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w 1. Introduction 

The purpose of this paper  is to  characterize the  state spaces of C*-algebras among 

the state spaces of all JB-algebras .  I n  a previous paper [6] we have characterized the 

state spaces of JB-a lgebras  among all compact  convex sets. Together,  these two papers 

give a complete geometric characterization of the state spaces of C*-algebras. 

l~ecall f rom [6] t ha t  the state spaces of JB-a lgebras  will enjoy the Hilbert ball property, 

by  which the face B(@, a) generated by  an arb i t rary  pair @, a of extreme states is (affinely 

isomorphic to) the uni t  ball of some real Hilbert  space, and t h a t  there actual ly exist such 

faces of any  given (finite or infinite) dimension for suitably chosen JB-algebras .  I n  the 

present paper we show tha t  for an arb i t rary  pair  @, a of extreme states of a C*-algebra, 

then  the  dimension of B(@, a) is three or one. This s tatement ,  which we term the  3.ball 

property, is the first of our axioms for state spaces of C*-algebras. The second and last 

axiom is a requirement  of orientabflity: the  state space K of a JB-a lgebra  with the  3-ban 

proper ty  is said to  be orientable if it is possible to make  a "consis tent"  choice of orienta- 

tions for the 3-balls B(@, a) in the w*-eompact convex set K, the idea being t h a t  the orienta- 
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tion shall never be suddenly reversed by passage from one such ball to a neighbouring one. 

(See w 7 for the precise definition.) Thus we have the following: 

M A I N  T H E O r E m .  A JB-algebra A with state space K is (isomorphic to) the sel/-adjoint 

part o/a C*-algebra i// K has the 3-ball property and is orientable. 

Note tha t  a C*-algebra, unlike a JB-algebra,  is not completely determined by the 

affine geometry and the w*-topology of its state space. However, the state space does 

determine the Jordan structure, and with this prescribed we have a 1-1 correspondence 

between C*-structures and consistent orientations of the state space. Thus, for C*-algebras 

the oriented state ~Tace is a dual object from which we can recapture all relevant structure. 

We will now briefly discuss the background for the problem, aIld then indicate the 

content of the various sections. 

By  results of Kadison [24], [26], [29], the setf-adjoint par t  ~sa of a C*-algebra 9~ with 

state space K is isometrically order-isomorphic to the space A(K) of all w*-continuous 

affine functions on K. More specifically, 9~,a is an order unit space (a "function system" 

in Kadison's terminology), and the order unit spaces A are precisely the A(K)-spaces 

where K is a compact convex subset of a locally convex Hausdorff space; (in fact K can 

be taken to be the state space of A, formally defined as in the case of a C*-algebra). Thus, 

the problem of characterizing the state spaces of C*-algebras among all compact convex 

sets, is equivalent to that  of characterizing the self-adjoint parts of C*-algebras among all 

order unit spaces. This problem is of interest in its own right, and it also gains importance 

by  the applications to quantum mechanics, where the order unit space 9~,~ represents 

bounded observables, while the full C*-algebra ~[ is devoid of any direct physical inter- 

pretation. Note in this connection tha t  the Jordan product in 9~sa (unlike the ordinary 

product in ~) is physically relevant, and tha t  the pioneering work on Jordan algebras by  

Jordan, yon Neumann and Wigner [19] was intended to provide a new algebraic formalism 

for quantum mechanics (cf. also [30]). 

In  [25] Kadison proved tha t  the Jordan structure in the order unit space 9~,~ is com- 

pletely determined, in tha t  any  unital order automorphism of 9~s~ is a Jordan automorphism, 

and he pointed out the great importance of the Jordan structure for the study of C*- 

algebras. An axiomatic investigation of normed Jordan algebras was carried out in [7]. 

Here the basic notion is tha t  of a JB-algebra, which is defined to be a real Jordan algebra 

with unit 1 which is also a Banach space, and where the Jordan product and the norm are 

related as follows: 

laaobll < Ilall Ilbll, Ila ll = Ilall Ila ll < Ila +b ll. (1 .1)  
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These axioms are closely related to those of Segal [32], and the JB-algebras will include 

the finite dimensional formally real algebras studied by Jordan, yon Neumann and Wigner 

(which can be normed in a natural  way), as well as the norm closed Jordan algebras of 

bounded self-adjoint operators on a Hilbert  space (JC-algebras) studied by Topping, 

Stormer and Effros [41], [37], [39], [18]. The main result of [7] shows tha t  the s tudy of 

general JB-algebras can be reduced to the s tudy of JC-algebras and the exceptional 

algebra M~ of all self-adjoint 3 • 3-matrices over the Cayley numbers. (For related results, 

see [34].) 

The geometric description of the state spaces of JB-algebras involves, in addition 

to the Hilbert ball property, three more axioms stated in terms of facial structure. (They 

are quoted in w 8. See [6] for further details.) These axioms relate the geometry of the 

state space to the projection lattice and the spectral theory of the "enveloping JBW-  

algebra" (generalizing the enveloping von Neumann algebra of a C*-algebra). The con- 

nection between faces and projections was first noted by Effros and Prosser in their papers 

on ideals in operator algebras [17], [31]. This connection was the starting point for the 

development of a non-commutat ive spectral theory for convex sets [4], [5], which was 

used extensively in the passage from compact convex sets to Jordan algebras in [6]. 

The transition from JB-algebras to C*-algebras presents difficulties of a new kind 

due to the lack of uniqueness. There is no natural  candidate for the C*-product; it must  

be chosen, and orientability is needed to make this choice possible. The first t ime a notion 

of orientation was used for a similar purpose, was in Connes' paper [14], where he gave a 

geometric characterization of the cones associated with yon Neumann algebras via Tomita- 

Takesaki theory. Although both the setting and the actual definition are different in the 

two cases, they are related in spirit. In  both cases the orientation serves the same purpose, 

namely to provide the complex Lie structure when the Jordan product is given. (See also 

the papers by  Bellissard, Iochum and Lima [8], [9], [10].) 

In  the present paper, w 2 provides the necessary machinery of states and representa- 

tions for JB-algebras.  The results here are for the most par t  analogues of well known 

results for C*-algebras. 

In  w 3 we go into the classification theory and concentrate on JB-algebras of "complex 

type".  They are shown to be precisely those for which the state space has the 3-ball property.  

w 4 provides a technical result which is also of some independent interest, namely 

tha t  a JB-algebra of complex type acts reversibly in each concrete representation on a 

complex Hilbert  space. 

In  w 5 it is shown tha t  each JB-algebra A admits an enveloping C*-algebra 9~ with a 

universal property relating Jordan and *-homomorphisms. I t  is shown tha t  if A is of 
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complex type, the pure states of 9~ form (except for degeneracy) a double covering of the 

set of pure states of A. 

In  w 6 we discuss the orientation of balls in the normal state space of B(H). 

w 7 is a general t rea tment  of orientability for state spaces of JB-algebras of complex 

type. 

w 8 contains the main theorem. 

The prerequisites include standard theory of C*- and yon Neumann algebras plus 

the theory of JB-algebras  as presented in [7]. We will also draw upon the portion of [6] 

which establishes properties of state spaces of JB-algebras.  The rest of [6] (and thus in- 

directly the work in [4] and [5]) will be used only when the main theorem of the present 

paper, characterizing state spaces of C*-algebras among state spaces of JB-algebras,  is 

combined with the main theorem of [6], characterizing state spaces of JB-algebras among 

all compact convex sets, to give a complete geometric description of the state spaces of 

C*-algebras (Corollary 8.6). 

w 2. States and representations for JB-algebras 

This section is of preliminary nature, and the results are for the most par t  analogues 

oI well known results for C*-algebras. 

Note tha t  when we work in the context of Jordan algebras, we will use the word 

ideal to mean a norm closed Jordan ideal. Also if A, B are Jordan algebras and T: A ~ B 

is a bounded linear map,  then we denote the adjoint map from B* into A* by T*. Occasion- 

ally if T: A**-+B** is a a-weakly continuous linear map, we will denote the adjoint map 

from B*~A* by T*. Recall tha t  a JBW-algebra is a JB-algebra  which is a Banach dual 

space, and tha t  the enveloping JBW-algebra of a JB-algebra A is A** with the (right =left)  

Arens product (cf. [34] and [6]). 

We now consider two JBW-algebras M 1 and M S and a homomorphism ~: M I ~ M  ~ 

which is a-weakly continuous (i.e. continuous in the w*-topology determined by  the unique 

preduals of M 1 and M2). By the same argument as for yon Neumann algebras [33; Prop. 

1.16.2], the unit ball of T(M1) is a-weakly compact. Hence ~(M1) is a-weakly closed in M 2, 

and so it is a JBW-algebra. In  other words: A a-weakly continuous homomorphic image o[ 

a JBW-algebra in a JBW-algebra is a JBW-algebra. 

We next  relate homomorphisms of JB-algebras to a-weakly continuous homomor- 

phisms of their enveloping JBW-algebras. Here the results and proofs for C*-algebras 

[33; Prop. 1.17.8 and 1.21.13] can be transferred without significant change. Specifically: 

1/9~: A ~ M  is a homomorphism /tom a JB-algebra A into a JBW-algebra M, then there 
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exists a unique a-weakly continuous homomorphism ~: A**-~M which extends q~; moreover 

~(A**) is the a-weak closure o/q~(A) in M. (When no confusion is likely to arise, we will 

denote the extended homomorphism by ~ instead of ~.) 

We will now provide Jordan analogues of the basic notions in the representation 

theory of C*-algebras. Since a JB-algebra might not have any (non-zero) representations 

into B(H)sa, these notions can not be carried over directly. However, it is reasonable to 

replace B(H) by any JBW.faetor of type I when we work with general JB-algebras. 

(Recall that  the JBW-factors of type I are the JBW-algebras with trivial center which 

contain minimal idempotents, and that  they have been completely classified [7; Th. 8.6] 

and [37; Th. 5.2]. We return to this classification in w 3.) Note that  two representations 

~:  ~-->B(H~) ( i=1,  2) of a C*-algebra 9/ are unitarily equivalent iff there exists a *-iso- 

morphism (I) from B(H~) onto B(H2) such that  ~2=(PoT~ [15; Cot. III.3.1]. Observe also 

that  a representation ~: ~-~B(H) of a C*-algebra 9/is irreducible iff ~(i~) is weakly ( =a-  

weakly) dense in B(H) [33; Prop. 1.21.9]. This motivates the following: 

Definitions. A representation of a JB-algebra A is a homomorphism ~: A-~M into a 

type I JBW-factor M. We say ~ is a dense representation if q~(A)-=M (a-weak closure). 

Two representations ~i: A-~M~ (i = 1, 2) are said to be Jordan equivalent if there exists an 

isomorphism (I) of M1 onto M2 such that  ~2 =(I)~ 

L E P T A  2.1. Let A be a JB-algebra with state space K and let q~,: A-~M~ ( i=1,  2) be 

dense representations. Then q~l and ~ are Jordan equivalent i// the unique a-weakly continuous 

extensions ~:  A** ~ M t satis]y ker ~1 =ker  ~2. 

Proo]. Suppose that  ~i and ~ are equivalent, and let q) be a Jordan isomorphism of 

M 1 onto M 2 such that  ~2=(P0~1. Since (I) is a-weakly continuous, we also have ~2 =(I)O~l 

and so ker ~1 = ker ~2. 

Conversely, suppose ker ~1 =ker  ~2. Note that  ~1 and ~ are surjective. Thus we can 

define (I): M I ~ M  ~ by @(~l(a))=~2(a) for all aEA**. This (I) determines a Jordan equiv- 

alence of ~ and q~2" []  

We will now relate the representations of a JB-algebra A to the state space K. As 

usual, the extreme points of K are called pure states, and the set of pure states is denoted 

~eK. We recall from [7] how one can associate with any pure state ~ on A a dense represen- 

tation ~ :  A-~Aq with Aq=c(~)oA** and ~Q(a)=c(~)oa for aEA, where c(~) is the central 

support of ~, i.e. the smallest central idempotent of A** such that  (c(~), ~ = 1. (See [7; w 5] 

for the existence of c(~), and see [7; Prop. 5.6 and Prop. 8.7] for the demonstration that  
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~% is a dense representation.) Recall also tha t  a face F of K is said to be split if it admits a, 

necessarily unique, complementary face F' such tha t  K is direct convex sum of F and 

F '  (cf. [1; w 6]). 

PBOPOSITIO~ 2.2. Let A be a JB-algebra with state space K. I] q~: A ~ M  is a dense 

representation, then there exists ~ ESeK such that ~o is Jordan equivalent with q~o; moreover, 

~v* maps the normal state space o] M injectively onto the sm~tllest split ]ace o] K containing ~. 

