of order 2j whose modulus  is snfficiently 

large, then from (31), y~ vanishes at  zj so 2 j > l ,  and m ( 2 j - 1 ) = m l X  j. Hence, for each 

~=1 .. . .  ,q,  

( m - m j ) t j = m ,  l<~m~<m,  and mj>~m/2. (33) 

We now distinguish two cases. Suppose first t h a t  m~ +.. .  + m e = r e .  I n  this case, i t  

follows f rom (33), t h a t  q < 2 .  Clearly q = 2 ,  or otherwise m l = m  contradict ing (19). Since 

mj>~m/2, it follows t h a t  m l = m 2 = m / 2  , and hence (31) has the form, 

(y,)2m, = R ( z ) ( y  - a l )  "~ (y - a2) m'. (34) 

I f  we set vo(z ) = l[(yo(z ) --as) , then v o would satisfy the differential equation, 

(V') 2rn" = R(z)  (a 1 --a2)m~V~rn'(V -- (1/(a~ --al))) m'. (35) 
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Of course, this is an equation of the form (25), and for such equations we proved tha t  the 

order of growth of any solution v(z) for which T(r, v) ~ 0 (log r) as r--> 0% must  be a positive 

integral multiple of �89 In  view of our assumption (3), it would follow tha t  the order of growth 

of re(z), and hence of yo(z), would be a positive integral multiple of �89 contradicting our 

assumption tha t  conclusion (a) fails to hold. 

Hence ml§247 and so by  (19) we must  have, 

m < m l + . , . §  q <~ 2 m .  (36) 

Thus equation (31) possesses only one term of maximal total  degree in y, y', so in view of 

assumption (3) and the Wiman-Valiron theory (w 3(e)), y0(z) cannot be analytic in some 

neighborhood of 0% so y0(z) must  have infinitely many  poles in every neighborhood of oo. 

If  z 2 is a pole of yo(z) of order s whose modulus is sufficiently large, then from (31), 

(s + 1)m = ( m  I § . . .  +mq)s. (37) 

Now from the last relation in (33) and the second inequality in (36), it follows that 

q <~ 4 (with equality holding only if m I +... § mq = 2m). Hence, if ml § § mq = 2m, then in 

view of (33), equation (31) is already in the desired form (29), and we may take t=q, 

bj=aj,  rj=mj,  RI=J~ , and yl=yo. 

Thus we need only consider the case rot+ ... +mq < 2m (in view of (36)). In  this case, 

set t = q §  (so t~<4), choose a complex number  at~{a I ..... aq}, and set y i= l / ( yo -a t ) .  ~t 

is easily verified tha t  Yl is a solution of an equation of the form (29), where, 

R~ = ( - 1) -~ R(a t -- al)m~ ... (at --aq) ~q, (as) 

b j =  1/(a~-a~) for l~< j~q ,  while b~=0, and where, 

r j = m j  for l<j<~q, while % = 2 m - ( m l + . . . + m q ) .  (39) 

Since we are assuming rot+... +mq < 2m, it follows (using (36) and (37)) tha t  1 ~r~ <m, 

m=s(m-r~) ,  and s > l .  In  view of (33), it now follows tha t  the conditions (30) are all 

satisfied proving Lemma 4. 

Before proceeding to solve equation (29), we require a simple result concerning elliptic 

functions. We recall tha t  the order of an elliptic function w(z) (which we will call the elliptic 

order of w(z) to distinguish it from the order of growth of w(z)) is the number  of poles 

(counting multiplicity) of w(z) lying in the fundamental  parallelogram. (Of course, we 

use the convention tha t  if (~1, 63 are primitive periods for w(z), then the fundamental  

parallelogram consists of the interior of the parallelogram with vertices at  0, ~ ,  63, ~1 +6~, 
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together  with the  vertex O, and  the two sides intersecting at  O, bu t  wi thout  the  endpoints  

(~1 and 8z.) I t  is well-known (e.g. [15, p. 366]) t ha t  if w(z) is of elliptic order q, then  w(z) 

assumes every complex value exact ly q times in the fundamenta]  parallelogram. 

LEMI~A 5. Let G(w) be a polynomial having constant coeHicients , and let w(z) be a non- 

constant el l ipt ic/unction o/ elliptic order q, which is a solution o/ the differential equation 

(w')q=G(w). Then: 

(a) I /  c o and c I are complex numbers satis/ying c~=G(co) , then there exists a complex 

number $ such that w(~)=c o and w'(~)=c 1. 

(b) A n y  solution o/ the differential equation (w')q= G(w) which is meromorphic and non- 

constant in a region o/ the plane must be o/ the /orm w(z + K)  where K is a constant. 

Proo/. Par t  (a): I f  c o is a root  of G(w), and if $ is a point  for which w($) = c  0, then  clearly 

w'(~) = 0 = e r Hence we m a y  assume tha t  G(%)4=0. Then, f rom the differential equat ion it 

follows tha t  all roots of the equation, w(z)=c  o are simple, and hence there are q distinct 

roots z 1 .. . . .  zr of w(z )=% in the fundamenta l  parallelogram. Since c1:~0, the equation, 

y~-cT=O, has q distinct nonzero solutions for y, say  cl, ..., % Assume t h a t  w'(zj):#c I for 

~'E{1 ... . .  q}. F rom the differential equat ion it follows t h a t  for each ], (w'(zj))q=cL and 

hence from our assumption, the value of w'(zj) is one of the q - 1  numbers  c a .. . . .  %. Thus 

for at  least two distinct values of ?" (say y=r  and y=n),  we have w'(z j )=% for some 

k e {2 . . . . .  q} ,  s o  that 

w(z~) = c o = w(z~) and w'(z~) = cz = w'(z~). (40) 

Then if we set, 

wl(z ) = w(z + z n - zr) , (41) 

it easily follows from (40) t h a t  w(z) and  wl(z ) are both  solutions of the initial-value problem, 

w" = (w')2G'(w)/qG(w), W(Zr) -- C o, W'(ZT) = Ck, (42) 

and hence must  coincide by  the s tandard  uniqueness theorem for ordinary differential 

equations (e.g. [2, p. 19]) since the  r ight  side of the  differential equat ion in (42) is analyt ic  

as a funct ion of (w, w') around (Co, %). Hence z~-zT is a period o f  w(z) which obviously 

contradicts the fact  t h a t  z~ and zr are distinct numbers  both  lying in the fundamenta l  

parallelogram. This contradict ion proves t h a t  w'(z j )=c I for some ] E {1 . . . . .  q} and we m a y  

take  $ =z j  proving Pa r t  (a). 

