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w 1. Introduction 

Let  (0, 0) be an isolated singular point of the real analytic vector field 

= X~(x, y) +Xd+l(z, y) + . . . .  X (x ,  y) 
0.1) 

-- Yd(x, y) + Ya+l(x, y) + . . . .  Y(x,  y) 

where Xt, Y~ are homogeneous of degree i and X~a+ Y~n$0. We will call the integer d~>l 

the degree of the singularity at (0, 0). If (0, 0) is neither a center nor a focus, then a small 

enough neighborhood of (0, 0) can be decomposed into a finite number of elliptic, hyper- 

boric and parabolic sectors (for precise definitions and a proof see, for example, [1], [2] or 

[4]). Bendixson [2] noticed that  each hyperbolic sector must contain a branch of x X  + y Y = 0 

and each elliptic sector must contain a branch of X =0.  He concluded tha t  there are at  

most 2d + 2 hyperbolic and 2d elliptic sec~rs. By  a separatrix at  (0, 0) we mean a solution 

curve of (1.1) tha t  is the boundary of a hyperbolic sector at  (0, 0). Since each hyperbolic 

sector has two boundaries, there are at  most 4d +4  separatrices at  (0, 0). The main result 

of this paper, proved in Section 3, is tha t  the number of separatrices at  (0, 0) is actually 

bounded by four if d ~  1, six if d = 2 ,  and 4 d - 4  if d>~3. We give examples to show that  

these bounds are sharp. 

Our result is proved by  repeatedly blowing up the singularity (0, 0) of (1.1), a technique 

that  goes back to Bendixson [2] and has been used by many authors (e.g. [1], [3], [5], 

[8], [9]). We review blowing up in Section 2. Most recent uses of blowing up focus on 

classifying degenerate singularities of low codimension (i.e., not loo degenerate). By con- 

trast, we use the technique to determine the most degenerate behavior tha t  can occur at  

a singularity of given degree. To accomplish this we use counting arguments to keep track 

of what happens as we repeatedly blow up; these arguments seem to be new. 
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Figure 1. Z, a n d  L '  a re  i n sepa rab l e  leaves.  

We became interested in counting the number of separatrices at  a singular point by 

way of our interest in foliations of the plane given by the integral curves of a nowhere 

vanishing polynomial vector field. Recall tha t  a leaf L of a foliation is said to be inseparable 
if there exists another leaf L'  such that  any two neighborhoods of L and L'  in the leaf 

space intersect; see Figure 1. Inseparable leaves of a planar polynomial foliation correspond 

to separatriees of a "singular point at  infinity". In [6] we report some results on the pos- 

sible number of inseparable leaves of a planar foliation given by a polynomial vector field 

of fixed degree. 

Bendixson knew his bound of 2d + 2 for the number of hyperbolic sectors at  a singu- 

larity of degree d was sharp ([2], p. 32), and in fact it is easy to give examples (Example 1 

of Section 2). On the other  hand, Bendixson does not  claim that  his bound of 2d for the 

number of elliptic sectors is sharp ([2], p. 31). In  fact, we have shown that  the sharp bound 

for the number of elliptic sectors at  a singularity of degree d is 2 d - 1  for every d >1 1, [7]. 

Finally we note that  the assumption that  (0, 0) is an isolated singular point of an 

analytic vector field can be weakened to: (0, 0) is a singular point of a C ~ vector field tha t  

satisfies a Lojasiewiez condition at  (0, 0). This point is briefly discussed in Section 2. A 

vector field X(x, y) is said to satisfy a Lojasiewicz condition at  (0, 0) ff there exist a posi- 

tive integer k and positive constants e and ~ such that  IIX(z, Y)II >/el{(z, Y)II k for all (x, y) 

with II( , y)ll <0. 
w ~. mowing up 

We will review blowing up in some detail and calculate a few relevant examples. Let  

X be a vector field on R z of the form (1.1) with d>~l. 

Consider the map ~1 from the x2-plane to the xy-plane given by 

~iCx, ;~) = (x, ~ ) .  
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The image of 71 is the xy-plane with {(0, y): y:~0} removed. 71 collapses the A-axis to 

(0, 0) and takes each line A=A0 to the line y=Aox. The half plane x > 0  (resp. x <0 )  of the 

xA-plane is mapped diffeomorphically onto the half plane x > 0 (resp. x < 0) of the xy-plane. 

Pull back XIR~-{y-axis  } by  ~1 to obtain a vector field ~ X  on R~-{Laxis}.  ~/~X 

is defined by 

~o 

~= ~ x~+~Xd+~(1,A) = xdXa(1, ;t) +x~+lXd+l(1,A) + ... 
t=0 

( 2 . 1 )  

= ~ xa-x+*[ Ya+,(1, A) - 2Xa+,(1, A)] 
t - 0  

= x~-x Ya(1, ~t) + x ~ Ya+I(1,2) + . . .  - A[xa-aXa(1, A) + x~Xa+x(1, A) + . . . ] .  

Since d/> 1, ~ X  extends to an analytic vector field on the xA-plane which we still denote 

~7" X. There are now two cases to consider. 

1. xYd(x, y) -yXa(x, y) ~ O. We divide (2.1) by  x ~-1 to get a new analytic vector field 

~1 defined by 

o0 

~=  ~ xl+~X~+~(1, A) =xX,~(1,A) + xAX~+l(1,2) + ... 
[ - 0  

(2.2) 

| - 0  

= Y~(1, ~) + xYd+l(1 , ~t) + . . .  -- A[X,(1, ~t) + xXd+l(1 , A) + . . .  ]. 

X 1 and ~ X have the same solution curves on R ~ -  {A-axis}, so ~h sends solution curves of 

~1 to solution curves of X. The bax is  is invariant under X 1 and there are at  most d + 1 

singularities of ~1 on the A-axis. The least degenerate case occurs when at  each singularity 

of X 1 on the A-axis, the linear part  of X 1 has two nonzero eigenvalues. Figure 2 shows a 

typical example of the flow of X 1 near the A-axis in this case. 

2. xY,~(x, y)-yXa(x,  y)-O. In this case we call (0, 0) a special singularity. We have 

Xa =xQ,~_~(x, y) and Yd =yQa_x(x, y) where Q~-I is homogeneous of degree d -  1 and Qa-1 ~0.  

(If Qa_l=-0 we would have X ~ -  Ya-0 . )  We divide by x d to get an analytic vector field, 

again denoted X~, defined by  

a~= ~ a:~Xa+,(1,g) -- Q~_~(1,,~) + xX~+.l(1,A ) + ... 

oo 

}t = ~ x~-l[ Ya+((1, A) - AXa+~(1, A)] 

= Ya+l(1,A) + xYa+~(1 ,;t) + . . .  - A[Xa+I(1 , ~) + xXa+~(1,A) + . . . ] .  

4 - 802904 A c t a  m a t h e m a t i c a  145. Imprim6 le 5 D~cembre 1980 
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•1 is transverse to the ~-axis except a t  at  most d - 1  points (0, ~) with Qd_l(1, ~t)--0. The 

least degenerate case occurs when Yd+~(1, ~t) --~Xd+l(1, ~t) ~:0 for each ~ such that  Qa_l(1, ~) 

0. Figure 3 shows a typical example of the flow of X 1 near the ~.axis when this condition 

is satisfied. In Figure 3, Qd_l(1, ~) changes sign at  ~t =~1 but  not  a t  ~t = ~ .  

To see how the flow of •1 near the ~-axis relates to the flow of X near (0, 0) it is per- 

haps helpful to consider polar blowing up. Polar blowing up is conceptually simpler than 

algebraic blowing up, but  is less tractable computationally. One can use the map ~: ~ • 

R-~R ~ defined by ~(0, r) m(r cos O, r sin 0) to replace (0, 0) by a circle in the same way ~1 

is used to replace (0, 0) by a line. (In polar blowing up one divides by  r d-1 or ~.) The result, 

if x Y a -  yX~ ~ 0, is a vector field X ~ on S 1 • R that  has S 1 • (0) as an invariant set on which 

there are at  most 2d+2  singularities of X~; if x Y ~ - y X ~ - O ,  the result is a vector field X ~ 

Figure 3 
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transverse to S 1 x {0} except at  at  most 2 d - 2  points. When x Y . , -  yX(t ~-O, we have (after 

dividing by r d-~) X ~ defined by 

co 

rt+l[cos 0 Xd+t(cosO, sin0) + sin0 Y~+t(cos 0, sin 0)] 
t - 0  

co 

0-= ~ r~[cos 0 Ya+t(cos 0, sin0) - sin0 Xd+t(cos0, sin0)/. 
1-0 

When x Y d -  y X ~ -  0, we have (after dividing by r ~) X P defined by 

= Q ~ _ l ( c o s  
co 

O, sin 0) + ~ rt[cos 0 X~+~(cos 0, sin 0) + sin 0 Y~+t(cos 0, sin 0)] 
t - 1  

co 

-- ~. rt-l[cos 0 Y4+t(cos 0, sin(}) - sin0 X~+~(cos0, sin 0)]. 
| - 1  

Figure 4 (a) shows the singular point of X that  when blown up algebraically gave Figure 2; 

Figure 4 (b) shows the result of polar blowing up of this singularity. Figures 5 (a) and 5 (b) 

bear the same relation to Figure 3. The reader should notice that  when one blows up alge- 

braically, the phase portrait of ~1 in the half-plane x <0  is "upside down" by comparison 

to the phase portrait of X in the left half-plane, or by comparison to the phase portrait 

of X~ in {(r, 0): r > 0, ~t/2 <0 < 3~t/2}. 

