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Introduction 

I t  is well known tha t  the regularity of minimal submanifolds can be reduced to the 

study of minimal cones and hence to compact minimal submanifolds of the sphere. A phe- 

nomenon related to regularity was discovered b y  Bernstein [3] in 1915. The Bernstein 

Theorem says tha t  an entire solution to the minimal surface equation in two variables 

is a plane. An answer to the extrinsic rigidity question of whether a minimal submanifold 

which lies in some neighborhood of a standard sphere must  actually be a standard sphere 

is of interest in relation to the above topics as well as in its own right. 

Efforts to generalize Bernstein's Theorem were made by many  authors. The work of 

Simons [16] completed the proof in codimension one up to dimension 7. Bombieri, de 

Giorgi and Guisti [4] gave a counterexample in dimension 8. For two-dimensional graphs, 

Osserman [14] proved a version of Bcrnstein's theorem assuming the normal vectors omit 

a neighborhood of the sphere. Simons [16] proved tha t  a minimal cone whose normal planes 

lie in a sufficiently small neighborhood is a plane and hence Bernstein's theorem is true 

for a graph whose normals satisfy the same condition. Reilly [15] enlarged the neighbor- 

hood. His estimate says tha t  if a cone has the property tha t  the normals satisfy <N, A> > 

V(2k -2 ) / (3k -2 )  for some fixed k-plane A, then the cone is a plane. For two-dimensional 

minimal graphs Barbosa [2] improved the neighborhoods to an open hemisphere. More 

specifically, Barbosa showed tha t  a compact  minimally immersed sphere in S ~+~ such tha t  

its normal satisfy <N, A> > 0  for some fixed A is totally geodesic. The theorem was also 

proved by S. T. Yau [17] for S 2 in S 4 and by Kenmatsu  [10] under the stronger assump- 

tion of a bound on <N, A>. Lawson and Osserman [12] constructed a series of examples of 

(1) Supported in part by NSF grant MGS 77-18723 A01. 
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minimal graphs which are cones regular away from the origin, thus showing tha t  Barbosa's  

Theorem fails to hold in general dimensions and codimensions and regularity does not hold 

for Lipschitz solutions to the minimal surface system. This paper  deals with the s tudy of 

minimal cones whose normals satisfy conditions of this type.  We improve the estimates of 

Reilly and we generalize Barbosa's  result. 

In  the two-dimensional case, the technique is to use a local computation to show 

log(N,  A> is a superharmonic function whenever <N, A> >0.  In  the general case for M a 

a compact minimal immersion in S n+k we show if <N, A>>cos~(zt/2 2V~T) where p =  

min (k, n + 1), then M is a total ly geodesic sphere. The first example of Lawson and Osser- 

man  occurs in dimension 3, eodimension 3. In  tha t  example, <N, A> ~ 1/9. Reilly's number  

is 2/1/7 ~ 0.74 and this new estimate is cos 3 (z/21/6) ~ 0.51. This estimate improves previous 

ones in all dimensions and eodimensions. The technique is to use facts about  harmonic 

maps and information about  the Grassmannian. One fact is tha t  the Gauss map of a sub- 

manifold of R" with parallel mean curvature is harmonic. The other is tha t  the composition 

of a convex function with a harmonic map is subharmonie. The idea is then to determine 

the neighborhood of a point in the Grassmannian on which the distance function is convex, 

and compare this function with the Gauss map  to give a subharmonie function on M. 

I am indebted to m y  advisor H. BIaine Lawson for his unending support,  encourage- 

ment  and advice. I thank S. Hfldebrandt  for pointing out an error in an earlier version. 

1. Preliminaries 

We first establish basic notations. 

Let  ~ m  be a Riemannian manifold. We define a submanifold M ~ of ~ m  to be an 

immersion/ :  M n ~ M  m of a differentiable manifold M. For any point p in M,  TpM denotes 

the tangent space to M at  p and ~ p / ~  the set of locally defined vector fields on ~1~ nearp .  

The metric in the tangent space TrM is denoted by <., �9 >. With reference to a submanifold 

M of _~, we may  write Tp-M = T v M + N v M  where Np is the normal space to M at  p. With 

this splitting, X = X r +  X ~ where X fi Tr/]I  and superscripts T and N denote the projection 

onto TvM and NpM respectively. The connection V7 on M can be expressed as 

Vx Y = (VTx y)r+ (Vx y)N 

for X and Y in :~v/]l. The induced connection V on M is given by  

Vx Y = (Vx y)r 

for X and Y in ~ M. The curvature tensor i~ or ? on M is 

R(X, Y)Z = VxVrZ-~yVTxZ-V~x .  n Z  
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and  the  sect ional  cu rva tu re  K ( X ,  Y) for  o r t hono rma l  X and  Y is 

K(X, Y)= <R(X, r)X, r>. 

Note  t h a t  R = 0 for  M = R m. 

The  second f u n d a m e n t a l  form B on M is a symmet r i c  b i l inear  fo rm on T~M with  

va lues  in Nr (M)  def ined b y  

BAx, r )  = ( V x r )  N. 