P a r t  (b): I f  wo(z ) is another  solution of the  differential equat ion (w')q=G(w), which is 

meromorphie  and noncons tan t  in a region D, then  obviously there exists a point  zrE D 
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such that  Co=Wo(Z~) is not co or a root of G(w). Setting %=W'o(Zr), we have c~=G(co) so by 

Par t  (a), there is a complex number zn such that  w(z~)=c o and w'(zn)=%. Hence if we 

define Wl(Z ) by  (41), then clearly Wo(Z ) and Wl(Z ) are both solutions of the analytic initial- 

value problem (42) and thus must coincide as in the proof of Par t  (a). This proves Part  (b). 

L ] ~ M A  6. Let m, Q(z, y), and yo(z) be as in the statement o/ Theorem 1. Then, at least 

one o/ the /ollowing holds: 

(a) The order o/growth o/ yo(z) is a positive integral multiple o/ �89 

(b) There exist constants al, bl, c~, dl, with ald~-b~c 1=#0, such that i/ y~=(alyo ~-b~) / 

(Clyo +dl), then y~(z) satis/ies a di//erential equation having one o/ the /ollowing /orms: 

(y,)2 = R~(z) ( y - e l ) ( y  -e2) (y -e3), 

(y,)a = R~(z)(y _fl)2 (y +fl)2, 

(y,)4 = R2(z ) (y_fl)2ya, 

(y,)6 = R~(z) (y - f l )3y4 .  

(43) 

(44) 

(45) 

(46) 

Here, R 2 is a nontrivial element o/ ~t, the ej are distinct constants whose sum is zero, and fl 

is a nonzero constant. 

_Furthermore, in Case (b), there exist primitive periods 81, 82, /or the Weierstrass 

~-/unction 9(z: 81, 8~), and a/unction g(z) which is analytic in a slit region, D={z:  Iz I > K ,  

arg z ~ } / o r  some K > 0 ,  such that the/ollowing hold: 

(A) I/y2(z) satis/ies (43), then (g'(z))2=R2(z)/4 and y~(z)=~)(g(z); (~1, ~2). 

(B) I/y2(z) satisfies (44), then (g'(z))a=2R2(z)/27 and y2(z)=~)'(g(z); 81, 52). 

(C) I/y2(z) satis/ies (45), then (g'(z)) 4-- R~(z)/44 and y~(z)= 92(g(z); ~1, ~).  

(D) I /  y2(z) satis/ies (46), then (g'(z))6= R2(z)/66 and y2(z)=~3(g(z); 81, 82). 

Proo/. We assume that  the order of growth of yo(z) is not a positive integral multiple 

of �89 Then from Lemma 4, we know that  some linear fractional transform Yl of Y0 satisfies 

an equation of the form (29) where (30) is satisfied. Since rj >~ m/2, it follows easily tha t  t 

is either 3 or 4, and we distinguish these possibilities. 

Assume first that  t=4 .  I t  follows from (30), tha t  ).~1+ ... + ~  =2,  and since the ~j 

are integers exceeding 1, we must have Zj=2 for j = l ,  2, 3, 4. Hence r~=m/2 for each j 

so m is even, and if we set r=m/2,  then Yl satisfies the differential equation, 

(y,)2r = Rl(z ) (y _ bl)r (y _ b2)~ (y _ ba)~ (y _ b4)~. (47) 
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t 2 I f  we set R 8 = (Yl)/(Y~-bl) ... (Y I -b4 ) ,  then R3(z ) is meromorphic in a neighborhood of 

and R~ ~ R 1. Hence R3 is a nontrivial element of ~4, and Yl satisfies the differential equation, 

(y')~ = Rs(z)  (y - b~) (y - b2) (y - b3) (y - 54). (48) 

I f  we set y 2 = ( y l - b 4 ) - 1 - ~ = l  ( b j - b 4 ) - l / 3 ,  then it is easily verified tha t  y~ satisfies a 

differential equation of the form (43), where R 2 is a nontrivial element of ~ and where the 

ej are distinct constants whose sum is zero. In  view of this latter condition it is well-known 

(e.g. [15, pp. 403-404]) tha t  there exist a pair of primitive periods ~ ,  83 such tha t  the 

Weierstrass V-function ~9(z)=~(z; (~1, (~) satisfies the equation, 

(~o'(z)) ~ = 4(~(z) - el) (~(z) - e~) (~9(z) - e3). (49) 

Now let K > 0  be so large tha t  y~(z) is meromorphic on ]z[ > K ,  and R2( z ) i s  analytic 

and nowhere zero on I z ] >  K. With the region D as in the s tatement  of the lemma, 

there exists an analytic branch of (R~(z)/4)�89 on D. Let  g l ( z ) d e n o t e  a primitive of this 

branch on D, so tha t  (g~(z))2=R2(z)/4. Choose a point z o E D  so tha t  bo=y2(Zo) does not 

belong to the set {Q, e2, e 3, ~} ,  and set b~=y~(zo)/g;(zo). Then from (43), we have 

b~ =4(b 0 - e l ) (b  0 -%) (b  o -e3). In  view of (49) and the fact tha t  ~o(z) is of elliptic order 2, it 

follows from Lemma 5, tha t  there is a point z 1 such tha t  ~(zl)=b 0 and ~'{Zl)=b 1. Now 

for z E D, set 

g(z) - g~(z) + z~ - g~(z0), (50) 

and ya(z) =~o(g(z)). Then from (49), it easily follows tha t  y3(z) also satisfies the differential 

equation (43) on D,  and clearly, 

y~(Zo) = b o .= y~(zo) and y~(zo) = y~(zo). (51) 

By our choice of b 0 and bl, there exists ~n analytic branch F(u)  of ( 4 ( u -  e l ) ( u -  e2)(u-  e3))~ 

in a neighborhood of u=bo ,  such tha t  _F(b0)=b 1. From (43) and (51), it now easily follows 

tha t  y2(z) and y3(z) are both solutions of the analytic initial value problem, 

y '  = g'(z) F (y ) ,  y(zo) = bo, (52) 

and hence must  coincide by  the uniqueness theorem for ordinary differential equations. 

