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1. Introduction 

For C*-subalgebras A and B of a C*-algebra C we study the relation A ~ B, which 

means that  for any a in A, there exists an operator b in B such that  []a-b]] <~]laJ[. 

The main reason why we have investigated those relations, is that  we think, that  if y 

is small enough, B must have a subalgebra which shares some of its properties with A, 

and in turn we hope that  we can get information on the space of C*-subalgebras of a given 

C*-algcbra. 

Our methods yield positive answers in several cases, and we prove under some condi- 

tions on A and B that  there exists a unitary operator u on a underlying Hilbert space 

such that  u is close to the identity and uAu* is contained in B, (Th. 4.1, Cor. 4.2, Th. 4.3, 

Th. 5.3). The theorems in section 4 are, generally speaking, obtained in the situation where 

A and B are yon Neumann algebras on a Hilbcrt space and one of them is injective. 

Theorem 5.3 tells that  B contains such a twisted copy of A, if A is finite-dimensional 

and y is less than 10 -a. In particular one should remark that  the result is independent of 

the dimension of A. 

Having the result of section 5 we are able to show in section 6 that  if A is the norm 

closure of an increasing sequence of finite dimensional C*-algebras (AF for short), A and 

B satisfy A ~ B, B ~ A and y is less than 10 -9, then B is also AF. This implies that  B is 

unitarily equivalent to A in these cases. 

At the end of section 6 we study the relations A ~ B, B ~ A for other types of C*- 

algebras, and we find that  if A is nuclear and ~ is less than 10 -2 then B is also nuclear and 

the dual spaces A* and B* are isomorphic via a completely positive isometry. 

The proofs of the results in the sections 4 and 5 are made in three steps. 

Suppose A ~ B, then the first step is to find a completely positive linear map of A 

into B which is close to the identity on A. In  the case where B is an injective yon Neumann 
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algebra one can get this map simply by restricting a projection from B(H) with image B 

to A. 

In the cases where neither A nor B is injective it is in general impossible for us even 

to find a linear embedding of A into B. On the other hand when A is finite-dimensional 

and B arbitrary we get the desired map via the results in section 3. In  that  paragraph we 

do prove that  for any nuclear C*-algebra D the relation A ~ B implies A | D ~ B |  D. This 

tells that  it is possible, simultaneously, to approximate several elements in A with elements 

from B in such a way, that  certain linear and algebraic relations between the elements 

from A are nearly fulfilled by those from B. Having this we can construct a linear com- 

pletely positive map of A into B which is close to the identity on A. 

The second step is to perturb this completely positive map such that  the perturbed 

map is a star-homomorphism of A into B. A technique yielding such a result was developed 

in [6]. The third and final step is to show that  such a star-homomorphism is implemented 

by a unitary close to the identity i.e. the homomorphism is given by a->uau*. Questions 

of this type were discussed in [6] and [7], and it follows that  in the situation considered 

here, we are able to find such a unitary. Therefore we get that  uAu* is contained in B for 

some unitary u close to the identity and we are done. 

In  order to be able to perform the second and third step, the analysis from [6] and 

[7] show, that  it is important that  the algebra A has the property that  any operator in C 

which nearly commutes with all elements in A 1 is close to the commutant of A in C. In  

section 2 we recapitulate these concepts in detail, and we show how the results in [4], [8] 

and [15] can be used to extend the validity of the results in [6] and [7]. 

2. Preliminaries 

In their article [18] Kadison and Kastler defined the distance between two von Neu- 

mann algebras as the Hausdorff distance between the respective unitballs. In  the articles 

[5], [6], [7] we used this notion too, but since then we have found it more natural and 

easier to deal with the distance concept introduced below. The metrics are of course equiv- 

alent. 

2.1. Definition. Let E and F be subspaces of a normed space G and let y >0. 

If for any e with [[eli ~< 1 there exists an / in F such that  lie - / l l  ~<z, then E is said to 
y 

be 7 contained in F and we write E ~ F. If E ~ F for some Y0 <Y we write E c F. The 

distance between E and F is the infimum over all y > 0 for which E ~ F and F _ E. The 

distance between E and 2' is denoted by l I E -  F H . 
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Let  H be a Hilbert space; the algebra of all bounded operators is denoted by  B(H), 

vectors by  small greek letters, operators by  small latin letters, yon Neumann algebras by  

the letters M and N and general C*-Mgebras by  the letters A, B, and C. For an operator 

x in B(H), ad (x) denotes the derivation on B(H) implemented by  x i.e. ad (x) (m) = [x, m] = 

x m - m x .  If  u is any unitary operator in B(H) or more generally in a C*-algebra, Ad (u) 

is defined as the automorphism implemented by u, i.e. Ad (u)(m)=umu*. 