The t race  of the  second f u n d a m e n t a l  form, t r  B~, pointwise  defines a n o r m a l  vec tor  H~. 

H is a smooth  no rma l  vec tor  field on M cal led the  mean  cu rva tu re  vec to r  field. H~ is g iven 

local ly  as follows. Le t  e 1 . . . . .  e, ,  v I . . . . .  v k be an  o r thonorma l  f rame on M such t h a t  el, ..., en 

is a f rame on M.  F o r  p e M,  

H~=tr B~= ~ (re, e,) N. 

I f  H is a para l le l  sect ion of t he  no rma l  bundle ,  i.e. if (~/xpH)N=O for  allX,~eT~M, t hen  

we say  t h a t  M has  para l le l  mean  curva tu re .  M is a min ima l  submani fo ld  if H - 0 .  

F o r  no t a t i ona l  convenience,  we define h~ = <VTe, v~, ej> = - < v~, Ve, ej>, where  e, and  v~ 

are  as  above.  W i t h  th is  def ini t ion of h5 we have  

B~(e,, ej) = - Z h~(p) v~(p). 

The h~j a re  the  components  of B wi th  respec t  to  the  chosen bases,  wi th  a sign change. 

Note  t h a t  h~ = h~. The  min ima l i t y  condi t ion  on M is ~ ,  h~ = 0  for  ~ - -  1 . . . . .  k. W e  a d o p t  the  

n o t a t i o n  t h a t  r o m a n  indices i,  j ,  l r un  f rom 1 to  n and  Greek  indices ~, fl, 7 run  f rom 1 to  k. 

W e  will p r imar i ly  be considering min ima l  submanifo lds  of t he  sphere.  S ~+n will a lways  

denote  the  s t a n d a r d  uni t  sphere in R ~+~+1. F o r  a n y  n-d imens iona l  submani fo ld  M "  of S k+", 

t he  cone CM on M is t he  ( n + l ) - d l m e n s i o n a l  submani fo ld  of R k+n+l g iven  b y  C M =  

{rx[x e M, 0 < r <~ 1 }. M and  CM have  m a n y  of the  same geometr ic  proper t ies .  Define an  

o r thonorma l  f rame on R k+'+l b y  e~, ..., e~+l, Vl, ..., vk where  e~, ..., e ,  is a f r ame  for M,  e,+ 1 

is t he  pos i t ion  vec tor  for M a n d  v 1 . . . .  , vk gives the  no rma l  space to  CM in R k+"+1. No te  

t h a t  v I . . . . .  vk also gives t he  no rma l  space to  M in S k+". Compare  the  second f u n d a m e n t a l  

form B on M as a submani fo ld  of the  sphere a n d  j~ on CM as a submani fo ld  of Euc l idean  

space: 

J~(X, e,+l) = 0 for  X e  T,,GM 

J~(X,  Y ) =  B~(X, Y) f o r X ,  Y e T,,M. 

Therefore  we will no t  d is t inguish  be tween  the  second form on M a n d  on CM. Note  t h a t  

M is min ima l  in S "+~ if and  on ly  if C M  is m in ima l  in  R k+~+'. 
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The Laplacian of a function ~0 on M is defined by 

A ~ 0  = ~ e~ e~ ~ - % ,  e~ ~.  
t 

I t  is clear from this definition that  ff ~o is extended to be constant on radial lines on C M ,  

we have A M ~-ACM.  

For simple k-vectors N = v  1 A ... A v k, A = u l  A ... A u k ,  the inner product is defined as 

usual by <N, A> =det(<v~, uj>). 

We investigate <N, A>, where N is the normal k-plane field on M and A is a fixed 

simple k-plane. If <N, A> >0, log<N, A> is well-defined. To compute A log<N, A> on M 

or on C M  we use the standard fact tha t  

(N, A> A<N, A > -  [V<N, A>I 2 
A log <N, A> = <N, A> 2 

Since A is fixed, A<N, A> = <AN, A> where AN means Laplaeian with respect to the con- 

nection on k-vectors induced from the Euclidean connection VT. Therefore to compute 

A log(N, A>, we must determine (AN, A> and I V ( N ,  A>I~. 

LEMMA 1.1. F o r  a m i n i m a l  i m m e r s i o n  M i n  R k+n w i t h  n o r m a l  N a n d  a / i x e d  k - p l a n e  A 

A(N, A> = - IBIS (N ,  A> + ~ (hT jh~vx  A . . .  h e, A . . .  A e, h . . .  h v k, A >  
i,],l 

IV<N,  A>I ~ = ~ (<Y h~vl  A . . .  A ej A . . .  A v~, A>) ~, 

w h e r e  ej  a n d  e, are  i n  the  o~ a n d  fl  p o s i t i o n  r e s p e c t i v e l y  a n d  [ B I 2  = 5 , . j . a ( h ~ O  ~. 