This proves the representation described in Par t  (A). 

We now consider the case where t = 3  in (29) and (30). Then ~ 1  + ~  +~.~1 = 1, and by 

renumbering if necessary, we may  assume ~1~<~ ~<23. I t  is clearly not possible for 22 

to exceed 3, so ~ is either 2 or 3. I f  ~1=2, then ~ + ~ 1 = � 8 9  Clearly then ~ > 2 .  I f2~--3,  

then ~a=6, while if ~u=4, then ~ = 4 .  I t  is clearly not possible for 23 to exceed 4 ff 

~ = 2 .  Secondly, if ~ = 3 ,  then ~ 1  + 2 ~  =_~. I f  ~ = 3  then ~ = 3 .  I t  is clearly not possible 
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for 22 to exceed 3 if 2~ =3 .  Hence  the  possibilities for (~1, 2~, Ra) in (30) are (3, 3, 3), (2, 4, 4), 

and  (2, 3, 6), and  we consider each case separately .  

Suppose first  t h a t  (21, 22, 23)= (3, 3, 3). Then each r~ in (29) is 2m/3  so t h a t  m is a 

mult iple  of 3. Hence  if we set r = m / 3 ,  then  y~(z) satisfies the  equation,  

(y,)3~ = Rl(Z ) (y _ b~)~ (y - b2) ~ (y - ba) er. (53) 

Sett ing R 3 = (y~)3/(y 1 -  bl)2 ( Y l -  b2) ~ (Yl - -  b3)~, it follows t h a t  R3(z ) is meromorphic  in a 

neighborhood of ~ ,  and R~ = R 1. Hence  R 3 is a nontr ivia l  e lement  of ~4, and  Yl satisfies 

the  differential equation,  

(y,)3 = R3(z ) (y _ b l )2  ( y  _ b~)~ ( y _  b3)~. (54) 

b ~-1 we ( b j - b z ) - l / 2 ,  t hen  it  is easily verified t h a t  y~ satisfies an  I f  we set y 2 = ( y l -  31 --.~j=l 

equat ion of the  fo rm (44) where R= is a nontr ivial  e lement  of ~4, and  fl is a nonzero constant .  

I n  view of this la ter  condition, i t  follows f rom well-known results (e.g. [15, p. 403]) t h a t  

there  exist  pr imit ive  periods ~1, ~ such t h a t  gd(z)=~o(z; ~1 ~2) satisfies the  differential  

equation,  (~o')==4~3+fl 2. Hence  ~o'(z) satisfies the  equation,  

(~" (z) ) a = (27/2)(~o'(z) -f l)2(p '(z)  +fl)2. (55) 

Choosing K sufficiently large as before, there  exists an  analyt ic  funct ion gl(z) on D such 

t h a t  (g'l)3=2R2/27. Choose a point  zoE D  such t h a t  bo=y2(zo) does not  belong to the  set  

(fl, _ ~ ,  co), and again set bl=y~(zo)/g'l(zo). Then in view of (44), (53), and the  fact  t h a t  9 '  

is of elliptic order 3, it follows f rom L e m m a  5 t h a t  there is a point  z 1 such t h a t  9'(Zl) = b 0 

and  ~o"(Zl)=b 1. Sett ing y3(z)=~'(g(z)) ,  where g(z) is defined b y  (50), i t  easily follows t h a t  

y2(z) and y3(z) are bo th  solutions of equat ion (44) and  t h a t  (51) holds. Hence  if F(u)  

denotes the  analyt ic  branch  of (27(u-f l)~(u+fl)2/2)  1/3 around  u =b0, satisfying F(bo)=bl ,  

then  it  is easily verified t h a t  y2(z) and Ya(Z) are bo th  solutions of the  init ial-value prob lem 

(52) and  thus  coincide. This proves  the  representa t ion  described in P a r t  (B). 

How assume (21, 22, 2a)= (2, 4, 4) in (30). Then  it  easily follows f rom (29) and  (30) 

t h a t  m is a mult iple  of 4, and  t h a t  Yl satisfies a differential equation,  

( y ' ) a = R s ( z ) ( y - b l ) 2 ( y - b 2 ) a ( y - b s )  a, (56) 

where R 3 is a nontr iv ia l  e lement  of ~ ,  and  the  b~ are dist inct  constants.  Then if we set, 

Y2 = (Yl-b3) - 1 -  (b~-b3) -1, i t  is easy  to  ver i fy  t h a t  Y2 satisfies a differential  equat ion of 

the  form (45), where R 2 is a nontr ivia l  e lement  of ~4, and/~  is a nonzero constant .  F r o m  
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this latter condition, it  follows as before tha t  there exist primitive periods ~1, ~e, such that  

[9(z) =[9(z; c~i, ~2) satisfies the equation, ([9') 2 =419 z-4/519. Hence G=[9 ~ satisfies, 

(G')~ = 4~(G-/~)2 G3. (57) 

For K > 0  sufficiently large, there exists an analytic function gl(z) on D such that  

(g~)a=R2/4~. Choose z0ED such that  bo=y~(zo) does not belong to the set (0,/5, oo}, and 

set b 1 =y'2(Zo)]g'l(Zo). Since G is of elliptic order 4, it follows from (45), (57) and Lemma 5 

that  for some point zl, we have G(zl)=b o and G'(zl)=b 1. Setting y~(z)= G(g(z)), where g(z) 

is defined by (50), it follows that  y3(z) also satisfies (45), and that  (51) holds. Then if F(u) 

is the analytic branch of (4a(u-/3)2u3)l/a around u =b o satisfying F(bo)=bl, it  is easy to see 

tha t  y2(z) and y3(z) are both solutions of the initial-value problem (52) and thus coincide. 

