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w 1. Introduction 

The observation that  the Jacobi map of a compact Riemann surface X is universal 

among all harmonic maps of X into real tori is the basis for our investigation of periodic 

minimal surfaces in Euclidean space [11], [12] and [14]. This paper continues this work; 

some of the results were announced at the U.S.-Japan Seminar on Minimal Surfaces in 

1977 [13]. 

Roughly, the first half extends our work [14] to minimal surfaces with symmetry in 

arbitrary codimension. The main result is that  to any such con_formal minimal immersion 

of a fixed compact Riemann surface in fiat n-tori there corresponds a certain complex 

subvariety of its Jaeobi variety and this correspondence is essentially unique (Theorem 3). 

An essential step in the proof, but also of intrinsic interest, is the observation that  the 

image of any such immersion is homologous to zero (Theorem 2). 

In  the second half we develop an idea going back to the H. A. Schwarz Preisschrift 

[18] of 1867 to construct a remarkable family of such surfaces. We begin by solving a 

geometric problem of Schoenflies [17] in ~ dimensions; the solution shows how the root 
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system of any simple Lie group of rank n can be used to construct minimal surfaces in R n 

with the periodicity of the root lattice and the symmetry  of the corresponding Weyl group. 

Their quotients by the root lattice are called Schwarz surfaces. Applied to these surfaces 

the general results of w 1-w 4 reveal a number of interesting analytic and geometric features. 

The Riemann-Roeh formula of Chevalley and Weil [3, 19] is the other main tool for this 

part  of the work; the Atiyah-Singer theorem for orbit spaces [1, Th. 4.7] could also have 

been used. For  example the Chevalley-Wefl formula and Theorem 3 imply a rigidity result 

for the Schwarz surfaces (Theorem 8). 

Before describing the results we first explain the natural equivalence among minimal 

immersions. 

A periodic minimal surface in n-space can be replaced by a compact minimal surface 

X in a fiat n-torus T n and the conformal structure induced by the immersion f: X-~ T 

makes X a Riemann surface. The original minimal surface is studied via the Jacobi variety 

of this Riemann surface. The associate surfaces or associate immersions of f arise naturally. 

The coordinate functions of a minimal surface in R n are harmonic so that,  when the surface 

is simply-connected, their conjugates may be used to give a new minimal immersion (called 

the conjugate immersion), or indeed a 1-parameter family of such immersions with the 

additional property that  the induced metric is the same for all immersions; for example 

the helicoid is deformed to the catenoid in this way (cf. [5]). When we begin with a periodic 

minimal surface it is natural to investigate the associate immersions for periodicity. In  

principle, these associates can be determined from the Jacobi variety of X; the definitions 

are given anew in w 2, the equivalence with the classical definition having been checked 

in [14]. 

Among the results for the 3-dimensional case were: 

(i) Each associate of the lifted minimal immersion T:.g-~R s is either dense in R s or 

else projects to another minimal immersion of X into another flat torus [14]. 

(ii) The boundary theorem, f(X) is a boundary in T s if either / is an imbedding [9] 

or f has irreducible symmetry [14]. 

(iii) The uniqueness theorem. Two conformal minimal immersions 

/=:X--*Ts= (o~=1, 2) 

which are homologous to zero(1) and have the same complex kernel (see w 2) are associates 

[14]. 

(1) This condition should have appeared in the hypothesis of Theorem 3 [14]. 
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Thus for a given compact l~iemann surface X these last two results open the way for a 

classification of all conformal minimal imbeddings (resp. immersions with irreducible sym- 

metry) of X in flat 3-tori in terms of certain complex codimension 3 linear subvarieties of 

the Jaeobi variety of X. 

Theorems 1, 2 and 3 extend these last three results to arbitrary codimension. In  ex- 

tending our earlier work to higher codimension we have had in mind the assumption of a 

high degree of symmetry both for aesthetic reasons and because of the wealth of examples 

with the symmetry of an irreducible Weyl group indicated in our work [12] and dealt 

with in more detail here. The correct condition is absolute irreducible symmetry, as defined 

in w 2, and it automatically holds for surfaces with the symmetry of an irreducible Weyl 

group--in particular for all surfaces with irreducible symmetry in the classical case n--3 ,  

Any conformal minimal immersion/:  X-~ T determines a complex linear subvariety 

of the Jaeobi variety A(X) of X called the complex kernel (see w 2). The question of whether 

this subvariety is closed is the decisive one. For  surfaces with absolute irreducible sym- 

metry, closedness is equivalent to the existence of an associate (Theorem 4). For  surfaces 

with irreducible Weyl symmetry closedness implies tha t  the associate/a exists for a dense 

set of angles 0 in [0, g) and that  the Jacobi variety A(X) splits off an elliptic curve (Theo- 

rem 5). I t  follows that  the coordinate functions of such surfaces are expressible in terms 

of the real parts of elliptic integrals, a fact first observed by Schwarz in the analysis of 

one of his surfaces. 

The t reatment  of the Schwarz surfaces begins in w 5. The original idea of Schwarz 

was to take a skew-quadrilateral in R 3, the reflexions in the edges of which generate a 

discrete uniform subgroup of the group of motions of R3; the problem of determining all 

such quadrilaterals was settled by Schoenflies [17]. The general solution of the Plateau 

problem was not then available but  a minimal surface of disk type spa~ning the quadri- 

lateral was found using the Schwarz-Christoffel transformation and the Weierstrass re- 

presentation for simply-connected minimal surfaces in R 8. The discrete group generated 

by the quadrilateral was then applied to continue the surface throughout R 8, the total 

surface being analytic on account of the Schwarz reflexion principle. The result was a 

periodic minimal surface. 

The complete solution of this problem of Schoenflies for R n is Theorem 6: The re- 

flexions in the edges of a polygon P in R n generate a discrete uniform subgroup of the 

group of motions of R n if and only if P is a root polygon, i.e. its edges are integer multiples 

of the roots of some root system R. 

A solution of the Plateau problem for a root polygon P may then be continued through- 

out R n to obtain a periodic minimal surface in R ~. Divieling out by  the period lattice we 
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obtain a compact minimal surface/ :  X-~ T n in a fiat n-toms, and this we call a Schwarz 

surface.(1) Writing W 0 =SO(n) N W, where W is the Weyl group of the root system in ques- 

tion, we note a number of features tha t  the Schwarz surfaces have in common: 

(i) each has symmetry W0. 

(ii) the quotient Riemann surface X/Wo is the sphere. 

(iii) the dimension of the space of W0-invariant differentials of every even degree is 

known in terms of the polygon P 

and, furthermore, when W 0 is irreducible 

(iv) the multiplicity of the representation of W 0 induced by ] on the space of abelian 

differentials is known in terms of P.  

(v) the conditions of 

(a) dosed complex kernel 

(b) the existence of an associate, and 

(c) the existence of the conjugate 

are all equivalent. 

The classical formula of Chevalley-Wefl [3, 19] or, alternateIy, the Atiyah-Singer theo- 

rem for orbit spaces [1, Th. 4.7], is the essential tool for (iii) and (iv). The Chevalley-Weil 

formula also leads to 

(vi) the existence of the conjugate for any primitive Schwarz surfaces (Theorem 7) 

but  we give a more geometric proof. 

I t  follows that  the work of w 2-w 4 applies to all of these Schwarz surfaces. Most of 

the results are new even for the classical ones studied by  Schwarz. So much information 

on the conformal invariants of the Schwarz surfaces is available or within reach, via root 

systems, tha t  they might prove a useful fund of examples in the theory of Riemann sur- 

faces itself. 