Let  M be a yon Neumann algebra on a Hilbert space H, and let x be a bounded operator 

on H. I f  x is close to the commutant  M '  of M, we get easily tha t  Ilad (x)IM H is small, 

but on the other hand if Ilad (x)[Mll is small we proved in [7], tha t  the distance from x 

to M'  is small provided M is not non injective and of type I I  1. The definition below re- 

flects tha t  we do not know whether a general result is valid. 

2.2. De/inition. Let A be a C*-algebra and let k be a positive real; A is said to have 

property D~ if for any  representation ~ of A on a Hitbert space H and any  operator x in 

B(H) 

inf { l l x -ml l  Ime:~(A)'} <~ kHad (x)l~(A)l 1. 

2.3. De/inition. For any/c, 0 4 k ~< 1 we define d(/c) =/c2 ~(1 + (1 - /c  2) �89 �89 

During the last years the injectivity concept in the category of C*-algebras and 

completely positive maps, has been investigated very much ([3], [4], [8], [9], [15], [25]). 

We benefit from this, since Remark  6 of [15] implies, that  injective yon Neumann algebras 

do have the property P of Schwartz, so we obtain the follo~dmg: 

2.4. T/~EOREIVI. I /  M ks an injeetive von Neumann algebra on a Hilbert space H, then 

]or any x in B(H) 

�89 (x)lM[I <~d(x, M')  < Ilad (x)]M]] 

Proo]. [7, Theorem 2.3]. 

2.5. T~EOREM. 2[/M is an injective yon Neumann algebra on a Hilbert space H, O ~ ]c < 1 

and ~ is star homomorphism o] i into B(H), such that/or any m in M,  ]]~(m)-m]] <]c[[m]], 

then there exists a unitary u in (M U o~(i))" such that ~ = A d  (u) and I]I-u]l  <~$(]c). 

Pro@ [6, Proposition 4.2]. 

A C*-algebra A is said to be nuclear if any  of the following equivalent conditions is 

fulfilled ([4], [12]). 

1. For any finite number  a 1 . . . .  , a s of operators in A and any  e > 0  there exists a full 

matrix algebra Mn and completely positive maps yJ: A o M ~  and 9: M n ~ A  such tha t  

Ila,-wo(a~)ll <~ and IlVll ~<1, Ilvll <1. 
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2. For each representation ~ of A, 7e(A) is injective. 

3. The bidual A** is an injective yon Neumann algebra. 

From 2.4 and Kaplansky 's  density theorem we then get. 

2.6. P R o P 0 s I T I 0 ~. A n y  nuclear C*-algebra has property D r 

We call a C*-algebra approximately finite-dimensionM AF for short, if it contains a 

dense subalgebra, which is the union of an increasing sequence of finite-dimensional C*- 

algebras. 

Finally we remark tha t  type I C*-algebras and AF C*-algebras are nuclear. 

Before closing this section we mention 

2.7. PROPOSITION. I /  a unital  C*-algebra A contains two isometries v and w such that 

vv* + ww* <~ I then A has property Ds/2. 

Proo]. The yon Neumann algebra generated by any non degenerate representation 

of A must be properly infinite, and the proposition follows from [7, Theorem 2.4]. 

3. Tensorproduets of inclusions 

Suppose A and B are C*-subalgebras of a C*-algebra C. 

If  A ~ B and D is an arbi trary C*-algebra, we want to investigate the relations between 

the subalgebras A | D and B@ D of C@ D. (The sign @ means minimal C*-tensorproduct 

whereas @ means spatial yon Neumann algebra tensorproduct.) 

Suppose tha t  A can be twisted into B by a unitary close to the identity, then one 

easily deduces tha t  A @ D is nearly contained in B | D. 

On the other hand if A | D is nearly contained in B | D for a "big" algebra D, we do 

have the hypothesis, tha t  there will exist a completely positive map ~ of A into B which 

is close to the identity map on A. 

In  the proof of Theorem 5.2 we actually verify this hypothesis in a special case. 

3.1. THEOREM. Let C be a C*-algebra with C*-subalgebras A ~ B,  and let D be a nuclear 
6k~ 

C*-algebra. I / A  has property D k then A | D c B Q  D. 

Pro@ Let ~ be a representation of C on a Hilbert space K and let H be an infinite- 

dimensional Hilbert  space then 

:~(A) | CH~ ~(B) | C~. 
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Since A has property Dk, we find that  

2ky 
~(B)' ~) .B(H) = ' -- ~(A) | B(H), 

because for any x in ~(B)'  (~ B(H) and any a in A, b in B we get, when we define ~(c) = 

~(c) |  

I1[ , = I I [x,  211 1111 (< -b)ll. 

Now z ( B ) ' ~  B(H)| is properly infinite, so Proposition 2.7 shows that  this algebra has 

property D3/2. We can then repeat the argument with 3/2 instead of k and get 

6ky 
(z(A) '~ B(H))" ~ (~(B) ~ B(H))". (1) 

Any finite-dimensional C*-algebra M can be represented on H such that  I ~  = IB(m, more- 

over there exists a normal projection of norm one from B(H) onto M, so the relation (1) 

can be projected into 
egv 

z(A)" | M~ze(B)"  | M. (2) 

Let us continue to consider a finite-dimensional C*-algebra M, and let ~0 be a continuous 

functional of norm one on C | M which vanishes on B | M. 