P r o o / .  Choose an orthonormal basis as above with the additional assumption that  

(~etej)r (p) = 0  and (~etva)N (p)  =0. Since VTe,(v 1 A ... A vk) = ~ a  v l  h ... A V~,v  a A ... h v k where 

V~:v= occurs in the a position in the wedge product, 

A(v~ A . . .  A vk) = 7  %,V~,(vl A . . .  A v~) 
i 

= ~ v lA. . .AVetV~A. . .AVe,  v 3 A . . . A v  k 
1. o~:v 3 

+ ~ v 1 h  . . .  A Ve~VetV~ A . . .  A Vn 
|,at 

= ~ v 1 A . . .  A (VTe, Vo,) T A . . .  A (VTevl~) T A . . .  A v k (1.2) 
~, r162 

+ ~.. v 1 A . . .  A (Ve, Ve,  v~) r h . . .  A vk (1.3) 
|,at 

+ Y. Vl A . . .  A (%,%,v~)  ~ A . . .  Avk (1.4) 
| ,~  

where the terms with v~ appear in the a position. 
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for each ~ so 

The following equalities hold for the given choice of frame. 

0-. e~(v,~, v~> = 2<~7~,v~, v ~  

-~ <V~,V~v~, v~> + ~ ~ ~h~ ~ .  

[e~, el] (p) = CV~, ej) ~ (p) - CV~j e~) ~ (p) = o. 

Also in R ~ 
0 --- V ~ , V ~ -  V ~ % , -  V~,. ~,  

so at I~ 
V~Ve, = V~V~, 

and 
<~e,rT~,v~, el> = e ~ < ~ , ~ ,  e l > - < ~ , v ~ ,  ~,et> 

With these equalities the above terms may be rewritten 

(1.2)= ~ h~h~v~A... Ae~A ... Ae, A ... Av~, 
t.LI 

where e t and ez appear in the ~ and ~ position respectively. 

(1.3) = Z (Ve, Ve, v~, el> vt A.. .  A e t A. . .  A v~ 

~ (%j%,v~,e~>v~^ . . .  ^ e l ^  . . .  ^ v ~  
i~ 

= Z eAZh~)v~^ . . .  ^ e l ^  . . .  ^ v ~ = o  

So 
A N =  - [ B I 2 N +  Z h~th~[~vl A . . .  Ae~A ... Ae, A ... Av~. 

LLi 

ej and ez are in the ~ and fl position respectively. Also 

Iv<N, A> I ~ = Z (Z <vl ^ . . .  ^ ffe, v~ ̂ . . .  ^ v~, A>) ~ 

= Z ( Z  <ffe,v~, e~> <vl ^ . . .  ^ ej ^ . . .  ^ vk, A>)  ~ 

= Z ( Z  h~<v~ A . . .  ^ e l ^  . . .  ^ v ~ , A > )  ~, 

where ej appears in t h e ~  position. This gives the desired formulae. 

3 -  802904 Acta mathematica 145. Imprim6 le 5 D@embre 1980 
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Re~nark. The above proof actual ly  gives the same formulae for a minimal  immersion 

~/~ in Me+n where A is a parallel k-plane field and ~ t  (R(e~, et)e~, ca) = 0  on ~]I for each ?" 

and  ~. 

2 .  T w o . d l m e n s i o n a l  e a s e  

The fact  t h a t  a compact  minimal hypersurfaee of the  sphere which has the  proper ty  

t h a t  the normal  vectors all lie within some fixed hemisphere is a to ta l ly  geodesic sphere 

was first proved by  de Giorgi [8]. We prove a s ta tement  for complete parabolic minimal 

immersions in the sphere which has as a consequence the  result  for surfaces analogous to  

the  above. 

We now consider a compact  surface M s minimally immersed in S e+2, the  s tandard  

uni t  sphere in R k§ We  will compute  A logaN,  A )  in the  same sett ing as in the  previous 

section. Choose an  or thonormal  f rame el, e2, e~, v 1 . . . .  , v k for R e+s such t h a t  e x A e2 locally is 

the  tangent  space to  M s, ea is the  uni t  normal  to  S k+e and v 1 A ... A v~ = N is the  normal  

k-plane to  M in S k+9., all considered as simple vectors in R ~+3. Le t  A be a fixed k-plane in 

R k+8 represented as a simple k-vector by  u 4 h ... A uk+s. We mus t  consider (N ,  .4). For  

simplicity, we consider instead the  equivalent  expression ( -~ N,  ~- A) ,  where ~ : A~R~+8-~ 

AaR ~§ is the  Hodge star operator,  ~- N = e  1 A e 2 A e 3 and -~ A = A "  = u~ A u s A u~. Further-  

more, by  the  remarks  in the previous section, AcM l og (N,  A)-~AM log(N,  A) .  Hence to  

determine AM(N, A )  we will compute  ACM(~X-N, ~A). The following Pliicker identities 

hold for O~.~c A~R ~+s. 

L~.~M~ 2.1. Let e,, v~ and -~ A be as above where i = 1 ,  2, 3 and a, f l= l . . . .  , k. Then 

(e 1 A e s A e 8, -x-A) (v~ A vp A e s, ~eA)  + (v~ h e 1 h ea, ~ A )  (es h vp A e a, ~ A )  

+ ( e l A v p h e 3 ,  ~ A ) ( e s h v ~ , A e s , - ' k A )  =0.  