Two such dense representations ~ :  21 -+M~ (i = 1, 2) are Jordan equivalent if] the corresponding 

split ]aces coincide. 

Proo]. Since ker ~ is a a-weakly closed ideal in A**, there exists a central idempotent 

tEA** such tha t  ker ~ =(1 -c)oA** [34; Lem. 2.1]. Let P, Q: A**~A** be the two a-weakly 

continuous projections defined by Pa=coa, Qa=(1-c)oa  for a E21**. Clearly the dual 

projections P*, O*: A*~A* satisfy P*~*=~*, Q*~*=0. Hence q* maps the normal state 

space of M onto F =K/1  im P*. Since ~ is surjective, ~o* will be injective. Clearly P+Q =I ,  

from which it easily follows tha t  F = K f] im P* is a split face of K with complementary 

face F '  = K N im Q*. 

We will show F is a minimal split face. To this end we consider an arbi trary split 

face G such tha t  F N G=4=O, and we will prove F~_ G. Let  G' be the face complementary 

to G. By linear algebra, there exists a unique bounded affine function on K which takes the 

A ~ ,  i.e. <d, a> = 1 value 1 on G and vanishes on G'. Let  d be the corresponding element of ** 

for all a fi G and <d, ~> = 0 for all a E G'. Since d is seen to be an extreme point of the positive 

par t  of the unit ball of A**, it must  be an idempotent. (The standard argument  for C ~- 

algebras applies.) To show tha t  d is central, it suffices by [7; Lemma 4.5] to verify the in- 

equality Uaa <~a for all a ~>0, a E A**. (Recall tha t  Uaa = {dad} where the brackets denote 

the Jordan triple product, and also that  U~: 21"*~A** is a positive linear map by [7; 

Prop. 2.7].) For given aEA**, a>~O and for each aEG' we have 

0 < <u a, a> < II ll <Udl ,  a> = I1 11 <d, a> = 0. 

Hence Uaa vanishes on G'. Applying the same argument with 1 - d  in place of d and using 

[7; Cor. 2.10], we conclude tha t  Uda coincides with a on G. But  by linear algebra there 

can only be one such affine function on K, and this function is nowhere greater than a. 

Hence U~a<~a, which proves that  d is a central idempotent. By assumption F N G#O,  

which implies cod#O. Since ~ is injective on eoA**, we also have ~(d)#0 .  Since M is a 

factor we must  have ~(d)=  1, hence c ~<d, which in turn implies F_~ G. 

Next  we claim tha t  the minimal split face F must  contain pure states. In  fact, the 

normal state space of the type I JBW-factor M contains pure states (cf. e.g. [6; p. 159]), 
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therefore F also does. Let  0 E F n ~eK be arbitrary. By the minimality, F is the smallest 

split face containing 0" Also c(0 ) =c; for if c(Q)<c then the same argument as above would 

provide a split face strictly contained in F. Now ker ~o=ker  ~, and by  Lemma 2.1, ~Q 

and ~ are Jordan equivalent. 

Finally we consider two dense representations ~ :  A-+Mi (i = 1, 2). Note that  by the 

above definition of P, the split face F = K  ;~ im P* is the annihilator of ker ~ = (1 - c )oA** ,  

and vice versa. Hence the split faces corresponding to ~1 and ~2 coincide iff ker ~1 = ker ~ ,  

and by Lemma 2.1 this equality holds iff ~1 and ~2 are Jordan equivalent. []  

I t  follows from Proposition 2.2 tha t  for every pure state ~ of a JB-algebra  there 

exists a smallest split face containing Q. We will denote this split face FQ. (Note tha t  our 

notation differs from tha t  of [2] where Fo denotes the smallest w*-closed split face con- 

taining 0.) 

Two pure states ~, o of a JB-algebra will be called equivalent (or "non-separated by a 

split face") if FQ = Fr By Proposition 2.2, Q and o are equivalent iff the representations 

~Q and ~ are Jordan equivalent; hence the terminology. 

Recall the brief notation B(0, o) =face {0, o} used for any pair ~, o of pure states. 

PROPOSITION 2.3. Let 0, o be pure states o t a JB-algebra A.  I t  ~ and o are equivalent 

then B(O , 0) is a Hilbert ball o /d imens ion  at least two. I t 0 and o are not equivalent, then 

B(O, o) reduces to the line segment [~, 0]. 

Proot. If  0 and o are equivalent, then it follows from the proof of [6; Th. 3.11] that  

B(0, o) is the state space of a certain spin factor, and so it is a Hilbert ball. This ball must  

be of dimension at least two, since every spin factor is of dimension at  least three. 

If  0 and o are not equivalent, then it follows from [6; Prop. 3.1] tha t  B(0, o) = Lo, 0]. []  

By a concrete representation of a JB-algebra  A on a complex Hilbert space H, we shall 

mean a Jordan homomorphism z: A--->B(H)s a with ~(1)=1.  Note tha t  there exist J B -  

algebras without any non-zero concrete representation. (An example is M3 s. See [7; w 9].) 

A standard argument for C*-algebras can be applied to show tha t  if a concrete rep- 

resentation ~: A ~  B(H)s a is dense, then it  is irreducible, i.e. there is no proper invariant  

subspace of H. The converse is false in general. (We shall return to this question in w 3.) 

We say tha t  two concrete representations g~: A-~B(H~)sa (i = 1, 2) of a JB-algebra  A 

are unitarily equivalent (conjugate) if there exists a complex linear (conjugate linear) iso- 

merry u from H2 onto H 1 such tha t  

~2(a) = u*xcl(a)u for all a E A .  (2.1) 
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PROPOSITIO~ 2.4. I /  tWO dense concrete representations ~:  A-> B(H~) ( i=1 ,  2) are 

Jordan equivalent, then they are either unitarily equivalent or conjuqate. The only case in 

which 7~ 1 and ~2 are both unitarily equivalent and conjugate at the same time, is when dim H 1 = 

dim H 2 = 1. 

Proo/. By the assumptions there exists a Jordan isomorphism (I) from B(H1)sa onto 

B(H~)~ such tha t  ~2=(I)O7el. By  a known theorem (see [25]) there exists an isometry 

u: H 2 ~ H  1 which is either complex linear or conjugate linear such tha t  (I)(b)=u*bu for all 

b e B(H1)sa. Now (2.1) is satisfied. 

Assume now tha t  u: H2-+H 1 is a complex linear isometry and tha t  v: H2-->H 1 is a 

conjugate linear isometry such tha t  ~P(b)=u*bu=v*bv for all beB(H1)sa. Then the two 

complex linear maps a~->u*au and a~-->v*a*v from B(H1) onto B(H~) must  coincide. But  

the former of the two is a *-isomorphism while the latter is a *-anti-isomorphism. This is 

possible only if both algebras are commutative,  i.e. dim H 1 = dim H~ = 1. [] 

An involution of a complex Hilbert space H is a conjugate linear isometry ]: H-~H 

of period two; an example is ?': ~ 2v~v ~-> ~ ~v~v where {~v} is any orthonormal basis. I f  

j: H ~ H  is an involution then uj is a conjugate linear isometry for each unitary u, and 

every conjugate linear isometry v is of this form. (Write u = v j  and note that  u]=v since 

j~=l.) 
To a given involution j: H--->H we associate a transpose map a~-->a ~ from B(H) onto 

itself by  writing a~=ja*j. Clearly the transpose map is a *-anti-automorphism of order 

two for the C*-algebra B(H). If  ~: A ~ B(H)s~ is a concrete representation of a JB-algebra  

A, then the transposed representation 7~: a~-->ze(a) t (w.r. to j) will be conjugate to ~. 

Thus, in the s tudy of dense concrete representations of JB-algebras we encounter 

two natural  equivalence relations: Jordan equivalence and unitary equivalence. Except  

for the one-dimensional case, each Jordan equivalence class splits in two (mutually con- 

jugate) unitary equivalence classes. 

w 3. JB-algehras o| complex type 

The following classification theorem is essentially contained in [37] and [7; w 8]. 

I~ecall from [42] and [7; w 7] tha t  a spin ]actor is, by  definition, H(~R where H is a real 

Hilbert space of dimension at  least two. Here Jordan multiplication is defined so tha t  

1ER acts as a unit and aob=(a lb) l  where a, bEH. 

T~EOR]~M 3.1. The type I JWB-]actors can be divided into the ]ollowing classes (up to 

isomorphism): 
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(i) B(H)s , the symmetric bounded operators on a real Hilbert space H; 

(ii) B(H)~a, the sel/-adjoint bounded operators on a complex Hilbert space H; 

(iii) B(H)s~, the sel/-adjoint bounded operators on a quaternionic Hilbert space H; 

(iv) the spin ]actors; 

(v) the exceptional algebra M s o/sel/-adjoint 3 by 3 matrices over the Cayley numbers. 

Moreover, these classes are mutually disjoint, with the exceptions that the matrix algebras 

Mu(R)s, M2((~)s a, and M2(H)s a are all spin ]actors. 

Note. The algebra M~ s of self-adjoint 2 by 2 matrices over the Cayley numbers is also 

seen to be a spin factor, see the proof of Prop. 3.2 below. 

Proo]. Let M be a type I JBW-factor.  Assume tha t  M is not isomorphic to M s or a 

spin factor. By [7, Th. 8.6 and Prop. 7.1], [34; Cor. 2.4], and [37; Th. 5.1] we may  assume 

tha t  M is concretely represented as an irreducible JW-algebra of type I~ on a complex 

Hilbert space H. 

Let  ~(M) be the norm-closed real subalgebra of B(H) generated by M. We claim 

tha t  M is the self-adjoint part  of ~(M), where the bar denotes a-weak closure. 

Indeed, let x be a self-adjoint element of R(M). Then x is a a-weal~ limit of sums of 

terms of the form Yl ... Y~, where each yjEM. Since x=x*,  x=�89 is a a-weak limit 

of sums of terms �89 ... Yn+(Yl ... Y~)*)=�89 ." Y,+Yn "" Yl), where each yjEM. By [37; 

Lemma 3.1] M is reversible, tha t  is Yl ... Y~ + Y~ ... Yl E M. Since M is a-weakly closed x E M, 

and the claim is proved. 

I f  M is the self-adjoint part  of a v o n  Neumann algebra, then this algebra, being ir- 

reducible, equals B(H). Then we have case (ii). 

Otherwise, according to [37; Lemma 6.1] we have ~(M) ~ i n ( M ) =  (0}. Using Lemma 

2.3 and Theorem 2.4 of [39], we get the direct sum decomposition 

B(H) = ~(M) | i ~(M). 

Thus we can define a a-weakly continuous mapping (I): B(H)-+B(H) by setting 

(b(x + iy) = ( x -  iy)* = x* + iy* (x, yE ~(M)). 

r is easily seen to be a *-anti-automorphism of B(H), and 0 2 =  I .  

In  [38] it is proved tha t  there exists a conjugate linear isometry j: H--->H such tha t  

~9(x)=]-lx*j (xEB(H)). 
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Since M is the self-adjoint par t  of ~(M) we find tha t  x ~ M  iff x is self-adjoint and 

O(x) =x ,  i.e., 
M = {xeB(H)~a[X i = ix}. (3.1) 

Because O 2 = I ,  j2 is a scalar multiple of the identity, say j2 =21, where 121 =1.  Since 

j commutes with j~, we find ~2 =2j. But,  since j is conjugate linear, )'2=~?'. This implies 

2 =~, so we have j2 = + 1. 

First, assume ]2= 1. Let  K = {~ E H: ~'~ =~}. Then K is a real t t i lbert  space, H = K QiK,  

and J(~+i~?)=~-i~? whenever ~, veK. By (3.1) x E M  iff x is self-adjoint and leaves K 

invariant, tha t  is, x E M ~ - x  I~ E B(K)~. Since any x e B(H) is determined by its restriction 

to K, M ~= B(K)~ follows. Thus we have case (i). 

Next,  assume ~ =  --1. Define k ~i~. I t  is easily verified tha t  i, ~, k satisfy the multi- 

plieation table of the unit quaternions, so H may  be considered a quaternionic vector space. 

Also, i, ] and k are isometries and skew symmetric with respect to the real par t  of the 

inner product in H. Thus H is a quaternionic t t i lbert  space with the inner product 

(~ [~)H = Re (~ 1~/) -- (Re (i~ IV)) / -  (Re (j~ [V))j - (Re (k~ I*/)) k. 

By (3.1) the elements of M are exactly the self-adjoint H-linear operators. Thus we have 

case (iii), and we have proved tha t  M falls into one of the classes mentioned. 