Let (ze, H~) denote the universal representation of C|  then ~0 has a unique exten- 

sion to an ultraweakly continuous functional ~ on :r~(C| (f vanishes on ~(B|  

and therefore the restriction of q? to z(A | M)" has norm less than 6ky. This in turn implies, 

that  the restriction of ~0 to A |  has norm less than 6k7, so from Hahn-Banach's theorem 

we may conclude, that  whenever M is a finite-dimensional C*-algebra 

6k7 
A |  ~ B |  (3) 

Let x be an operator of norm less than one in A |  then to any e >0  there exists operators 

a I ..... a n in A and Yl, Yn in D such that  II - ~ = 1  a~| H <e. 

To the operators Yl ..... Yn we can find a finite-dimensional algebra M and completely 

positive contractions e: .D-,'-M, el: M-+D such that  Hy~-q)(e(y~))ll <e(5~_1 ]la~H) -1. The 

completely positive maps id| C |  and id| C | 1 7 4  maps A |  into 

A Q M  and B |  into B Q D .  By (3) we conclude that  there exists z o in B |  such that  

l t~lat| ~< 6k~,(1 + e). 
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When  we define z=id| , we get t ha t  z belongs to B |  and 

[Ix- ll< + ,= 

+ i d | 1 7 4  ~ < 6 ] ~ ( l + s ) + 2 e .  

The theorem follows, since we do assume Ilvll < 1. 

3.2. TItEOREM. Suppose that A ~ B are C*-subalgebras o/ a C*-algebra C. I /  D is an 

abelian C*-algebra, then A | D ~ B |  D. 

Proo[. Choose ~ > 0 such t h a t  A c B, and let T denote the spectrum of D. The algebras 

A | D and  B |  D are then isomorphic to  the algebras of continuous functions on T with 

values in A (resp. B) which vanish at  infinity, and both  algebras can of course be con- 

sidered as subalgebras of Co(T , C), the algebra of continuous functions on T with values 

in C which vanish at infinity. 

Suppose x=x(t)ECo(T , A) and Hx]] = sup, ]lx(t)[[ <1, then there exists a compact  

subset K of T such tha t  ]]x(t)[[ ~<e for t in T ~ K .  Let  01 ..... 0 ,  be a finite covering of K 

with open sets in T such t h a t  for any  s, t in 0 ,  we have ]Ix(s)-/(t)[[ de .  We want  now to 

use a part i t ion of the unit, on K,  subordinate to this covering. Let  {~vj[ ] = 1 .. . . .  m} be 

such a part i t ion consisting of non-negative continuous functions with compact  support  

such tha t  each ~vj has its support  in some 0t  and 

1x~< ~ Y~j~< 1 T. 
j = l  

We can now construct  a y in C0(T, B), close to x by  first choosing t s in the support  

of ~vj, and secondly operators yi in B such tha t  [[x(tj)-y~[[ ~ y - d e .  A simple calculation 

shows tha t  the operator  y in C 0(T, B) defined by  y = ~j~_l ~vjyj satisfies sup~ II x(t) - y(t)]] 

- 6 ,  and the theorem follows. 

4. Inclusions with one injective yon Neumann algebra 

I n  this paragraph we s tudy  the relation M ~ N for yon  Neumann  algebras M and N,  

We show for sufficiently small 7 ' s - - t h a t  if M has proper ty  Dk and N is injective, 

or if M is injective and N arb i t rary  then M can be twisted into N via a un i ta ry  close to 

the identity.  As a corollary of this we find, as Raeburn  and Taylor  did [22], t ha t  the set 

of injective yon  N e u m a n n  algebras on a Hilbert  space is open and closed. 
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The proofs follow the ideas sketched in the introduction. 

I n  the case where N is injective~and hence has a projection of norm one onto itself. 

we get  immediately  a completely positive map f rom M into N.  By  restricting this projec- 

t ion to M, we get a s i tuat ion similar to  these discussed in [6]. 

I n  the case where M is injeetive; M has proper ty  D 1 and we get N " ~ B ( K ) ~  M ' ~  

B(K). Now M"Q B(K) is injective and we can use the previous result for this case too. 

4.1. T~EOREM. Let A be a unital C*-algebra with property D k acting on a Hilbert space 

H and N an injective yon Neumann algebra on H. 

I / A  ~ N then there exists a star homomorphism (1) of A into N such that I[ ((I) - i d ) [ A  [[ ~< 

(2 § 6k)~. I / ~  < (6k 2 +2k)  -1 then there exists a unitary u in B(H), such that (P(a)=uau* and 

Jl I - u II < ( 9 ~  + 3k)~ .  