This proves the representation described in Par t  (C). 

The only remaining possibility in (30) is that  (~1, ~2, ~z) = (2, 3, 6). I t  easily follows that  

m is a multiple of 6, and that  yl(z) satisfies an equation, 

(y')~ = R~(z) (y - bl) 3 (y - b2) 4 (y - b3) 5, (58) 

where R 3 is a nontrivial element of 7/, and the bj are distinct constants. If we set 

y ~ = ( y l - b a ) - l - ( b 2 - b 3 )  -1, then i~ is easily verified that  Y2 satisfies an equation of the 

form (46), where R 2 is a nontrivial element of ~ and the constant t3 is nonzero. As before, 

there exist primitive periods ~1, ~2 such that  [9(z)=[9(z;/91,/9~) satisfies the equation, 

([9')~=4193-4/5. I t  easily follows that  G1=[93 astisfies the differential equation (G'I)~= 

66(G1-/5)3G~. If K > 0  is sufficiently large, let gl(z) be an analytic function on D such 

that  (g~)6 =R2/6 ~. Choosing a point z0E D such that  b o =y~(zo) does not belong to the set 

(0,/5, ~} ,  and setting bl=y~(zo)/g'l(zo), it follows from Lemma 5 that  for some point Zl, 

we have Gl(zl)=b o and G'l(Zl)=b 1. Setting y3(z)=Gl(g(z)) where g(z) is defined by (50), 

it is easy to see that  y3(z) satisfies equation (46) and the conditions (51). Then if F(u) is 

the analytic branch of (66(u-/5)~ua) 1/6 around u = b  o satisfying F(bo)=bl, it now follows 

easily tha t  y2(z) and ya(z) both satisfy the initial-value problem (52) and hence must 

coincide. This proves the representation described in Par t  (D), and concludes the proof of 

Lemma 6. 

In order to compute the order of growth of the function y~(z) in Lemma 6, we require 

the following result. 

LEMMA 7. Let D be a region ol the ]orm, {z: Izl > g ,  arg z4=~} ]or some g > 0 .  Let 

g(z) be an analytic ]unction in D such that as z-+ oo in D, 

g'(z) = cz~(1 +o(1)) and g"(z) =z~-l(co~+o(1)), (59) 



240 S. B. :BANK AND R. P, KAUFMAI~ 

/or some constants a and c, with ~ > - 1 and c=~O. Let Wo(Z ) be a nonconstant elliptic/unction 

and assume that y(z)=Wo(g(z)) is meromorphic in a neighborhood o[ c~. Then/or  some con- 

stants K 1 > 0 and K s >0,  the inequalitiea n(r, c~, y)>1 K1 r2+2~ and T(r, y)>~ K2r ~+2~ hold/or 

all su//iciently large r. 

Proo/. Choose a cons tant  B > 0 which is greater  t han  the  length of the  longer diagonal  

of the  fundamen ta l  paral le logram for We(Z), and set  A = (2 + 2B)]]c], where c is as in (59). 

Fo r  a point  z o in the  r ight  half-plane,  wi th  ]z0] = r  , let D(zo) denote  the  closed disk, 

] z - % ]  <Ar-~. For  ~ED(zo), clearly, 

r - A r - ~  < I~] <<- r + Ar-% (60) 

and since a > - 1 ,  i t  easily follows f rom the  first  inequal i ty  in (60) t h a t  ff r is sufficiently 

large, then  D(zo) lies in the  slit region D so t h a t  the  es t imates  (59) are val id on D(zo). 

F r o m  (59) and  (60), we see t h a t  

[g"(~) l<~(l~l  ] c ] + l ) ( r •  ~-1 on D(%), (61) 

if r = t % ] is sufficiently large (where the  plus sign is used ff cr ~> 1, while the  minus  sign is 

used if - 1  < ~ <  1). Since the  radius of D(zo) is At -% and since ~ >  - 1 ,  we see f rom (61) 

t h a t  if r = ]%] is sufficiently large, then  

I g' (~) - g' (%) I < 2A( I ~ [ I ~ I + 1) r-1 for ~ e 9(%).  (62) 

For  fixed %, define the  funct ion h(z) on D(%) b y  

g(z) = g(zo) + (z - %)g'(%) + h(z), (63) 

so t h a t  h'(z) =g'(z)  -g ' (%) and h(%) =0 .  I n  view of (62), we see t h a t  if r = I z01 is sufficiently 

large, then  

]h(z) l < 2A~(lul  Icl + 1)r -1-~ for zeD(zo). (64) 

Le t  w be a point  in the  disk / w - g ( % ) [  ~<B, and write 

g(z) - w  =/(z) +h(z), (65) 

where (from (63)), / ( z ) = g ( % ) - w + ( z - % ) g ' ( % )  on D(%). I n  view of the  first  es t imate  in 

(59) and  the  definit ion of A, it  easily follows t h a t  if r = I%1 is sufficiently large, t hen  on 

the  bounda ry  of D(z0) we have  I/(z) ] >~ 1, and hence in view of (64), I/(z) I > ]h(z) ] since 

~ >  - 1 .  Since i t  is easy to  see t h a t  the  linear funct ion /(z) has its zero inside D(%), it 

follows f rom Rouch6 ' s  theorem (and (65)) t h a t  g ( z ) - w  has  a zero inside D(zo) if 
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I v  - g(zo) I <~ B. Thus we have shown tha t  if z 0 is a point in the right half-plane with r = I% [ 

sufficiently large, then the image under g(z) of the interior of D(zo) contains the disk 

Iw-g(zo)] ~ B. By definition of B, the latter disk must  contain a pole of the elliptic 

function w0, and hence y(z)=wo(g(z)) has a pole on the interior of D(zo). Thus clearly, if 

ql(r) denotes the maximum number  of disjoint open disks of the form ] z - z  0 ] < A l z  0 ]-~ 

which lie in the set J r  defined by  Re (z)>~0, r/2 < ]z] ~<r, then for all sufficiently large r 

we have n(r, c%y)>~ql(r ). Since the radius t(zo) of each such disk clearly satisfies 

t(Zo) <~Kor- % where K 0 = m a x  {A, 2aA}, it suffices to compute the maximum number  q(r) 

of disjoint open disks of radius s=Kor-~ which lie in Jr, for then ql(r)>~q(r). Let  

D1 ..... Dq(rl be disjoint open disks of radius s lying in J ,  and let z s be the center of Dj. 