Proof. Let  ~- A = u 1 A u s A u3. Then  ~ = e3 [_ ~- A = (e a. u 0 ua A u a -  (e a. u 0 u 1 A ua + 

(e 3. u3) u 1 A u s is also a simple vector.  Here  t_ denotes contract ion.  I n  fact, say  e 3. u 1 =~0, 

then  

e , L . - Y r A = ( ( , . u l ) u ~ - ( e 3 . ~ s ) , ) A  ( ( ' ' ' )  , + , ) .  
(e~. h )  

Fur thermore,  by  the definition of contraction,  (e 1 A e s A e3, ~-A)  -- (e 1 A e s, es[_ ~-A).  Hence 

it  suffices to  show t h a t  for simple 2-vectors 

O1 ^ es, 22) O~ ^ vp, ~I) + (v~ A el, X? (es ^ vB, ~I) + O1 A vp, X)  (e~ ^ v~, X> = 0. 
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Le t  ~ = w  1 A w2; then  evaluat ing the  inner products  gives 

( (e l  ~ Wl) (e~. w2) - (e 1 �9 w2) (e 2 .Wl )  ) { (va: .Wl)  (vfl ,  w2) - {v~, w2} (v~ .  w l )  } 

-'l- ((Va" Wl) (e 1 "W2) - -  (Va "W2) (el �9 wl) ) { (e 2 �9 wl) (re" w~) -- (ez. w2) (vs. Wl) ) 

+ ((e~. w~) (v~. w~) -  (e~. w2) (v~.w~)) ((e2" w~) (v~. w2) - (e2" w2) (v~. w~)) = 0. 

This equat ion gives the  desired relation. [ ]  

PROPOSITION 2.2. Let M be a minimal sur/ace in S ~+~. I / ( N ,  A )  > 0  at a point, then 

locally 
A log (N ,  A )  ~< - I BI ~. 

In  particular, l o g ( N ,  A )  is superharmonic wherever (N,  A )  >0.  

Proo/. Let to=(N, A )  =(  ~e N, ~e A).  

Let  e~, ..., vk be the  o r thonormal  f rame  defined above.  Then  e 3 gives the  radial  direc- 

t ion on CM and h~ = (V--e, va, ej) = 0  if i = 3  or j =3 .  Here  V denotes  the  connection on R k+s 

and  h~ are components  of the  second fundamen ta l  fo rm on CM. Recall  when i and  ] are 

1 or 2, the  components  h~ for M are the  same as for CM. Since 

A log "q, = v, oAy~ ~ l  VTv/]] 

wc must determine wAw-  I % 1  ~. From section ~ we ~avo t~at 

l -1 ,2  

IVan] ~= 7. ( ~ h~l(V~AesAes,-)~A)+ ~ h,~(elAv~Ae$,-~A)) s. 
| - 1 , 2  ~-1 ..... k e~-I ..... k 

B y  L e m m a  2.1, we can rewri te  ~A~  to  get  

--2 ~. h~lI~{(el A v~ A es, ~ A )  (vp A es A es, ~ A )  
t,~ofl 

- 7 (Z hr,<v~ A e, A e ~ , .  A>} ~ -  Z (7. hr.<e, A v~ A ~,  ~ A > f  

--2 ~ h~l h~2(v~ A es A es, -x-A)(e~_ AvpAes,  -x-A>. 

The  second and last  t e rms  cancel and  f rom section 1 we know t h a t  three  dimensional  

minimal  cones sat isfy ~ h5 h~s = ~ ~ h ~ - ~ , 0 ~  ~1 so the  th i rd  t e r m  m a y  be rewri t ten  as 

2 7. hSh~2(v~AesAes, - x - A ) ( e l A v p A e a ,  ~ A ) .  
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Therefore, 

So 

~A~ - [VT~ 13 = - [ B [ ~  ~ - ~. (Z hS<v~ h e2 A e3, ~ A)  - ~ h~2(e i A v~ A e3, ~ A)) 2. 

A l o g ~ -  - ] B ]  2 -  (ZhIl<v,/\e2/\e3, ~ A ) - ~ h , 2 (  iAv~he.~, -~A) f .  

In  particular A log y) ~< -- I B ] 2. []  

A surface M is parabolic if every bounded subharmonic function is constant. We now 

have the following theorem. 

THEOREM 2.3. I] M 2 is a complete, parabolic, oriented immersed minimal sur/ace in 

S ~+2 such that,/or some e > 0, (N,  A~ > e on M, then M is a totally geodesic two-sphere. 

Proo]. We have shown tha t  ~ =log (N,  A)  is a superharmonic function when (N,  A~ > 0. 

Since M is parabolic and ( N , A ) > O ,  log(N, A~ is constant, so A log{N,A)=O.  The 

above formula then gives 0 = A  log(N,  A)~< - I B I  2. Thus I BI 2 = 0  and M is totally geo- 

desic. []  

In  the case tha t  M is compact it  was pointed out by  J .  Milnor tha t  the condition 

(N,  A)  > 0  implies tha t  M is homeomorphic to S 2, hence in the compact case the theorem 

gives another proof of Barbosa's  theorem. 

In  the unorientable case, the following corollary holds. 