The formal correspondence between the local behavior at  (0, 0) of X and the local 

behavior near S 1 x {0} of ~e is given by the following theorem of Bendixson ([1], [2] or [4]). 

By a positive (resp. negative) semipath, we mean a solution curve defined for all t 1> t o (resp. 

for all t ~< to). 

THEOREM 2.1. Any semipath of (1.1) that tends to (0, O) is either a spiral or tends to 

(0, 0) in a limiting direction 0". I f  at lextst one positive (rezp. negative} semipath of (1.1)/s 

a spiral tending to (0, O) as t ~  cr (resp. as t-~ - ~ ) ,  then all positive (reap. negative) semi- 

paths passing through points of some neighborhood of (0, O) are also spirals. I / x Y d - y X ~  ~ O, 

all directions O* along which semipathe tend to (0, 0) satisfy the equation cos O Y~ (cos 0, sin 0) - 

sin OXa (cos O, sin O) =0. I /  xY~-yXd---- O, then Y~ =YQ~-I and X d -xQ~_ x. In  this case,/or 

all 0 not satis/ying Q~-I (cos 0, sin 0) =0, we have exactly one sem~ath tending to (0, 0) in 

that direction. I /  O* satisfies Qd-1 (cos 0, s in0)=0,  there may be no semipathe tending to 

(0, 0) in that direction, a/inite number or in/initely many. 

We can formalize the relation between the flows of X P and X 1 as follows. Let U be a 

neighborhood of S i x  {0} in S 1 x R  and let U+=U N {(0, r): r>0}.  ~0 maps U+ diffeomor- 
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(a) (b) 

Figure 4 

(a) (b) 

Figure 5 

phically onto a deleted neighborhood of (0, 0) in R * and takes solution curves of ~P to 

those of X. Let U+R = U+ f) {(0, r): - g / 2  <0 <g/2}, V+r.-- U+ N {(0, r): g/2 <0 <3~/2}. Given 

any neighborhood V of the 2-axis we let VR= V N {(x, 2): x>0},  V~= V n {(x, 2): x<0}.  

Now let V--~loT(U+).  Then VR =~loT(U+R), VL =~11oq)(U+r.), and ~ 1 o ~  sends solution 

curves of X e to those of ~x. 

Clearly X x gives us a complete picture of the solution curves of X in a neighborhood 

of (0, 0) with the y-axis removed. Now suppose xYa-yX~$O and x is not a factor of 

xY~-yXa. Then the polar vector field X P is nonsingular at  (g/2, 0) and ( - g / 2 ,  0). I t  

follows that  XP is transverse to 0 =~/2 near (g/2, 0) and to 0 = - g / 2  near ( -g /2 ,  0). Then 
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we can easily "fill in" the par t  of the phase portrai t  of X near 0 tha t  blowing up via 71 

does not tell us. (Notice, however, tha t  we ~11 be unable to distinguish a center from 

a focus. This difficulty will not be important  in the sequel.) Similarly, suppose x Y ~ - y X ~  = 0 

but  x is not  a factor of Qd-1. Then X r is transverse to S 1 • {0} near (rt/2, 0) and ( -~t/2, 0), 

and again we can easily fill in the par t  of the phase portrai t  of X near 0 tha t  blowing up 

via 71 does not tell us. 

There are two cases in which blowing up via 71 is inadequate: 

1 (a) x : Y a - y X ~ O  and x divides x Y ~ - y X ~ .  

2 (a) xY~--yXd--O and x divides Qd-1. 

To s tudy these two cases, we will use the map  72 from the gy-plane to the xy-plane 

given by  

~ ( g ,  Y) =, (gy, Y). 

The image of 72 is the xy-plane with {(x, 0): x # 0 }  removed. 72 collapses the g-axis to 

(0, 0) and takes each line g = g 0  to the line x=goy.  PUll back XIR2-{x -ax i s  } by  ~ to 

obtain a vector field 7~ X on R z -  {g-axis}. In  case 1 (a), define ~2 to be (1/y~-1)7~ X, ex- 

tended analytically to the g-axis. We get 

co 

/2 = ~ y*[Xa+t(g, 1) -gYa+ i (g ,  1)] 
| - 0  

= Xa(g , 1) -4- yXa+l(g , 1) + . . .  - g[  re(g, 1) -4- y Yd+l(g) 1) -~... ] 

co 

~1 = ~ yl+iYa+,(g, 1) = yr,,(g, 1) + Y~Ya+I(g, 1) + . . . .  
t - 0  

In  case 2 (a), define X2 to be (1/y~)7~ X, extended analytically to the g-axis. We get 

co 

= ~ y i - l [ x d + i ( g  , 1)  - - g ~ r d + i ( g  , I ) ]  
i - I  

= X d + l ( g  , l) "~- yXd+~(g, l) + . . .  - g [  Y.+l (g ,  1) + YY~+2(g, l)  + . . . ]  

~t =- ~ y'r~+,(g, 1) = Qd-l(g, 1) + YY,,+I(g, 1) + . . . .  
| - 0  

I t  is easy to see how the flow of X ~ near the g-axis relates to the flow of X P near S 1 • {0} 

and to the flow of X near (0, 0). We leave the details to the reader. 

We will be interested in keeping t rack of how many  new singularities are created 

when we blow up the singularity of X at  (0, 0). To avoid counting some new singularities 
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twice, and for the sake of consistency, we ~11 always proceed as follows. If  x does not 

divide xYa-yXa (case 1) or Qa-x (case 2) we will blow up using only 71. Otherwise, choose 

a number a > 0  such that  every root of Y~(1, X)--XXd(1, X)=0 (case 1) or of Q~_I(1, ~t)=0 

(case 2) has absolute value less than a. Restrict X 1 to ((x, X): [XI <a} and restrict ~ to 

{(/X, y): I/xl < l[a}. Notice tha t  in case 1 (a) the restricted X ~ has only one singularity on the 

/x-axis, at  (0, 0); in case 2 (a) the restricted X z is transverse to the/x-axis except a t  the one 

point (0, 0). The restricted ~1 tells us the flow of X in {(x, y): [y[ <alx [ ~ and the restricted 

X ~ tells us the flow of X in {(x, y): lY] >alxl}" l~car (0, 0) it is easy to fill in the missing 

part  of the flow of X, subject to the caveat about distinguishing a center from a focus. 

After blowing up we may wish to analyze a singularity of X 1 at  (0, ~0) or a singularity 

of X a at  (0, 0). In the first case, translate (0, ~0) to the origin by the map (x, X)~-~(x, X-~0), 

relabel the second variable ~ ~y,  and blow up using ~1 and, if necessary, ~ .  In the second 

case, relabel/x = x  and blow up. This procedure can be repeated as often as we wish. 

Dumortier [3] has described a useful way of thinking about repeated blowing up. 

We ~ describe Dumortier's idea pictorially; for a more computational description see [3]. 

Begin by using polar blowing up, and identify {(0, r): r >  - 1 }  with R2- ( (0 ,  0)} via (0, r)~-~ 

((r + 1) cos 0, (r + 1) sin 0). We get a vector field on R ~ -  ((0, 0)) which we denote X P. The 

circle C: x 2 + y ~ = l  corresponds to the original origin and its exterior corresponds to the 

original R ~ -  {(0, 0)). Suppose there is a singularity (0, ~0) of X 1 tha t  we wish to analyze 

further. I t  corresponds to singularities of X P at  P1 and P2 = - P 1  on C. By using polar 

blowing up at  P1 and at  P~ we can obtain an analytic vector field Y on an open subset of 

R 2 that  includes I ~ U ext I ~ (ext I ~ =exter ior  of r ) ,  where r is a curve in R ~ homeomorphic 

to S 1 (see Figure 6); Y and r have the following properties: 
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1. r=rlUr2u F3UF4, where each F~ is a closed analytic are and successive F~ 

intersect transversaUy. 

2. There is a continuous map from F U ext F to R 2 that  takes F to (0, 0), takes ext F 

diffeomorphically onto R ~ -  {(0, 0)}, and takes solution curves of u to solution curves of X. 

3. For i=1 ,  2, 3, 4, YIF~ is either tangent to Ft with a finite number of singularities 

or transverse to Ft except at  a finite number of points. 

4. Let 1 ~, denote F, minus its endpoints. Then Y[I~I U l~s is conjugate to X~I C -  

{P1, P~}. 

In effect, we have replaced {P1, P2} by F~ U F4. 