The Schwarz surfaces will, in general, have singularities, so it  is worth mentioning 

that  the general results of w 2-w 4 hold also for surfaces with singularities, the proofs needing 

little or no change. The substance of the final section is tha t  every irreducible root system 

gives rise to many nonsingub~r Schwarz surfaces (Theorem 9). 

w 2. Pre]iml-aries 

Let X be a compact Riemann surface of genus ~ > I and G a subgroup of the auto- 

morphism group Aut (X) of X. A minimal immersion / of X into a fiat n . toms T ~ for which 

(1) The Sehwarz surfaces treated here are understood to be without singularities. 
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the conformal structure induced on X coincides with the given conformal structure on X, 

will be called a eon/ormal minimal immersion; say / has symmetry G if G extends under / 

to a group of affine transformations of T; when the corresponding linear representation 

of G is irreducible we say / has irreducible symmetry G. I f  the complexifica$ion of this 

representation is also irreducible we say / has absolute irreducible symmetry G, as happens 

when G is the Weyl group of an irreducible root system [2]. Because irreducibility and 

absolute irreducibility coincide in odd dimensions, the lat ter  notion does not appear  in 

our previous work on the case n = 3. 

Let  ~ denote the space of holomorphic 1-forms on X. Each 1-cycle a on X determines 

an element ~r These elements form a lattice in ~* denoted A and called the period 

lattice. Fixing xoEX, the surface is mapped into the complex torus A(X)=~*/A by  a(x) = 

~ mod L. Then 

a: X -~ A(X) 

is called the Jacobi map  of X into the complex torus A(X) with base point x 0. This map  is 

easily seen to be holomorphic and is well known to be an imbedding and universal among 

all holomorphic maps of X into complex tori. But  it is also easy to see tha t  a is universM 

in the class of all harmonic maps of X into real flat tori [10]. I t  is entirely this circumstance 

which allows us to t reat  compact minimal surfaces in real flat tori. 

Given/ :  X-~ T n a conformal minimal immersion of the compact Riemann surface X 

into a flat torus T, we may assume/(xo) =idr .  Then universality says tha t  / = h o a ,  where 

h: A-~ T is a real homomorphism of tori. The kernel of h determines a real subspace U of 

the tangent  space to A(X) at  the identity called the real kernel o 11 and its maximal  complex 

subspace V is called the complex kernel o/I.  On occasion the linear subvariety of A(X) 

passing through the identity and tangent  to V will also be called the complex kernel and 

also denoted V. We may, and will, assume/(X)  lies in no subtorus of T n so it follows tha t  

direr U =2p - n ,  where p is the genus of X. 

The notion of an associate of a minimal immersion of a simply-connected domain into 

Euclidean space is a familiar one going back to Bonnet (el. [5]). In  our context the ap- 

propriate definition is arrived a t  as follows: take a lift T: )~-~ ~ to universal covers and let 

Te (0 ~<0 <g)  denote an associate of ~ in the classical sense; when this projects to a m a p / 0  

of X into some torus Ta we call/0 an associate of the minimM immersion/ .  I t  will of course 

be a minimal immersion with respect to the projected flat metric on T 0 and will even 

induce the same metric on X as / .  This definition of associate is equivalent to the following 

simpler description: e ~a can be considered as a complex linear transformation of Te(A) and 

if e ~~ U determines a real subtorus of A, consider 
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a ho 
X , A  'To 

where he: A ~ T o is the homomorphism determined by dividing out  by  this subtorus. Then 

T 0 has a natural flat metric with respect to which fo-=hooa is a minimal immersion in- 

ducing the same Riemannian metric on X as ]. The details and the proof of equivalence 

we gave in [14]. Whether U0 determines a toms or not, if we denote by g: : ~ - ~ A ~  a lift 

of a to universal covers and by s the projection A(X)~A(X)/Uo then fo=~oO~ defines 

the associate of f in the classical sense (after the natural identification of A(X)/Uo with 

A(X)/U---R ~) [13]. Clearly ~0(~) is dense in R ~ if the linear subvariety of A(X) determined 

by Uo is dense in A(X). 

Note that  all associates of / have the same complex kernel as / and if / has irreducible 

(resp. absolutely irreducible) symmetry  G, the same will be true of its associates. When 

an associate/e of / does exist then V ~ U N Ua and so determines a complex subtoms of A. 

w 3. Surfaces with absolutely irreducible symmetry  

Given a compact Riemann surface X, if we look to classify all eonformal minimal 

immersions of X in fiat tori with absolute irreducible symmetry G (some subgroup of the 

automorphism group of X) the problem splits into two parts: 

1. Determine all complex subspaces V of T~(A) that  can occur as complex kernels of 

some such immersion. 

2. Determine the relation between all such immersions having a given V as complex 

kernel. 

Nothing much is yet  known for 1., but  Theorem 3 answers 2. completely; all such immer- 

sions are associates. 

The result tha t  any such immersion is homologous to zero extends the Boundary 

Theorem of Meeks [9]. This is proved in Theorem 2 and is essential for our proof of Theo- 

rem 3. 

Let  X be a compact Riemann surface an d / :  X-~ T n a con[ormal minimal immersion 

of X into a fiat torus T. We may normalise f by as suming / (xo) -e  for some xoEX and 

furthermore t h a t / ( X )  lies in no subtorus of T. We can factor ~--hoa, where h: A ( X ) ~ T  

is a homomorphism and a: X-~A(X) the Jacobi map. The group Aut iX) extends under a 

to a group of complex affine transformations of A(X), and if a subgroup G of Aut (X) 

extends under / to a group of affine transformations of T then h is equivariant with respect 

to the actions of O on A(X) and T; to see this we use the fact tha t  the curve a(X) generates 
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A(X).  If  / has irreducible symmetry G then the linear part  of the action of G on T is ir- 

reducible. If  / has absolute irreducible symmetry G then the complexification of this latter 

representation is also irreducible. The linear part  of the action of G on A leaves the kernels 

U and V invariant, and absolute irreducibility of / is equivalent to saying that  the induced 

action of (7 on the complex space T~(A)/V is irreducible. 

First we collect a few simple properties of these immersions. 

LEMMX 1. Let/:  X ~ T ~ be a con/ormal minimal immersion with irreducible symmetry 

G. Then 

(i) dim S U = 2p - n ,  where P is the genus o / X ,  

(li) dim c V =p - n ,  i / t  is not holomorphic, 

(iii) the linear subvariety o/ A(X)  determined by V is either a torus or else is dense in 

that determined by U. 

Proo]. Since/(X) does not lie in a subtorus of T" it follows that  the kernel of h: A (X)-~ T 

has real dimension 2 p -  n, and this proves (i). 

Let  J denote the complex structure on A(X).  I f / i s  not  holomorphic then U :~ V and 

so J U / V  is carried isomorphically by h to a nonzero subspace of Te(T). Now irreducibility 

implies tha t  dimR (JU/V)=dim a T- -n .  Hence dim c V = T - n ,  proving (ii). 

Note tha t  if the linear subvariety determined by  V is not  a complex subtorus of A(X) 

then its closure lies in the kernel of h and so has tangent space 1F at  the identity satisfying 

V ~= l~c U. Clearly JTT/V is isomorphic under h to a nonzero invariant subspace of Te(T). 

By irreducibility this subspaee must be Te(T) itself and it follows easily enough that  

]7 = U. This proves (iii). 