Next  we prove tha t  M2(tt)~, M2(C)s a and M2(It M are spin factors. Note that ,  by 

definition, a finite dimensional spin factor admits a basis 1, s 1 ... .  , sN where each s m is a 

symmetry  (S2m=l), and smos~=0 if m=~n. (Namely, let s 1 ... .  , sN be an orthonormal basis 

in H.) Defining 

= 

(3.2) 

we find tha t  1, sl, s 2 (resp. 1, sl, s2, ~3 resp. 1, 81, ..., 85) is such a basis for M~(R) s (resp. 

M2((])~a resp. M~(II)~). 

Finally, the disjointness of the isomorphism classes, with the stated exceptions, 

follows by  considering orthogonal minimal idempotents e, ] in M and noting tha t  

{(e +/)M(e+/)}  is isomorphic to M2(R)s , Me({?)sa, Ma(II)~, M and M~ in the respective 

ca se s .  [ ]  

De/inition. A type I JBW.factor  is said to be real (resp. complex resp. quaternionic) 

if it is isomorphic to B(H)~ for some real Hilbert  space H (resp. B(H),a for some complex 

resp. quaternionic t t i lbert  space). 
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In [6; w 3] the normal state spaces of type I JBW-factors are characterized geometric- 

ally. In particular, if ~, a are distinct extreme points of the normal state space, the face 

B(~, o) they generate is an exposed face affinely isomorphic to a Hilbert ball (the unit ball 

in a Hilbert space). The different types of JBW-factors can be distinguished by the dimen- 

sion of this ball: 

PROPOSITIO~ 3.2. Let M be a type I JBW-[actor, and N its normal state space. I[ 

e, ~ are distinct extreme points of N, we have: 

(i) If  M is real, then dim B(~, a )=2 .  

(ii) I f  M is complex, then dim B(~, a) =3.  

(iii) I f  M is quaternionic, then dim B(~, a )=5 .  

(iv) I f  M is a spin factor, then dim B(~, a )=N.  

(v) I f  M~=M~, then dim B(~, o )=9 .  

Proof. Let ~ be the (non-central) support projection of ~. Then B(~, a) is isomorphic 

to the normal state space of {(~ V a)M(~ V ~)} (see the proof of [6; Th. 3.11]). Also, by 

[6; Lemma 3.6] ~ V ~ = e + f  for some pair of minimal orthogonal projections e, f of M. 

Thus, if M is real {(~ V ~)M(~ V ~)} ~M~(R)~ and so, counting dimensions, we find 

dim B(~, o )=  dim M2(R)~- 1 = 2. The complex and quaternionic cases are treated similarly. 

Next, assume M~=M~, and let e~EM~ be the matrix units (i, j = l ,  2, 3). Since M is 

of type I3, 1 -  e - f  ~ e33 via a symmetry, so we may as well assume e + f = el l+ e22. Thus 

{(~+/)M(e+/)} ~= ~ ,  

so dim B(~, o) = dim M S -  1 = 9 .  

Finally, if M is a spin factor, N is a Hilbert ball, so (iv) follows trivially. [] 

Definition. The state space K of a JB-algebra is said to have the 3-ball property if, 

for any pair ~, a of distinct extreme points of K, the ball B(~, o) has dimension 1 or 3. 

(By Proposition 2.3 dim B(~, o) =3  iff ~ and a are equivalent.) 

Definition. A JB-algebra A is said to be of complex type if all its dense representations 

are into a type I factor isomorphic to B(H)~ a where H is a complex Hilbert space. Similarly, 

we may define JB-algebras of real, quaternionic, spin, and purely exceptional types. 

COROLLARY 3.3. A JB-algebra is o] complex type iff its state space has the 3-ball 

property. 

Pro@ The JB-algebra .4 is of complex type iff .4e is complex for ~11 pure states ~. 
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Since the normal state space of A 0 is isomorphic to Fo, the corollary follows directly from 

Theorem 3.1 and Proposition 3.2. []  

The relevance of the above discussions for our purpose stems from the following 

lemma. As will be seen later on, its converse is false. 

LE~MA 3.4. The sel]-ad]oint part o /a  C*-algebra is a JB-algebra o/ complex type. 

Proo/. Let A be the self-adjoint par t  of a C*-algebra, and let ~: A-->M be a dense 

representation. As in the proof of Proposition 2.2 we can find a central idempotent c EA** 

such tha t  &: coA**-)M is a surjective isomorphism. Since A** is the self-adjoint par t  of 

a v o n  Neumann algebra, M must  be isomorphic to the self-ad]oint part  of a type I yon 

Neumann factor, i.e. to B(H)s ~ for some complex Hilbert  space H. []  

PROPOSITIO~ 3.5. A J B-algebra is o/complex type i// it is special and all its irreducible 

concrete representations are dense. 

Proo/. Assume tha t  A is of complex type. By [7, w 9] A is special. Now let ~: A-> B(H)s a 

be an irreducible concrete representation. Then ~(A)-  is an irreducible JW-algebra,  hence 

[39; Th. 4.1] it is a type I JBW-factor, and therefore is a complex factor. The proof of 

Theorem 3.1 shows tha t  actually ~ ( A ) - =  B(H)~a, i.e. z is a dense representation. 

Conversely, assume A is a special JB-algebra  all of whose irreducible representations 

are dense. Let  ~: A--*M be a dense representation. Since A is special, M is not  isomorphic 

to M s. Then M can be represented as an irreducible JW-algebra [37; Th. 51], say M ~  

B(H)s ~. (That this is also true when M is a spin factor, is seen by first representing M on 

a Hilbert  space, and then choosing an irreducible representation of the C*-algebra generated 

by M.) But  then ~, viewed as a map into B(H)~a, is an irreducible representation, and 

hence it is dense. Thus M=~(A)=B(H)s~ ,  and A is of complex type. [] 

De/inition. Let A be a JB-algebra  of complex type. We say an irreducible concrete 

representation ~: A-~ B(H)sa is associated with Q E~eK if there exists a (unit) vector ~ E H 

such tha t  
<a, e> = (7t(a)~]~:) for all aeA .  (3.3) 

Note tha t  the unit vector ~ of (3.3) is uniquely determined up to scalar multiples (of modulus 

one) by virtue of the density of g(A) in B(H)s a. We will say tha t  this vector ~ represents Q 

w . r .  t o  ~ .  

PRO~OSIT~O~ 3.6. Let A be a JB-algebra o/complex type. Then/or each pure state 

~ E ~ K  there is associated at least one irreducible concrete representation. Two irreducible 
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concrete representations associated with the same ~ E OeK are either unitarily equivalent or 

conjugate; both happen i[/ the representations are one-dimensional. Furthermore, i/ an ir- 

reducible concrete representation ~ o / A  is associated with ~ EO~K, then the set o / p u r e  states 

with which ~ is associated, is precisely ~e Fo = Fo N ~ K .  

Proo]. By Proposition 3.5, an irreducible concrete representation of A is the same 

as a dense concrete representation. By Proposition 2.2, such a representation ~: A ~ B(H)s a 

is Jordan  equivalent to ~0 iff ~* maps the normal state space of B(H)  bijeetively onto F o. 

Since the pure normal states of B(H)  are the vector states, this is equivalent to 7e being 

associated with ~. This proves the final s ta tement  of the proposition, and also the first 

since to each ~ EOe K is associated the dense representation ~0: A ~Aq  and A o is isomorphic 

to B(H)~a by assumption. 

Finally, the second statement  is a direct consequence of Proposition 2.4, since two 

irreducible representations associated with ~ both are Jordan equivalent to ~o, and there- 

fore to each other. []  

w 4. Reversibility 

Following Stormer [36; p. 439] we will say tha t  a JC-algebra A is reversible if 

ala2 ... an § as an_l ... al E A (4.1) 

whenever a I .. . .  , a~EA. Note tha t  the left hand side of (4.1) is the Jordan triple product 

for n = 3 .  Thus, (4.1) always holds for n = 3 ,  but  it is worth noting tha t  it can fail already 

for n = 4 .  (In fact, n = 4  is the critical value; if (4.1) holds for n = 4 ,  then it holds for all 

n > 4  as shown by P. M. Cohn [13].) 

For a given JC-algebra A ~_ B(H)sa we denote by ~o(A) the real subalgebra of B(H)  

generated by A, and we denote by  ~(A) the norm closure of ~0(A). We observe tha t  

~0(A) is closed under the *-operation since (ala 2 ... a~)*=a~a~_ 1 ... a 1 for a 1 ..... a~EA. 

From this it follows tha t  ~(A) is a norm closed real *-algebra of operators on H. (Such 

an algebra is sometimes called a "real C*-algebra".) I f  A is reversible and b = a l a  2 ... an 

where al, ..., a~EA, then the self-adjoint par t  b~=�89247 will be in A. From this it fol- 

lows tha t  A is reversible iff ~0(A)sa=A. 

Assume now tha t  A is reversible and consider an element bE ~(A)sa, say b =b* and 

b =limn bn where bnE R0(A) for n =  1, 2, ... (norm limit). Then b =limn (b~)saeA since A is 

closed. From this it follows tha t  A is reversible iff ~(A)s a =A.  

By definition, reversibility is a spatial notion involving the non-commutat ive mul- 

tiplication of tI i lbert  space operators. In  general it is not an isomorphism invariant; 

it is possible for a reversible and a non-reversible JC-algebra to be isomorphic. This situa- 
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t ion  is i l lus t ra ted  b y  the  spin-factors .  A spin  fac tor  A_~ B(H)s a is a lways  reversible  when 

d im A = 3  or 4, non-revers ib le  when d im A # 3 ,  4 or 6, and  i t  can be e i ther  revers ible  or 

non-revers ib le  when dim A = 6, even though  all  spin factors  of the  same dimension are  

isomorphic.  Of these resul ts  we will prove  only  t he  one wi th  d im A = 4, since we shall  no t  

need  the  others.  

Recal l  t h a t  the  t t i l b e r t  no rm of a spin fac tor  is equ iva len t  wi th  the  J B - a l g e b r a  norm,  

and  t h a t  the  two coincide on N = ( 1 ) "  (ef. [41]). I t  follows t h a t  eve ry  spin fac tor  is a 

Banach  dua l  space, hence a JBW-algebra. I t  is easi ly verif ied t h a t  the  center  of a n y  spin 

fac tor  is t r iv ia l ,  hence i t  is a fac tor  (which justif ies the  terminology) .  I n  fact ,  the  spin 

fac tors  are  precisely the  JBW-factors of t y p e  I S (see [7; w 7] for def ini t ion and  proof).  

I f  S is a spin factor ,  t hen  the  hype rp lane  N =  {1)" consists of all e lements  4s where 

4 E R, s :4= • 1, and  s is a symmetry, i.e. s ~ - 1. Note  also t h a t  two elements  of N are or thogonal  

iff the i r  J o r d a n  p roduc t  is zero. Thus,  if {s~} is an  o r thonormal  basis in S such t h a t  s:0 = 1 

for some index :r t hen  all  the  o ther  basis-e lements  are  symmet r i es  sa t is fying s :o  s~ = ~:. Z 1. 

F o r  l a te r  references we observe t h a t  the  or thogonal  components  of an  e lement  a E S wi th  

respect  to  such a basis,  can be expressed in t e rms  of t he  J o r d a n  produc t .  I n  fact ,  if a = 

4o + ~*~o 4~s~, t hen  for each ~ # ~ o :  

(aosa) os a = (40s ~ +4~ 1)osa = 401 +4~s~; 

hence for a n y  index fl:4=~0 d is t inc t  from a: 

moreover :  

( ( (aos~)o%)os p)os z = 401; 

( a - 4 0 1 ) o s  ~ = 4 a l .  

(4.2) 

(4.3) 

Simple  examples  of spin factors  are  the  J o r d a n  a lgebra  M2(R)s of all symmet r i c  2 • 2- 

mat r ices  over  R and  the  J o r d a n  a lgebra  M~(C)sa of all  se l f -adjoint  2 • 2-matr ices  over  C. 

F o r  these  algebras,  o r thonormal  bases are  respect ive ly  (So, Sl, s2) and  (So, Sl, s 2, sa), where 

s o is the  un i t  m a t r i x  and  Sl, s~, s 3 are  the  e l emen ta ry  spin mat r ices  (cf. (3.2)). 

I t  follows f rom the  above  discussion t h a t  two spin factors  of the  same dimension mus t  

be isomorphic.  I n  par t icu la r ,  eve ry  spin fac tor  of d imension th ree  is i somorphic  to  M~(R)s, 

and  every  spin fac tor  of d imension  four is i somorphic  to  M~(C)sa. 