To see the relationship of u to the vector fields obtained by algebraic blowing up, 

assume for simplicity that  20 = 0. Then X 1 has a singularity at  (0, 0) tha t  corresponds to 

P1 = (1, 0) and P2 = ( - 1, 0). Blowing up the singularity of ~1 at (0, 0) via ~h, ~/~ yields two 

new vector fields which we denote respectively ~ n ,  XI~. The flows of X 11 and of u in the 

slashed and dotted regions of Figure 7 correspond. The phase portrait of ~Xl in the dotted 

region of the xA-plane will be "right-side up" by comparison to the phase portrait of Y 

in the dotted region of the Dumortier picture, because two successive orientation reversals 

have cancelled each other. Notice that  X n]A-axis corresponds to both Y[F~ and Y IF~. 

Similarly, in Figure 8 the flows of ~12 and of Y in the regions labeled 1, 2, 3, 4 correspond. 

The g-axis corresponds to F2 U F4, and the y-axis to F 1 U F a. The origin of the gy-plane 

corresponds to the four comers of F. Notice that  ~lX alone would not allow us to study the 

behavior of Y at the comers of F. 

Consider a singularity (0, 20) of X 11 that  we wish to analyze further. I t  corresponds 

to singularities of Y at  P1 E F 2 and at  P2 E Ft. In Dumortier's scheme blowing up the singu- 
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larity of X n a t  (0, ~0) corresponds to replacing each of P1 and P~ by a new arc of 1". See 

Figure 9. 

On the other hand, blowing up a singularity of X12 at  the origin of the py-plane corre- 

sponds to replacing the four comers of r by arcs. See Figure 10. 

In  general, each t ime we blow up a singularity algebraically (whether we use 71 or 

71 and 72) we replace two or four points of 1 ~ by  a rcs - - two points if the singularity we 

blow up does not  correspond to a comer of r ,  four points if it does. At each stage, in Dumor- 

tier 's scheme, we have a piecewise analytic curve r in R 2 homeomorphie to S 1, a vector 

field Y defined on an open subset of R 2 tha t  includes r U ext F, and a continuous map  

r U ext I ' -~R  ~ tha t  takes 1 ~ to (0, 0), takes ext r diffeomorphically onto R2-{(0 ,  0}, and 

takes solution curves of Y to those of X. 

> 

Figure 9 
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Figure 10 

Suppose after some number of algebraic blow-ups we have a vector field ~ in the 

x;t-plane with a singularity at  (0, ~t0). Let u denote the Dumortier vector field arising at 

the same stage, and let F denote the homeomorph of S 1 that  corresponds to the origin of 

the original xy-plane. Suppose (0, ;t0) corresponds to exactly two points P1, P2 of F. Then 

there is a one-to-one correspondence between semipaths of X in R ~ - (;t-axis} that  converge 

to (0, ;t0) and semipaths of u in ext F that  converge to P1 or P~. The ;t-axis corresponds to 

two ares of F. On the other hand suppose (0, 0)E x;t-plane corresponds to four corners 

P1, P~, Ps, P4 of F. (We have arranged that  only the origin of the x;t-plane or/,y-plane can 

correspond to corners of r . )  Then there is a one-to-one correspondence between semipaths 

of X in R z - (x-axis U ;t-axis} that  converge to (0, 0) and semipaths of Y in ext F that  con- 

verge to P1, P2, Ps, P4. The x-axis and ;t-axis both correspond to arcs of P. Similar remarks 

apply to (0, 0) E/,y-plane. 

We now describe the tree ~ of a singularity, which is a certain directed graph. The 

vertices of ~7 represent certain germs of vector fields at (0, 0), which will always be written 

in the form (1.1). The initial vertex of ~, from which the tree will grow, represents the 

singularity we wish to analyze. Edges of ~ originate at  this initial vertex and terminate 

at vertices representing the singularities (or tangeneies if x Y d - y X a  =-0) that  appear when 

we blow up the original singularity. If  one of the new singularities requires further blowing 

up, edges originate at the vertex that  represents it and terminate at  vertices that  represent 

the resulting singularities (or tangencies). More precisely: 

A vertex V of a directed graph G is called terminal (in G) if no directed edge of G 

originates at V. Nonterminal vertices of ff all represent singularities. Given a nonterminal 

vertex V of if, we now describe the edges of ~ that  originate at  V and the vertices at  which 

they terminate. Let V represent a singular point (0, 0) of type (1.1). 
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.Figure 11. A saddle-node. 

1. If x Y a - y X a ~ O  compute X 1 and, if necessary, X 2. There is one edge originating 

at  V for each singularity of X 1 on the ~t-axis. Each such edge terminates at a vertex re- 

presenting the corresponding singularity of ~x. In order tha t  this singularity be of the 

form (1.1), we translate toflhe origin and relabel 2 =y. If •2 is needed, there is one addi- 

tional edge originating at  V. I t  terminates at  a vertex that  represents the singularity of 

~2 at  (0, 0), with the relabeling ju = x. 

2. If xYa--yXd--O, compute ~1 and, if necessary, :~ .  There is one edge originating 

at V for each point on the 2-axis where X 1 is not  transverse to the ~t-axis. Each of these 

edges terminates at a vertex representing the corresponding germ of ~1, translated to the 

origin and relabeled as above. If  X 2 is needed, there is an additional edge originating at  V; 

it terminates at  a vertex that  represents the germ at  (0, 0) of X~, with the relabeling ~u =x.  

Note that  these new vertices may not represent singularities. 

A vertex V is terminal in:ff iff V represents one of the following types of germs: 

1. A nonsingular germ. These can only occur when the vertex immediately preceding 

V represents a special singularity. 

2. A germ of form (1.1) such that  x Y a - y X  a has no nonconstant linear factors, or 

such that  xYa-yXa--O and Qa-1 has no nonconstant linear factors. Such a germ is a node 

or a focus. 

3. A germ of form (1.1) with d - 1  and at  least one nonzero eigenvalue of its linear 

part. Such a germ is a node, focus, saddle, or saddle-node ([1], [2] or [4]; see Figure 11). 

The following result about blowing up is fundamental: 

THEOREM 2.2. Let (0, 0) be a ~ingularity o/(1.1) with tree 7. Then fI i8 a/inite tree. 

Theorem 2.2 says tha t  the blowing up process eventually reduces any singularity to 

easily understood singularities. Bendixson [2] proved Theorem 2.2 for analytic singularities 
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Figure 12. E xample  1 wi th  d = 2. At left: y(1. At  right: X. 

(1.1) with ~ and 9 relatively prime in the ring of real analytic functions. His proof also 

works for C ~ singularities such that  the Taylor series of ~ and ~ about the singularity 

are relatively prime in .the ring of real power series. Dumortier [3] extended Theorem 2.2 

to C ~ singularities tha t  satisfy a Lojasiewicz condition. I t  is Dumortier 's version of Theorem 

2.2 that  allows us to consider any isolated analytic singularity. Other versions of Theorem 

2.2 occur in [5] and [8]. 

We shall now give several examples of vector fields tha t  illustrate phenomena regard- 

ing hyperbolic and elliptic sectors and separatrices. 

Example 1. A singularity of degree d with 2d + 2 hyperbolic sectors and 2d + 2 separa- 

trices. This example is a singular point with xY~-yX~$O, such that  X 1 has d +  1 singu- 

larities on the )L-axis, each a saddle. See Figure 12. 

Let  
d 

1-I (Y-  (d + 1" + 1) x) if d is even 
1 - 1  F(x, y) = 

- 1-I (Y - (d + ] + 1) x) if d is odd. 
t -1  

Note that  F(1, 0) > 0, (@F/Oy)(1, 0) < 0 and F(1, 0) + (OF/@y)(1, 0) > 0. Let  Xd = F(x, y) + 
x@F/Oy) (x, y) and Y~ =y(aF/@y) and consider the vector field 

= X~ 

9=r~. 

In this case, xY~-yXd= -yF(x, y). Since x does not divide -yF(x, y), we need only 

blow up using ~1. ~[* is then given by 
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2 

? 
X 

Figure 13. E x a m p l e  2 w i t h  d = 3. A t  left:  : ~ i  A t  r igh t :  X. 

& = x(F(1,  ~) + (&F/~y)(1, 2)) 

= - 2 F ( 1 ,  ~). 

The points (0, d + j  + 1), j =  1 ..... d, and (0, 0) are the only singularities of X x on the 

2-axis. Each is of degree 1. Calculating DXI(0, ~t) we get: 

DXx(O, ).) = (F(1 ,it) + (aF/OY)o (1,2) 0 
- ~'(1, a ) - , ~ ( a F / @ )  (1, ~))" 

If i t = d + j +  1, j = l ,  ..., d, we get det DXI(0, it) = -2[(OF/~y)(1, 2)]2<0. If )~=0 we get 

det D~I(0, 0 )=  - F ( 1 ,  0)(F(1, 0)+ (OF/~y)(1, 0))< 0. Thus all singularities are saddles. 

Example 2. A singularity of degree d with 2 d -  2 elliptic sectors. We will construct a 

special singularity with d - 1  nodes in the blown up picture. See Figure 13. 