THEOREM 1. Let / :  X ~ T n be a con]ormal minimal immersion ot a compact Riemann 

surtace X into a fiat n-torus Tn=R"/L with irreducible symmetry G. Let [: J~-~R a denote a 

lift o / / t o  universal covers and [e the associate o / [  corresponding to the angle O. Then either 

(i) To pro~ects to a contormal minimal immersion o / X  into some fiat n-torus T~ or 

(ii) [o(~) is dense in R •. 

Proo]. The proof is along the same lines as Theorem 1 in our previous paper [14]. 

Assuming that  To does not project to a conformal minimal immersion of X into some fiat 

torus is equivalent to assuming tha t  Uo=e~~ does not  determine a subtorus of A(X) .  

Supposing this to be the case, consider the closure in A(X)  of the linear subvariety deter- 

mined by  Uo and denote its tangent space at  e by ~0 ~= Uo. Now G acts as a group of corn- 
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plex transformations on A(X) and, in its linear action, will leave U0--and therefore ~'0 

also--invariant. The induced action on Te(A)/Uo is irreducible and ~e/Uo is an invariant 

subspace of it. Hence 570= Te(A) and this means that  the linear subvariety determined 

by Ue is dense in A(X). By the remarks at  the end of w 2, [a(X) is dense in R n. 

THEOREM 2. Let/: X ~ T n be a con/ormal minimal immersior~ o /a  compact Riemann 

sur/ace X into a flat torus T n. I / / h a s  absolutely irreducible symmetry then f is homologous 

to zero. 

Proo]. Let  H denote the space of real harmonic 1-forms on X obtained by pulling 

back all of the linear 1-forms from T b y / .  Then 

I(~1, ~2)--fx~l A ~ ,  ~h, ~ E H  

defines an alternating real bflinear form on H. G acts on the space of all harmonic 1-forms 

leaving the subspace H invariant because G extends under ] to a group of affine trans- 

formations of T. For the same reason the action of G on H is absolutely irreducible. Since 

G consists of holomorphic transformations of X it follows from the degree formula that  it 

preserves the form I. By irreducibility we have either I =0  (so f is homologous to zero) 

or I is nondegenerate. But  in the latter ease I determines a nonsingular skew symmetric 

(with respect to the G-invariant inner product on H) linear transformation commuting 

with the representation. By Schur's lemma this contradicts the absolute irreducibility of 

G acting on H. 

Next we come to the second classification problem mentioned in the beginning of this 

section. 

THv, ORV.M 3. Let [~: X-~ Ta (r162 I, 2) be con/ormal minimal immersions o / a  compact 

Riemann sur/ace X in flat tori with absolutely irreducible symmetry G. 

I / /1  and/~ have the same complex kernel in the Jacobi variety o / X  then they must be 

associates. 

Proo[. Since the immersion fa has absolute irreducible symmetry it cannot be holo- 

morphic, so certainly U s ~ g~. By assumption V 1 = V~- V (say), and if V does not deter- 

mine a complex subtorus of A(X) then, by Lemma 1, (iii), the linear subvariety of A(X) 

it determines is dense in tha t  determined by U~. Hence U 1 = U.~ and/1  and f~ are (trivial) 

associates. 
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For the rest of the proof we can therefore assume V determines a complex subtorus 

of A(X). Denoting the quotient complex torus by A',  we have the commutat ive diagram 

T1 

X ~ A '  

T2 

J will also denote the complex structure on A'  and U'~ the tangent space to the kernel of h~ 

a t  the identity in A'.  Identifying the universal covers of T 1 and T.~ with a fixed Euclidean 

space R n this diagram lifts to 

R" 

2' , 2 '  

f2 h~ 

where 2~ (resp. Yi') is the universal cover of X (resp. A').  Writing C " = R " + i R "  and ~t for 

the projection onto the real part ,  we have the diagram 

C ~ ~ R n 

-1 
C" ) R n 

Y~ 

where F~ denotes the complexification of the harmonic vector-valued function T~ =h~od'  

on the simply-connected Riemann surface :~ and the complex isomorphisms ~ are as de- 

fined below. Now h~: JU'~,~R n is a real isomorphism, so its inverse ~ :  R'~JU'~ can be 

complexified to give a complex isomorphism from C = to X'  and there is no difficulty in 
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verifying that  ~aoFa=d ' .  Thus F ~ = k o F  1 where k=Q~lo~l. Let  Fa:)7-+Pn-~(C) be the 

Gauss map of F~; then F2=koF1 (k being considered as a projective transformation of 

P~-t(C)). Now G has two representations in the orthogonal group of R ' - -o n e  for each/~. 

So for any aEG we have F~oa--a~oF~ where a~ is an orthogonal transformation of R ". 

We have 
a~okoF~ = a~oF~ = F2oa ~ koF~oa = koa~oF 1. 

On the other hand FI(X ) lies in no hyperplane in Pn-I(C), by the irreducible symmetry 

of/1. Therefore 
kocr 1 = a2o k 

o r  

*altkkal = tktcr, a,k = *kk. 

By absolute irreducibility and Sehur's lemma, tkk =).I for some ~ E C - ( 0 } .  

Of itself, this last identity is not enough to prove the theorem; if k can be proved to 

be a complex multiple of a real orthogonal matrix it would follow tha t  U~ =et~ for some 

real number 0 and so [1 and /2  would be associates. As in our proof in dimension three 

[14], Theorem 2 plays a key role at  this point. 

Write 
k =ge~~ 

where # > 0, 0 is real and C + iD is complex orthogonal; there is no harm in taking # = 1 

in the rest of the proof. Let  ~ and ~ be linear holomorphic 1-forms on C n and let ~ and ~a 

denote the corresponding forms on 5~ induced by _~. These forms project to X and it  is 

there we will be considering them. First 

= Re f x  ~ A ~2 0 

Re fxet~ + iD)7~ 1 A e-~~ - iD)~ x = ~  

= Re {(C~1 A C~v t + D~01 A D~v~) @ i(D~l A C ~  - C~t A D~I) } 

the left-hand side being zero since [~ is homologous to zero by Theorem 2. Since the same 

is true of ]1 and C and D are real, the real parts of the first two integrals on the right 

vanish and what remains is 

L - Im (Dg01 A C~v 1 - C~0 t A D~ol) = 0. 

Choosing ~t--- tC(9 and V1 ffi tD(9 this becomes 
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Im  f x ( D t C O  A CtDO - CtCO h DtD•  O. 

Recalling that  C + iD is complex orthogonal this can be written 

Im f x{  Ct DO /~ CtD| + (I +DtD)  0 /~ DtD@ } = O. 

l~ow D*D is a positive semidefinite real symmetric matrix and if @ corresponds under F 1 

to a positive eigenvalue of tDD then the above integral would have positive imaginary 

part.  This contradiction shows that  D = 0 ,  so that  k=luet~ where U is real orthogonal. 

And, by the remarks above, this ends the proof. 

The next  result gives a geometric interpretation of closedness of the complex kernel 

in the Jacobi variety. 

THEOREM 4. Le2 f: X"* T be a conformal minimal immersion of a compact Riemann 

surface into a flat fetus T with absolutely irreducible symmetry G. The complex kernel o] f  is 

a complex subtorus of the Jacobi variety A(X)  i[ and only if ] has an associate. 