Proo/. I f  ky >~ �89 then (I) is chosen to be zero, if/c~ < �89 then let Q be a projection of norm 

one from B(H) onto N and let (7~, K, p) be chosen such tha t  ~ is a representat ion of B(H) 

on K and for any  x in B(H); ~(x)=pz(x)[H ([24], [6, Theorem 3.1]). Since ~ ] N  is a star 

isomorphism it follows tha t  p commutes  with 7~(N). Let  aEA and choose n E N  such tha t  

I l a -n l l  <~llall, then one finds 

HT~(a)10 --10~(a)] I = �89 -- n)(210 -- I )  --(2p -- I)~(a --n)]] ~< ~llal]. 

Therefore there exists an operator  x on K in 7~(A)' such tha t  l ip -x l l  ~]cy. 

According to Arveson 's  commuta t ion  result [1, Theorem 1.3] we know tha t  ~ and  K 

can be chosen such tha t  the commutan t  [10 (J ~(B(H))] '  is isomorphic to  the commutan t  

N '  of N in B(H). Hence N '  and [10 0 ~(B(H))]" are both  injective [25]. Let  ~ be a projection 

of norm one f rom B(K) onto [10 U ~(B(H))]". Then  ~ maps  x into u(A) '  because ~ is a module 

map,  in fact  one gets for x in ~(A) '  and a in A, ze(a)q~(x)=~0(~(a)x)=~(x~(a))=~0(x)~(a). 

I t  is clear t h a t  ~(10) =10 so tha t  for y =q(x)  we get  I[Y-1~ ~<k? and y E [2 U ~(B(H))]" N ~(A)'. 

W h e n  we now continue as at  the  end of the proof of L e m m a  3.3 of [6] with t �89 replaced b y  

k?, we find a projection q in 7~(A)' N [10 U z(B(H))]"  and a un i t a ry  v in [10 U z(B(H))]"  such 

tha t  v*10v=q, 1110-qll < 2 k ?  and IlI-v]] ~<~(2k?)~<3k?. The map  (I) of A into N given by  

a ---> z(a) ~ vT~(a) qv* ---> v~(a) qv* l H = vze(a) v* ] H, 

is a star homomorphism of A into N,  because 10110 U ~(B(H))]"]H =N. 

For  each a in A x there exists n in N such t h a t  Ha-nil < ? ;  hence we get 

lie(a) -all < H10(vz(a)v*-~(n))1011 + Ila-nll 
~< ~ + IIg(a) -- 7~(n)]1 § ]] v~(a) v* -- 7~(a)]] <~ (2 § 6]c) ~. 
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I f  7 < ( 6k2 +2k) -1 then (2 + 6k)~, < k -1 and one finds tha t  the argument given in the proof 

of [7, Proposition 3.2] applies. This means, tha t  there exists a unitary u in B(H) such tha t  

O(a) =uau* and ]] 1 - u H ~<(~((2 + 6k)Tk ) ~< (3k + 9k~)7. 

The following corollaries 4.2 (a), (b), (c), (d) follow from Theorem 4.1 and the remarks 

made in section 2. The last s tatement  4.2 (e) is commented upon below. 

4.2. COBOLLARY. (a) Let A ~ N be as above. I / A  is nuclear and 7 <1s then there exists 

a unitary u in (A U 2V)" such that uAu*~_N, l]uau*-aH <87Ha H and HI -u ] [  ~< 127. 

(b) I / M  ~ JY, M and N in]ective yon Neumann algebras on a Hilbert space H, and 

then there exists a unitary u in (M U N)" such that uMu*  N and [[I-ull < 127. 
(e) 1/ HM-N]] <~, M and N are in]ective then there exists a unitary u in (M U N)" 

such that u M u * = N  and III -u l l  ~< 127" 

(d) Let A ~ N be as above, i / A  is a properly infinite von Neumann algebra 0 <7 <<'~, 

then there exists a unitary u in B(H) such that, uAu*c_N and ]lI-uH--<257. 

(e) Let A ~ B be/inite-dimensional C*.subalgebras o / a  unital C*-algebra C. Suppose all 

three have the same unit and that 7 < ~ then there exists a unitary u in C such that, u A u * c  B, 

Iluau*-al]-<STIlall, IIX-ull '-< 127. 

Proo/. Ad. e. The proof of Theorem 4.1 yields a starhomomorphism (I) of A into B 

such tha t  IIr  <STIlall. 
Since the uni tary group in A is compact it is easy to see tha t  the proof of [7, Proposi- 

tion 4.2] works in this case too. We can therefore find an operator x in C such tha t  xO(a) =ax 

and [] I -  x [[ ~ 87. This inequality implies tha t  x*x is invertible, and hence that  the unitary 

par t  in the polar decomposition of x belongs to C. The collorary follows. 

We will now turn to the case where an injective algebra is nearly contained in an 

arbi trary yon Neumann algebra. 