Let 
d - I  

Q,-,= I-i (v-/x),  
J-1 

Xa = xQd-x, Y~ = yQa-1, 

X a + l  = - xyQa-1, Ya+l = x2Qa-1, 

Xa+~ = O, Ya+~ = - x *~Qa-1. ~ y "  

Xa+t = Ya+t= 0 for i>/3. 
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Figure 14. E x a m p l e  3 w i t h  d = 3. A t  left:  Xl. A t  r igh t :  X. 

Notice xYd-yX,~-O.  Since x does not divide Qd-1, we only have to blow up via ~i. For X 1 

we get 

= Q~_l(1,2) + xX~+l(1,~t) 

Jt = -- A2Qa_I(1,2) -t- 2Qa_l(1, 2) - x ~Qd-~ (1, ~). 

~1 is transverse to the 2-axis except a t  (0, i), i = 1  ..... d - 1 .  At each of these points X 1 

has a singularity. We calculate for i = 1 . . . .  , d -  1: 

D'X ~(0, i) = ( 0 (~Q~_~/~y) " 
- (~Qd-~/~Y)(1,i) ... (1, ~)/ 

) 

The determinant  is [(aQd-1/~Y)(1, i)]2 >0,  so each singularity of X 1 on the 2-axis is a node. 

Example 3. A singularity of degree d with 4 d - 4  separatrices. This example is a special 

singularity tha t  when blown up yields d -  1 saddles on the A-axis. See Figure 14. Consider 

Example  2 and change Ya+~ to x4(~Qd_l/~y). The calculation is similar to tha t  for Example  2. 

Example 4. Another singularity of degree d with 4 d - 4  separatrices. This example 

appears at  first glance to have 4 d - 2  separatrices, but  in fact there are only 4 d - 4 .  We 

will return to this example when we prove Theorem 3.13. 

The first blow-up yields two singularities: a saddle  of degree 1 and a special singu- 

larity of degree d. The special singularity then blows up to yield d - 1  degree 1 saddles. 

See Figure 15. Notice tha t  the separatrices of the first saddle do not correspond to separa- 
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(a) (b) (c) 

,X 

1 x 
(d) (e) 

Figure 15. Example 4 with d = 3. 15 (a) shows the tree of the singularity: V represents a degree 1 saddle, 
W represents a special singularity of degree 3, and W x and W 8 represent degree 1 saddles. 15 (b) shows 
the singularity represented by V. 15(e) shows the blow-up of the singularity represented by W. 15 (d) 

shows the Dumortier picture. 15 (e) shows the original singularity. 

t r ices  of t h e  or ig ina l  s ingu la r i ty .  I n s t e a d ,  t h e y  co r re spond  to  cu rves  t h a t  lie i n  t he  m i d d l e  

of pa rabo l i c  sectors  of t h e  or ig inal  s ingu la r i ty .  

Le t  
d 

~=xy~-x + ~ aix~l-194-t 
i - 2  

d d 

~ 2 ~ +  2 y. a,~"-'~+~-'+ Y b,~"+'r '-1 
t - 2  t - 2  
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where the at's and bt's are chosen so tha t  

d d - 1  

;t~-x+ 5 a~;t ~-f- l-I (4-  j) 
i - 2  J - 1  

d--1 

!--2 t~t~ t - 1  

Notice tha t  XYd--yXd=xy  d, SO we will have to blow up using both ~1 and ~2. 

Blowing up via W2, we get for Xs: 

= _ ~  +p2(...) 

~) = 2y +y2(...). 

Therefore (0, 0) is a saddle of X 2. 

Blowing up via ~h, we get for XI: 

d 

x =x;t'~-l+ ~ a, z i2H =~,~(x, ;t) 
i - 2  

d d 

; t=ad+ Y a,x'-la~+*-'+ Y b,z'+=;t~-'=&(x,;t)+A~+gz,;t). 
t - 2  t - 2  

(2.3) 

The origin is the only singularity of X 1 on the ;t-axis (which, of course, we knew to expect). 

Since x /~a- ; tXd~0,  the origin is a special singularity of X 1. We can write ~ ( x , ~ t ) =  

xQa_x(x, ;t) and A,,(x, ;t)~;tQ,,_l(x, ;t) where d-X Q~_l(X, ;t)---YIj.1 (;t-ix). 
Now we change ;t to y in (2.3) and blow up again via ~h. We get a vector field •xx 

given by: 

= Q~_I(1, ;t) 

~t = x~+2(1, ;t) =. x( OQa_x/~;t) (1, ;t). 

XlX has zeros on the ;t-axis a t  (0, ]), i = 1 . . . .  , d -  1. Calculating DX xl a t  points on the ;t- 

axis, we get 
0 DXll(0, ;t) = ((~Q~_l/a;t) (1,;t) (aQ~_l/a;t) 0 (1,;t)). 

The determinant is negative a t  the points (O, j), j = l  .. . . .  d - l ,  so these points are all 

saddles. 

w 3. Counting separatrlees 

The idea in counting the number  of separatriees a t  a singular point is to go down the 

associated tree, obtaining a t  each stage a more accurate estimate. 
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We begin with some terminology. There is an obvious partial ordering on the vertex 

set of a directed tree. I f  V and W are vertices of a directed tree, the expressions "V precedes 

W" and "W follows V" refer to this ordering. We say V immediately precedes W or W im- 

mediately follows V if there is a directed edge with origin V and terminus W. The predeces- 

sor of W is the vertex tha t  immediately precedes W (there is at  most one in the tree of 

a singularity); the successors of V are the vertices tha t  immediately follow V. 

Let  9" be the tree of a singularity and V a vertex of ~. We say V is special (resp. 

nonspecial) if V represents a special singularity (resp. any other germ). We say V is a 

corner if V represents a singularity tha t  corresponds to a corner of F in the associated 

Dumortier  picture. The degree o] V, d(g), is defined iff V represents a singularity; d(V) 

is the degree of the singularity tha t  V represents. 

We define a function S from the vertex set of ~/into the nonnegative integers as follows, 

I f  V represents a nonsingular germ, set S(V)= 1. Now suppose V represents a singularity 

of degree m ~> 1. I f  V is the initial vertex of ~/, or if V immediately follows a special vertex, 

set S(Y )=m+l .  If V immediately follows a nonspecial vertex, set S ( V ) = m - 1  if V is a 

corner, and set S(V) = m otherwise. Note tha t  if V is a nonterminal ver tex of ff with d(V) = 

m, then the number  of corners tha t  immediately follow V is 0, 1, or 2 according as S(V) = 

m + 1, m, or m - 1. Given a subtree if '  of 9", we define S(9") ~ ~ S(V), this sum taken over 

all vertices V of 9" tha t  are terminal in if '  (i.e., no edge of 9" originates a t  V). 

The number  2S(V) can be thought  of as an estimate of the maximum number  of 

separatrices tha t  the vertex V can "contr ibute" to the singularity we are studying. We 

will see that  there are problems with this estimate, but  first we show tha t  it is quite good 

for terminal vertices of 9". 

PROPOSITION 3.1. Let (0, 0) be a singularity of (1.1) with tree ~1. Then the number o/ 

separatriees at (0, 0) is <~ 2S(~). 

Proo/. Let  u be the Dumortier  vector field arising a t  the last stage of the construction 

of 9" and let F denote the homeomorph of S 1 in R e tha t  corresponds to the origin of our 

original vector field. I t  is easy to see tha t  if c is a separatrix of X at  (0, 0), then c corres- 

ponds to a semipath of u in ext F tha t  limits either a t  a singularity of u on F, or at  an 

isolated tangency of u with F. For each terminal vertex V of ~/, let a(V) denote the num- 

ber of semipaths of u in ext F tha t  correspond to separatrices of X at  (0, 0) and tha t  limit 

at  one of the two or four points of F corresponding to V. We will show tha t  a(V) ~<2S(V), 

from which the result follows. 

I f  V represents a nonsingular germ, this germ is topologically equivalent to the germ 

of the vector field pictured in Figure 3 a t  (0, 21) or (0, 28). I t  follows tha t  a(V) ~< 2 = 2S(V). 
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If  V represents a singularity of degree m 1>2 which has the property tha t  x Y m - y X , ,  

(or Qm-1) has no nonconstant linear factor, then ~(V)=0. 

Now suppose V represents a singularity of degree 1 whose linear part  has at least 

one nonzero eigenvalue. If  V represents a node, focus or center, than ~(V)=0.  If V 

represents a saddle or saddle-node, we must consider three cases. We note first tha t  if V 

represents a saddle, then each pair of opposite separatrices of the saddle share a common 

tangent line at  the origin; if V represents a saddle-node, the two separatrices tha t  each 

bound one hyperbolic and one parabolic sector share a common tangent line at  the origin. 

1. S(V)=0.  Then V is a corner. The germ Z at  (0, 0) represented by V has the posi- 

tive and negative x- and y-axes as four of its solution curves. From the above description 

of saddles and saddle-nodes, it follows that  each separatrix of Z at (0, 0) must be a half- 

axis. Thus all separatrices of Z at  (0, 0) correspond to arcs of r in the associated Dumortier 

picture. I t  follows that  if(V) = 0. 