LEMMA 4.1. The /our-dimensional spin /actor M2(C)s a i8 reversible in every concrete 

representation. 

Pros/. Le t  M ~  B(H)s a be a concrete spin fac tor  of d imension four. Le t  1, s 1, s 2, s 3 be a 

basis for M,  where s~ = 1 and  s~osj = 0  for i=4=]. 
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B y  multilinearity, it suffices to prove tha t  x = a  1 ... a n + a  n ... a l E M ,  whenever the 

a / s  belong to  the  above basis. Using the  relations s~ = 1, s~sj = - s j s ~  when i:4=], we m a y  per- 

mute  the aj 's (possibly reversing a sign in the expression for x) and cancel terms until  we 

find x =  •  1 ... b~+bm ... bl), where m < 3 .  Thus x E M .  (If m = 3 ,  this expression is the 

Jo rdan  triple p roduc t  {b x b 2 ba} = (b x o b 2 ) o b a + (b 2 o ba) o 51 - (b x o ba) o b 2.) [ ]  

We will reduce the  problem of reversibility for a given JC-algebra  to  the  same problem 

for its weak closure in an appropria te  representation. Then we are in a setting where the 

s tructure theory  for JW-algebras  applies. Recall in this connection tha t  any  given J W -  

algebra A ~ B(H)s a can be wri t ten as 

A = A I @ A 2 q )  ... |  (4.4) 

where A x is an abelian JW-algebra ,  Ai  is of type  I j  for j = 2 ,  3 ..... oo, and B is the non type  

I summand.  (See [41; Theorems 5 & 16] for precise definitions and proofs, bu t  note in 

part icular  t ha t  the direct  sum (4.4) is given by  orthogonal  central idempotents  zx, z 2 . . . . .  zoo, 

w E A  such tha t  z j A  = A j  for j = l ,  2 .. . . .  oo and w A = B . )  

We will see later t ha t  the I~-summand is the key to reversibility. Therefore we will 

now s tudy  JW-algcbras  of type  12. We begin by  two technical lemmas. 

L E M MA 4.2. For  each integer n >~ 1 there exists a Jordan  po lynomia l  P~ in  n + 2 variables 

such t h a t / o r  a n y  s p i n / a c t o r  S and an arbitrary p a i r  s, t o /or thogonal  symmetr ies  in  S we 

have Pn(s, t, a x . . . . .  an) = 0  i / /  a 1 . . . . .  a~ E S  are l inearly dependent. 

Proo/.  By the  well known Gram criterion for spaces with an inner product ,  n elements 

a I ..... a~ of a spin factor  S will be linearly dependent  iff det  ((a~Iaj)}~.j=~ =0 .  Since the 

J o r d a n  multiplication in S reduces to scalar multiplication in R1 ___ S, we can rewrite this 

condition as 
Q~((a~ lax) 1, (a 11a2) 1 .. . . .  (an l a~) 1) = 0, (4.5) 

where Qn is an appropriate  J o r d a n  polynomial  in n ~ variables. 

Assume now t h a t  s, t are two arb i t rary  (but fixed) or thogonal  symmetries  in S. For  

any  set (a 1 . . . .  , a n) of n elements of S we decompose each aj as aj = ~j 1 + nj where n~ E N = {1 }~. 

For  given i, ] the multiplication rules for spin factors give: 

(a~[aj) 1 = ~ g j l  +(n i ]n j )  1 = ( ~ l ) o ( e j l ) + n ~ o n j  = ( a ~ l ) o ( a j l ) +  ( a ~ - - ~ l ) o ( a s - a ~ l ) .  

I t  follows from (4.2) t ha t  (a t [aj)1 can be expressed as a Jo rdan  polynomial  in s, t, a~, aj for 

i, ] = 1, 2 . . . . .  n. Subst i tut ing these polynomials into Q,, we obtain  a J o r d a n  polynomial  Pn 

in the  n + 2  variables s, t, a 1 . . . . .  an, which will have the  desired property.  Clearly, Pn is 

independent  of the spin factor  S and the choice of s and t. [ ]  

19 - 792902 Acta mathematica 144. Imprim6 le 8 Septembre 1980. 
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Observe for later applications tha t  if A is a JW-a lgebra  of type  I s and if ~: A-> M is 

a dense representation, then M mus t  be a spin factor. I n  fact,  if p and q are exchangeable 

abelian projections in A with sum 1, then ~(p) and ~(q) are exchangeable abelian projec- 

tions in M with sum 1, so M is an  I2-factor, i.e. a spin factor. 

For  the next  lemma we also need some new terminology:  Two elements a, b of a JB-  

algebra are said to  be J-orthogonal if aob =0 .  Clearly this generalizes the or thogonal i ty  of 

symmetries in a spin factor. Note  also tha t  if A is concretely represented as a JC-algebra, 

then a, b are J -or thogonal  iff the operator  ab is skew. For  a given idempotent  p in a JB-  

algebra A we say t h a t  an element s E A is a p-symmetry if s ~ = p .  

LEMMA 4.3. I /  a projection p in a JW-algebra A o/ type 12 admits two J-orthogonal 

p-symmetries, then p is central. 

Proo/. Let  s, t be two J -or thogonal  p-symmetr ies  in A, and define q=�89247 r= 

�89  Then q + r = p ,  and q, r are exchangeable projections; in fact  the s y m m e t r y  u =  

(1 - p )  + t  satisfies uqu =r, so it exchanges q and r. 

Note  t h a t  the central covers c(p), c(q), c(r) are all equal. We assume for contradict ion 

tha t  p#c(p ) .  Then the central covers of q and of c ( p ) - p  will no t  be orthogonal,  so by  

[41; Lemma 18] there will exist exchangeable non-zero projections x<~q, y ~ c ( p ) - p .  

Defining z = uxu, we get z ~< uqu = r. 

Now x, y, z are non-zero orthogonal  projections with x, y exchangeable and x, y ex- 

changeable. Then a n y  homomorphism which annihilates one of the projections x, y, z, 

will annihilate the other  two. Thus  there exists a dense representat ion ~: A ~ M  which does 

no t  annihilate a ny  of the  three projections x, y, z (cf. [7; Cor. 5.7]). B y  the remark  preceding 

this lemma, M must  be a spin factor. Bu t  a spin factor  cannot  contain a set of three non- 

zero orthogonal  projections. This contradict ion completes the  proof. [ ]  

The next  lemma is crucial. 

L E M~A 4.4. I / A  ~ B(H)s ~ is a JC-algebra o/complex type, then every dense representa- 

tion o/ the I2-summand o/ A is onto a spin/actor o/ dimension at most/our. 

Proo]. Let  z be the  central projection in A such t h a t  the I~-summand of 3 is equal 

to  zA, and let ~: z ~ M  be a dense representation. As remarked earlier, M mus t  be a 

spin factor.  

Note  t h a t  M 0 =~(zA) will be a norm closed Jo rdan  subalgebra of M containing the 

identi ty.  I t  is no t  difficult to  verify t h a t  such a subalgebra is itself a spin factor  unless it 
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is of dimension less than three. In  the latter case M 0 will be associative (in fact M ~ R 

or M =~ R|  In  the former case the spin factor M 0 satisfies M 0 -~ B(H0),a for some finite 

or infinite I-Iilbert space H0; but B(H0)sa is a spin factor only ff H 0 is of (complex) dimension 

2, in which case B(H0)s~ is of (real) dimension 4. Hence dim M 0 = 1, 2 or 4. 

We will next show that  dim M~<4. Let p, q be exchangeable abelian projections in 

z ~  with p + q = z .  Then there exists a z-symmetry sEz.4 such that  sps=q.  Now ps=sq ,  

so s ( p -  q) = ( q - p ) s .  Thus the elements s and t = p  - q  are symmetries in the Jordan algebra 

z-~ satisfying sot=O. Consider now an arbitrary dense representation ~0 of zA. By the 

above argument (with F in place of ~), F is a spin factor representation and dim F(zA) <~4. 

By Lemma 4.2 we have 

~p(Ps(s, t, za 1 .. . .  , za~) ) = Ps(y~(s), ~f(t), ~0(Z~tl) , . . . ,  ~)(za5) ) = 0 

for any set of five elements a I . . . . .  as EA.  Since the dense representations separate points 

[7; Cor. 5.7 and Prop. 8.7J, it follows that  

Ps(s, t, za 1 . . . . .  zas) : 0 ,  all a I . . . . .  asEA.  (4.6) 

By the Kaplansky density theorem for JC-algebras [18; p. 314], the unit ball of zA 

is strongly dense in the unit ball of z-4. Hence it follows from (4.6) that  P6(s, t, x 1 .. . . .  xs) =0  

for all x 1 ..... x 5 EzA. Applying ~, we get 

P5(~9(8), 9~(t), ~(Xl) . . . . .  ~(X5) ) = 0 all x 1 . . . . .  xsez .~.  

By Lemma 4.2 ~(xl) .... , ~(xs) is a linearly dependent set of elements of M for any set of 

five elements x 1 ..... x 5 E z~.  Hence dim ~(zX) ~< 4, and by a-weak density, dim M ~< 4. []  

I t  follows from the next result that  the dense spin factor representations of Lemma 

4.4 have dimension precisely four. 

LwMlgA 4.5. Let A g  B(H)s a be a JC-algebra o /complex  type and let s o be the central 

projection in .~ such that so A is the I~-summand o/ .4. Then so.4 contains a subalgebra 

M = l i n  R (so, sl, s~, sa) which is a / o u r  dimensional spin/actor  with sl, s2, sa J-orthogonal %- 

symmetries. Moreover each b Eso.~ can be uniquely expressed as: 

3 

b= ~. /js~, (4.7) 
J-O 

where/ j  is in the center Z o / so ,4 /o r  j=O, 1, 2, 3. 

Proo/. Let (Pa} be a maximal orthogonal set of central projections in s0~ with the 

property that  each Pa admits three J-orthogonal p~-symmetries, say sla, s~a, sa~ and let p = 
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~ p~. A priori, there may  not  exist any such p~, in which case the summation over the 

empty  set of indices would give p = 0. However, we shall see tha t  this eventuali ty cannot 

occur; in fact we will prove tha t  p = s  0. 

Assume tha t  p ~ s  0. Now we will first show that  every dense representation of (s o - p )  

is of dimension at most three, then we will see tha t  this leads to a contradiction. By Lemma 

4.4 all dense representations of (s o - p ) A  are onto spin factors of dimension at  most four 

(since each extends to the Ie-summand of A). Now if ~: (s 0 - p )  A - ~ M  is a four-dimensional 

spin factor representation, then by [34; Lemma 3.6] we can find orthogonal symmetries 

81, s3, s 8 in M, an idempotent q E (s o - p ) . ~ ,  and J-orthogonal q-symmetries tl, t3, t 3 mapping 

onto s 1, %, %, respectively. Note tha t  (s o - p ) A  is of type I S, and so by Lemma 4.3, q is a 

central idempotent. This contradicts the maximal i ty  of {pa}, so we conclude tha t  all dense 

representations of (s o - p ) A  are onto spin factors of dimension three. Now, as in the proof 

of Lemma 4.4, all such representations restricted to (s o - p ) A  have associative range. Thus 

(s o - p ) - 4  must  be associative (i.e. abelian). But  this is impossible, so p = s  o as claimed. 

Define sj=~.~ si~ for ] = 1 ,  2, 3. Then sl, s3, sa are J-orthogonal so-symmetries , and 

M =lin R (so, sl, s3, ss) is a spin factor of dimension four. 

I t  remains to establish the decomposition (4.7). For  a given b ~ s o A we define 

]o = ( ( (b~176176  (4.8) 

/ j  = ( b - / o ) O S j  for i = 1, 2, 3. (4.9) 

Consider now a dense representation y~ of s 0.~. Since y) is a dense spin factor represen- 

tat ion of dimension a t  most four (by Lemma 4.4), and since ~(sl) , ~f(s3) , yJ(sa) are orthogonal 

symmetries,  we have a decomposition 

3 3 

~(b) = ~ ~j~(sj)= ~ (~j ~)o~(s~), 
./~0 i - 0  

where the coefficients ~ are given as in the formulas (4.2) and (4.3). Comparing these 

formulas with (4.8) and (4.9) (with a =yJ(b)), we conclude tha t  

211 =~([t) ,  for i = 0 ,  1, 2, 3, (4.10) 
and therefore 

(()  v?(b) =y~ lsosj  . (4.11) 
J 

By (4.10) and (4.11), ~ will map the elements ]0, ]1, ]3, ]a onto central elements and the 

element b -  ~ = 0 / i o s j  onto zero. Since the dense representations separate points, it fol- 

lows tha t  /0,/1,/3,/a E Z  and tha t  b - ~ = 0 / i o s j = 0 .  The uniqueness follows from (4.8) 

and (4.9). []  
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Remark .  Note tha t  Lemma 4.5, equation (4.7), implies tha t  the I~-summand of 

is isomorphic to C ( X ,  M2(C)~) where X is a hyperstonean space such tha t  C(X)  is iso- 

morphic to the center of s oA. 