4.3. T~]~OR]~M. Let N ~ M be an injective and an arbitrary yon Neumann algebra on a 

Hilbert space H. Suppose 0 <~7 <10-3, then there exists a unitary v in (N U M)" such that 

IIZ-vll ~< 1507, v N v * ~ M  and Ilvnv,-nll  <100711nil /or any n. 

Proo/. Since N has property D 1 we can argue as in the beginning of the proof of The- 

orem 3.1 in order to get M ' ~  B ( K ) ~  N ' ~  B(K). Corollary 4.2 (d) shows that  there is a 

uni tary u in B(H) |  such tha t  III-ull ~ 5 o r  and u*(N|  (MQC). 

By Theorem 2.4 there is a unitary v in (N U M)" such tha t  III-vH ~<~(1007)~< 150y, 

vNv* ~ M and vnv* = u*nu. 
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4.4. C o ~ o ~ v .  I /IIM-NII < 101--1 and N is an in]ective yon Neumann  algebra 

then there exists a unitary v in ( M  U N)"  such that vNv* = M .  

Proo/. By 4.3 there is a unitary v in (M tJ N)" such that  III -vii  ~ 150~ and Ilvnv* -n i l  

100~llnll for any  n in N.  Hence we get i i~VvNv*~__ M and by a standard argument which 

is given in [6], we get M = vNv*, and the corollary follows. 

Especially we have reproved the result due to ]~aeburn and Taylor, tha t  the set of 

injective yon Neumann algebras is open. 

5. Inclusions with finlte-dimensional C*-algebras 

Suppose C is a C*-algebra which contains the C*-algebras A and F, suppose moreover 

that  F is a finite-dimensional factor and that  {e~jli, ~ = 1, ..., n} are matrix units for F, 

then in [16] Glimm proved; to any ~ >0  there exists a 5(n, e), such that  if A contains oper- 

ators x~j satisfying IIx~j-e.tsll ~ ( n ,  ~) then A also contains matrix units /~j such that  

II/~j-e~jll ~<s. In other words if a set of matrix units for F is close enough to A, then A 

�9 contains a copy of F. 

As indicated the constant ~(n, s) is very much dependent upon n. 

If  one considers the relation F ~ A, meaning that  any element in the unitball of F 

is within distance y to A, then we give a proof independent of the dimension of F, which 

shows that  A contains a copy of F. 

Since a set of matrix units is also a basis, it is possible to deduce Glimm's result 

from the one of our's. 

We start with the case, where F is abelian say with minimal projections Pl .... , Pk- 

The idea is then to show, that  there exist natural numbers nl, ..., n k such that  the images 

of the function / (Z)=plZ~l+p2Z~+.. .pkz~k , z e T = { z e C  I ]z[ =1} is s dense in the set of 

unitaries in the Mgebra F. We then find a g in C(T, A) with power series expansion q(z) = 

a l z ~ + . . .  +akz  ~ such that  a~>~0 and g is close to ], then the map q)(~ ~ p ~ ) = ~  ~a~ is a 

completely positive map of F into A close to the identity on F. The details follow in 5.1 

and 5.2 below. 

This abelian result combind with elementary technique give the general finite-dimen- 

sional algebra result. 

5.1. L ]~ ~ M A. Let k E N and e > O, then there exist positive integers nl, ..., nz such that /or  

any (Yl . . . . .  Yk) E Tk there is a ~ in T / o r  which 

k 

I~l 
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Proof. I t  is possible to get a proof via a simple induction argument, but it is also 

known from the theory of laeunary series, that  one can find integers nl, ..., nk such that  

the functions z ~', z ~, .... z nk on T satisfy any wanted degree of independence. 

5.2. PROI'OSITIOlq. Let F be a finite-dimensional abelian C*-subalgebra and B a C*- 

subalgebra o / a  C*-algebra C. I f  for some 7 <~ 10-a, F ~ B, then there exists a partial isometry v 

in C such that v*v = I~ and 

vFv*~ B; Ilvfv*-/ll < 157~11f11; IIZ~-vll < 377�89 

Proof. We follow the method sketched above and construct first a completely positive 

map of F into B. Then by some technique taken from [6] we perturb the positive map 

slightly such that  the perturbed map becomes a star homomorphism. Finally we show 

that  this map is given b y / ~ v / v *  for some partial isometry having the properties above. 

Let Pl .... ,1ok be the minimal projections in F, s > 0  such that  F ~ B  and n 1 ..... n k 

positive integers for which the statement in Lemma 5.1 is fulfilled with respect to ~. 

By Theorem 3.2 there exists a continuous function / on T with values in B such that  

Since the inequality is sharp and the trigonometric polynomials are dense in C(T, C) 

we may assume that  f has the form/(z) = ~ ' f  _,, b~z t. 

We let T o denote the translation operator Toh(z)=h(O-lz) and define g by g(z)= 

~ik'_ 1 p iZ  "l, For any 0 in T 

]] [ ( ~ j ) * / -  (~g)* g] (0)[[ < [L (~(l-g))*gH + [[ (~o(/))* ( /-g)l l  < 27 - 2~. 