Proof. By the final remark of w 2 we need only prove that  closedness of the complex 

kernel V implies the existence of an associate. Denote the quotient of A by this complex 

subtorus by A'  as in Theorem 3. We have the diagram 

T 

X > A '  C' 

and we denote by U' the tangent space to the kernel of h at  the identity. G acts linearly 

on the Z-module A, which is the lattice of A', leaving invariant the submodule determined 

by  U', which for convenience we also denote U'. By Maschke's theorem [4] there exists a 

complementary lattice U" in A which is invariant by G; the corresponding real subspace 

of TJA ' )  will also be denoted U". When U " = J U '  as vector spaces, the conjugate of f 

exists, being obtained by dividing out by the real 8ubtorus determined by U u. We may  

therefore assume U" ~ J U '  and it then follows further, by irreducibility, tha t  U ~ N JU '  = {0} 

as vector spaces. Each u"E U" may be written uniquely as u ~ = u l + J u  2 where use  U'; by 

the previous remark ul~=0. Similarly u~=0 since U ~ N U '=  {0}. I t  is easy to see that  this 

determines a real linear isomorphism 

p: U' -* U' 
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defined b y  ~ ( u l ) = u  2 which commutes  wi th  the  ac t ion  of G. B y  abso lu te  i r reduc ib i l i ty  of 

th is  ac t ion  and  Schur ' s  l emma  we have  Q = ~ I  for some ~ e R. Therefore  u" =u i + 2 J u l ,  i.e. 

u" = cos 0 u + sin 0 Ju  where 0 = t a n  - i  ~ for  some u e U'.  This shows t h a t  U" = e ~~ and  

since, b y  our  choice above,  U" conta ins  a l a t t i ce  i t  follows t h a t  t he  a s s o c i a t e / a  exists.  

w 4. Sur faces  w i th  i r r educ ib l e  W e y l  s y m m e t r y  

The surfaces of g rea tes t  in te res t  a re  those  wi th  the  s y m m e t r y  of an  i r reducible  W e y l  

group and  the  resul ts  of w 3 can be fu r the r  ref ined for these.  Le t  W be an  i r reducible  W e y l  

g roup  ac t ing  on R n and  W 0 = S O ( n  ) N W. The  exis tence of a compac t  R i e m a n n  surface X,  

a f la t  to rus  T ~ and  a conformal  min ima l  i m m e r s i o n / :  X - ~  T n wi th  i r reducible  s y m m e t r y  

W 0 is shown in w 5. W e  first  see t h a t  in such a case the  la t t i ce  of T is a f in i te  extens ion of 

t he  roo t  la t t ice;  th is  is t hen  used to  p rove  Theorem 5, which ex tends  our  ear l ier  work  on 

the  3-dimensional  case [14]. 

L~MMA 2. Let W be the Weyl group o /a n y  root system R in R n, and Wo=SO(n ) N W. 

iT/L W is the lattice spanned by a root system R, then/or any other Wo-invariant lattice JL there 

is an epimorphism 

R' /Lw ~ R ' IL  

which is W-equivariant. 

Proo/. Tak ing  two roots  ~, fl E R, i t  is easi ly  seen t h a t  for a n y  x eL ,  

. <x, fl> <x, a> <~, fl> 
�9 -8~8~(x) = 2  ~+~<~-4<~,~><~,N~ 

is a]so in L since spsa E We; here s a stands for ref]exion in the hyperplane through 0 orthog- 

onal to the root a. Assuming <~, 8> =0, we obtain 

<x, fl> AeL 

for all x eL .  Since L spans  R ~, i t  follows t h a t  some mul t ip le  of ~ is in L. Deno te  b y  c(:r t t  + 

t he  smal les t  number  such t h a t  c(~)o~eL. Subs t i t u t ing  x =c(:r  in the  above  equat ion ,  we 

ob t a in  

2c(~) ~ -  2e(~) <~' 8> A eL  <fl--fl~ ~ , 

from which 
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i.e. 

for some ma~ E Z. Therefore 

c(8) 

Hence R ' =  {c(x)~[~ E R} is a root system for W. I f  W is irreducible it follows tha t  R '  is 

similar to /~  or to its inverse root system R v (cf. [2], p. 144, for the definition of RV). There- 

fore cR = R'~_L for some positive real number  c. The linear automorphism cI  on R n induces 

the desired epimorphism. When W is reducible this argument  applies to the individual 

irreducible root systems in R to give the result. 

THEOREM 5. Let W be an irreducible Weyl group acting on R ~ as usual and W o the 

subgroup of proper motions. 

Let X be a compact Riemann surface with W o c A u t  (X) and f: X ~ T  n a conformal 

minimal immersion o/ X into a fiat n-torus with W o extending under / to a group of affine 

transformations o / T  n so that the corresponding linear representation of W o is the standard one. 

I] the kernel V of f is closed then 

(i) the associates fo: X ~  T~ exist/or a dense set of angles ( 0 < 0 < ~ ) .  

(if) The abelian variety A(X) /  V is isogenou, to the n./old product of some elliptic curve. 

Off) The con~ngate o / f  exists when X admits an antiholomorphic involution extending 

under f to T. 

Proof. (i) As in the proof of Theorem 3 we consider the diagram 

T 

X , ~ A '  = A / V .  

The group W 0 extends to a group of complex transformations of A(X)  preserving the 

foliation determined by U and therefore tha t  determined by V also. Hence Wo acts on A' .  

The induced linear representation of Wo leaves invariant  the lattice A of A'.  Via J we see 

tha t  the action of W o on U' is isomorphic to the standard linear action of W o on R n. The 

existence of f means tha t  A f] U' is a lattice in U'. Theorem 4 tells us tha t  A f] U~ is a lattice 

in U; for some 0~=0 rood ;z; because W o consists of complex (and not conjugate complex) 

t ransformations it leaves U~--and therefore All  U~--invariant.  Thus Ao=AN U' and 
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A0 =e-~~ N U~) are lattices in U' invariant  by  the action of W0- By the lemma above, 

A0 and A0 contain multiples c(O)Lw and c(O)Lw, respectively, of the standard root lattice 

Lw in U'. We can assume c(0)=1 and write c(O)=r. Now for any pair of integers m, n E Z  

it can be checked tha t  r'e~~ ~ A where 

mr sin 0 
tan 0' = (0 < 0' < ~) 

mr cos 0 + n 

and r '  is a certain positive real number. Hence A N U~. is a lattice in U~. and so the as- 

sociate/0'  exists. This set of angles is clearly dense in [0, ~]. 

(ii) Following the proof of (i) we see tha t  Lw|176 is a lattice in the universal cover 

of A '  and is contained in the lattice A of A'.  Take any  generating set {e 1 ... . .  en~ for Lw, 

and consider the lattice Z generated by  the {e~, re~~ in the complexification of U'. We 

have an obvious linear isomorphism 

~: (v ' )c  -+ T~(A') 

with 9~(Z)CLw(~ref~ Hence 9: (U')C/Z-~A' is an isogeny. On the other hand the 

torus (U')C[Z is, as a complex torus, isomorphic to C • .<.n! • C where C is the elliptic curve 

c/{1, r~'~}. 
(iii) Denote this antiholomorphic involution 8. With the notation of our proof of (i), 

we consider the induced linear action on Te(A' ). For ~ ELw, either ~+ = s~ + ~ or ~ - = 8 ~ -  

is nonzero; say cr +. We have ~+EA0=A N U', and since A 0 contains the root lattice L W it 

follows tha t  q~+ ELw for some integer q. Because the immersion / has absolute irreducible 

symmetry  and the complex kernel is closed, an associate [0 exists by Theorem 4, i.e. U~ 

determines a subtorus in A' .  Recalling the proof of (i), there is a real number  r such tha t  

re~~ is contained in A N U~. In  particular z=rel~ Using the fact tha t  8 is an 

antiholomorphic involution we have 

z - s z  = 2rq sin 0 J~+EA N JU' 

and letting W act on this element we see A N JU' is a lattice in JU', i.e. JU' determines a 

subtorus of A', and so the conjugate exists. I f  =+=0,  a similar argument  is applied to ~- .  

w 5. Weyl groups, root polygons and Schwarz surfaces 

We construct here compact minimal surfaces in fiat  tori with the symmet ry  of an 

irreducible Weyl g roup- - the  construction is good for any  Weyl group---and since an ir- 

reducible Weyl group is absolutely irreducible (cf. Bourbaki [2], p. 66) the work of the 
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preceding sections applies. Because the construction gives the classical examples of Schwarz 

[18] when n=3, we call the surfaces generated by this construction Schwarz surfaces. 