2. S(V)= 1. V represents a germ Z at  (0, 0) tha t  has two arcs of F as solution curves 

in the associated Dumortier picture. For definiteness, let us say that  the positive and 

negative y-axis correspond to these arcs. If Z has four separatrices at  (0, 0), two must be 

the positive and negative y-axis; if Z has three separatrices at (0, 0), at  least one must 

be the positive or negative y-axis. Thus, a(V) ~ 2. 

3. S (V)=2 .  No separatrix of Z at  (0, 0) corresponds to an arc of F, so a(V)~<4. �9 

In view of Proposition 3.1, we ask what is the maximum S(~) can be for a singularity 

of given degree. The next  proposition and its corollary are first steps toward answering 

this question. 

LEMMA 3.2. Let V be a nonterminal vertex of the tree ~ of some singularity. Let d (V)= 

~n >~ l. 

(1) Suppose V is nonspecial. Let V 1 ... . .  V, be the successors of V. Then each V i represents 

a singularity o/degree d~ >~ 1, and ~ - 1  d~ < m  + 1. 

(2) Suppose V is special. Let V 1 ... . .  Vk be the 8ur.r~sors of V tImt represent singularities; 

Id Vk+l ..... V, be the successors ol V that represent nonsingular germs. Let d(V~) = dt, i = 1 ..... k. 

Then ~ - 1  dt + (r - k) 4 m - 1. 

Proof. 1. Let  X be the germ represented by V. If  V~ represents a singularity (0, •) 

of X 1, then d~ is less than or equal to the multiplicity of 2 0 as a root of Ym(1, X) -~tXm(1, 2) = 

0; hence d~ is less than or equal to the multiplicity of y -X0x as a factor of x Y , , - y X m .  If 

V~ represents a singularity (0, 0) of X ~, then d~ is less than or equal to the multiplicity of 0 

as a root of Xm(~u, 1)-/~Ym(~u, 1)=0,  hence less than or equal to the multiplicity of x as a 

5 - 802904 Acta mathematica 145. I m p r i m 6  le 5 D b z v m b r e  1980 
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factor of xYm-yXm.  Since XYm-yXm is homogeneous of degree m + 1, the first s ta tement  

follows. 

2. The second s ta tement  is proved by an analogous argument  using Qm_l(x, y) in 

place of xYm(x, y)-yXm(x,  y). �9 

PROI'OSITION 3.3. Let V be a nonterminal, nonspecial vertex o/the tree 7r o/ some singu- 

larity. Let V 1 .... , Vr be the successors o/ V in 7. Then ~-1S(V~)<~S(V). 

COROLLARY 3.4. Let (0, 0) be a singularity o/(1.1) o/degree d with tree 7. I /a l l  special 

vertices o/ 7 are terminal, then S( ff) <~d + 1 and there are at most 2d+2  separatrices o/(1.1) 

at (0, 0). 

Proof of Corollary 3.4. Since S (initial vertex of 7 ) = d + l ,  S ( 7 ) < d + l  by  repeated 

application of Proposition 3.3. The rest follows from Proposition 3.1. �9 

Proo/o] Proposition 3.3. There are three cases: 

1. V is the initial vertex of 7. Then S(V~)=d~ for all i since V is not special, so by  

Lemma 3.2, ~ ' - 1 S ( V t ) < ~ d + l  =S(V).  

2. S(V)---d(V)=m. One of the V,, say Vx, must  be a comer. Then S(V1)=dl -1 ,  

S(Vt)=d~ for i~>2, so ~ [ - 1 S ( V I ) < m = S ( V ) .  

3. V is a comer of degree m. Then S ( V ) = m - 1 .  Two of the Vi are corners, so 

~ - x  S(V~)<~m-1 =S(V).  �9 

I f  we drop the assumption of Corollary 3.4, then S(ff) can be greater than  d + l  and 

the number  of separatrices can be greater than  2d + 2. Example  3 of Section 2 shows how 

S can increase when we blow up a special singularity. To get an upper  bound for S(7),  

we will use the function P defined on the vertex set of 7 as follows: 

Let  7 be the tree of a singularity and let V be a vertex of 7. I f  V represents a non- 

singular germ, let P ( V ) = 0 .  I f  V represents a singularity of degree m, let P ( V ) = m - 1 .  

I f  7 '  is a subtree of 7, let P ( 7 ' ) = ~  P(V), this sum taken over all vertices of 7 ' t h a t  are 

terminal in 7 ' .  

I t  turns out tha t  when we blow up a special singularity, any  increase in ~ is offset by  

a decrease in P.  This is the idea behind the next  result. 

Let  7 be the tree of a singularity. A connected subtree 7 '  of 7 is called ]uU if for 

every vertex V of 7 '  tha t  is not the initial ver tex of 7, the predecessor W of V in 7 is a 

vertex of 7 ' ,  and all successors of W in 7 are vertices of 7 ' .  I t  follows tha t  a full subtree 

of 7 must  contain the initial vertex of 7. 
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PROPOSITION 3.5. Let (0, O) be a singularity o/(1.1) o/degree d with tree ~ and let ~ '  

be a lull subtree o] ~1. Then S( ff) < S( 0") + P( ~7'). 

Letting ~I' be the initial vertex of ~7, we get S(~r)<2d. Then by Proposition 3.1 the 

number  of separatrices a t  any  singularity of degree d is <4d.  This is already an improve- 

ment  over the bound 4d + 4 mentioned in the Introduction.  

Proo/. We would like to say tha t  if V is any  nonterminal vertex of ~1 and V 1 ..... Vr 

are its successors, then ~ - 1  S(V~)+P(V~)<S(V)+P(V) .  We could then easily conclude 

tha t  S (0" )<S(~ )+P( f f )<S(~ I ' )+p (~ r ' ) .  In  fact, we will see tha t  while at  most  stages in 

the construction of if, S + P  does not increase, S + P  can increase a t  certain stages. Fortun- 

ately, it turns out tha t  in the latter case S + P  goes back down before we finish. 

Suppose first tha t  V is a nonterminal special vertex of ff with d(V) = m. Let  V 1 .. . . .  V~ 

be the successors of V tha t  represent singularities; let Vk+l . . . . .  Vr be the successors of V 

tha t  represent nonsingulav germs. We have for i = 1 .... , k, S(V~) +P(V~) = (dt + 1) +(d~ - 1) = 

2d~; for i = k +  l ..... r, S(V~)=I  and P(V~) =0. Therefore, using Lemma 3.2, J:~'-i (S(V~) + 

P(V,)) =2  ~ - 1  d, + ( r -  k) ~<2(m - 1) -<<S(V) +P(V).  

Now suppose V represents a nonspeeial singularity of degree m and V 1 ... . .  Vt are 

the successors of V. Each V, represents a singularity of degree d, >~ 1. We consider three 

c a s e s .  

1. S ( V ) ~ - m - 1 .  Here V is a corner, so two of the V~ are corners; therefore, r ~ 2 .  B y  

Proposition 3.3, ~ _ t S ( V ~ ) ~ m - 1 ;  moreover, since r ~ 2 ,  using Lemma 3.2 we have 

~.[-x (d, - 1) ~< (m + 1) - 2 = m -  1. Thus ~[-1 (S(V,) +P(V,))  ~< 2 ( m -  1) -- S(V) +P(V) .  

2. S(V) -- m. Then V represents the germ of a singularity a t  (0, 0) E xy-plane for which 

the y-axis, say, is invariant. This singularity is written in the form 

= X, , (x ,  y) + Xm+~(x, y) + . . .  

f~ = Y,.(:c, y) + r , . + d x ,  y) + .... 

Notice x is a factor of x Y m - y X m .  I f  V has more than one successor, then ~.[-1 (S(V~)+ 

P(V~)) < 2 m -  1 = S(V) +P(V) .  Therefore, assume V has exactly one successor V 1, which 

must  be a corner. I f  V 1 has degree < m, then S(Vt) + P(V1) ~< 2m - 2 < S(V) +P(V) .  Thus, 

we can assume V, is a corner of degree m +  1. Then S ( V , ) + P ( V 1 ) = 2 m = S ( V ) + P ( V ) + 1 .  

The singularity represented by  V 1 is obtained by  blowing up the singularity represented 

by V via ~ .  We get 

/2 = X=(/~, 1) +yX=+l(l~, 1) + . . . - /~[Y,(/z,  1) +yrm+x(i ~, 1) + ...] 

9 = yYm(~u, 1) +y'Ym+l(lU, 1) + .... (3.1) 
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In  order tha t  (0, 0) be a singularity of (3.1) of degree m +  1, we must  have Ym(x, y)=ax m, 

a=~0, and Xm(x, y)=-0. We can rewrite (3.1) as 

/2 = - ~ + l ( / z ,  y) +Mm+~(/z, y) + ... where 2]1m+1(~u, y) -- -a~u ~+1 +y(...) 
(3.2) 

?) = Ym+l(,u, y) + Y,,,+9.(/~, y) + ... where Y~+l(ju, y) = a, umy +y~(...). 