Then clearly, if I r denotes the set defined by  Re (z)>~s, ( r /2)+s  < I z] < r - s ,  and if z E I ,  

then the open disk of radius s around z clearly lies in Jr, and hence by  the definition of 

q(r) must  have a point in common with some Dj. I t  follows tha t  ]z-zs] <2s, and hence 

the disks of radius 2s around z 1 ..... zq(r) c o v e r  Jr" Hence the area of Ir  must  be at  most 

4~rs~q(r). But since ~ > - 1 ,  an elementary estimate on the area of I r shows tha t  this area 

exceeds cxr 2 for some fixed e l > 0  if r is sufficiently large, and hence q(r) exceeds 

(el/4zK2o) r e+2~. Since n(r, ~ ,  y) >~ q(r), the conclusions of the lemma now follow immediately. 

LEMMA 8. Let m, Q(z, y), and yo(z) be as in the statement o/ Theorem 1. Assume that 

Case (b) in Lemma 6 holds, and let y2(z) and R2(z ) be as in that case. Let the Laurent expansion 

o/ R2(z ) around oo be, 
R2(z ) = CoZ~+clz a-I + .... with e 0 =~0. (66) 

Then the/ollowing are true: 

(A) I] y2(z) satis/ies equation (43), then d>~-2, and both yo(z) and y~(z) have order 

o/growth equal to d + 2. 

(B) I/y2(z) satis/ies equation (44), then d>~ - 3 ,  and both yo(z) and y2(z) have order o/ 

growth equal to (2d/3)+2. 

(C) I/y2(z) satis/ies equation (45), then d>~ - 4 ,  and both yo(Z) and y2(z) have order o] 

growth equal to (d/2) +2.  

(I)) 1/y2(z) satis/ies equation (46), then d >1 - 6 ,  and both yo(z) and y2(z) have order o/ 

growth equal to (d/3)+2. 

In  all o/the/our cases (A), (B), (C), (D), above, i] ,~ denotes the order o/growth o/yo(z), 

then the/ollowing hold: 

(a) I] ~=0,  then T(r, y o ) = 0  (log2 r) as r-~oo. 

(b) I / 2  > O, then ~ is either a positive integral multiple o/ �89 or ~, and in addition, there 

are positive constants K 1 and K S such that 
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K~r~ <. T(r, Yo) <~ K2r~ /or all su//ieiently large r. (67) 

Proo/. Each  of the  equat ions (43)-(46) are of the  form (y')q= R2(z)G(y), where q is 

2, 3, 4, or  6 respectively,  and  G(y) has cons tant  coefficients. I t  follows f rom [4, Th. 4] or 

[1, w167 3, 4], t h a t  if R~(z) has the  Lauren t  expansion (66) a round  ~ ,  then  as r - > ~ ,  

(i) T(r, Y2) = 0 (log r) if d/q < - 1, (ii) T(r, Y2) = 0 (log 2r) if d/q = - l ,  and  (iii) T(r, Y2) = 
O(r ~(~/~)+2) if d/q > - 1 .  Since T(r, Yo)= T(r, y~)+ 0 (log r) as r ~  co, i t  follows f rom assump-  

t ion (3) on Y0, t h a t  (i) cannot  hold so d/q>~ - 1 .  I f  d/q= - 1 ,  then  b y  (ii), y~ and  Y0 have  

zero order of growth,  and  conclusion (a) holds. Assume now d/q > - 1. F rom the representa-  

tions (A)-(D) in L e m m a  6, the  funct ion y2(z) is of the  form wo(g(z)), where w e is a 

noncons tan t  elliptic function,  and  where g(z) is analyt ic  in a slit region {z: I z I > g ,  

arg z~=~), and in view of (66), bo th  g' and  g" possess expansions of the  form (59)with  

a =d/q. Hence b y  L e m m a  7, together  with (iii), we conclude t h a t  Y2 and hence Y0 have  

order of growth precisely 2(d/q)+2, and (67) holds with 2=2(d/q)+2. Finally,  since 

q ~ {2, 3, 4, 6), clearly 2 is ei ther  an integral  mult iple  of �89 or �89 which concludes the  proof  

of L e m m a  8. 

Proo/ o/ Theorem 1. The first  conclusion of Theorem 1 is contained in L e m m a s  6 and 8. 

For  the  second conclusion, we note  first  t h a t  it was shown in [1, w 5] t h a t  the  function,  

Yo(Z) = ~o (log ((z + (z 2-4)�89 1, 2gi), is a t ranscendenta l  meromorphic  funct ion in the  

plane whose order of growth is zero, and  satisfies the  differential equat ion,  

(y,)2 = (z~_4)-l(4y2_g2y_g3), (68) 

where g2 and ga are the  invar iants  for ~(z; 1, 2~i). 

Now let n be a posit ive integer.  As in the  last  ease of L e m m a  6, there  exist pr imi t ive  

periods ~1, 52 such t h a t  Gl(Z ) =~3(z; ~1, ~2) satisfies the  equation,  (G'l)6=66(G~+(~))3G~. 