COROLLARY 2.4. I] M 2 is a non-orientable complete parabolic immersed minimal $ur]ace 

in S k+2 then/or any ]ixed k.plane A, there is some normal k-plane N such that (N,  A~ =0. 

3. Properties o| the Grassmnnnian 

The proof in the general case relies on information about  the Grassmannian of k-planes 

in ( k §  in conjunction with some facts about  harmonic maps.  In  this section 

we summarize a few properties of the Grassmannian which we will need. 

Given a k-plane P we can choose an oriented orthonormal basis e 1 ... . .  ek for P and an 

orthonormal basis vl, ..., v m for the orthogonal complement of P in R k+m. The ( k §  • 

( k+m)  matr ix  whose columns are e 1 ... . .  ek, vl .. . . .  v m is then an orthogonal matr ix  0 of 

determinant  -b 1, tha t  is, an element of the Lie group SO(/r The plane P is invariant  

under orthogonal change of the basis {e 1 .. . . .  ek} and of the normal basis (v 1 ... . .  vm}; i t  is 
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determined up to right multiplication of 0 by an element of SO(k)• SO(m). Thus Gk,z is 

identified with the quotient space 

Gk.,n = SO(k +m) /SO(k )  x SO(m). 

I t  is in fact a symmetric space. There is an involutive automorphism a on SO(k + m) given 

by a ( O ) = S O S  -1 where 

and Ik is the k • k identity matrix. The subgroup SO(k) • SO(m) coincides with the identity 

component of the subgroup of all fixed dements  of o, so Gk.~ is symmetric. 

The tangent space I~ at the identity to SO(k+m) is the space of skew symmetric ma- 

trices which we denote EJ(k +m). The Riemannian metric on SO(k +m) can be described by 

<A, B> = �89 t r  A t B  = - �89 t r  A B .  

The tangent space ~ to SO(k) • SO(m) is the subspace [~(k) • O(m) given by matrices 

(0 
where UE [~(k), lzE [](m). The orthogonal complement to [-3(k)• [:J(m) which we denof~ 

by 111 consists of matrices of the form 

(o 0 
where X is a (m • k)-matrix, l} = ~ + m is the canonical decomposition of the Lie algebra ~. 

Let  ~t: SO(k + m ) ~ G ~ . , ,  be the quotient map. The differential of ~t, d~t, at the identity 

identifies m with the tangent space to Gk.m. This map defines the metric on Gk.m at  the 

identity coset and invariance under left multiplication by SO(k + m) defines the metric on 

all of Gk. ~. The geodesic through the identity coset with initial tangent X E 111 is the image 

under ~t of the one parameter subgroup e t2 for t E R. 

L E MM A 3.1. The sectional curvatures K o~ Gk. m satis/y 0 ~ K <. 2. I]  m = 1 or k = 1 then 

K = I .  

Proo/. By a standard formula (see e.g. [5, p. 761) the curvature K ( A B )  is given by 

II[A, B] II ~ for A, B Em. First apply the Maximal Toms Theorem so that  A E m has its (m • k)- 

submatrix X in diagonal form with entries 21 . . . .  ,2r, where p = rain (k, m). B E m  has sub- 
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matr ix  Y with entries y~j. I n  this no ta t ion  it  suffices to  maximize 

1 P 
K = 3  ~ (~jyj,-~,y,j)~ + (ljy,j_~,y~,)2, 

i ,J-1 

where ~,.j y~ = 1 and ~ ,  ~ ~- 1. 

This maximizat ion is an exercise in Langrange  multipliers which we omit  here. I f  

/~ > 1 one concludes t h a t  a m a x i m u m  occurs when there  are two equal non zero l~'s and 

fur thermore  t h a t  this m a x i m um is 2. Hence 0 K  K K 2. I f  p = 1 then  G~.m is just  the  

s tandard  sphere and it is well known tha t  K = 1. [ ]  

De]inltions. Let  f be a funct ion defined on Riemannian  manifold M.  Define HI(X, Y), 

the Hessian of ], to  be the  quadrat ic  tensor which assigns to vectors X and Y in Tr(M) 

the  value 

HI(X, Y) = X r / - ( V x  Y ) ' /  

where X and Y are extended as smooth  vector  fields to  a neighborhood of p.  I t  is easy to 

see tha t  H](X, Y) is independent  of the  extension of X and Y and t h a t  

HI(X, Y) = H/( Y, X). 

A function [ is (strictly) convex if H[(., �9 ) is a (strictly) positive definite quadrat ic  form. 

Le t  ep: M-~ R be the distance funct ion ~p(q) = the  distance from p to  q. Let  y: [0, ~ )  -~ M 

be a geodesic with y(0) = p ,  then q =y(t0) is a cut point of p along y if the  set of t such t h a t  

edT(t)) =t  is [0, to]. 

LEMM~ 3.2 (Whitehead). Let Bdp), the ball centered at p E M o[ radius r, be contained in 

some compact set c c  M. Let T =infpec{Q~(q): q is a cut point o[ p}. Let ~ denote the supremum 

o] all sectional curvatures at points o[ c. I[ r<�89 min{a/I/~,  T} then e~ is a strictly convex 

[unction. In  [act, there is an e > 0  depending on r such that 

Hq~(X, X) > e. <x, x> 

for all X and Y in T~M and ]or all qEBr(p). 