Therefore, 
- -  - -  2 a "  m + l . . ~ . , 2 /  yM,,+l(/~ , y) - # . Y m + l ( ~ . ~ ,  y) - ~ y y ~...j ~ 0 .  (3.3) 

Hence V1 is a nonspecial corner of degree m + l .  V 1 is not terminal since y divides (3.3). 

I t  follows tha t  among the successors of V 1 are two corners. 

I f  V 1 has more than  two successors, then summing S + P  over these successors, we 

would get a number  ~<2m-1 = S ( V ) + P ( V ) .  We can therefore assume tha t  V 1 has exactly 

two successors, each a corner. I t  follows tha t  the only linear factors of y_~+l- /ZYm+l  

are/~ and y. Let  V~ (resp. V~) be the successor of V 1 corresponding to the factor ~u (resp. y). 

By  (3.3) y has multiplicity 1 as a factor of yM~+ 1 - P Y ~ + r  I t  follows easily tha t  V2 is a 

terminal comer of degree 1, so S(V~)=P(V~)-O. I f  the multiplicity of /z  as a factor of 

Y.M,n+I -PYm+x were ~< m, we would have ~ - 1  (S(V;) +P(V~)) = S(V~) +P(V~) ~ (m - 1) + 

(m - 1) < S(V) + P(V).  Therefore, we need only consider the case y2]lm+l -~u Ym+l = - 2a/~m+ ly. 

To get the singularity represented by  V~ we replace p by  x in (3.2) and blow up via ~/2. 

Then V~ represents the singularity at  (0, 0)Epy-plane. I f  the degree of this singularity 

were <m,  we would again have S(V~)+P(V~)<S(V)+P(V).  Therefore, we can assume V~ 

represents a singularity of degree m + 1. Notice ~ ~,.~ (S(V,) +P(V;)) =2m =S(V)  +P(V) + 1, 

so S + P  has not increased further. We compute: 

/2 =-M~+I(P, Y)+/~+2(p ,  Y)+ ... where 

- - s  - - t  
?) = Y,,+l(lz, y) + Ym+2(la, y) + ... where 

-~;,§ y) = _ 2a~  ~§ + y ( . . . )  

~'~§ y) = a~"y + y~(...). 
(3.4) 

Notice the similarity to (3.2). The similarity of (3.4) to (3.2) is the key to the argument.  

Continuing, we blow up the singularity represented by  V~, which is not terminal. 

Unless the result is exactly one comer V~ of degree m + 1 and one terminal comer  V~ of 

degree 1, S + P  must  return to ~<2m-1.  In  the remaining case, S + P  stays at  2m and for 

the singularity represented by  V~ we compute 

~ n  .,~ /2 = 1]I~+1(/~, y) + m+~(~u, y) + where 

Y~+l(;u, y) + m+~(p, Y) + where 

M:+I(/~,  y) = - 3 a / ~  m+l + y ( . . . )  

Ym+l(~, Y) = a~rnY +y2( . . . ) .  

Therefore, V~ is a nonterminal nonspeeial corner of degree m + 1. 
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V V 

/ 

' v;= V~ 

e~c. etc. 

Figure 16. V is  a v e r t e x  of  d e g r e e  m w i t h  S(V) =m. 
V 1, V~, Vx . . . .  a r e  c o r n e r s  of  d e g r e e  m + 1. Ft2, V2 . . . .  

a r e  t e r m i n a l  c o r n e r s  o f  d e g r e e  1. 

Figure 17. V is  a v e r t e x  o f  d e g r e e  m w i t h  S ( V )  = 
Y 

m +  1. V1, V~I, V1,  ... a r e  v e r t i c e s  o f  d e g r e e  m +  1 

w i t h  S = m + 1. V2, V~' . . . .  a r e  t e r m i n a l  c o r n e r s  o f  

d e g r e e  1. 

We now see tha t  if S.-I-P never returns to ~<2m- 1, we must  get an infinite subtree 

of ~ / tha t  looks like Figure 16. This is impossible by Theorem 2.2. 

3. S(V)=m+ 1. S + P  goes up when we blow up the singularity represented by  V iff 

V is immediately followed by exactly one vertex V 1 of degree m + 1. Then S(V1) +P(V1) -~ 

2 m + l  ~S(V)-t-P(V)+ 1. In  particular, we must  have x Ym-yXm= (linear factor)m+1; we 

assume for simplicity tha t  xYm--yX,, = a x  ~+1, a4=0. Then V 1 represents the singularity a t  

(0, 0)E;uy-plane obtained by blowing up the singularity represented by  V via ~ .  We 

compute 

$[~ ~-~rm+l(~, Y)+2]lm+2(/~, y ) +  ... where _~m+l(/~, y) = -alz~+l+y(...) 

?) = Ym+l(/Z, y ) +  Ym+~(/~, y ) +  ... where Ym+l(i z, y) = a#'~y+y2(...). 

I t  follows tha t  V 1 represents a nonterminal nonspeeial singularity. We see by arguments 

like those for case 2 tha t  if S + P  never returns to ~ 2m, ~ must  contain the infinite subtree 

of Figure 17. This is impossible by Theorem 2.2. [] 

If  V1 ..... Vk are vertices of 7, let 7(V1 .... .  Vk) denote the smallest full subtree of 

tha t  contains V 1 ... . .  Vk. For example, if V is any vertex of ~/, the vertex set of ~/(V) is 

just the predecessor W of V and all its successors (including V); the predecessor W' of W 

and all its successors; ...; the initial vertex of ~/and all its successors. 

For later convenience, we gather three technical facts in the following lemma. Each 

can be proved by  examining the proof of Proposition 3.5. 
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LEI~MA 3.6. Let (0, O) be a singularity o/ (1.1) o~ degree d with tree 7. Let V be a vertex 

o/ 7. Then 

(1) S(7(V))+P(7(V))<<.2d+ I. 

(2) I] V is special, S(7(V))+P(7(V))<-..2d. 

(3) I /  V is special, d(V)<.d. 

The following improvement on Proposition 3.5 will be proved by examining the func- 

tion S + P  more closely. 

PROPOSITION 3.7. I[ (0, O) is a singularity o/ (1.1) o[ degree d ~ 2  with tree 7, then 

S(7)  < 2 d -  1. 

I t  follows that  if d>~2, the number of separatrices at (0, 0) is at  most 4 d - 2 .  Before 

proving Proposition 3.7 we will prove some lemmas. 

Let V be a vertex whose predecessor W represents a singularity of degree l, i.e., 

= Xz(x , Y) "-{-Xl+l(X, y) + ... 

9 = Yz( x, Y) + Yl+l( x, Y) +. . .  
(3.5) 

If W is nonspecial (resp. special), the singularity represented by V corresponds to a factor 

of x Y ~ - y X z  (resp. Qz-1), and d(V) is less than or equal to the multiplicity of this factor. 

V is called irregular if one of the following is true: 

1. W is nonspecial and d(V) is less than the multiplicity of the corresponding factor 

of x Y t - y X v  

2. W is special and d(V) is less than the multiplicity of the corresponding factor of 

QI-I"  

Other vertices of 7 (including the initial vertex) are called regular. 

LEMMA 3.8. Let 7 be the tree o/a singularity. Let V be a nonterminal, nonapecial, regular 

vertex o[ 7 with S(V) <d(g). Then among the successors o/ V is a terminal corner o/ degree 1. 

Pro<)/. Assume for simplicity that  V corresponds to the factor y of x Y z - y X ~ ,  which 

has multiplicity/r Blowing up (3.5) via 71, we get 

dr = xX~(1, ~) +x~Xz+l(1, ~) + ... 

= Yz(1, 2) +xYz+l(1, 2) + ... -2[Xl(1, ~) +xXt+l(1, 2) + ...]. 
(3.6) 

F represents the singularity of (3.6) at  (0, 0), and Yz(1, 2)-~tXz(1, 2)=air ~ +higher order 

terms, ag=0. After changing ~t to y in (3.6), by the assumption that  V is regular we can 
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rewrite (3.6) as 

= Xk(x, y) + Xk+l(x, y) + ... 

---- Yk(x, Y) + Yk+l(x, Y) + .... where Y~:(x, y) = ayk + x(...) 
(3.7) 

Now blow up (3.7) via ~/2. One of the successors of V is a corner vertex tha t  represents 

the singularity a t  (0, 0) of the resulting vector field. But  for the 9 component of the result- 

ing vector field we compute 

.Y = YYk(/~, 1) + y~(... ) = ay + luy(... ) + y~(... ) 

Therefore this comer is terminal of degree 1. �9 

The reader should notice tha t  the terminal comer of Lemma 3.8 need not be regular. 

COROLLARY 3.9. Let ff be the tree o /a  singularity, and suppose some vertex V o / f f  is 

a nonterminal corner. Let $ denote the totally ordered set o[ vertices consisting o] V and the 

vertices that precede V. Write $ = { V 1 ... . .  V~}, where V 1 =initial vertex o[ 7, V~ = V, and 

V, precedes Vj i /and only i / i  <]. Then there is some i, 1 < i  <k,  such that V, is irregular and 

Vj is a nonterminal corner/or all j such that i <] <.k. 