We begin by solving a problem which first interested Schoenflies [17] and which he 

solved in the special case of quadrilaterals in 3-space: 

Let P be a polygon in Euclidean n.space and K(P) the group generated by the re/lexions 

sl .... ,sm in the edges of P. For what P is K(P) a discrete uniform subgroup (i.e. contains a 

lattice) o/the Euclidean group? 

T~r~ol~wM 6. K(P) is a discrete uniform subgroup of the Euclidean group if and only 

i / P  is a root polygon (i.e. there is a root system R and every edge of P is an integral multiple 

of some root vector in R). 

Proof. If  P is a root polygon then after a translation of one vertex to the origin, the 

vertices lie on the root lattice. The group K(P) is a subgroup of the affine Weyl group 

with reflexion in the origin adjoined. Since the latter group is a discrete uniform subgroup 

of the Euclidean group so also is K(P). 

Conversely assume K =K(P) is a discrete uniform subgroup of the Euclidean group; 

then the maximum translation subgroup L of K is a lattice group. Fixing any point 0 as 

origin and taking the linear parts of the elements of K, we have a homomorphism of K 

into the orthogonal group (with respect to O) with kernel L. Thus L is a normal subgroup 

of K and the image of the homomorphism, which is isomorphic to K/Z, leaves the lattice 

L(O) invariant and so is finite. Let  W denote the group generated by the reflexions r 1 ..... r m 

in the hyperplanes through 0 orthogonal to the edges of P. The correspondence 

W -~ K/L 

defined by r~-*(Ls~) determines an isomorphism from W onto K/L except when n is odd 

and - I  e W, in which case the kernel is (_+ I}. Since W is generated by hyperplane re- 

flexions and leaves the lattice L(O) invariant, it must be a Weyl group [2]. If  R is a root 

system corresponding to W then it is already clear tha t  the edges of P are parallel to roots 

i n R .  

The rationality part  of the proof is more delicate. Fixing representatives (k 1 ..... kN) 

in K for the elements of K/L and fixing a point x in Euclidean space, we denote by y the 

barycentre of (klx ..... kNx). The point y is independent of these representatives and like- 

wise of the point x (to within a translation in the lattice L' -~N-1L). Furthermore for each 

k E K  we have k(y)=tk(y) for some translation t~EL'. Choosing y as origin 0 and writing 

A =L'(O), we see that  K can be considered as a subgroup of the symmetry group of the 
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lattice A. The Weyl group W considered as fi~ing 0 has proper par t  We contained in K 

and so leaves A invariant.  Applying Lemma 2 to We (or, if necessary, to its irreducible 

components) we obtain a root system R for W whose root lattice L W lies in A. I f  we con- 

tinue the proof with W irreducible, the modifications to be made in the general case sug- 

gest themselves. 

Labelling the vertices of P in succession (v~ .... .  vm}, each edge e~ =v~+~-v~ is parallel 

to some root ~ =~e, .  I t  is required to show tha t  the numbers ~, are rationally related. 

I t  is well-known tha t  among the roots of an irreducible root system at  most  two lengths 

occur and their squares are rationally related, i.e. all of the H~,e,ll ~ are rational multiples 

of some number  ~. Reflexion in the i th edge of P being denoted st, we have the identities 

of the kind 

and these lead to 

(v,, e,) ) 

~ 2 ( ' ,+1  (v'+l'e')e')(et, e,~ 

~,+~(0)-8,(0) ffi (e,+~, ~+~)  (e, ,  e,) 

and the right-hand side is in A. Since Q~el,~+lel+lEA, we see tha t  the numbers 

~v~+l, z~/~z, z)EQ, when zffi~te~ or ~+lel+l. But  as the (z, z) are then rational multiples of 

the number  ~, the same is true of (v~+ 1, z)=(v~+ 1, ~,e~ or (vt+l, 91+1e~+i). Likewise the 

same must  also be true of (vt, gte~) and (vl, qt_le~_l). In  particular it is true of 

(Vt+l-V,, 9~et)=(e~, 9~et~. But  (~lei, Q,et) is a rational multiple of ~. Hence ~EQ,  com- 

pleting the proof. 

Proceeding toward the construction of the Schwarz surfaces, we take a root polygon 

P of any root system in R n. As a further condition on P we azsume thas among all solution8 

o/the Plateau problem for the boundary P there is one, say ~v: A-~R n (here A denotes the closed 

unit disk in R ~) with no singularities in the interior or along the edges or aS the vertices of P. 

We denote one such solution surface Z. 

Bemark. As we will see in w 7, there are many  root polygons meeting this requirement. 

But  even for polygons where this is not so, one can still proceed with the rest of the con- 

struction to obtain a compact Riemann surface conformally immersed as a minimal surface 

with singularities into a fiat  toms.  To be sure the construction is then more complicated 

but  as we pointed out in the introduction, all of the arguments  apply equally well to such 

generalised minimal surfaces. 
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Writ ing K=K(P),  consider the  surface U k ~  k(Z) invar iant  by  the  lattice group L.  

B y  the Schwarz reflexion principle, the Plateau solutions k(Z) fit together  analyt ical ly to 

make up a complete nonsingular minimal surface in R ". On the product  K x A define an  

equivalence relation by  (k, p ) ~  (h, q) if p = q  and h-lk~v(p)=v/(q). With  the quotient  topo- 

logy, M = K  • A [ ~  is a differentiable surface and ~(k,  p)= kv/(p) extends the  map  ~v to  a 

map ~F of M into R ~. The obvious actions of K on M and R ~ are equivar iant  for ~ ;  more- 

over L acts freely on M. 

I n  construct ing a compact  R iemann  surface from M we mus t  take  account  of the 

cases where M is itself no t  orientable. Wi th  the  earlier notat ion,  we let 

Ko = {k e K I k =s~,  ... s~,, r even).  

There are two cases to consider, (1) where the Weyl  group W9 - 1  and  n is odd and  (2) 

otherwise. I n  the latter case no odd product  of our generators of K could be a translation. 