Proo[. See Cheeger and Ebin  [5]. [ ]  

We are interested in specializing this result  to  the  case of the  Grassmann manifold 

Gk. m. We first note  t h a t  G~. m is s imply connected and  ~ = 2. 

L v . ~ ,  3.3. For G~.m, 7;>~ where T is as in Lemma 3.2. 
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Proo]. A result of Crittenden [7] shows that  on a simply connected symmetric space, 

the first cut point along a geodesic is a conjugate point. By standard comparison theorem 

arguments, the first conjugate point cannot occur before the distance ~ is achieved. There- 

fore z ~>~. [] 

The rest of this section is devoted to computing the maximum of the inner product 

between a fixed k-plane A and any other k-plane N on the boundary of the ball B , m ~ ( A  ) 

in Gk. ~. This computation gives a comparison between the intrinsic distance on G~. z and 

the "sphere" distance, i.e. the distance on the sphere in AkR k+m. The boundary B , I ~ ( A )  is 

given by moving along any geodesic emanating from A for time t =~[2~2. The following 

remarks show that  we need consider only certain geodesics to maximize <., �9 >. 

The inner product <N, A) is the usual one defined by <N, A> =det(<ut, vj>) where 

N = v ~  A ... A v~, A =u~ A ... A u~ for u~, vjER ~+z. Computation will be simplified by noting 

tha t  the inner product is invariant under isometry. More precisely, if A and N are in Gk. m 

and P is in SO(k+m) then P acts as an isometry of G~.z by left multiplication and the 

definition of inner product gives tha t  <N, A> = <PN, P A ) .  

l~or simplicity, fix A to be the identity coset. The tangent space at  A is given by 

m = ( (  0 -*OX): X is an (mxk)-matrix}. 

By standard facts about Gk.m, one can choose a maximal flat totally geodesic submanifold 

of G~. m containing A having tangent space at A of the form 

{(o ,0 } m ' =  : X is an (m x k)-matrix with entries xtj = 0 for i 4= ~ �9 

By the Maximal Torus Theorem any geodesic 7 can be translated into a geodesic 7' contain- 

ed in ~7. By the invarianee of ~., �9 ) under isometry, we have (7(~/2~), A) = (7'(~/2V2), A). 
Hence in order to maximize ~N, A) on the boundary of B~I~v~(A ), it  suffices to maximize 

~N, A) over the set 

L = {ff  n B,,~v~(A)}. 

On this set the inner product can be explicitly computed. 

We compute the geodesics ~(e tx) for X in trt' where X has unit length. In general, 

T = rain (m, k), but for notational convenience, assume p = k. Let 21 ..... 2 v be the diagonal 

entries of J~. Then J~ is of the form 
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SO 

e(ul2g~)R = 

(k x k) 

0 

~1 "'" 0 

: ". : 

o 

0 

- 4, 0 

: ". : 

0 ... -4~ 

0 

(m x m) 

cos 2-~ 0 

: " .  : 

0 ... cos ~-~ 

=41 
- sin ~-~ 

0 

J 

... 

0 

: 0 

- sin ~--~ 

0 

COS ~ - ~  

0 

sin 2 ~/2 0 

: " .  : 

0 ... sin ~-~ 

0 

COS 

~ 

o.o 

The image under ~, g(e("/~v~)~), is the k-plane having as orthonormal basis the first k columns 

of e (€ 

Let A be the plane spanned by the first k standard coordinate vectors in R k+m. The 

inner product <g(e(=~vi)2), A> is 

<rc(e(~"~)~),A>=eos~2--~2 ... c o s 2 ~  2 

on the boundary of the ball of radius ~ / ~ .  

We want to determine v =maximum of <N, A> for N 6L. Then for N satisfying 

<N, A> >v 

we have that  @~A(N) is strictly convex. 

L~MMA 3.4. Let A be the/ixed point in Gk.,, given above. Let N 6L; then 

max <-h r, A> = cos 
NeL 2 
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Proo]. We must maximize <N, A> so we must maximize 

Let 

{z~21'~ ...cos(Zt2v~ for ~ 2~=1. ](21 . . . . .  2~) = cos ~ 2 ~ /  ~ 2 ~ /  , -~ 

( ,-1 ~,2"-~] + #  1 -  ,~12, where g # 0 

is another variable. Then 

At a critical point (21 ..... ~ )  of ] 

zt & ~2j sin ~2~_ _ 2/x2,. 
272 1), cos ~ 2V2 

so for 2,~=0 

In particular, 

z~ & z 2 j  . : t2 ,  
2 ~-~ 1 Ix cos ~-~ s,n ~---~ -- 2/.t2, = 0, 

t # '  

& z~2j re2, 
cos =2, cot2v 

7t :rt2, 
4V2/~ ](2) = 2, cot 2V--2 

for all i with 0 <2, < 1. For all critical points of ] with nonzero 2, it follows that  

. ~t2j 2, c o t  _ ~ _  = 2, c o t  5 2V2 

Note g(2)=2 cot (~2/21/2) is a decreasing function for 0 <2 < 1 since 

n2 z~2 n2 n2 re2 
s i n  - -  - -  - -  c o s ~ - ~ s i n ~  2V2 1 1/2 

g'(2)-- re2 - 2  . ~zt2 <0.  
sin~ 2--- ~ sin 2-~-~ 

Since g(2) is a decreasing function, 

g(2,) = g(2 s) only when 2, =2j. 