Set G2(z)=G~(z/3 ) so t h a t  (G~)6=(4G2§ But  if G3(z)=G2(e~lSz), t hen  also (G'8) 6= 
(4G3+l)3G~. Since G 2 has elliptic order 6, i t  follows f rom L e m m a  5, P a r t  (b), t h a t  for 

some constant  K, Ga(z)-G2(z§ ). Evalua t ing  a t  z = 0 ,  we see t h a t  K/3 is a pole of 

~(z; ~1, ~2), and hence K is a period of G~(z). Thus  G2(e~iSz)~G2(z ), and it  easily follows 

t h a t  G4(~)=Ge(~ 1/6) is single-valued on I~] < ~ .  Clearly G4(~ ) is meromorphic  on 

0 < ]~1 < co since there  exists an  analyt ic  branch  of ~1/6 in a neighborhood of any  point  

~0#0,  bu t  in addition, i t  follows easily f rom the definition of G2(z ), t h a t  ~ = 0  is ac tual ly  

an isolated singulari ty of G4(~), and  is, in fact ,  a pole. 

Hence  G4(~ ) is meromorphic  in the  plane, and  yo(z)=G4(z ~) satisfies the  equat ion 

(y,)6 = (n/3)%n-O(y + (~))ay4, (69) 
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which is an equation of the form (46). Since yo(z) clearly satisfies assumption (3), it follows 

from Lemma 8, Par t  (D), tha t  Y0 is a transcendental meromorphie solution in the plane of 

equation (69), whose order of growth is precisely n/3, where n is any preassigned positive 

integer. 

For transcendental meromorphic solutions of order n/2, we give three diverse 

examples of such solutions. 

First, y(z )=z  -~12 tan z =12 is a transcendental meromorphic solution of order n/2 of 

the Riccati equation, 

y' = (n/2z) - (n/2z) y + (n/2) z n-1 y2. (70) 

Secondly, yl (z )=cos  z ~j2 is an entire transcendental solution of order n/2 of the 

equation, 
(y,)2 = (n2/4)zn-2(1 _y2). (71) 

Thirdly, we know that  there exist primitive periods 81, 82, such that  G(z) = ~2{z; 81, 82) 

satisfies equation (57) with fl = ~. By an argument very similar to that  used earlier for ~o 8, 

it is easy to see that  the function Gl(z ) = G(z/4) satisfies the condition Gl(z ) =- Gx(iZ ). From 

this it follows that  yo(Z)=Gl(z ~j*) is meromorphic on the plane, satisfies the differential 

equation, 
(y,)4 = (n/4) ,z~-4(y_ (~))2y3, (72) 

and is of order of growth n/2 by Lemma 8, Par t  (C). 

This concludes the proof of Theorem 1. 

5. Remarks 

The results in Lemmas 6 and 8 permit us to obtain a representation of those solutions 

of equation (2) which satisfy condition (3) and whose order of growth is not a positive 

integral multiple of �89 We summarize these results now. 

THEO~E~ 2. Let m be a yositive integer, and let Q(z, y) be a polynomial in y whose 

coe//icients belong to the field ~ described in w 3. Let yo(z) be a meromorphic /unction defined in a 

neighborhood o/ oo which satisfies the di//erential equation, (y')m=Q(z, y), and which has 

the property that T(r, yo)=#O (log r) as r-+ oo. Let ~ denote the order o/growth o/yo(z), and 

assume that ~ is not a positive integral multiple o/�89 Then there exist constants al, bl, % dl, 

with a i d  1 - ble l : :~ :O , such that i/ Y2 = ( al yo + bl) / ( cl yo + dl), then the/ollowing are true: 
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(a) I /~ .  =0 ,  then y~(z) must have one o/the/orms described in (A), (B), (C), (D), o/the 

statement o/Lemma 6, where in the expansion (66) o/R3(z ), we have d = - 2 ,  - 3 ,  - 4 ,  or - 6 ,  

depending respectively on the/orm (A), (B), (C), or (D). 

(b) I/~.>0, then y~(z) must have one ol the/orms described in (B), (D), o] the statement 

o/ Lemma 6, where in the expansion (66) o] R3(z), the integer d is not a multiple o/ 3, and 

d> - 3  ]or ]orm (B), while d> - 6 / o r / o r m  (D). 

2. This r emark  concerns those solutions of equat ion (2) which are meromorphic  in a 

neighborhood of c~  which sat isfy condit ion (3), and  which have  zero order of growth.  I n  

L e m m a  8, it was shown t h a t  any  such solution yo(z) satisfies the  condit ion T(r, Yo)= 

0 (log 2 r) as r-~ oo. We r emark  here t h a t  for  a n y  such solution, T(r, Yo)~o (log 2 r) as r-~ co, 

which is in accord with  the  conjecture (still unproven)  of the  authors  [1, p. 290] t h a t  

a rb i t r a ry  equat ions of the  fo rm F(z, y, y') =0 ,  where F is a polynomial  in all its a rguments ,  

cannot  possess t ranscendenta l  meromorph ic  solutions whose 2qevanlinna characteris t ic  is 

o(log ~ r) as r-~ c~  Although we will not  give a detailed proof of this fact,  we will outl ine 

the  a rgument .  As s ta ted  in P a r t  (a) of Theorem 2, if yo(z) is a solution whose order of 

growth  is zero, then  some linear fract ional  t rans form Y2 of Y0 is of the  form Wo(g(z)), where 

Wo(Z ) is a noncons tan t  elliptic function, and g(z) has the  propert ies  (59) where ~ = - 1 .  