Proo]. Let  i be the greatest integer in 1 ..... k such tha t  V~ is not a comer. Since a 

successor of V~ is a corner, we must  have V~ nonspecial and S(V~)=d(V~). I f  V~ were 

regular, by  Lemma 3.8 the unique corner tha t  follows V~ would be terminal. We conclude 

tha t  V~ is irregular. �9 

LEM~A 3.10. Let ~ be the tree o/a singularity o/degree d, and suppose ff has an irregular 

vertex W 1. Then S(ff) < 2 d -  1. 

Proo]. Let  W be the predecessor of W x. By Lemma 3.6(1), S(•(W)) +P(~7(W)) ~<2d+ 1. 

Let  W 1 .... .  Wr denote the successors of W, with r ~> 1. Since W x is irregular we can calculate 

tha t  ~ - 1  (S(W,) +P(W,)) <S(W) + P ( W ) -  1. Therefore, if S(~(W))  +P(~(W))  <2d (the 

usual case), then S(~(W1)) +P(ff(W1)) ~<2d - 1, and the result follows from Proposition 3.5. 

In  the exceptional case S(~(W)) +P(ff(W)) --2d + 1, we will use the information about  

such trees obtained in the course of proving Proposition 3.5 to show tha t  S + P  must  

decrease by  a t  least two when we blow up W, so tha t  again S(~7(W1))+P(~(Wx))~<2d- 1. 

Suppose S(~(W))+P(~Y(W))=2d+I.  Then W corresponds to Vx or V~ or V~ or ...  

in Figure 16 or Figure 17. Therefore S(W) <.d(W); W is nonspeeial; and d(W) >/2, so S(W) + 

P(W) i>2. Also, W must  be regular in order tha t  S(f f (W))+P(~Y(W))=2d+l.  By Lemma 
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3.8, among the successors of W is a terminal corner of degree 1. If  this corner is the only 

successor of W (so that  it equals W1), we have S(WI)+P(WI)=0  and it follows easily that  

S(ff(WI) ) +P(~'(W1) ) ~< 2 d -  1. The result then follows from Proposition 3.5. If  W has more 

than one successor, let W~ ..... W~ denote the successors of W other than W 1, with r>~2. 

Since r/> 2 and W1 is irregular, we can calculate that  ~[-1 (S(Wt) +P(W~)) ~< S(W) +P(W)  - 2. 

Then S(ff(W1) ) +P(ff(W1) ) <.2d-1, and the result again follows from Proposition 3.5. �9 

Proo/ o/ Proposition 3.7. If  J has no nonterminal special vertices, then by Corollary 

3.4, S(ff) ~< d + 1 ~< 2 d -  1 for d i> 2. We therefore assume ~ has a nonterminal special vertex 

V of degree m. 

If  V is a corner, then by Corollary 3.9, some vertex of IY is irregular, so Lemma 3.10 

implies that  S(ff)~<2d-1.  

If  V is not a corner, then S(V) =-m or m + 1. By Lemma 3.6(2), S(ff(V)) § ~< 2d. 

Let V 1 ..... Vr be the successors of V. We have S(V)§ 2 m - 1 ,  and as in the proof 

of Proposition 3.5, ~ - 1  (S(V~) +P(V~)) < 2 m - 2 .  Therefore, S(ff(V1) ) +P(ff(V1)) < 2 d - 1 .  

The result follows from Proposition 3.5. �9 

To make further progress, we require two more technical preliminaries. The first is a 

strengthening of Lemma 3.10. 

LE~M), 3.11. Let • be the tree o / a  singularity o] degree d. Suppose ff has k irregular 

vertices W 1 ..... Wk; k>~ 1. Then S(~(WI ..... Wk))TP(ff(W1 ..... Wk))-~.2d-k. 

Proo[. By induction on k. If  k = I, the proof of Lemma 3.10 gives the result. If  k > 1, 

let the k irregular vertices be numbered so that  none of W 1 ..... Wk_x follows Wk. Then 

either W~ is terminal in ff(W 1 ..... Wk-1) or Wk is not a vertex of if(W1 ..... Wk-1)- By 

the induction hypothesis, S(ff(W1 ..... Wk_I))+P(ff(WI ..... W k _ l ) ) 4 2 d - k + 1 .  If Wk 

is a vertex of if(W, ..... Wk-1), it is not hard to see that  in fact S(ff(W1 ..... Wk))+ 

P(ff(WI ..... We)) <2d - k - 1. Otherwise, consider if(W1 ..... We). Let W be the predecessor 

of Wk. If  S + P  has not increased in the course of constructing if(W1 ..... Wk-1, W) from 

if(W1, ..., Wk-1), we will have S(ff(W1 ..... Wk-1, W))+P(ff(W1 ..... Wk-D W))~<2d-]c§  

Since Wk is irregular, S + P  must decrease by at least one when we blow up W, so 

S(~'(W1 ..... We)) + P(~(W1 .... .  We)) <~2d- k. On the other hand, if S + P has increased in 

the course of constructing y ( W  1 ..... Wk-1, W) from ~'(W 1 ..... Wk-1) it can have increased 

by at most one. (This fact is an obvious extension of Lemma 3.6(1).) In  this case, 

S(ff(W1 ..... Wk-1, W))+P(~(W1 ..... Wk-1, W ) ) = 2 d - k + 2 ,  and we see as in the proof of 

Lemma 3.10 that  S §  must decrease by at least two when we blow up W. Again we 

conclude that  S(•(W 1 ..... Wk)) +P(~(W1 ..... We)) ~<2d-k. �9 
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LEMMA 3.12. Let 9. be the tree o / a  singularity, and suppose 9. has exactly one irregular 

vertex W. Then 9. has at most one nonterminal special corner. 

Proo/. We consider three cases. 

1. S ( W ) = d ( W ) - I .  Then W is a corner. Corollary 3.9 implies tha t  W is terminal. 

Since any  nonterminal comer of 9. must  follow W (again Corollary 3.9), we conclude tha t  

in this case 9. has no nonterminal corners. 

2. S ( W ) = d ( W ) + I .  Then no successor of W is a corner. Corollary 3.9 shows tha t  in 

this case also 9. has no nonterminal corners. 

3. S (W)=d(W) .  One successor of W, say W1, is a corner; the other successors are not 

corners. Since W is the only irregular vertex of if, by Corollary 3.9 any nonterminal corner 

of ff must  be W 1 or a vertex tha t  follows W1. I f  W1 is a nonterminal special corner then no 

successor of WI is a corner. Therefore Corollary 3.9 implies tha t  W1 is the only nonterminal 

special corner in 9.. I f  W I is not  special, let W~, W~ be the corners tha t  follow W I. Since 

W 1 is regular, one of W'I, W~, say W~, must  be terminal. Again any nonterminal corner 

of 9. must  be W~ or a vertex tha t  follows W~, and again if W~ is special then it is the only 

nonterminal special corner in 9.. Proceeding inductively, we conclude tha t  9" has at  most  

one nonterminal special corner. �9 

THEOREM 3.13. Let (0, 0) be a singularity o/ (1.1) o/degree d with tree 9.. I] d = l ,  

there are at most/our separatrices at (0, 0). I / d  =2, there are at most six separatrices at (0, 0). 

I/d~>3, there are at most 4 d - 4  separatrices at (0, 0). These bounds are sharp. 

Proo/. By the remark following the s ta tement  of Proposition 3.5, if d = 1, there are a t  

most four separatrices at  (0, 0), and any saddle has exactly four. By the remark following 

the s ta tement  of Proposition 3.7, if d =2,  there are at  most six separatrices, and Example  1 

of Section 2 shows there can be exactly six. Example 3 of Section 2 shows tha t  for any 

d ~> 3 there exist singularities of degree d with 4 d - 4  separatrices. I t  remains to show tha t  

if d >/3, there can be at  most 4 d - 4  separatrices. 

Assume d/> 3 and let 9. be the tree of (0, 0). The natural  a t tack would be to t ry  to 

show tha t  S(9.)~<2d-2 and invoke Proposition 3.!. However, Example  4 of Section 2 has 

S(9.) = 2 d - l .  We will show tha t  even when S ( 9 . ) - - 2 d - 1 ,  there are a t  most  4 d - 4  separ- 

atrices. 

If  all special vertices of 9. are terminal, by  Corollary 3.4, S(9.)~<d+ 1 ~<2d-2 (since 

d~>3), so we can ignore this case. We therefore assume 9. has a t  least one nonterminal 

special vertex. 

First suppose 9" has a nonterminal special vertex V with d ( V ) = m  and S ( V ) = m + l .  
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By L e m m a  3.6(2), S(9.(V)) +P(9.(V))~<2d. Also, S( V) + P( V) = 2m. Let  V 1 .. . . .  Vr be the 

successors of V. Then ~[-1 (S(V~) +P(Vt) )  ~< 2m - 2. Therefore S(9.(V1) ) +P(9.(V1)) ~< 2d - 2, 

so S ( 9 . ) ~ < 2 d - 2  by Proposi t ion 3.5, so our singulari ty has at  mos t  4 d - 4  separatrices. 