The next  theorem is the main result of this section. 

THE OREM 4.6. A n y  JC.algebra A o / comp lex  type is reversible. 

Proo/.  1. Let  9~ be the C*-algebra generated by  A _~ B(H)s ~ and let z: 9~-~B(H')  be the 

universal representation of 9~. Since reversibility of A only depends on the embedding of 

A in 0/, we can, and shall, identify 9~ and zr(9~). First we will show tha t  A is reversible in 

this representation. 

By [37; Th. 6.4 & Th. 6.6] it suffices to show tha t  the I~-summand of A is reversible. 

Let this summand be s0~ where s o is a central projection in .4, and let 81, s2, s 3 be J-ortho-  

gonal s0-symmetries with the properties explained in Lemma 4.5. Consider now an arbi trary 

finite set of elements 
3 

bi = ~ /~jsjESo-4, i = 1, . . . ,  n, 
t=0 

where the coefficients /~j are in the center of s0.4. By Lemma 4.1 the spin factor M =  

linR (so, sl, s2, sa) is reversible. Hence 

b l . . . b ~ + b , . . . b l =  ~ / l j , . . . f~ j~(s j l . . . s j~+s j , . . . s j , )ESo  A .  
(J~, ...,in) 

This shows tha t  s o J is reversible, and thus A is reversible. 

2. We now show tha t  A is reversible. Suppose a 1 ..... a ,  EA; by reversibility of 

x = a la  2 ... a~ +a~a=_ 1 ... a x E_~. 

But x is also in 9~, and so it lies in 9~ N A. We are done if we show 9~ fl A = A. 

Recall tha t  ~ can be identified with 9~**. The weak and a-weak closures of A will 

coincide [39; Lemma 4.2], so .4 is also the a-weak closure of A (i.e. the closure in w(9~**, 9~*)). 

Now _~ N 9~ is obtained by intersecting 9~ with the intersection of all w(~**, 9~*)-closed 

hyperplanes containing A; but  these hyperplanes are of the form ~-1(0) where q0 Eg~*, and 

thus A N 9~ = A since A is norm closed. This completes the proof. [] 

w 5. The enveloping C*-algebra 

Two JC-algebras, even if they are isomorphic, may  act on their respective Hilbert  

spaces in quite different ways; in fact, even the C*-algebras they generate may  be non- 

isomorphic. In  this section we prove the existence, for any special JB-algebra,  of a "largest" 
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C*-algebra generated by it, such tha t  in any concrete representation, the C*-algebra 

generated by  the given JB-algebra is a quotient of the "largest" one. Then we specialize 

to JB-algebras of complex type. 

T ~ E O ~ M  5.1. Let A be a JB.algebra. There exists a C*-algebra ~ and a Jordan homo- 

morphism ~p: A-+9~ such that ~ is generated by ~p(A) and such that for any Jordan homomor- 

phism 0: A->~sa where B is a C*.algebra, there exists a *-homomorphism O: ~ ~ B satisfying 

0 = ~ o  w. 

Proof. Let  A C = A |  be the complexification of A. I t  is a Jordan *-algebra, i.e. a 

complex Jordan algebra with an involution satisfying (aob)* =a*ob*. (A c can be normed 

to become a "JJB*-algebra" or "Jordan  C*-algebra" [44], but we will not need this.) 

Let  u: A c-> ~ be the "unital universal associative specialization" of A c [21; p. 65]. 

Here ~ is a unital complex associative algebra and u: A c-~ ~ is a Jordan homomorphism 

with roughly the universal property stated in the theorem, only with the C*-algebras 

replaced by associative algebras. 

We briefly indicate how ~ is constructed: ~ is the tensor algebra of A c factored by  

the ideal generated by  all elements of the form 

aob- �89174174  a, b e A  c, 

and the difference between the unit of the tensor algebra and tha t  of A s . The details are 

found in [21; p. 65]. 

Next  we note the existence of a unique involution on "U such tha t  u is a *-map. This 

is done by  defining an involution on the tensor algebra by  

(al| ... | a*| ... | a I . . . . .  a~fiA c, 

and noting tha t  this involution preserves the above-mentioned ideal. 

I t  is easily seen tha t  u [ A: A-~ ~ satisfies the property of the theorem, with C*-algebras 

replaced by *-algebras. 

Next,  we define a seminorm on ~ by  

Ilxl[ = s u p  B(H) is a *-representation}. (5.1) 

We have to prove tha t  ]]x]] < oo for x e  ~/. Since u(A) generate ~ as an algebra and I[" ]l 

is clearly sub-additive, it is enough to prove this for x of form x=u(al ) . . ,  u(an), where 

a l ,  . . . ,  a n E A .  

But, whenever xe: ~ ~ B(H) is a *-representation, ~ o u [ a  is a Jordan  representation of 

A, and is consequently of norm 1. Thus 
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HTe(x)H = ]lzou(al) ... 7~ou(an) H ~ H~ou(al)ll ... ][~ou(an)ll ~ lla~l] ... Ilanll , 

so llx]l ~ Ilal]l ... Ilanll < c~. 
Letting 

N = (xE 'U: Ilxll = o ) ,  (5.2) 

we obtain a C*-norm on '~/N. 9~ is defined to be the completion of 'U/N. Let 

yJ(a)=u(a)+N,  aEA.  (5.3) 

Obviously, 9~ is generated as a C*-algebra by ~o(A). To complete the proof, let B be a 

C*-algebra and 0: A--->Bsa a Jordan  homomorphism. Then 0 factors through ~ ,  i.e. there 

exists a *-homomorphism ~: ~ ->  B with 0 =~ou .  Assume B is faithfully represented on a 

Hilbert space. Then ~ is a *-representation of ~ ,  and therefore it annihilates N, and by  

definition of the norm induces a *-representation of ~ / N  of norm 1. I ts  continuous exten- 

sion ~ to ~ is easily seen to satisfy the conditions of the theorem. []  

Remark. Note tha t  the *-homomorphism 0 in Theorem 5.1 is necessarily unique. The 

theorem states tha t  the following diagram commutes: 

6 

I A---~ ~sa 

By abstract  nonsense, the pair yJ, ~I is uniquely determined (in the obvious sense). 

I f  A is special, then by definition A can be faithfully represented on a t t i lbert  space. 

Factoring such a representation through ~I, we conclude that ,  in this case, yJ is injective. 

Then we identify A with its image ~o(A) in 9~, and call 9~ the enveloping C*-algebra of A. 

We can then rephrase the above results as follows: A is a JB-subalgebra o/~s~, and generates 

9~ as a C*-algebra. A n y  Jordan homomorphism O: A ~ Bs a where B is a C*-algebra extends 

uniquely to a *-homomorphism ~: 9..[---> B. 

In  the general case, the kernel of ~ is easily seen to be the "exceptional ideal" of A 

defined in [7; w 9]. Then 9~ is the enveloping C*-algebra of A/ker ~. 

The fact tha t  " Jordan  multiplication knows no difference between left and r ight"  

is reflected in the following: 

COROLLARY 5.2. I /  A is special, there exists a unique *-anti-automorphism 6P o/ 9~ 

leaving A pointwise invariant. Also, r I.  
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Proo]. Let  9 ~ denote the opposite C*-algebra of 9)[. Then �9 is the *-homomorphism 

~->~~ extending the Jordan homomorphism ~0: A-~[~  Also, O 2 is a *-automorphism of 9~ 

leaving A pointwise invariant, and is therefore the indentity. []  

Throughout the rest of this chapter, A will be a JB-algebra of complex type, and K 

its state space. 9~ is its enveloping C*-algebra, with state space Jr. The restriction map 

from 3( onto K will be denoted by r. (It  is the dual of the embedding ~: A ~ f . )  Obviously, 

toO* =r .  

PROrOSITIO~ 5.3. Let A be a JB-algebra o/ complex type, with state space K. Let 9A 

be the enveloping C*-algebra o/ A,  with state space ~ .  I[ ~ E~e~, then r(~)E~eK, and the 

restriction map r maps FQ bi]ectively onto F~(~). 

Proo]. Consider the GNS representation ~0: ~-+B(Ho). Since A generates ~, then 

zQ] A is irreducible. By Proposition 3.5, z~Q[ A is dense, and so by Proposition 2.5, (~0 [~)* 

maps the normal state space N of B(H) bijectively onto a split face of K. Consider the 

commutative diagram: 

Since :~* maps N bijectively onto _F0, it follows that  r maps F o bijectively onto a split 

face of K, and the result follows. []  

L ] ~ A  5.4. With assumptions as in Proposition 5.3, the restrictions to A o/the represen. 

rations ze, resp. ~rr are conjugate irreducible representations o[ A associated with r(~ ). 

Proo]. Let  ~0EH 0 denote a representing vector for o. Choose an involution ] of H e 

fixing ~=0, and define the transpose map a~-->a ~ on B(H~) by at=]a*]. Then xb-->xr~(O(x)) ~ 

is an irreducible representation of 9.I, and ~:e is seen to represent the state O*p under this 

representation, which can therefore be identified with oz~.~. 

For x EA, we have r = ?':zQ(x) ?', which proves that  the restriction of this represen- 

tation is conjugate to :zQ I a. 

That  ~rel A is associated with r(~) follows from the following, if x E A: 

( (%[2 (x)$o [$o) = <x, q> = <x, r(q)>. [] 

P R 0 ~ 0 S I ~z I 0 ~ 5.5. With assumptions as in Proposition 5.3 the/ollowing are equivalent: 

(i) O* e =e, 

(ii) .Fr = {~}, 

(iii) F o fl O*(Fo)#0 .  
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Moreover, the inverse image r-l(r(o)) o/ r(~) in ~ equals the line segment [if, qb*~] which 

degenerates to a point i / the above requirements are/ul/ilted.~ 

Proof. We prove (i) ~ (iii) ~ (i!) ~ (i). Of these implications, the first is immediate  since 

O*(F~) = F r  e. 

Assume (iii). Since minimal split faces are either disjoint or equal, we have (I)*# E Fe, 

so ~, (I)*Q are equivalent. F rom this it follows tha t  z0, ~ * e  are uni tar i ly  equivalent. Then 

the same holds, of course, for their restrictions to A. But,  by  Lemma 5.4, these restrictions 

are conjugate, so b y  Proposi t ion  2.4 w e  have dim •Q = 1, or F e = (~}. 

Assume next  t ha t  F e = {~}, i.e. dim ze = 1. Then we have zQ(x)~ = (x, ~}~, and  similarly 

for (I)*~, thereby proving (since ~ and (I)*# have the same restrictions to A) tha t  ~ ] A  is 

unitari ly equivalent  to ~*e[A" A uni ta ry  equivalence of these two representations is also 

an equivalence of ~e and ~r Thus (I)* e E F e --(e}, so (I)* e =e .  

Finally, assume t h a t  ~ E ~e K and r(~) = r(~). Then 7~r I A is an irreducible representat ion 

of A associated with r(#), and is therefore either uni tar i ly  equivalent  or conjugate to 

~e I A, i.e. unitari ly equivalent to either ~e I A or z r  e I A (Lemma 5.4). Thus z~ is equivalent  

to either zQ or 7~r i.e. a E F e or a E F~,  e. Since FQ, F r  e are mapped  injectively into K 

(Prop. 5.3), a =  e o r  a=(I)* e follows. Thus r-i(r(Q))N ~e~={e,  OP*e}. Since r - l ( r ( e ) ) i s  a 

closed face of :K, the Krein-Milman theorem shows tha t  r-i(r(o~)) = [~, (I)*#], and the proof 

is complete. [ ]  

De/initions. We divide the pure state space of A in two parts  as follows: 

~e,,~K = {o E ~ K :  F~ = {~)}} (5.5) 

~. ~ K = ~ e K ~ O e ,  o K .  (5.6) 

Thus ~e.o K correspond to one-dimensional representations. ~.  0K is easily seen to be closed 

in the facial topology [1; w 6], bu t  we shall no t  use this fact. 

C o ~ o L L A ~ Y 5.6. The restriction map r: ~I~-+ K maps Oe. o ~ one-to-one onto ~. 1K and 

~e.l~ two-to-one onto ~e.i K. 