I n  this case, one can modi fy  the  proof  of L e m m a  7 to show t h a t  for all sufficiently 

large r, T(r, y2)>~K1 log2r where K I > 0  is fixed, and  hence T(r, yo)>~K31og2r where 

K 2 > 0 is fixed. To see this, we let A be a constant  satisfying 0 < A < �89 and  1 - 6 A  + A 2 > 0, 

and  we choose B > 0  satisfying the  condition, B < ( 1 - A ) - 3 ( A - 6 A  2 +A 3) l c I~2 where c 

is as in (59). As in L e m m a  7, we denote by  D(zo), the  disk [z-zol  <~Ar where [z0[ = r  

and z o belongs to the  r ight  half plane. Using the  es t imates  (59) where c~ = - 1, and  defining 

h(z) b y  (63), we find t h a t  [ h(z) I ~< 21 c ] A 3/(1 - A)3 on D(zo). Decomposing g(z) - w as in (65), 

i t  follows exac t ly  as in the  proof  of L e m m a  7 (by using Rouch6 's  theorem and our  choice 

of B), t h a t  if r = ]z0] is sufficiently large, then  the  image under  g(z) of the  interior of 

D(Zo) contains the  disk ]w-g(zo)] <~B. I~ow subdivide the  fundamen ta l  paral le logram 

for Wo(Z ) b y  drawing lines parallel  to its edges, into congruent  paral le lograms ~1 . . . . .  ~2s, 

whose longer diagonal  has length less t han  B, and set  ~0(~)=1-~-1 (~-w0(~j)) -1, where ~j is 

the  center of ~2j. Clearly any  disk of radius B contains a point  of the  form ~j + nl~ 1 + n ~ ,  

where nl, n 3 are integers and  (~1, 5~ are pr imi t ive  periods for Wo(Z ). Hence f rom the 

mapp ing  p rope r ty  of g(z) proved  above,  i t  follows t h a t  if r = [ z 0 [ is sufficiently large, then  

q;(y3(z)) has a pole on D(zo). Choosing z 0 to be of the  form 2 g where k is a sufficiently large 

integer,  i t  follows tha t  for some fixed integer k 0, we have  n(2 TM, co, q;(y2(z)))>lk-ko if 

k > k0: thus,  n(r, 0% q)(y2(z))) ~> Ka log r for all sufficiently large r, where K a > 0 is fixed, and  
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hence T(r, qv(y~(z))) >~K 4 log 2 r where K 4 >0  is fixed. Since T(r, q~(y2(z))) =sT(r, Y2) + 0(log r) 

as r-+ 0% our assertion easily follows. 

6. An  additional result 

In  this section, we consider the functions described in Parts  (A)-(D) of Lemma 6, and 

we show that  there always exist primitive periods 51, 52 such that  these functions are 

actually meromorphic in a neighborhood of oo. 

THEOREM 3. Let q be a positive integer, and let R2(z ) be an analytic /unction in a 

neighborhood o/0% which is not identically zero, and which has no essential singularity at oo. 

Let the Laurent expansion o/ Ru around oo be 

Rz(z) =boza+blzd-~+ .... for [z] >K, where b0=~0. (73) 

Let D be the region {z: [z I > K ,  arg z=Vz}, and let g(z) be an analytic/unction on D such 

that (g'(z))q=o, R2(z) where ~ is a nonzero constant. Then: 

(a) 17/wo(z ) is a nonconstant elliptic/unction with the property that the/unction wo(q(z)) 

can be extended to be meromorphic in a neighborhood o/oo, then e 2~1q must be either a/ourth 

root o/ 1 or a sixth root o/ l. 

(b) I] q =2, there always exist primitive periods 51, 52, such that each o/the ]unctions 

p(g(z); 51, 52), 92(g(z); 51, 5~), and ~a(g(z); 51, 52) can be extended to be meromorphic in a 

neighborhood o/ oo. 

(c) I] q=3, there always exist primitive periods 51, 52, such that both o/ the /unctions 

p'(g(z); 51, 53) and ~a(g(z); 51, 53) can be extended to be meromorphic in a neighborhood o/ oo. 

(d) I] q=4,  there always exist primitive periods 51, 53 such that ~)~(g(z); 51, 52) can be 

extended to be meromorphie in a neighborhood o] ~ .  

(e) I /  q =6, there always exist primitive periods 51, 52 such that ~3(g(z); 51, 52) can be 

extended to be meromorphic in a neighborhood o/ ~ .  

Proo/. Clearly g'(z) possesses a convergent expansion, 

o o  

g'(z) =za/q~ cjz -j in D, where c0#0  , (74) 
i - 0  

and where z ~/q denotes the principal branch of the power function in D. If d/q is not  an 

integer, it follows that  for some constant K 1, g(z) possesses the convergent expansion in D, 

if(z) = z alq ~ (cj z-J+1/( - i + 1 + (d/~t))) + K1, (75) 
t=0 

since the infinite series in (75) converges for I z [>K.  
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To prove  P a r t  (a), set  a = e  2€ I f  o ~ is real ,  t hen  o~=  _+ 1 and  the  conclusion holds.  

Hence  we m a y  assume ad is no t  real ,  and ,  in par t i cu la r ,  d/q is no t  an  integer,  so (75) holds.  

Since the  ana ly t ic  con t inua t ion  of z d/~ once a round  the  origin resul ts  in o ~ z ~/q, i t  follows 

f rom (75) t h a t  if Wo(g(z)) can be ex t ended  to  be meromorph ie  in a ne ighborhood  of co, 

t hen  we m u s t  have  Wo(~)~-Wo(Cra~+Kl(1-a'~)) on an  open set in the  plane,  and  hence 

everywhere .  Thus  if 51, 52 are  p r imi t ive  per iods  for w0(z), t hen  aa51, o~52, a-~51, and  a-~52 

are  also per iods  for Wo(Z ). Hence  there  exis t  integers  ml, ms, nl, n2, such t h a t  

o~51 = m151+m25 s and  aa~2 = n151 +ns5s,  (76) 

and  there  exis t  integers  M1, M2, N1, N s such tha t ,  

( f d 5 1 = M 1 5 1 + / 2 5 2  and  (r-d52=N151+Nu(~s. 

I t  follows t h a t  

(~2d __ ( m  I _{_ re2) o ~ -4- ml n 2 -- m2 nl  = 0 

and  

a- s~_  ( M  1 + N2)a-d + M 1 N s _  MeN1  = O. 