When written out this inequality becomes 

) *b~0 ~ - pj0nJ < 2  7 - 2 e  for a n y 0 i n T .  
t 

In order to get rid of excessive terms we estimate 

k 

7 ~ >1 (f* - g*) ( f -  g) (o) = ~ b* b~ + ~ (b , j -  pj)* (bnj- pj). 
t:r f t - 1  

Therefore for any ~, ~ in H 

i~:n i i * n  I i * n  
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and we have proved tha t  for any 0 in T 

Define a completely positive map qb of F into B by (I)(pj) * =b,jb~, then Lemma 5.1 and 

the arguments above show tha t  for any uni tary u in F,  H d)(u) - u H < 27 - e + y 2. Since the 

unitball in F is the convex hull of the unitaries we get HcI)(/) -/11 < (2X +72) II/11 for all / in F. 

Let  q be the spectral projection for qb(IF) corresponding to the interval [1/2, 3/2], then 

an argument  similar to the one given in [5, Lemma 2.1] shows that  H q -  (I)(IF)II < (2T +72). 

Let  b denote the inverse to q~P(IF) in Bq then the map F of F into Bq defined by  

r(/)=b~(b(/)b~ satisfies F ( I r ) = q  and IIF(u*)F(u)-ql 1 412,057 for all unitaries u in F,  

(see [6, Theorem 3.4] for a similar argument).  Since the group of unitaries in F is compact,  

the methods from [6, Lemma 3.3] can be used at  the "C*-level" and we find tha t  there 

exists a star homomorphism ~F of F into B such tha t  [IF -~FII < 147�89 

I f  we do examine the constructions of F and (I) we can easily prove tha t  for any / 

in F, II~F(/)-/H <157�89 

We want  now to suppose tha t  F and C have the same unit. If  this is not the case or 

if C has not got a unit we do simply adjoin one and define a star homomorphism ~ of 

F = r 1 7 4  into r 1 7 4  by ~ (~§  Now ~ satisfies ~ ( I ) = I  and for e a c h / i n  

:,  l[%/)-/ll <30 �89 
The group of unitaries in P is compact, and also [6, Proposition 4.2] works at  the 

"C*-level". Hence we find tha t  there exists a unitary u in C implementing ffl: such tha t  

]11- u ll < 377 i. The theorem follows when we define v =ulF. 

Having this abelian result the generM result for a finite-dimensional C*-algebra A is 

proved by  first to twist a maximal abelian subalgebra of A into B and then secondly to 

show, tha t  in this situation a set of matrix units for the perturbed algebra can easily be 

twisted into B via a unitary close to the identity. 

5.3. THEOREM. Let A be a/inite-dimensional C*-subalgebra and B a C*-subalgebra o/a 

C*-algebra C. 

Suppose 0 < 7 < 10 -4 and A ~ B, then there exists a partial isometry v in C such that 

IlZA-vll <12o7  vAv* _B. 

Proo/. Let F be a maximal abelian C*-subalgebra of A and let u be a partial isometry 

in C such tha t  I[i~-ull <37y~ and u F u * ~ B .  

We may  assume tha t  the minimal projections in F are the self-adjoint elements in a 
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set of matrix units for A. Since A has the form A = M~, | �9 M~ ,  where M~ is a full 

matrix-algebra of dimension n~ we may enummerate the matrix units by 1~ where 1 ~< k ~< m, 

l <~i, ] <n~. 

Choose x~l in B such that  1115 -x~]] ~<7, and define g~ =u/~u*, then 

When we define g~l as the part ial isometry part of the polar decomposition of ~ ~ ~ g u  X~l g l l  

and a~ as the positive part we obtain; 

u~k u..~ a k _k II 
/1~ y~l ~ --01111 ~ 75~  �89 

U/I~U gil of the operator satisfies that  the isometry part ~ * ~ Lemma 2.7 in [5] implies 
k , k k 

I lut .~ g,1 -g , ,  II ~< ~(75r,). 
This relation shows that  

and since 837�89 , ~ k , ~ ~ , ~ k (g~l) g~l We may then define matrix units k gil(gil) =gi~; =gn-  gij by 
k k , g~j =g~l(gjl) and we have got a system of matrix units in B which is close to the system 

/~. This is verified by constructing a partial isometry close to Ia  which twists/~ into g~. 

Let w = ~ - i  5~-~1 g~u/~u* then wg~=g~,w, so 

k i 

Let v =wu then vEC, vAv*~_ B and 

IIZ -vll < IIw -ull + II u-I ll < s37 +37r < 120r 

6. Perturbations of nuclear C*-algebras 

In the article [6], we did prove that  two commutative C*-algebras and two ideal or 

dual C*-algebras (C*-algebras of compact operators) are unitarily equivalent, when closer 

than 10 -1 and 600 -1 respectively [6, Th. 5.1, Th. 5.3]. 