Proo]. Since r ( ~ ) = K ,  the Krein-Milman theorem proves tha t  r(~e:~ ) ~ e K .  Proposi- 

t ion 5.3 contains the opposite inclusion and proves tha t  ~,. 0 ~  (resp. ~e. 1~)  is mapped  into 

~,0 K (resp. OelK). By Proposit ion 5.5, the proof is completed. [ ]  

Our next  lemma is essential. I t  i s  our only use of the  results of  w 4, so i t  is n o t  as 

innocent  as it looks. We repeat  our s tanding hypothesis  t ha t  A is Of complex type.  

LEMZ~A 5,7. The/ixed point set in 9~ o] (I) is A +iA.  

19t-  792902 Acta mathematica 144. Imprim6 le 8 Septembre 1980. 
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Proo/. By Corollary 5.2, A +iA is pointwise fixed by  qb. Let  x 6 9 / b e  a fixed point  of 

@. Since qb is a map,  we m a y  assume tha t  x is self-adjoint. We shall prove tha t  x E i .  

Since 9 / i s  generated by  A, x is a limit of sums of terms of the form y = a 1 ... a m + 

ibl ... bn, where a~, bj6A.  Since x=x*-dP(x) ,  x is also the limit of sums of terms of the 

form �88 + y* + 4p(y) + O(y)*) = �89 1 ... am + a~ ... a~). But  A is reversible in any  representa- 

t ion (Theorem 4.6), so the lat ter  element belongs to _4. Therefore x6-4, and the proof is 

complete. [ ]  

LEMMA 5.8. The /ixed point set ~o in [K o/ 4P* is mapped bi]ectively onto K by the 

restriction map r. 

Proo/. That  r(:K0) = K is obvious since r (X)  = K, ro ~P* = r and �89 + qb*Q) E X0 for @ E X. 

To prove tha t  r is injective on :K0, let ~, a 6  :K0 and assume t h a t  r(@)=r(a). I f  X69/sa, 

then �89 + ~P(x)) is a self-adjoint fixed point  of ~P, so by  Lemma 5.7, �89 + 4p(x))6A. Thus 

<x, q> = <z, �89 + r  = <�89 + Cz),  q> = <�89 + Cx), ~> = <z, �89 + r = (x, ~>, 

so ~ =a, and the proof is complete. [ ]  

LEMMA 5.9. Let F be a closed split/ace o/ ~ .  I / r  is one-to-one o n  ~e F, r is one-to-one 

on F .  

Proo/. Since ~P* is an affine automorphism of :K, G =~P*(F) is a closed split face of •. 

Le t  @6@e(-E N G). Then @6OeF and qb*Q6OeF. By  assumption, @=qb*@. Using the Krein- 

Milman theorem, we conclude t h a t  F n G is pointwise fixed by  qb*. 

Now the convex hull co (F  U G) is a direct convex sum of the three split faces F fi G, 

F' n G, F fi G' (see [1; Prop.  I I .  6.6]). Also, qb* maps F '  N G onto F fl G' and vice versa. 

Assume now tha t  @, a 6 F and r(~)=r(a) .  Using Lemma 5.8, we find 

�89 + r = �89 + r  (5.7) 

since both  are fixed points of 4)*. Wri te  

: Aal+ (i -A)~2 

where 0</x~<l,  0~<t~<1, ~1, ~I 6F(~ G, e~, ~261~N G'. 

The relation (5.7) can be written 
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Using affine independence of the split faces F ;] G, F' N G, and F N G', we conclude ~u~l =~0" 1 

and (1-/~)02 = ( 1 - 2 ) a 2 ,  or 0 =a .  We are through. []  

TItEOREM 5.10. Let A be a J B-algebra of complex type, and ~ its enveloping C*-al!lebra. 

Let K resp. ~ ,  be their state spaces, and r: ~-->K the restriction map. Then A is isomorphic 

to the sel/-adjoint part of a C*-algebra if/there exists a closed split face F of ~ such that r 

maps ~ F bi]ectively onto 8~K. 

Proof. Assume the existence of such a split face F. Let  J = F 0 be the annihilator in 

9~ of F. Then F is affinely homeomorphic to the state space of the C*-algebra 2/J .  By 

Lemma 5.9 and the Krein-Milman theorem, r is an affine homeomorphism of F onto K. 

Thus A is isomorphic to the self-adjoint par t  of the C*-algebra ~/J .  

Conversely, assume tha t  ~: A-~Bsa is a Jordan isomorphism, with ~ a C*-algebra. 

Let  qS: 9~-+ B be its extension as a *-homomorphism. Then, with J = k e r  qS, B can be identi- 

fied with g/J ,  and ~ corresponds to the composition of the inclusion A->~  and the canonical 

map ~ / J .  We obtain the following commutat ive diagram of algebras and homomor- 

phisms, together with its dual diagram of state spaces and affine mappings: 

A 

Here we have identified the state space of 9.I/J with the closed split face .P of ~ ,  where 

F = J• This F satisfies the conditions of the theorem. []  

Now tha t  we have established the potential usefulness of the enveloping C*-algebra 

of a JB-algebra of complex type, we will show how actually to compute it. Inspection of 

the proof below will reveal tha t  it is the existence of the *-anti-automorphism 4p, established 

in Corollary 5.2, tha t  characterizes ~. 

PROPOSITION 5.11. Let A be a JB-algebra of complex type. I f  ~: A ~ B(H)sa is a ]aith- 

[ul representation, the enveloping C*-algebra ~ is (isomorphic to) the C*-algebra on H O H  

generated by ( ~ 0 ~  ~) (A ). (x~ t is defined relative to some involution on H.) 

Proof. The C*-algebra C generated by (~|  is contained in B(H)|  B(H) (acting 

on H| Define the *-anti-automorphism ~ on B(H)|  B(H) by 

qJ(a~b) =btOa t, a, bEB(H). 

Then ~o ( ~ t ) = 7 ~ O ~ .  I t  follows tha t  C is ~-invariant. 

20-792902 Acta mathematica 144. Imprim6 le 8 Septembre 1980. 
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Consider the extension (zt| 9/-+ C of z~| t. Since A generates 9/as a C*-algebra, 

this extension maps 9/ onto C. To complete the proof, we shall show that  (~| - is 

actually injective. 

Now ~0o (u| is a *-homomorphism 9X-+ C extending ~|  and hence it equals 

(zl| -. Thus ~0o(z~|174 I t  follows that  the kernel J of (7tO~rt) - is a 4)- 

invariant, closed two-sided ideal of 9/. We shall finish by proving that  such an ideal J,  

satisfying J N A = {0}, is trivial. 

Letting F = J ~  be its annihilator in ~ ,  we see that  F is a closed (I)*-invariant split 

face of ~ ,  and r(F) = ( J  N A ) ' = { 0 } •  

Choose any ~ E ~ .  By Proposition 5.5, r-l(r(o))= [Q, (I)*(O)]. Since r(F)=K,  it follows 

that  F fl [~, (I)*(O)]#~. Because F is a (I)*-invariant face, oEF.  By the Krein-Milman 

theorem, then F = ~ ,  and so J = F~ = {O}, and the proof is complete. []  

w 6. The normal state space of B(H) 

Let H be a complex I-Iilbert space, and denote by/Y the normal state space of B(H). 

I t  is well known [33; Th. 1.15.3] that  N can be identified with the set of positive trace 

class operators of trace 1 on H in such a way that  the trace class operator a corresponding 

to a given ~ 6N satisfies: 

<x, 0> = Tr (ax), xEB(H). (6.1) 

I t  is also well known (and easily verified) that  ~ EN is pure iff a is a one-dimensional 

projection, and this is equivalent to ~ being a vector state, i.e. of the form ~ =~o~ where 

o)~(x)- (x~l~) for some unit vector ~ EH. 

If dim H =2 then B(H)s a ~= Ms(C)s ~ is a spin factor of dimension 4, and by the general 

theory of [6; w 3] N must be a Euclidean ball of dimension 3. We will now make this explicit: 

A (necessarily normal) state ~ on M~(C) is given by a positive matrix of trace 1, i.e. of 

the form 

a=-~ (6.2) 
. / ~  2 - iz% 1 - ~lJ 

1 2 2 where det ( a ) = ~ ( 1 - ~ x - ~ 2 - ~ ) ~ > 0 .  Now q: (~l, ~s, ~a)-+~ is the desired affine isomor- 

phism of the standard 3-ball Ea={(al,  ~s, aa): ~ ~ < 1 }  onto the state space of Ms(C ). 

Henceforth we will identify the state space of Ms(C ) and the standard 3-ball E 3 via this 

isomorphism. (Also we identify Ms(C ) with the linear transformations on C 2 in the usual 

way.) 

The affine automorphisms of N correspond to the unital order automorphisms of 

B(H), these are precisely the Jordan automorphisms, which in turn can be either *-auto- 
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morphisms or *-anti-automorphisms [25]. We will now explain how one can use the con- 

cept of orientation for the  balls B(~, a)_~ N (~, a ~ N )  to separate the two cases. 

Definitions. A parametric 3-ball is an affine isomorphism ~ of E a onto a convex set 

(in some linear space), the  range B =~(E a) is said to be a 3-ball, and ~ is said to be a para- 

metrization of B. If  ~ and yJ are two parametric 3-balls such tha t  ~(E a) -F(Ea),  then F - l o ~  

is an or thogonal  transformation of E a and we write ~ m o d  0(3); if in addition 

det (~p-lo~) = + 1, then we write ~ ~ 0  mod S0(3). The parametrizations of any given 3-ball 

B fall in two equivalence classes modulo S0(3), each of which is called an orientation of B. 

An affine isomorphism ~: BI->B 2 between two 3-balls oriented by  parametrizations ~1 

and ~2 respectively, is said to be orientation preserving if det (~1oy~o~1) = + 1, and orienta- 

tion reversing if det ( ~ 1 o F o ~ 1 ) = - 1 .  Unless otherwise stated, we will assume tha t  the 

state space of M2(C ) is oriented by the natural  parametrization ~: (~1, ~2, g3)-§ (cf. (6.2)). 

Recall from [l l] tha t  a map ~: ~--> B between C*-algebras is called 2-positive if ~ |  12 

is a positive map from 9~| ) into 9~| ) (12 is the identi ty map on M2(C)). By [43] 

is called 2-copositive if ~ |  2 is positive (4 is the transpose map on Me(C)). 

L~MMA 6.1. A unital order automorphism �9 o/ M2(C ) is a *-automorphism (*-anti- 

automorphism) i// it is 2-positive (2-copositive), and in this case ~* is an orientation preserving 

(orientation reversing) af/ine automorphism o/ the state space of M2(C ). 

Proo/. Clearly *-automorphisms are 2-positive [11], and by [12] a 2-positive Jordan  

homomorphism is a *-homomorphism. The statement  on *-anti-automorphisms and 2- 

copositivity follows by composing ~ with the transpose map. 

The last s tatement  of the lemma can be proved by direct computation. (If (P is of the 

form (~(x)=u*xu with u unitary, one finds det (~- lo(I)*o~)=l ;  and if (I) is of the form 

O(x) =u*xtu, one finds det (~-lo(I)*o~)= - 1 . )  But  it is easier to proceed otherwise: The 

topological group 6 of affine automorphisms of the state space of M2(C ) is isomorphic to 

0(3) with the orientation-preserving maps corresponding to the unit-component S0(3) 

and the orientation-reversing maps corresponding to the other component. On the other 

hand we can identify 6 with the group of unital order automorphisms of M2(C ) via (I) ~ (I)*, 

and we note tha t  the latter group admits a parti t ion into the closed sets of *-automor- 

phisms and of *-anti-automorphisms, respectively. Hence these two sets correspond to 

the components of 6. Since the set of *-automorphisms contains the identity, it must  

correspond to the unit component of 6- This completes the proof. []  

Consider now an arbi trary two-dimensional projection p of H. Let  u: C2-~H be a 

(complex linear) isometry onto pH, and define F: B(H)~+M2(C ) by 
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~(x) =u*xu. (6.3) 

Note tha t  ~p is a *-isomorphism of pB(H)p~_ B(H) onto M~(C), but  not a *-homomorphism 

of all of B(H) unless dim H = 2. (However, it follows from the trivial half of the Neumark- 

Stinespring theorem that  ~ is 2-positive. This observation will be useful later.) 

The dual map yJ* is an affine isomorphism from the state space of M~(C) onto the set 

B~ of all ~ EN with support projection p (which can be identified with the state space of 

pB(H)p) ,  and this set is equal to the face B(~o~, e%) for an arbitrary pair of unit vectors 

~, ~] spanning pH.  (See the proof of [6; Th. 3.11]. The relevant facts can also be found in 

[17] and [31].) We give B~ the orientation determined by  this parametrization ~*. I t  follows 

from Lemma 6.1 that  this orientation is independent of the choice of the isometry u. We 

call it the standard orientation for B~. Unless otherwise stated, we will assume tha t  each 

of these 3-balls is given the standard orientation. 