(77) 

(78) 

(79) 

Sin ce ad is as sumed non-real ,  i t  eas i ly  follows f rom ( 78 ) and  ( 79 ) t h a t  (m I n s - m s n 1 ) (M 12V s - 

MsN1)  = 1  and  ( m l + n s ) 2 < 4 ( m l n s - m 2 n l ) .  F r o m  these re la t ions,  we see t h a t  

ml n 2 - -m2n I = 1,  ( 8 0 )  

and  (m 1 -~ n2) s < 4. Thus,  if we set  k = m 1 + n s, t hen  k = 0, - 1, or 1, and  aa = (k • (k s -4)1/2)/2. 

I f  k = 0 ,  then  a d =  •  which a re  four th  roots  of 1. I f  k =  - 1 ,  t hen  a a = e  ~s~/3 which are  

cube roots  of 1, while if k = l ,  t hen  a d = e  • which are  s ix th  roots  of 1. This proves  

P a r t  (a). 

W e  nex t  observe t h a t  if d/q is an  integer,  t hen  f rom (74), we have  g(z) =h(z) + c  (Log z) 

on D, where h(z) is ana ly t i c  on [ z ] > K ,  c is a cons tant ,  and  where Log z denotes  t he  

pr inc ipa l  b ranch  of the  logar i thm.  I t  is clear t h a t  if p r imi t ive  per iods  51, 52 are  chosen so 

t h a t  2reic is of the  form r151 A-r252, where rl ,  r s a re  integers,  t hen  for a n y  el l ipt ic  funct ion  

Wo(Z ) with  these  p r imi t ive  periods,  the  func t ion  wo(g(z)) is ac tua l ly  meromorph ie  in a 

ne ighborhood  of co. Hence  for the  r ema inde r  of the  proof,  we can assume,  

d/q is no t  an  integer,  so (75) holds.  (81) 

Now assume q = 2 .  I n  view of (81), d/q = n  + �89 for some in teger  n. Le t  51, 5s be nonzero  

complex  numbers  wi th  a nonrea l  ra t io ,  such t h a t  

K 1 = r181+r25s, for some integers rl ,  r 2. (82) 
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Then  from (75) and the  fact  t h a t  ~(z; 61, 62) is an  even function, the  conclusion of Pa r t  (b) 

now follows. 

Nex t  suppose q = 3 .  I n  view of (81), we have  d / q = n •  1 and t h u s a  d e 2n~dlq e • 

We now assert  t h a t  if 61, 62 are chosen to be nonzero complex numbers  with a nonreal  

ratio,  which satisfy condit ion (82) and  which sat isfy equat ions  (76) for some integers 

ml, me, nl, n2, then  ~'(g(z); 61, (~2) and ~3(g(z); 61, 62) are bo th  meromorphic  in a neighborhood 

of oo. (We observe t h a t  in view of the  ident i ty  a ~s = - ] - a  s, such a pair  (61, 62) always exists, 

since we m a y  take  (61, 62)=(K1, K l a  s) if K 1 ~ 0 ,  and (61, 62)=(1 , a ~) if K I = 0 .  ) To prove  

our assertion, we note  t h a t  since a s=a2d, it  follows t h a t  if (76) holds, then  so does (77) 

for some integers M1, M2, N1, N 2. Hence  (78) and  (79) bo th  hold, and thus  (80) holds. 

I t  is well-known (e.g. [11, p. 125]) t h a t  this implies t h a t  (ad61, as62) is also a pair  of 

pr imit ive  periods for ~(z; 61, 62) so t h a t  9(z; 61, 62) coincides with p(z; as61, o~6~) as func- 

t ions of z. F r o m  the well-known fact  (e.g. [15, p. 374]) t h a t  the  ~-funct ion is homogeneous 

of degree - 2  as a funct ion of (z; 61, 62) it  then  follows t h a t  

p(z; 6~, 62) ~- a-2a~o(a-~z; 61, 62) as functions of z. (s3) 

Since ~-3~ = 1, we see t h a t  ~0'(z; 61, 62) coincides wi th  ~o'(a-az; 61, 63) as funct ions of z, and  

~0S(z; 61, 62) coincides with ~0s(a-az; 61, 63) as funct ions of z. Since the  analyt ic  cont inuat ion 

of the  funct ions z • once a round  the  origin, mult ipl ies these funct ions by  ei ther  a a or a -d, 

our  assertion now follows easily f rom (75), (82), and the  fact  t h a t  d/q=n++_~ in this case. 

This proves P a r t  (c). 

Assume now q = 4 ,  so in view of (81), ei ther d / q = n + � 8 9  or d/q=n++_~ for some 

integer n. In  the  first  case, the  conclusion of P a r t  (d) follows f rom the proof of P a r t  (b). 

I n  the  second case, a n =  _+ i, and as in the  proof  of Pa r t  (e), i t  folIows using (83) t h a t  if 

(61, 6e) satisfies bo th  (82) and  equat ions (76) for some integers m D me, nl, n2, then  ~o2(z; 6a,62) 

coincides with ~02(aaz; 61, 62). (As in the  proof of P a r t  (c), such a pair  (61, 62) a lways exists.) 

Since d/q = n +  ~, it now easily follows f rom the  representa t ion (75) t h a t  ~02(g(z); 61, 62) is 

meromorphic  in a neighborhood of ~ ,  proving P a r t  (d). 

Finally,  if q = 6, then  the cases d/q = n + �89 and d/q = n +_ �89 were covered in the  

proofs of P a r t  (b) and P a r t  (c) respectively.  I n  view of (81), i t  suffices to consider only the  

cases d/q=n++.~. Since aS=e ~:'~13, i t  follows exac t ly  as in the proof  of P a r t  (c) t h a t  if 

(61, 62) is again chosen to sat isfy (82) and  equat ions (76) for some choice of ml, m2, nl, n2, 

then  using (83), the  funct ion ~oa(g(z); 61, 5~) is meromorph ic  in a neighborhood of co. (As 

in P a r t  (c), (61, 62) can be t aken  to be (K1, K1 an) if K1:4-0 , or (1, a s) if K I = 0  , since 

a s a = a a - 1  in this case.) This concludes the  proof  of Theorem 3. 
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