Therefore the only critical point of ](2) with all 2,:4=0 occurs when 21 = . . .  =2v= (1/]FP). 
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I f  ~ = 0  for some i then the same argument as above shows tha t  the remaining ~ ' s  

are equal. But  cos t (zt/2 ~/~) is an increasing function in l, so the maximum is reached when 

all ,~=0,  hence it is cos ~ (re/2 2~p). []  

The results in this section may  be summarized by  the following statement.  

THEOREM 3.5. The /unction e~ is a smooth strictly convex /unction on the set 

(N e Gk. ~: (N,  A)  > cos ~ (g/2 2~p)}. In/act  He~(., . ) >1 e( . , .  ~ on the set (N  e Gk. ~: (N,  A )  > 2} 

/or any 2 > cos p (g/2 2V~), where e is a positive number depending on ,~. 

4. Proof  in general dimensions and eodimensions  

The above result for minimal surfaces in S ~+~ is false for higher dimensions. In  this 

section we derive an estimate which improves previous estimates in all dimensions and 

oodimensions. We prove the following. 

THV.OREM 4.1. Let M n be a compact mani/old o~ dimension n minimally immersed in 

Sk+n. Let p -- rain ( n + 1, k ). I/there exists a constant k-plane A such that (N,  A~ > cos ~ (g/2 ~/2p) 

/or all normals N,  then M is a totally geodesic subsphere. 

We begin with some remarks about harmonic maps. Let  M and M be smooth oriented 

Riemannian manifolds of dimensions m and ~ respectively. Let  V and D be connections 

on M and M, and let ex, ..., em be a local orthonormal tangent  frame on M at  p. Le t / :  M - ~ - ~  

be a smooth mapping. 

De/inition. /: M ~ M  is harmonic if ~ - 1  (Df.e,(/.e~) - / . (Ve ,  e~)) =0 w h e r e / ,  is the dif- 

ferential o f / .  

We need some known facts about  harmonic functions. 

L~MMA 4.2. I /  M m ~  R m+k is an immersion and 7: M~Gm.k is the Gauss map then / 

is harmonic i / and  only i / M  has parallel mean curvature. 

Proo/. See Chern and Goldberg [6]. []  

An immediate corollary is the following. 

COROLLARY 4.3. Let M n ~ S  "+k be a minimal immersion. Let 7: Mn~G~.,+x be the 

Gauss map on M given by mapping a point p on M to the k-plane normal to M in S n+k at p. 

Then ~ is a harmonic map. 

We also need the following lemma which is well known and easily checked. 
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LV.MMA 4.4. Let U and U be open sets in M and .M respectively. I] h: U ~ U is a har- 

monic map and ]: U ~ R is a convex ]unction, then/oh: U ~ R is a subharmonic ]unction. 

Now let M be a minimally immersed submanifold of S "+k and M=Gk,=+I. Let  h=~ 

be the Gauss map on M, considered as a submanifold of S ~+k, into Gk. ~+1. Let  ] = ~ :  Gk. n+l-~ R 

be the square of the distance from A to X in Gk. ~+~. 

THEOREM 4.1. I] M n is a compact minimal submani/old o / S  ~+k with normal k-plane 

]ield N and i / A  is a/ ixed k-plane in R n+k+l such that 

<N, A> > cos~ (~/2 21/~p) 

where p = rain (n + 1, k), then M is a totally geodesic subsphere. I] p = 1 the result holds/or 

<N, A > > 0 .  

Proo/. Combining Theorem 3.5, Corollary 4.3 and Lemma 4.4, we have tha t  ~,~o~/is a 

subharmonie function on a compact manifold M and hence constant. But  ~ ( N )  is strictly 

convex when <N, A> > cos v (~/2 2V~p) so by  Theorem 3.5, HQ~(., �9 ) I> e<., �9 > > 0. By  (4), 

0 ~ - A ~ o ~ = ~ _ l  H~(~ ,e t ,  u ,e t )  so tha t  ~ , - 0 .  Hence ~ must  be constant, so N is fixed 

and the theorem follows. The same proof works for p = 1. []  

Remark. The same proofs also show tha t  there is no compact submanifold M n of 

R n+k+l with parallel mean curvature all of whose normals satisfy <N, A> > cos v (~t/2 2 ~ )  

for any fixed (k+  1)-plane A. 

5. Applications 

In  this final section we give some applications of the previous results. 