We therefore assume all nonterminal  special vertices V of 9. have S(V)~<d(V). 

I f  9. has more than  one irregular vertex, then  it follows from L e m m a  3.11 and  Proposi- 

t ion 3.5 tha t  S (9 . )~<2d-2 ,  so our singulari ty has a t  mos t  4 d - 4  separatrices. We will 

separately consider the  two cases, 9. has no irregular ver tex and 9. has one irregular vertex.  

1. 9. has no irregular vertex.  By  Corollary 3.9, the  nonterminal  special vertices of 9" 

cannot  be corners. Le t  9.' be the  subtree of 9. obtained by  deleting f rom 9. every  ver tex 

t h a t  follows a nonterminal  special ver tex of 9.. Then the  terminal  vertices of 9.' are: (1) 

possibly certain vertices W t h a t  are also terminal  in 9.; and (2) a n o n e m p t y  set of special 

vertices U 1 . . . .  , Uk, each of which is nonterminal  in 9.. Let  d(U~)=mf, i = l ,  ..., ]c. Then 

S(U~) =m~ for  each i. Le t  a = ~  S(W), this sum taken over all terminal  vertices W of 9. 

t ha t  are in 9.'. Using Proposi t ion 3.3, we have 

k 

S(9.') = a § ~ m~ ~< d § 1. (3.8) 
t - 1  

Let  9." be the connected subtree of 9. whose vertex set is the vertices of 9. '  plus the succes- 

sors of U 1 . . . . .  U k. Let  U~j, ~ = 1 . . . . .  ri denote the successors of U~. Then  

SO 

From (3.8) and  (3.9) we get  

rl 

(S(Ujj) + P(U~j)) <~ 2ml - 2, 
t - 1  

k 

s(9.") + P(9. ' )  < a + ~ (2m~ - 2). (3.9) 
|--1 

S(9.") -~P(9.") < a + 2(d § 1 - a) - 2k = 2d - a - 2(k - 1 ). 

I f  k>~2, then S(9.")§ so there are a t  mos t  4 d - 4  separatrices. Therefore 

we assume b = 1. I f  a >/2, again S(9.") +P(9.") ~<2d - 2 ,  so we assume a --0 or a = 1. Wri t ing  

ml=m,  (3.9) becomes 
S(9.") + P( 9.") <~ a § 2m - 2. 

Now m<.d by  L e m m a  3.6(3). Hence if a = 0  or m<d,  we have S ( f f ) < 2 d - 2 .  Thus  

we can assume a -- 1 and  m - -  d. 

We now let V denote  the unique nonterminal  special ver tex of if" (so V = U1), and we 

let V1 ... . .  Vr denote the successors of V. 
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Figure 18, Two possible Dumor t i e r  pic tures  for Y. 
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In  order that  S ( f f ) = 2 d - l ,  we must have d - 1  vertices immediately following V, 

each of degree 1. To see this, notice that  Lemma 3.2 implies ~ - 1  S ( V ~ ) < d - 1  + r. Then 

S(if") < d + r, so S(7)  ~< d + r from Proposition 3.3. If  r < d - 2, we would have S(7)  ~< 2d - 2. 

Therefore, r = d - 1. 

I t  follows that  each F~ represents either a nonsingular germ or a singularity of degree 

1. If  some F~ represents a nonsingular germ, we again have S ( f f ) < 2 d - 2 ,  so each V~ 

represents a singularity of degree 1. Thus the terminal vertices of if" are: (1) one vertex 

W 1 that  is also terminal in ff and has S(W1)=1; (2) possibly other vertices W that  are 

also terminal in ff and have S(W) =0; (3) V 1 ..... Fd-1, each of which represents a singu- 

larity of degree 1 and hence has S(V~) =2. The V~ need not be terminal in 7. 

Let u denote the Dumortier vector field associated with if" and let F denote the 

homeomorph of S 1 in R 2 that  corresponds to the origin of our original vector field. As in 

the proof of Proposition 3.1, for each terminal vertex U of 7"  we let a(U) denote the 

number of semipaths of u in ext F that  correspond to separatrices of our original vector 

field at  (0, 0) and that  limit at  one of the points of F corresponding to U. We saw in the 

proof of Proposition 3.1 that  a(W1) <2 and a(W) = 0 for those terminal vertices of 7"  with 

S(W) =0. Moreover, since each V~ represents a singularity of degree 1, we have seen that  

Proposition 3.5 implies that  each F~ represents a singularity with at most four separatrices. 

I t  follows easily that  a(V~) <4  for each i. 

If  no Vi is a corner, one sees easily that  in fact a(W1) =0. The reason is that  all solu- 

tion curves of u that  start near the points of F corresponding to W 1 must cross F or limit 

at points of F. See Figure 18. In this case our original vector field has at  most 4d - 4  separa- 

trices at (0, 0). 
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C2 
(a) 

Figure 19 

(b) 

Now suppose some V~, say V1, is a corner. Consider Figure 19. In  Figure 19 (a),/)1 and 

P2 are the points of F corresponding to W1; QI . . . . .  Q4 are the corners of F corresponding 

to V 1. For i = 1, 2, in ext 1 ~ there is a t  most  one semipath c~ converging to Pt tha t  might 

correspond to a separatrix of our original singularity. 

First  suppose V 1 represents a singularity with four separatrices. Then this singularity 

is a saddle ([1], pp. 340, 357, 362). The curves FI . . . . .  F4 in Figure 19 (a) are invariant  

because V is the unique nonterminal special vertex of ~". These curves must  correspond 

to separatrices of the saddle repretented by V1 (the positive and negative y-axes in Figure 

19 (b)). Therefore a(V1)42, so our original singularity has at  most 4 d - 4  separatrices. 

Next  suppose V 1 represents a singularity with at  most  three separatrices. I f  a(W1) :~ 0 

we see from Figure 19(a) tha t  some F~ must  bound a hyperbolic sector a t  the corres- 

ponding Q~. This F~ corresponds to a separatrix of the singularity represented by V1, 
so a(V1) ~ 2. Thus whether or not  a(W1) = 0 we get a(V1) + a(W1) ~< 4. Again our origi- 

nal singularity has at  most  4 d -  4 separatrices. 

2. ff has one irregular ve r t e x  X. I f  ff has no nonterminal special corner, the proof 
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proceeds as in the first case. Thus we assume 7 has a nonterminal  special corner V. I t  is 

unique by  Lemma 3.12. As in the first case, let 7 '  he the subtree of 7 obtained by  deleting 

from 7 every ver tex tha t  follows a nonterminal  special ver tex of 7.  I f  V is not  a vertex 

of 7 ' ,  the proof again proceeds as in the first case. I f  V is a vertex of 7 ' ,  then the terminal  

vertices of 7 '  are: (1) possibly certain vertices W t h a t  are also terminal  in 7;  (2) V; and  (3) 

possibly a set of special vertices U 1 . . . . .  Uk, each of which is nonterminal  in 7 and none of 

which is a corner. Since V follows X (by Corollary 3.9), X is a vertex of 7 ' .  I t  is easy to 

see tha t  S(7(X))<~d. Then repeated application of Proposit ion 3.3 shows tha t  S(7 ' )~<d.  

Let  a - = ~  S(W), this sum taken over all terminal  vertices W of 7 t h a t  are in 7 ' .  Le t  

m = d(V) and  let mt = d(U~), i = 1 . . . . .  k. Using Proposi t ion 3.3, 

k 

S ( 7 ' )  = a + ( m - 1 ) +  ~ m, ~<d. (3.10) 

Le t  7 "  be the connected subtree of 7 whose vertex set is the vertices of 7 '  plus the succes- 

sors of U 1 . . . . .  Uk. Then 

k 

S(7") + P(7") < a + (2m - 2) + ~ (2m, - 2). (3.11) 
~-1 

From (3.10) and (3.11) we get  

S(7")  +P(7")  <~ a + 2 ( d - a )  - 2 k  = 2d - a  - 2 k .  

I f  k~>l then S ( 7 " ) + P ( 7 " ) < 2 d - 2 ,  so we can assume tha t  V is the only nonterminal  

special vertex of 7.  Similarly, we can assume a = 0  or a = 1. Rewri t ing (3.11) as 

S ( 7 " ) + P ( 7 " )  ~ < a + 2 m - 2  

and recalling t h a t  m<d,  we see t h a t  we can assume a = l  and m=d.  We now argue just  as 

in the first case tha t  the number  of separatrices of our original vector  field at  (0, 0) is 

< 4 d - 4 .  �9 
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Added March 1980. We recently learned of four Russian papers, listed below, on separatrices 
and elliptic sectors. In  [S1] Sagalovich shows that  the number  of separatrices of (I.1) at (0, 0) 
is -<< 4 d -  2 if d >/2. In  [82] Sagalovich claims to establish.by examples that  this bound is the 
best possible, but  the examples are wrong. In  [B1] Berlinskii proves tha t  the number  of elliptic 
sectors of (1.1) at  (0, 0) is <2d - 1  and gives examples to show that  this bound is the best pos- 
sible. All four papers contain further discussion of the possible topological types of degree d 
singularities. 
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