I n  part icular  L 0 = L  and the  generators are no t  in K 0. Thus  K0 ~= K. I t  follows t h a t  M is 

orientable and we take  X =M/L, obtaining a compact  R iemann  surface on which W =K/L 

acts as a group of t ransformations with Wo ~Ko/L contained in Aut  (X). I n  case (1), some 

odd produc t  of generators of K is a translation; if t he  ident i ty  (trivial translation) of K 

does no t  occur as such a produc t  then  Ko and  Lo are index 2 subgroups of K and  L re- 

spectively. Again M is orientable and we take  X = M/Lo, and  K/Lo acts as a group of 

t ransformations with Wo~Ko/L o contained in Aut  (X). Final ly if in case (1) some odd 

product  of generators of K is the identity,  then K 0 = K  and L 0 =L ,  and M is certainly no t  

orientable. The action of K lifts to an orientation-preserving action on the two-fold cover 

21~ of M and we take X = JTI[L on which W o ~, K[L acts as a group of holomorphie trans- 

formations.  

I n  summary  each root  polygon P with the above properties determines a compact  

Riemann surface X and a conformal minimal immersion / of X into the flat torus T = 

R=/Lo; this we call a Schwarz sur/ace. The rotat ional  par t  W0 of the  corresponding Weyl  

group W acts on X as a group of automorphisms and on T as a group of orientation- 

preserving motions equivariant ly with respect t o / .  Moreover X admits  an ant iholomorphic 

involution extending under  / to  a mot ion of T; such an  involution arises f rom reflexion in 

any  edge of P except  in the  last case of the above construct ion where M is non-orientable,  

bu t  in t h a t  case it arises f rom the natura l  involution on the  2-fold cover 21~ of M.  As an  

immediate  consequence of Theorem 5, we have 

PROPOSlTIO~  1. 1] /: X-~ T is a Schwarz sur/ace o/an irreducible Weyl group then 

the/ollowing are equivalent: 

2 -  802904 Acta mathematica 145. Imprim6 le 5 D~cembre 1980 
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(a) the complex kernel o / / i s  closed 

(b) an associate o//exists 

(c) the conjugate o//exists. 

.Moreover, when these conditions hold, the abelian variety A(X) /V is isogenous to the n-/old 

product o/some elliptic curve, so that ] is given by the real parts o/elliptic integrals on X.  

Remark. These conditions are verified for a special class of Schwarz surfaces in Theo- 

rem 7, but  we consider it likely that  they hold for all Schwarz surfaces of an irreducible 

Weyl group. 

Almost all of the remaining discussion of Schwarz surfaces in this section is quite 

general so we will explicitly mention the one occasion where irreducibility of the corre- 

sponding Weyl group is called for. 

PROPOSITION 2. Let X be the Schwarz sur/ace determined by a root polygon P, then 

(i) the genus p o/ X is given by 

where Wo denotes the orisntation-preserving part o/the Weyl group determined by P, m is the 

number o/vertices o/ P, vk is the number o/vertices of P with angle gilt and the summation is 

over k=2 ,  3, 4, or 6. 

(ii) The pro~ection ~: X ~ X / W o ~ X  o branches over exactly m points in X o, X o is the 

Riemann sphere and the branch points in X are precisely those point~ arising/rom the vertices 

o/P; moreover X o is the Riemann sphere. 

(iii) X has no We.invariant abelian di//erential, s and the number o/ such invariant holo. 

morphic di//erentials o/even order l is given by 

r t -  q iv, ffi r e (z -  1) - ( 2 l -  1) - Z [ - s  

where [x] stands/or the integral part o/a  real number x. 

Proo/. The product a of the reflexions in the two edges leading into a vertex v of P 

fixes the normal space at  tha t  vertex and is a rotation through an angle 2~ in the plane of 

that  vertex, where ~ denotes the angle between these edges. Therefore o ,  has trace ( n - 2 )  § 

2 cos 2~; bearing in mind tha t  0 .  preserves a lattice in R n, this trace must be integral. The 

fact tha t  ~ is acute now gives ~ =~/2, ~/3, ~/4 or ~/6. This also follows from the fact, 

mentioned above, tha t  W is a Weyl group and the edges of P are parallel to roots of W. 
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(i) The construction of X carries with it a simplicial subdivision of X in which F = 

2#W 0 faces, E edges and V vertices appear. The edges and vertices arise from edges and 

vertices in P and the vertices arising from a vertex with angle g]]c in P will be called ]C- 

vertices; the number of ]c-vertices in X will be denoted v(~). As 2]C faces abut  each It-vertex 

and each face touches v~ such vertices, we have 2]CV(k)=Vk_~. Trivially 2 E = m F ,  so the 

Euler number of X is 

2 - 2 p = V - E + F  

~ ~ ~(k)- 2 F + F 

F [ _  ~,~ m 1) 

and this proves (i). 

(ii) The Riemann-Hurwitz formula for the projection 

says 

~: X -~ X / W o  = Xo 

2(1 - p )  = #W o" 2(1-390) - B,  

where p and P0 are the respective genera and B is the sum of the branching orders of ~. 

As ~ certainly branches at  the vertex points in X with branching order k - 1  at  each k- 

vertex, it follows that  

 -]cF 

- - 2 ( p -  1)-I- 2#W o 

from the computation of the previous paragraph. Returning to the Riemann-Hurwitz 

formula we see P0 ~ 0  and the inequality for B becomes an equality; in other words 

branches exactly on the set of vertices in X. The ra vertices of P may be considered as 

vertices in X and no two such vertices are We-related; further each vertex in X is W0- 

related to one of these m; in short, branching occurs precisely over the projection of these 
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m points in X 0. This fact is essential for the application of the Chevalley-Weil formula 

in (iii). 

(iii) An abelian differential on X invariant  by  W 0 determines an abelian differential 

on X o = X / W o  which, by  (ii), is the Riemann sphere. The differential is therefore trivial. 

Let  Dl denote the space of holomorphic differentials of order l on X. In  the natural  re- 

presentation of W 0 on Dz, the multiplicity of any irreducible component representation is 

given by a classical formula of Chevalley and Well [19], which we now recall. 

Let  M be an irreducible factor of degree r (i.e. its dimension as a complex subspace 

of D~). These points over which 

~: X ~ X /Wo = Xo 

branches are labelled {C~}~-1. The isotropy groups of W 0 a t  all points over a given C~ are 

cyclic, of order k~ say, and conjugate in Wo; considering any generator of such a group as 

an r x r matr ix  via the representation of W 0 on M, we denote by N ~  the multiplicity of 

er 0 ~< ~ ~< k s, as a characteristic root of this matrix.  Then the Chevalley-Wefl formula 

states tha t  the multiplicity of this representation in the representation of W 0 on D~ is 

~ %-1 { ( 1 )  / l - l - a \ ]  
N z = r ( 2 / - 1 ) ( p ( X o ) - l ) +  ~ ~ Ar~,~ ( / - 1 )  1-~-~ + ~ / / + o "  

.u~l ~-0 

where p(Xo) is the genus of Xo, (x)  stands for the nonintegral par t  of x, and a is 1 when 

both 1 = 1 and the representation is the identity representation, and is otherwise zero. 

:For our application here p (Xo)=0  by (ii), 0 = 0  since / > 1 ,  and r = l ,  N~o=l  and 

Nz~ =0  for ~ > 0, since we are interested in counting the multiplicity of the trivial re- 

presentation in tha t  of W 0 on D l. The Chevalley-Weil formula now gives (iii). 

COROLLARY. The space o/ Wo-invariant holomorphic quadratic di//erentials on X has 

dimension m - 3 ,  where m is the number o] vertices o] P. 