PROPOSITION 6.2. Let H~ be a complex Hilbert space and/V~ the normal state space o/ 

B(H~) /or i - 1 ,  2; also let dp: B(H1)~ B(H2) be a Jordan isomorphism. I/(I) is a *-isomorphism 

(*-anti-isomorphism), then ~ maps each 3-ball Bq~ N~ orientation preservingly (orientation 

reversingly) onto the 3-baU Bq~_ N 1 where p =r 

Proo/. Note (I) maps pB(H1) p onto q)(p)B(H~)q)(p ) =qB(H~)q; the proposition now 

follows from Lemma 6.1. [ ]  

By Proposition 6.2 a conjugation of H will implement a change of orientation for all 

3-balls B(0, a ) ~ N  (@, a 6 ~ , I ) .  

The next  proposition gives further information about the interplay between the (flat, 

complex) geometry of H and the (curved, real) geometry of a,N. 

PROPOSITION 6.3. Let ~, ~] be distinct unit vectors in H such that (~]~])6R +, let ~ be 

the corresponding angle (i.e. cos ~=($1U)), and let fie[0, ~] be the length in radians o] the 

great circle arc spanned by the corresponding vector states co~, ~%s 0)7). Then ~=2~.  

I n  particular, eo~ and e% are antipodal i// ~ 5_~. 

Proo/. Let q be the projection of H onto the one-dimensional subspace [~], and let 

B=B(a)~, e%). Now choose 0EB antipodal to o~, i.e. with �89 the center of B. By  

(6.1), (6.2) the normalized trace of M2(C ) is the center of E 3. Hence �89 ~(q,  �89 +a)~)), so 

(q, 0) =0.  The picture below shows a plane cross-section of B with level lines for the affine 

function q. (Note that  if 0 =e0~ then fl =:z, and the picture is simplified.) 
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0) 7 q = l  

i 
_ _  q = <q, oJr 

q=O 

Using elementary geometry, we find 

oos~ ~ =  (~, ~ )  = (q~l~) = ( (~ lv)vl~)  = ](~Iv)l ~ = cos2~- 

295 

[ ]  

w 7. Orientability 

In  this paragraph we will define and investigate a notion of orientation for sets of 

3-balls contained in a given compact convex set K (in some locally convex tIausdorff  

space). 

Definitions. A facial 3-ball of K is a 3-ball which is a face of K. By B(K) we denote 

the topological space of all affine isomorphisms 9 from E 8 onto a face of K equipped with 

the topology of pointwise convergence. (By finite dimensionality and compactness of E ~, 

this coincides with the topology of uniform convergence.) 

We will now identify parametrizations modulo 0(3) and S0(3) as explained in w 6. 

This means tha t  we pass from B(K) to B(K)/O(3) and B(K)/SO(3), where the groups 

0(3) and S0(3) act continuously (from the right) on B(K) through the formula: 

(~og) (0) = ~(g(0)) (7.1) 

with ~eB(K) ,  0 e E  a and geO(3) or geSO(3). 

We call B(K)/O(3) the space o/ all facial 3-baUs of K. Set-theoretically, it can be 

identified with the set of all facial 3-balls of K. Topologically, two such balls are close to 

each other if they can be parametrized such tha t  pairs of points corresponding to a com- 

mon 0 EE 3 are close to each other in the given topology of K. 

We call ]R(K)/SO(3) the space o/all oriented facial 3-baUs o /K.  To specify an element 

of this space, one must  give a facial ball of K together with an orientation. 
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Clearly, we have canonical maps 

B(K)-+ B(K)/SO(3)~ B(K)/O(3), (7.2) 

where the last map is two-to-one. 

LEMMA 7.1. The mappings in/ormula (7.1) are continuous and open, the three occurring 

spaces are Hausdor//, and ~: B(K)/SO(3)-+ ]g(K)/O(3) is a locally trivial Z2-bundle. 

Proo/. The first two statements follow easily from the definitions. 

Consider the mapping of B(K)/SO(3) which interchanges the two elements of each 

fibre for ~. Clearly, it is induced by any element of 0(3) with determinant - 1 ,  and is 

therefore continuous. This mapping gives the desired Z2-action on B(K)/SO(3). 

To prove local triviality we consider a facial ball of K for which we choose a para- 

metrization ~v. We shall be through if we can find a neighbourhood V of ~v in B(K) without 

any pair of elements parametrizing the same ball with opposite orientations. 

Assume that  K sits in a locally convex Hausdorff space X. (In the applications of 

interest to us, K will be the state space of a JB-algebra A of complex type and X=A*. )  

Let  A(E a, X) be the  topological vector space of all affine mappings of E a into X equipped 

with the topology of pointwise convergence. Then B(K)~A(E  a, X), and the topology of 

B(K) is that  inherited from A(E 3, X). Observing that  the injective mappings form an 

open subset of A(E 3, X), we choose a convex neighbourhood U of ~ in A(E a, X) which 

consists of iujective mappings only. Let  V = U fl B(K). 

Now we assume for contradiction tha t  ~v 1, ~v2E V parametrize the same ball  with 

opposite orientations. For t E [0, 1], define ~t: E3-+E3 by 

7 t  = q)110 (t(pl + (1 -t)q~2). 

By the properties of U, each Yt is injective. Hence t-+dot (Tt) is a continuous function 

from [0, 1] into R ~ { 0 ) .  But  det (70)= - 1  and det (Yl)= 1, which gives a contradiction, []  

In principle, the discussion above is meaningful for an arbitrary compact convex K, 

but  it is mainly of interest when K is the state space of a JB-algebra of complex type. In  

this case, the facial 3-balls are precisely the sets B(~, a) where Q, a are distinct pure states 

which are equivalent (not separated by a split face, cf. w 2). 

De/initions. The state space K of a JB-algebra of complex type is said to be orientable 

if the Z2-buudle ~(K)/SO(3)~B(K)/O(3) is trivial. A continuous cross-section of this 

bundle is called a global orientation, or simply an orientation, of K. 
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Note tha t  a cross-section of this Z2-bundle can be specified by  choosing an orientation 

for each of the facial 3-balls in K. The requirement of continuity is a precise version of the 

s tatement  tha t  " the  orientation is never suddenly reversed by  passage from one ball to a 

neighbouring one". 

Let  K be the state space of a JB-algebra  A of complex type and let ~: A ~ B ( H ) s  a 

be any irreducible concrete representation associated with a given pure state ~ E K. For 

each facial 3-ball in Fe we consider the orientation carried over by  7e* from the standard 

orientation of the corresponding facial 3-ball in the normal  state space of B(H) (cf. Proposi- 

tion 2.2). We say this orientation is induced by ~. By the results of w 6, this orientation is 

given by  the parametrization 0* where 0:  A ~M~(C) is defined by 

O(z)  = u*~(x)u, 

for an appropriate isometry u: C2-~H. 

(7.3) 

LEMMA 7.2. Let 9~ be a unital C*-algebra with state space K and let y~ be an a/line iso- 

morphism o/the state space o/M2(C ) onto a/aeial 3-ball B o/ K equipped with the orientation 

induced by the customary GNS-representation gQ: 9~ ~ B(Hq) /or some pure state Q such that 

B~_ FQ. Then v 2 is orientation preserving (orientation reversing) ill yJ =~F* where ~F is a 2- 

positive (2-copositive) unital linear map/ tom ~ onto M2(C ). 

Proo/. Let @ be defined as in (7.3) for all  x Eg~. Then fl = O* is an orientation preserving 

affine map from the state space of M2(C ) onto B. Now fl-lo~o is an affine map from the 

state space of M2(~) onto itself. By Lemma 6.2, fl-lo~0 is the dual of a uni ta l  order auto- 

morphism (I) of Ms(C ) which is 2-positive (2-copositive) iff fl-lo~p is orientation preserving 

(orientation reversing), i.e. iff ~0 is orientation preserving (orientation reversing) with 

respect to the given orientation of B. 

Since @ is 2-positive, the composed map tF=(I)o@ will be 2-positive (2-copositive) 

iff (I) is 2-positive (2-copositive), i.e. iff ~0 is orientation preserving (orientation reversing). 

Since ~ =flor = O*o(I)* =~F*, the proof is complete. [ ]  

THEOREM 7.3. The state space K o / a  unital C*-algebra 9~ is orientable. Speci/ically, 

there is a (unique) global orientation o / K  such that/or each/acial 3-ball B in K and each pure 

state ~ with B E  Fq, then the orientation o/ B is that induced by the GNS-representation ge: 

~-~B(He). 

Proo/. For each pure state ~ we give each facial 3-ball in FQ the orientation induced 

by the GNS-representation z~. Note tha t  this determines a well defined orientation for 

each facial 3-ball in K; for if ~ and a are two pure states with FQ = F~, then the GNS- 
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representations gQ and g~ are unitarily equivalent, hence they induce the same orientations 

(cf. Proposition 6.3). 

This choice of orientations gives a cross-section of the Z2-bundle B(K)/SO(3)-~ 

B(K)/O(3); it remains to prove tha t  it is continuous. 

Let  :~ and ~] be the sets of orientation preserving, respectively orientation reversing , 

affine isomorphisms of the state space of M2({~ ) onto a facial 3-ball of K. We will regard 

the elements of ~ and ~J as parametric facial 3-balls in K by  identifying the state space of 

Ms(C ) with E ~. 

By Lemma 7.2 each yJ E ~ is the dual of a 2-positive linear map of 9~ onto M~(C) and 

each ~ E ~ is the dual of a 2-eopositivc linear map of 9~ onto M2(C ). The sets of 2-positive 

and 2-copositive maps from 9~ to M2((~) are seen to be closed in the pointwise topology; 

hence :~ and ~] are closed subsets of ~ U ~ = B(K). Clearly, there can not be any  pair 

(~0, yJ) with ~0 e ~ ,  yJ E ~ and ~ ~yJ rood S0(3). Hence the direct images of ~ and ~ in B(K)/ 

S0(3) are disjoint closed subsets, and each of these sets will determine a continuous cross- 

section of B(K)/SO(3)-~B(K)/O(3). The former of the two is the cross-section we are 

interested in, so the proof is complete. [] 

The orientation defined in Theorem 7.3 will be called the standard orientation for the 

state space K of the given C*-algebra 9~. 

We will now show tha t  there exist JB-algebras of complex type which are not orient- 

able. By  Theorem 7.3, such algebras can not be isomorphic to the self-adjoint par t  of a 

C*-algebra. 

PROPOSITIO~ 7.4. Let T~_ C be the unit circle and let A ~_ C(T, M~(C)sa) consist o/all 

/ such that 
/ ( -~)  =/(2) ~, all ~ e T. (7.4) 

Then A is a JB-algebra o/complex type with non-orientable state space. 

Proo/. Clearly A is a JB-algebra  with the algebraic operations and the norm inherited 

from the C*-algehra ~ = C(T, Me(C)). 

Consider a pure state 0 of A. By the Krein-Mflman theorem we can extend 0 to a 

pure state ~ of 9~. I t  is well known tha t  ~ must  he of the form / v-~ (/(~), 0}, where ~ E T and 

0 is a pure state of M2((~ ). From this it follows tha t  the evaluation map/~->/(~), which is a 

dense concrete representation of A, is associated with 0. Therefore A is of complex type.  

As in w 6 we identify E 8 with the state space of M2(C ). Then we define parametric  

facial 3-balls at of K by  the formula 

(t, ~(0)}  = (/(e~'), 0}, 
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where /EA, 0EE a and tE[O, 1]. Now (~)0~<~<1 is a continuous pa th  in B(K) such tha t  a0 

and ~1 parametrize the same facial ball. I f  K is orientable, then ~0 and gl should belong 

to the same orientation. But  ~ 1 o ~  2 is the dual of the transpose map on M~(C); and by 

Lemma 6.1, it must  be orientation reversing. This contradiction completes the proof. [] 

Remark. I t  can be shown tha t  there exists a (discontinuous) affine isomorphism of 

the state space of the JB-algebra  A in Proposition 7.4 onto the state space of a C*-algebra. 

One such C*-algebra consists of all ]EC(T, M2(C)sa) satisfying / (-2)=/(2) for all 2 e T .  