We do prove a result of this type for AF C*-algebras below. 

John Phillips and Ian Raeburn have proved, that  close AF C*-algebras are unitarily 

equivalent, by an application of the dimension group theory [20], [14]. Our approach is 

different except for the last steps, which are based upon arguments due to Powers and 
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Bratteli. We use in the first par t  the results from section 6 together with some twisting 

arguments which have been used by Glimm [16], Dixmier [11], and Bratteli  [2]. 

In  the last par t  of the section we study close nuclear C*-algebras and show, tha t  the 

set of nuclear C*-algebras is open, and further any  two sufficiently close nuclear C*-algebras 

have isomorphic duals and biduals. 

6.1. THEOREM. Let A and B be C*-subalgebras o/ a C*-algebra C. I /  A is AF and 

I IA-Bl l  <lO-~ then B is AF. 

Proo/. I f  A,  B and C do not have a common unit, we adjoin a unit I to C and obtain 

IIA-/~II  < 2 - 1 0  -9 inside C. We do therefore assume in the following computations tha t  

H A - B l l  < 2 . 1 0  -9 and the algebras have a common unit. Suppose A = c l ( ( J  ~=1 An) where 

(An)n~ N is an increasing sequence of finite-dimensional C*-algebras, all containing the 

identity in C. Since A is separable and I IA-BI I  <�89 it is easy to check tha t  B is separable. 

Let  (bi)ie N be a dense sequence in the unitball of B, we want  then to show, tha t  there 

exists an increasing sequence B~ of finite-dimensional C*-subalgebras of B such tha t  for 

any i in N; span {b k I 1 4 k < i} ~ B~. We do make the proof by induction and copy argu- 

ments due to Glimm [16, Th. 1.13]. 

To start  the induction suppose b~=0 and B I = 0 .  Let V = s p a n  ((bkl 1 ~ k ~ i + l }  0 B~) 

and let n in N be chosen such tha t  V is 2- 10 -9 =Y contained in An. Find a unitary u in C 

such tha t  l l I - u l l < 1 2 0 y  �89 and uAnu*c_B,  (Th. 5.3). I t  is easy to see tha t  B~ is 2407�89 

contained in uAnu*, so by Corollary 4.2 (e) there exists a unitary w in B such tha t  wuA~u*w* 

contains B, and IIX-~ll  <2  880r~. 

Now v is contained 7 + 2407 ~ + 2- 2 8807 �89 < 0, 3 in B~+I = wuAnu*W* and the theorem 

follows. 

6.2. T H E 0 ~ ]~ M. I] A and B are AF C*-subalgebras o I a C*-algebra C and H A - B II < 1/16, 

then A and B are isomorphic. 

Proo/. Let IIA - BII < 7  < 1/16. 
The proof is based upon Theorem 5.3 and a modified version of Brattelis isomorphism 

argument given in [2]. By [2, Theorem 2.2] it is possible to find increasing sequences 

(An)n~, (Bn)n~ of finite-dimensional C*-subalgebras of A and B such tha t  their unions are 
y 

dense in A and B and for each n in N; An ~ Bn and B n c An+ 1. Corollary 4.2 implies tha t  

there exists homomorphisms ~ of A n into Bn and fin of B n into An+ 1 such tha t  II - id]Ani[  < 

87 and II n-id I Bnll <87. 
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We have now got a diagram, 

6r 1 
A 1 ~ B 1 

A~ . ~ ~  B~ 

A3 

and we want  to show, tha t  there exists inner automorphisms T~ o n  B n and ?n on A m such 

tha t  the diagram below commutes. 

A1 ~1 ~ B I  

c~ '3 I 
I 
4 $ 

/ 
Mn+l 

The existence of y~ is clear since 16)~<1 so flt~l is implemented by  a unitary in A 2. 

Suppose now tha t  we have found ~ ,  T~, ..., ? . ,  ~ such tha t  the diagram commutes. Then y~ 

is implemented by a unitary v in An, hence ?= can be extended to A~+I when defining 

~= = Ad (v) the map fln~n can be extended to an inner automorphism Ad (u) of A~+ 1 because 

I I ~ n ~ - i n  I A=II < 1. Le t  us then define 7=+1 as Ad (vu*), and the theorem follows. 

6.3. COROLLAI~Y. Let A and B be AF C*-algebras on a Hilbert space H. 

I / I I A -  BI[ < 1/16 then A and B are unitarily equivalent. 

Proof. The proof is due to Phillips and Raeburn [20] and Corollary 4.2, the idea being 

tha t  by  4.2 we can find a unitary u in (A U B)" such that  zI = uBu* (bar denotes weak 

closure). 