I t  is a classical fact found in the works of Riemann, Schwarz and Weierstrass tha t  a 

conformal minimal immersion of a Riemann surface in R a induces on the surface a holo- 

morphic quadratic differential (eft H. Hopf [6]): the same will be true for a minimal surface 

in a flat 3-torus. Moreover any  automorphism extending to an isometry of the ambient  

space will leave this differential invariant. For  the classical surfaces of Schwarz we have 

n = 3  and m = 4 ,  so by  the corollary above we have a unique W0-invariant quadratic dif- 

ferential. This suggests tha t  there essentially is no other way to realise these Riemann 

surfaces as We-symmetric minimal surfaces in fiat 3-tori. The precise s ta tement  is the 

rigidity theorem of the next  section for which the next  result is a key step. 
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(k s > 2) 

(ks--2) 

In  either case 

PROPOSITION 3. I n  the natural representation o/ W o on the space o/ abelian di]]er. 

entials the representation determined by 

/: X ~ T ~ 

occurs with multiplicity m -  n, i] Wo is irreducible. 

Proo/. The space of real harmonic 1-forms on T ~ pulls back, under / ,  to an n-dimen- 

sional space of harmonic 1-forms on X which is invariant under the natural action of W 0. 

Moreover this action--being assumed irreducible--is absolutely irreducible since the action 

is determined by that  of a Weyl group. Hence W 0 acts irreducibly on the corresponding 

complex n-dimensional subspace K of abelian differentials in D 1. In the decomposition of 

D I into irreducible W0-submodules, the multiplicity N of any factor can, in principle, be 

counted by the formula of Chevalley-Weil cited above. Fortunately this calculation is 

within reach for the submodule K. In this instance r = n ,  l=  1, p (X o )=1  and a = 0  in the 

formula, so the multiplicity is given by 

where (x)  stands for the nonintegral part  of a number x. By Proposition 2 (iii), all branch 

points over C s are kfvertices;  a generator of the isotropy group of W 0 at  such a point is 

given by the product of the reflexions in the edges of P emanating from it; since this fixes 

the normal (n-2)-dimensional subspace and rotates the tangent plane through an angle 

2Yolks, the characteristic values have multiplicities given by 

Nso = n -  2, Nsl = 1, Ns(k~_l) = 1, Ns~ = 0 otherwise 

N s o = n - 2 ,  N s~=2 .  

~ / V ~  1 -  =1. 

Thus the Chevalley-Weil formula gives 

N ~ m - n  

as the multiplicity of this representation. 

w 6. The primitive Sehwarz surfaces 

Those Schwarz surfaces determined by root polygons with (n + 1) edges in R n we will 

call primitive here. The main result, of this section is the existence of the conjugate for the 
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primitive Schwarz surfaces. Even for the classical surfaces of Schwarz (which are primitive) 

this result was known only in a couple of cases which were carefully studied by Schwarz 

[18] and l~eovius [15]. In particular the complex kernel is closed for the primitive surfaces. 

Thus the assumption of the existence of an associate in our earlier work [14], as well as in 

the parallel work of Meeks [9], is of wide occurrence. 

THEORV.M 7. I] /: X-+ T n is a primitive Schwarz sur/ace then the conjugate immersion 

exists. 

Remark. I t  can easily be verified that  a root polygon with n + 1 edges in R n can only 

come from an irreducible root system. Thus all primitive surfaces have irreducible Weyl 

symmetry. Theorem 5 now gives the existence of infinitely many associates for the primi- 

tive surfaces. 

Proo/. P denotes the (n + 1)-gon and v2: A-~R n a solution of the Plateau problem for P. 

Writing ~ = (yj1 . . . .  , ~n), the functions v/~ are real harmonic functions on the interior of A. 

The harmonic conjugate ~ of ~ is therefore defined on the interior and extends continuously 

to the boundary because v 2 can be analytically continued across the boundary by the 

Schwarz reflexion principle. ~ gives a minimal surface in R n (unique to within translation) 

called the conjugate surface to v 2. A well-known and easily proved classical fact (cf. Dar- 

boux [5], p. 379) says that  a segment of 0A mapped by v 2 to an edge e of P is mapped by 

to a curve lying in a hyperplane / /  perpendicular to e and the surface ~ may be analytically 

continued by reflexiou in this hyperplane. Applying this to each edge, the surface ~(A) is 

seen to be bounded by  a convex polyhedron formed by n & 1 hyperplanes {//1 .. . . .  //n+l} 

respectively perpendicular to the edges {e 1 ..... en+x} of P and to meet each of these hyper- 

planes orthogonally. The edges being parallel to roots by Theorem 6, the hyperplanes are 

orthogonal to roots; they will be called root hyperp~anes. 

LI~MMA 3. The group generate~ by re]le,~,ions in the n + l  root hyperplanes {/tl  ..... //n+x} 

is a discrete uniform subgroup ol the group o/motions ol It". 

Granting this for the moment, it follows that  this group applied to ~(A) gives a p e .  

riodio minimal surface in R n and dividing out by the appropriate lattice, as in w 5, we 

obtain the conjugate immersion of the Schwarz surface determined by P,  completing the 

proof of Theorem 7. 

Proo~ o~ Lemma 3. Let  ~1 ..... ~,+x be roots of W corresponding to the hyperplanes 

//a ..... H~+ x. We can assume the first n of these pass through the origin and then / /n+ l  
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has equation x. :r =P. After a change of metric by a scale factor, this becomes x. ~+1-~ 1; 

all of the hyperplanes are now of the form x. g~ =fl~ E Z, so tha t  the group whose generators 

are the reflexions in these hyperplanes is a subgroup of the affine Weyl group [2], and the 

lemma follows. 

In  general, the primitive Schwarz surfaces are rigid in the appropriate sense. 

THEOREM 8. Let / :  X--~ T n be a primitive Schwarz sur/ace, W the corresponding Weyl 

group and W0=SO(n) N W. Any other con/ormal minimal immersion 

/1: X ~  T~ 

o/ X into a fiat torus T~ with irreducible symmetry W o is an associate o/ / provided Wo has 

but one irreducible complex representation o/ degree n. 

Proo/. The group W o acts on the space of abelian differentials on X. Each of the im- 

mersions / and/1 determines an irreducible Wo-submodule of this space of complex dimen- 

sion n. By assumption these submodules are equivalent. But  the Chevalley-Weil formula 

was used in Proposition 3 to count the multiplicity of the W0-submodule determined by / 

and it is 1 for the primitive surfaces. Hence these two W0-submodules coincide. I t  follows 

easily tha t  f and/1  have the same complex kernel. By Theorem 3, / and/1  are associates. 

w 7. Reg~darlty for the Schwarz surfaces 

The construction of the Schwarz surfaces in w 5 can lead to minimal surfaces with 

singularities (i.e. the maps may fail to be immersions at  finitely many points). While the 

work of w 2-~ 4 applies even in the presence of singularities, it  is of interest to know the 

existence of nonsingular Schwarz surfaces with the symmetry of each of the irreducible 

Weyl groups. Once existence is shown it will be clear from our proof tha t  such surfaces 

are abundant.  

THEOREM 9. For every irreducible root ~jstem R in R'* there exists a nonsingular primi. 

tire Schwarz ~ur/ace /: X-~ T n with symmetry W0=SO(n)fl W, where W is the Weyl group 

siR. 

The proof of this result requires tha t  we produce a root polygon P (corresponding to 

R), for which one solution of the Plateau problem will be regular in the interior, on the 

edges and at  the vertices. The construction of w 5 will then give a nonsingular Schwarz 

surface. The main step in the proof is the observation that  for a certain class of polygons 

in R n all solutions of the Plateau problem have this kind of regularity. Finally we must 
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show tha t  each of the irreducible root systems gives rise to a root polygon in the aforemen- 

tioned class. This is done for the root systems A n, B~, C~ and D~, the exceptional ones 

being left to the reader. 