Let  ~ be a convex open set in R =. Let F: ~ - ~ R  ~+k be a non-parametric immersion, 

i.e. let iV(x) be of the form F(x) = (x,/(x)) for some/ :  ~ - ~ R  k. F is a minimal immersion if ] 

satisfies the minimal surface system, a system of second order non-linear elliptic partial  

differential equations given by  

~ ( ~ g " ) = o  for g = l ,  ..., n 
~ 1  

= o  
I ,J-1 

where g~j=~j+<~//~x ~, O//axJ>, (gO)=(g~j)-i and g f d e t  (g~j). This system is also defined 

in the weak sense for a Lipschitz function. A Lipschitz function / on ~ is a weak solution 

to the minimal surface system if 
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[--1 " ;~V ~ x |  
for ] = 1 . . . . .  n 

t ' g g  - 
~ 1  . . . . .  k 

where ~0 is any C ~ function with compact support  on ~ .  

A result of Morrey [13] shows tha t  any  C 1 function which satisfies the minimal surface 

system is real analytic. In  the case n = 3, Barbosa stated without proof tha t  a Lipschitz 

solution is real analytic. We present the proof here. We use Theorem 2.3 and a regularity 

result of Allard [1]. We first establish some definitions and notation. 

Let  ]: ~ - ~ R  k be a Lipschitz function on an open bounded convex set ~ in R n. Let  

F = ((x, ] (x))eR n+l} be the graph of ]. 

We now suppose 0 E F and define the tangent cone of F a t  0. For any r > 0, let/r(x) = 

(1/r)/(rx). Now ]r is directly seen to be a weak solution of the minimal surface system and 

moreover 

- / , ( y )  I = _1 {(rx) - ](ry) l < 1 M [ r x  - ry I = M [ x  - Y I" (5.1) 
r r 

This shows (]r}r is an equicontinuous family on any compact subset of R ~, so the Arzela- 

Ascoli Theorem implies there is a convergent subsequence {]r,} with limrr.o ]n(x)=h(x).  

From (5.1) we see tha t  h is a Lipschitz function with constant M. Let  C(F, 0) be the graph 

of h. 

L~.~IMA 5.1. The ]unction h is a weak solution o] the minimal  sur]ace system and C(F, 0) 

is a cone, i.e. i / x E C ( F ,  O) and t E R  then txEC(F,  0). 

Proo]. See, for example, Lawson [11]. []  

We call C(F, 0) the tangent cone to F at  0. By translation, for any x E F  one can define 

C(F, x), the tangent  cone of F at  x. 

The regularity result we need is given in its full form in Allard [1]. The relevant portion 

of our purposes is 

L~.MMA 5.2 (Allard regularity [1]). I] the tangent cone at x E F is a linear space, then F 

is a C 1' ~ submani/old near x. 

Morrey's theorem on the regularity of C 1 minimal immersions then gives real analy- 

ticity of ] a t  x. 
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THEOREM 5.3. Let /: ~ R  k be a Lipschitz solution to the minimal sur]ace system, 

where ~ is a domain in R a. Then / is real analytic. 

Proo/. Let  F be the graph of / and C(F, x) the tangent cone at  a point x. 

I f  C(F, x) is regular except a t  x, then it is the cone on a minimal two dimensional 

sphere S 2 in S k+~ centered at  x. Let  Nx be the k-dimensional normal space to S ~ in S k+2. 

Let  A be the k-dimensional space orthogonal to the Euclidean 3-space containing S 2. Then 

since C(F, x) is given by a graph, (Nx, A~ >0,  so Theorem 2.3 implies S ~ is a totally geo- 

desic subsphere in S k+~. Hence C(F, x) must  be a plane. Using Allard regularity (together 

with Morrey's regularity) we conclude tha t  / is real analytic. 

Claim. C(P, x) is regular for y ~ x ,  where yEC(F,  x). 

I t  follows from Federer [9], p. 456 tha t  

C(C(F, x), y) = line • 2-dimensional cone. 

I t  is straightforward to show tha t  the two-dimensional cone is minimal and is the graph 

of a Lipschitz function. Since the intersection of the graph with the unit sphere is one- 

dimensional, it must  be a great circle. Therefore C(C(F, x), y) is a plane and hence C(F, x) 

is regular away from x. []  

As another application of Theorem 2.3, we generalize Bernstein's Theorem. Bern- 

stein's original theorem states if ]: R~-~R is an entire solution to the minimal surface 

system, then / is linear. This theorem has been generalized to higher codimensions by  

Osserman and Chem. One implication of their result is tha t  i f / :  R2-~R k is an entire solu- 

tion to the minimal surface system having bounded gradient, then / is linear. We gener- 

alize this result to three dimensions. 

THEOR~.M 5.4. I / / :  RS-~R k is an entire solution to the minimal sur/ace system, satis/ying 

IIV/II -~ K on R a 

for some constant K, then / is linear. 

Proo/. The idea of the proof is to look a t  the tangent  cone at  oo. Thus we define a 

sequence/ ,(x) = (1/r)/(rx). As above , / r  has uniformly bounded gradient. Again, there is a 

subsequence rj-+ c~ such tha t  
lim/r(x) = h(x). 
rr-~o 

h(x) is a solution to the minimal surface system and the graph is a cone. By the same argu- 

ments as above, the cone is a plane. Allard's regularity estimate then implies the original 

graph is a plane, hence / is linear. []  
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