Let  u be an isomorphism from A onto B obtained as in 6.2 then Ad (u)o~ has the 

property that  projections in A which are equivalent in A are mapped into equivalent 
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projections in _4 by Ad (u)oa. To see this one must  use tha t  a is constructed from inner 

automorphism in A, B and homomorphisms, which are close to the identity. Phillips and 

Raeburn then use Brattelis and Powers arguments to show tha t  Ad (u)o:r is an inner 

automorphism of -~, and the result follows. 

6.4. COROLLARY. Let A,  B and C be as in the theorem. For any /inite-dimensional 

C*-subalgebra A o o/ A there exists an isomorphism ~ o/ A onto B such that /or any a in 

Ao, Ilzc(a)-all ~811A -BI I  Ilall. 

Proo/. Choose A 1 such tha t  A0~ A 1. 

We will now discuss perturbations of nuclear C*-algebras. 

6.5. TH~ORE~L Let A be a nuclear C*-subalgebra o/ C*-algebra C. I /  B is a C*-sab. 

algebra o / C  and [ [A-  B[] < y  < 10 -2, then B is nuclear, B** is as von Neumann algebra iso- 

morphic to A** and A* is isomorphic to B* through a completely positive isometry. 

Proo/. Let ~ be the universal representation of C on a ]-Iflbert space H. By [18, Lemma 5] 

I Ix(A)-z(B) l  I < 10 -2 (bar denotes here weak closure). The nuclearity of A implies tha t  

~(A) is an injective yon Neumann algebra (not necessarily containing the identity on H). 

Corollary 4.4 implies tha t  7~(B) is injective and isomorphic to ~(A) through an inner 

automorphism Ad (v) on ~(C). 

Since any representation o of A or B can be extended to a representation of C [10, 

Prop. 2.10.2] we find tha t  ~(A) and 7~(B) are isomorphic to the second duals of A and B 

[10, Cor. 12.1.3]. The second dual of B is then injective, hence B is nuclear and the rest of 

the theorem follows from the remarks above by  transposition. 

We will now go back to the near inclusion situation A ~ B. 

I f  A is a non separable C*-algebra we will say, tha t  A is AF if any finite number  of 

elements in A can be approximated arbitrarily well with elements from a finite-dimen- 

sional C*-subalgebra of A. 

The following proposition is then an immediate consequence of Theorem 5.3. 

6.6. PROPOSITION. Let A ~ B be C*-subalgebras o/ a C*-algebra C. I / ~ < 1 0  -4 and A 

is AF (separable or not), then to any/inite-dimensional subspace F o / A  and any e >0  there 

exists a partial isometry v in C such that 

v F v * c B  and IIF-vFv*ll  ~240~�89 
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For any / in F 

iiv/v*ll ~ (1 -~)II/U. 

I / C  has a unit, v can be chosen unitary with II I - v i i  ~ 1207 �89 

6.7. P R O e O S I T I O ~ .  Let A ~ B be C*-subalgebras o/ a C*-algebra C. Suppose A has 

approximately inner flip and that A,  B and C have a common unit, then to any finite dimen- 

sional Subspace F o / A  there exists a completely positive map ~P o/ A into B such that for 

any / in F,  11r <(367 ~§  127)11fli. 

Proof. Choose e > 0  such t h a t  A ~ B  and  f ind (fl . . . . .  fn) in the  un i tba l l  of F such t h a t  

any  / in th is  un i tba l l  is inside an  e bal l  wi th  center  in some ft. 

B y  [13, Propos i t ion  2.8] A is nuclear  and  therefore  b y  Theorem 3.1 

6(y-e) 
A |  ~ B |  

Choose a u n i t a r y  v in A |  such t h a t  for a n y  i = 1  ..... n, IIv(/,G~)v*-Zo/dl <~, and  f ind 

x in B |  such t h a t  [ Iv-xl [  < 6 ( 7 - s ) .  Le t  ~ be a s ta te  on A then  the  slice m a p  [25, w 1] 

Rr C|174 maps  B |  onto  B |  and  A |  onto  A |  we therefore  ob ta in  for 

It, II R~(x*(I | It)x) - r | III < Ilx*( I | It) x - / ,  | .tll <~ ~ + IIx*(i |  ~ -v*( I  | ~< ~ + 
(1 + 6( 7 - s)) 6( 7 - e) + 6(~ - e). Define (I) b y  q ) ( a ) G I  = R~(x*(I(~a) x). 

I t  is r a the r  easy to  see t h a t  this  m e t h o d  when appl ied  to  a f in i te -d imensional  full  

m a t r i x  algebra,  say  of t y p e  In, yields  a resul t  of t he  t y p e  discussed in sect ion 5. I n  fac t  

one can prove.  

6.8. COROLLARY. Let A ~ B be C,.subalgebras o / a  C*-algebra C. Suppose A is finite- 

dimensional/actor o/type I n. 

I /  y < 2 . 1 0  -~ then there exists a partial isometry v in C such that vAv*~_B and 

I / A ,  B and C have a common unit I and 7 < 10-3, then there exists a unitary u in C 

such that uAu* ~_ B and I[ I - ul l< 287 �89 
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