Let  P be any polygon in R" with 

(i) n + 1 edges and not lying in any hyperplane in Rn; the edge-vectors are labelled 

e 1 ... . .  en+ 1 (in order) with e 1 emanating from the origin 0, the remaining vertices being 

then denoted vt = ~ - 1  ek for i= 1, 2 ..... n. 

Any solution ~: A-~R" of the Plateau problem for P is then regular in the interior and a t  

the boundary (Lemma 4). This par t  of the proof follows the lines of Lawson [7]. I f  further 

(ii) (e~,ej)~<0 f o r l < - - i < j < n + l a n d  

(iii) the acute angle at  each vertex is an integral divisor of g, 

regularity at  the vertices follows (Lemma 5). 

L]:MMA 4. I / P  satis/ies (i) then ~ is regular in the interior and at the boundary. 

Proo]. Any 4-gon in R s has one-one convex-parallel projection into some 2-plane. 

Dropping any one vertex v~ from P, the remaining ones (v0, v 1 ..... V~_l, v~+l ... . .  vn} deter- 

mine an n-gon Pn in some R n - l c  R n. By the similar assumption on P, the n-gon Pn will 

not lie in any hyperplane of Rn-1; hence Pn has no self-intersection. Denote the mid-point 

of V~_lV~+ 1 by  m~. Parallel projection of R n along the direction v~mt into the hyperplane 

R n-1 carries P onto the n-gon Pn monotonically. By induction there is a parallel projection 

o / R  n onto some 2-plane R~c R n carrying P one-one onto the boundary o /a  convex region in R z. 

Under these circumstances a theorem of Rado (cf. [16], or [8]) ensures the interior 

regularity of any solution y: A-~R ~ of the Plateau problem for P. Furthermore Rado 's  

result says tha t  this solution can be realised as the graph of some continuous Rn-2-valued 

function defined on the above region in R z, analytic in the interior. In  particular v 2 is 

one-one on A, a fact which will be used below. 

Next  we t reat  boundary regularity. Reflexion of our Plateau solution ~ in any  one 

edge e I of P analytically continues this solution and in the composite surface the only 

interior points where a singularity could occur are interior to e,. By the Riemann mapping 

theorem, the composite solution can be considered as another map  v2': A-~R ~ with 

y t [ - 1 ,  1]=et and we assume ~'  singular a t  some point p e ( - 1 ,  1). A simple induction 

argument,  using condition (i), shows P lies on the boundary of the polyhedron which is 

its convex hull; let H be the support  hyperplane of any  one of its faces which contain et. 

Since a minimal surface lies in the convex hull of its boundary, ~ '  maps the upper and 
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lower halves of A to either side of H. By the remarks at  the end of the preceding paragraph, 

yJ' is one-one on both these half-disks. Now for any small disk D centred at p, the minimal 

surface v?': D-~R ~ is analytic and ~P'I~D is a Jordan curve. The proof of Proposition 5 on 

page 97 in [8] implies that  any hyperplane through ~'(p) meets y/(~D) in at least four 

components if ~0' is singular at  1o. As H meets ~p'(~D) in just two points, ~p' must be regular 

at  10. 

LEMMA 5. Assume (ii) /or P. For each i, v/(A) lies in the wedge-region in R ~ which is 

the product o/the normal space at v, and the sector determined by {e,+l, -e~} in the plane o/ 

that vertex. 

Proo/. In the plane of this vertex we choose v, as origin and {e,+l, - e , }  as basis and 

denote the resulting coordinates (x, y). By  (ii) the orthogonal projection of ej into this 

plane is either a point or else a vector making an obtuse angle (i.e. ~>re/2) with e,. Hence, 

as ej ( j ~ l ,  i + 1) is traversed positively, y is non-decreasing and similarly x is non-increas. 

ing. In  particular the projection of P lies in the sector {(x, y)lx>~O, y~>0}, so that  the 

convex hull of P lies in the region mentioned in the lemma. But  y~(A) lies in the convex 

hull of P by the maximum principle, so the lemma is proved. 

Remark. I t  follows from the proof that  each of the hyperplanes x = 0 and y = 0 meets 

P in a t  most two connected components. 

LEMMA 6. Assume (i), (ii) and (iii)/or P. Then v/is regular at the vertices. 

Proo]. If the angle at v~ is re~k, we may reflect our solution ~ for P around the vertex 

vf, in total 2k times, obtaining y~: A ~ R  n with y~"(0)=v,. Certainly y/' is analytic (and 

regular) on A - {0} but  it  is also analytic on A as we now show. If  ~0 denotes the harmonic 

conjugate of ~ then, after normalisation by a suitable translation, ~(A)meets orthogonally 

the hyperplanes through v~ orthogonal to e~ and el+l (cf. Darboux [5]). Reflexion in these 

hyperplanes continues 9~ analytically and repeated reflexion defines a single-valued con- 

tinuous 9~": A ~ R "  analytic on A - { 0 }  and conjugate to ~0" on A--{0}. Riemann's theorem 

on removable singularities guarantees ~p" + ~ "  is holomorphie on A and in particular ~p" is 

analytic on A. 

Next  we show ~p" is regular at  O. By Lemma 5 each reflexion of ~p(A) around v~ lies 

in a wedge-region and these wedge-regions have mutually disjoint interiors. Since W is also 

one-one, from the proof of Lemma l, it follows at once that  ~p"(~D) is a Jordan curve for 

any small disk D centred at  O; furthermore ~": D-+R n is an analytic minimal surface by 

the above. If ~ were singular at  0 then by the proof of Proposition 5 on page 97 in [8], 
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any hyperplane passing through vy(O) meets v2"(OD ) in at  least four components. By 

Lemma 5 and the remark thereafter, the hyperplane x = 0  meets ~"(OD) in just two com- 

ponents, so ~" must be regular at  0 E A. 

I t  remains now to show that  for any irreducible root system R in It" a root polygon 

can be found satisfying (i), (ii) and (iii) above. Of course (iii) is redundant for root polygons 

so we simply look for root (n + 1)-gons satisfying (ii), a condition that  is simply checked. 

If {~1 ..... ~,} is a basis of simple roots for R, consider the (n+ 1)-gon defined by 

e~=~, l~<i~<n, 

en+l  ~ ~ ~ ~t" 
t - 1  

For the root systems A n, B ,  and Dn this defines a root (n + 1)-gon satisfying (ii) (cf. Bour- 

bald [2], Planche X, I I  and IV). For C, and the remaining exceptional root systems slight 

modification of this polygon can be found which satisfy (ii). For Cn (with the notation of 

Bourbaki [2], Planche III)  we take 

et = 2~t, 1~< i ~ n - 3 ,  

e n - 2  == O~n-2~ 

e n - i  ~ ~ n - 2  + 2~n-1 "4- ~n, 

e n ~ O~n, 

i - 1  

The details for the exceptional systems are left to the reader. 

Remarks. (a) Since the properties (i), (ii) and (iii) are invariant under permutations of 

the edges of P,  it  follows that  there are many noncongruent root polygons satisfying (i), 

(ii) and (iii). Consequently there are as many nonsingular Sehwarz surfaces. 

(b) In showing the existence of nonsingular surfaces for each Weyl group, Theorem 9 

sharpens our earlier existence result [12]. 
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