Indeed, the state spaces of both of these algebras can be identified with the same set of 

M~(C)sa-valued measures on T. We do not know if the state space of an arbi t rary JB- 

algebra A of complex type is affinely isomorphic to the state space of a C*-algebra; nor 

do we know if A** is isomorphic to the self-adjoint part  of a v o n  Neumann algebra. 

w 8. The ma in  theorem 

In  this chapter we prove the converse of Theorem 7.3; thus, orientabflity of the 

state space is a sufficient as well as a necessary condition for a JB-algebra of complex 

type to be isomorphic to the self-adjoint par t  of a C*-algebra. 

To make use of the assumed orientability, we shall need to construct convergent nets 

of facial balls. We have simple examples showing that ,  even if K is the state space of a 

C*-algebra, the mapping (@, a) ~-> B(@, a) need not be continuous from its domain in aeK • 

~eK (pairs of distinct but equivalent extreme points) to B(K)/O(3). To overcome this 

obstacle, we shall use the existence of a continuous map @ ~->@a, mapping extreme points 

to equivalent extreme points. Then we show tha t  @ e-> B(@, @a) is continuous. 

De]inition. I f  @ is a state of the JB-algebra  A and a E A with (a  2, @)~0, the trans- 

formed state @a is defined by 

(x, @~) = (a 2, @)-l ( (axa), @). (8.1) 

(Recall tha t  (axa) is the Jordan triple product  (axa)=2ao(aox)-a2ox, which reduces to 

the ordinary product axa when A is concretely represented on a Hilbert  space.) 

Suppose now tha t  A is of complex type,  @ is pure, let 7eQ: A ~ B(Ho) be a dense concrete 

representation associated with @, and let ~qEHQ be the vector representing @. Then @a is 

pure, with the representing vector 

~qa = (  a2' @)- �89  �9 (8 .2)  

Thus, @~ is equivalent to ff (cf. Proposition 3.6). 
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The facial ball B(0 , 0~) is defined iff 0 and ~ are distinct. This is equivalent to ~e, $~ 

being linearly independent, or I (~  [~qa) [ < 1, since both are unit vectors. Thus, the domain 

of the mapping 0 ~-> B(0, ~ )  is the weak *-open subset of ~ K  consisting of those 0 e ~ K  for 

which 
<a, 0> ~ < <a 2, 0>. (8.3) 

LEN~NIA 8.1. Let 9~ be a C*-algebra, and ~ its state space. Then, if a C ~ ,  the mapping 

O~-->B(o , ~ )  is continuous from its domain in ~ to the space B(X)/O(3) of facial balls. 

Proo/. For each 0 E~:~  satisfying (8.3), we define an isometry uQ: C2~HQ mapping e 1 

to ~ and with ~ in its image. Applying the Gram-Schmidt process to ~e, $~a' we find tha t  

this can be done by mapping e~ to 

~o = (< a2' 0 > -  <a, 0>2) - �89 ( x ~ ( a ) ~ -  <a, 0>~e). 

We define the map ~q: Ea-->B(o, ~a) by identifying E 3 with the state space of M2(C)s a 

and setting 
<x, ~Q(0)> = <u~ ~ ( x )  u 0, 0>, (8.4) 

where xEOg, 0EE a. We will now complete the proof by  demonstrating tha t  0~->~Q is a 

continuous map from its domain in ~ to B(:K). 

From (8.4) we see tha t  we have to prove tha t  0 ~-->u*~o(x)uQ is a continuous map into 

Mp(C), whenever x E OX. That  is, we shall prove the continuity of the map 0 ~-> (u~r+(x) u~ e~[ e j), 

where i = 1, 2 and ?" = 1, 2. 

We check only the case i = 1, ?" =2,  leaving the others to the reader. Computing, we 

find 

(u~(x )uoe l l e  2) = ( ~ ( x ) ~  IVQ) = (< ap, e>-  <a, 0>2) -�89 (<ax, e > -  <a, 0> <x, 0>), 

which is a w*-continuous function of 0- []  

Remark. The analogue of Lemma 8.1 is not generally valid when 9~ is replaced by a 

JB-algebra  of complex type. (There are counterexamples.) We will return to this question 

in a future paper. 

Whenever F is a split face of K, we denote by B(F) the set of parametric facial balls 

of F, with the topology inherited from B(K). I t  is easily seen tha t  the quotient topology 

of B(F)/O(3) is tha t  inherited from B(K)/O(3). 

L~MMA 8.2. Assume A is a JB-algebra of complex type, with state space K. I f  OEaeK, 

then B(FQ)/O(3)is path.connected. 
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Proo]. Let 7~: A-+ B(H)s a be an irreducible representation associated with ~. Then the 

affine isomorphism ~* of the normal state space N of B(H) induces a continuous surjec- 

tion of B(N)/0(3) onto B(Fo)/O(3), where N is given the a-weak topology (i.e. (~(B(H),, 

B(H))). Therefore we need only prove that  B(~V)/O(3) is path-connected. 

I t  is enough to join two facial balls of N having one a in common, by a continuous 

path. We write those balls B(a, 7) and B(a, ~'), where a, T are antipodal in B(a, ~), and 

correspondingly for 7'. 

Choosing representing vectors ~ ,  ~,  ~,, in H, we find, using Lemma 6.1, that  ~ 2 ~  

and ~ / _ ~ , .  We may arrange it so tha t  (~1~ ' )  is non-negative and real. 

We can then find a continuous path (~) in the unit sphere of H, joining ~ and _~,, 

of the form 

~ = (cos t)~T + (sin t)~] 

where ~ is a unit vector orthogonal to ~ .  To complete the proof, we shall show that  

t ~-> B(a, co~t ) is a continuous path in B(N). 

Choose aEB(H)8 a such that  a~T=a~,=~. Then, since a ~ R ~ ,  we have B(a, co~,)= 

B((w~t):, ~o~t ). By Lemma 8.1, the latter is a continuous function of t. [] 

If A is of complex type, let ~ E ~ K  and let ~ E ~  extend ~. Consider the GNS represen- 

tation ~ ,  and the following commutative diagram of affine isomorphisms, where N is the 

normal state space of B(H6): 

By definition, 7~* maps the facial balls of /V orientation preservingly onto those of F~ 

(with standard orientation). Thus the orientation of the balls of F 0 induced by ~ IA is 

the image, under r, of the standard orientation on F~. Thus the following lemma states 

that  any given consistent orientation of the facial balls of F 0 is induced by some irreducible 

representation of A associated with ~. 

LE~MA 8.3. Let A be a JB-algebra o/complex type with state space K. Assume that K 

is orientable and that an orientation has been chosen. Let 9~ be the enveloping C*-algebra o / A  

and let ~ be its state space with standard orientation. I / ~  E~eK , then there exists ~Eae~ 

extending ~ such that the restriction map r: ~ -+K maps the ]acial balls o/ F~ orientation 

preservingly onto those o/ Fo, while it maps the/acial balls o/ Fr 0 orientation reversingly 

onto those o / F  o, 
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Proo/. Let ~t ~ ~ be a pure state extension of ~, and consider the commutat ive diagram 

B ( ~ , ) / s o ( 3 )  �9 ~ ( F , ) / s o ( 3 )  

~(F~, ) /o(a)  , ~ (F0) /o (~)  

where the horizontal arrows are induced by  r. Since both the above Z~-bundles are trivi.al, 

and the base space is path-connected (Lemma 8.2), r must  either preserve the orientation 

for all the facial balls in F~,, or else reverse the orientation for all of them. In  the former 

case we are done with ~=~1; in the lat ter  we are done with ~=qb*Q1 since the dual of the 

*-anti-isomorphism qb will reverse orientations, while r o (I)* = r. [ ]  

We are now ready for our main result. 

T~EOREM 8.4. Let A be a JB-algebra, and K its state space. Then A is isomorphic to 

the sel/-ad]oint part ol a C*-algebra i// the lollowing two conditions are saris/led: 

(i) K has the 3-ball property 

(ii) K is orien$able. 

Proo/. The necessity of the two conditions follows from Lemma 3.4 and Theorem 7.3. 

To prove sufficiency, we assume (i) and (ii) and fix a global orientation of K. We 

adopt the notation of Lemma 8.3, and we will denote by  F the "a-convex hull" of all Fa 

(i.e. the set of states ~,~t~,a~ where ~>~0, ~ i ~ t ~ , = l ,  and each a, belongs to some 

F~ where ~E~K) .  In  symbols: 

F = a-co ( U F~ ). (s .5) 
QE~eK 

By [6; w 5], a-co ( ~ )  is a split face of ~ .  Clearly, F is a split face of a-co ( a ~ ) ,  

hence of K, with extreme boundary 

Q e a ~  

By [17] the w*-closure _~ of F is a split face. We claim tha t  ae_P =a~F; by (8.6) this 

implies tha t  r is a bijection from ~_V to ~ K ,  and by  Theorem 5.11 this will complete the 

prooL 

Since ~ F  = F fi ae:K__F N ~ =~e_F, we only have to prove ~e~_.c_~eF. For contradic- 

tion we assume a e ~ F i  a r  Let ~ =r(a), and note that,  by  (8.6), ~=~ .  By Proposition 

5.6 it follows tha t  a =qb*~, and tha t  the GNS-representation z~ is not one-dimensional. 

Now we choose aEA satisfying (8.3); which is possible by  the density of g~(A) in B(H-)~ a. 

(We only need to have ~ ,  ~ ( a ) ~  linearly independent.) 
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By Milman's theorem, ~e F is w*-dense in ~e_~. From (8.6) we conclude tha t  there 

exists a net {~v} in ~e K such tha t  ~v->~=gP*(~) in ~e:~, and such tha t  (8.3) holds for all ~T 

(i.e. with ~v in place of ~). Note tha t  ~ =r(~v) also converges to Q in ~eK. 

By Lemma 8.1, the balls B ( ~ ,  (~T)~) converge to B(~, ~ )  in the topology of B(~)/O(3). 

This is also true if these balls, with standard orientation, are viewed as members of ]g(~)/ 

S0(3). This follows from the orientability of :~, but it can also be seen directly from the 

proof of Lemma 8.1. 

I t  follows by the definition of the states involved, and by Lemma 8.3, tha t  r maps 

B ( ~ ,  (~7)a) orientation preservingly onto B(Q~, (0~)a) and B(~, ~)=B(@*~,  ((I)*~)a) orienta- 

tion reversingly onto B(O, ~) .  Hence, since r is continuous, the balls B(O7, (~7)~) will con- 

verge to B(Q, Oa) in B(K)/O(3); but  the orientation is reversed in the limit, so B(O~, (~7)~) 

does not converge to B(O, Q~) in B(K)/SO(3). This is a contradiction since K was equipped 

with a global orientation. []  

Let  A be a JB-algebra  and A|  its complexification as a linear space. By a C*- 

structure on A e i A  we mean a triple consisting of a product, an involution, and a norm, 

organizing A | to a C*-algebra with the given JB-algebra  A is its self-adjoint part .  

COROLLARY 8.5. 1 / A  is a J B-algebra whose state space satis/ies the conditions (i), (ii) 

o/ Theorem 8.5, then the C*-structures on A | are in 1-1 correspondence with the global 

orientations o /K.  

Proof. To each C*-structure on A|  is associated a global orientation (the standard 

one), as explained in w 7. 

Conversely, for each global orientation of K, the proof of Theorem 8.4 yields a w*- 

closed split face F of :K such tha t  ~ F is mapped bijeetively onto ~ K  by  r, and such tha t  

the facial balls in F are mapped orientation preservingly onto those of K (in the standard 

orientation of :~ and the given orientation of K). Let  J be the annihilator of F in ~. Then 

the canonical isomorphism for A GiA and ~/J  (see proof of Theorem 5.11) induces a C*- 

structure on A ~ i A ,  which in turn defines the given orientation of K (since r is orienta- 

tion preserving from the state space F of 9~/J to K). 

Finally we consider two C*-structures on A OiA which determine the same standard 

orientation of K. Then for each ~ E~K, the GNS-representations of A ~)iA associated with 

for each of the two C*-structures, will be the same. Hence, the two structures must  

coincide, and we are done. [] 

Combining Theorem 8.4 with the main result of [6], we obtain the following (see [6] 

for the definition of concepts not previously used in this paper): 
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COROLLARY 8.6. A compact convex set K (in some locally convex Hausdor]/ space) is 

a/ / inely homeomorphic to the state space o[~ a C*.algebra i[/: 

(i) every norm exposed ]ace is projective, 

(ii) every a E A ( K )  admits a decomposition a = a + - a  - with a +, a - E A ( K )  + and a+.l_a - ,  

(iii) the a-convex hull o / ~ e K  is a spl i t /ace,  

(iv) B(9, ~) is a norm exposed /ace a/f inely isomorphic to a 3-dimensional Euclidean 

ball or to a line segment /or  each pair  @, (l o /dis t inct  extreme points,  

(v) K is orientable. 
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