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Introduction 

Let S be a compact 2-manifold. A polyhedron on S is called a triangulation if each 

face of the polyhedron is a triangle with 3 distinct vertices and the intersection of any 

two distinct triangles is either empty,  a single vertex or a single edge (including the two 

vertices). A triangulation on S is called minimal  if the number  of triangles is minimal. 

For instance the tetrahedron is a minimal triangulation of the sphere and the well known 

embedding of the complete graph with 7 vertices in the torus is a minimal triangulation 

of the torus. 

Let  ~(S) be the number of triangles in a minimal triangulation of S. In  1950 at  a 

seminar at  the University of Bonn, E. Peschl mentioned the problem of determining ~(S) 

for each surface S. The question m a y  well be older than this. In  1955 O. Ringel [9] gave 

a complete solution if S is non-orientable. 

In  this paper  we present a complete solution of the orientable par t  of the problem. 

We prove a formula for 6(Sv) for the orientable surface Sp of genus ~. 

The proof of the formula is a problem similar in nature and a t  least equivalent in 

complexity to the problem of determining the genus of the complete graph K n. In  both 

problems one must  exhibit triangular embeddings of graphs which are complete or nearly 

complete (where some edges are missing). In  the genus problem for Kn one has to add 

handles in order to gain the missing edges. In  the problem of determining 6(S~) the 

situation is reversed: one must  find ways to subtract  handles in order to remove edges, 

while preserving the triangulation. 

Q) We thank NSF for supporting this research. And we also thank Doris Heinsohn for drawing 
the figures and David Penge|ley for carefully checking the manuscript. 
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Together with (1.1) we obtain 

From (1.2) it follows tha t  

1. Lower bound 

Let T be a triangulation of • and ~0, ~1, ~ the number  of vertices, edges and faces of 

T respectively. Then 

~ 0 -  ~1 + ~2 --- E(S) (I.1) 

is the Euler characteristic of ~. Since T is a triangulation each pair of vertices is joined 

by  at  most one edge. So T has no more edges than  pairs of vertices: 

Since each face in T is a triangle and each edge is incident with two triangles 

3~o - al =" 3E(S). (1.4) 

6~ o - ~o(~o - 1) ~ 6E(S). (1.5) 

This quadratic inequality has tho solution: 

% >~ {7 + V49; 24E(S)). (1.6) 

The symbol (x~ denotes the smallest integer/> x. 

So far we have obtained a lower bound (1.6) for the number  of vertices in T. Now 

multiply (1.1) by  2 and use equation (1.3). We obtain 

~2 -- 2~o-2E(S) .  (1.7) 

From now on we assume tha t  T is a minimal triangulation. Then :~s =(~(S) and from (1.6) 

and (1.7) we obtain 

Ringel [9] has proved tha t  equality holds in (1.8) for all non-orientable surfaces S with 

two exceptions: Klein's bottle,/Vs, and the non-oricntable surface N a of genus 3. In  these 

two cases he showed tha t  

~(N~)=16 and ~ ( N 3 ) - 2 0 .  
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We shall prove that  equality holds in (1.8) for the orientable surface Sp of genus p 

for all p with the remarkable exception of the double-toms $2. In other words, we shall 

prove the following theorem. Note that  E ( S r ) = 2 - 2 p .  

THEOREI~I 1.1. Let O(Sr) be the number o/triangles in a minimal triangulation o/Sp. 

Then 

(~(S~)=2{7+ 1 - 1 ~ P } + 4 ( p - 1 )  i / p # 2  

and (1.9) 

~ ( $ 2 )  = 24 .  

For practical reasons it is convenient to first prove the following theorem. 

THEOREM 1.2. For each pair (n, t ) . ( 9 ,  3) of integers with the property 

4 <<. n, O <~t ~ n - 6  } 

( n - 3 ) ( n - 4 )  ~ 2 t  (mod 12) 
(1.10) 

there exists a triangular embedding o /a  gra/ph with n vertices and 

- ,  

edges into an orientable sur/ace. Such an embedding also exists/or the pair (10, 9) and does 

not exist/or the pair (9, 3). 

The two Theorems 1.1 and 1.2 are in fact equivalent. Here we only need to show 

that  Theorem 1.1 follows from Theorem 1.2: We assume Theorem 1.2 and wish to prove 

Theorem 1.1. Given an integer p>~0, consider the two integers 

v + V(+ 48p  (n-  3 ) (n -4 ) -  12p (1.11) 
n . . . .  2 J and t = 2 

We intend to show that  (n, t) satisfies (1.10). From (1.11) it follows that  

and so 

Squaring we obtain 

7+ V1 +48~< n< 7 + V1 +48p+ 1, 
2 2 

1V~-~p ~< 2 n - 7  < V1 +48p +2. 

12p < ( n - 3 ) ( n - 4 )  

(1.12) 

(1.13) 
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from the first inequality of (1.12) and ( n - 4 ) ( n - 5 ) < 1 2 p  from the second one if p 3 0 .  

(If p = 0 then n = 4  and t =0,  so (1.10) is obvious.) I t  follows tha t  2t = ( n - 3 ) ( n - 4 ) -  12p < 

n 2 - 7 n + 1 2 - ( n ~ - 9 n + 2 0 ) = 2 n - 8  so tha t  t < n - 4 .  This is not yet  what  we want.  We 

shall have to exclude the possibility tha t  t = n - 5 .  I f  t = n - 5  we obtain from (1.11) 

o r  

2n - 10 -- (n - 3 )  ( n - 4 )  (mod 12) 

2 ---- n(n - 9) (mod 12). (1.14) 

I t  can easily be checked tha t  there is no n satisfying (1.14). Therefore t 4 n - 5  and 

together with (1.11) and (1.13) we obtain 

O<~t<.n-6.  

Therefore the integers n, t defined by  (1.11) satisfy the requirement (1.10). Assume now 

t9 32.  Then (n, t )3 (9 ,  3). By  Theorem 1.2 there exists a triangulation T of an orientable 

surface S with n vertices and 

edges. We determine the Euler characteristic of S using (1.4): 

6E(S) = 6 n - n ( n -  1) +2t  = 12 - (n - 3) ( n - 4 )  +2t  = 12 - 12p. 

So S is in fact  the orientable surface S T of genus p. 

Moreover, from (1.3) we obtain 3 o ~ 2 = n ( n - 1 ) - 2 t = n ~ - n - ( n - 3 ) ( n - 4 ) + 1 2  p, so 

tha t  ~2=2n+4(p-1) .  Therefore equation (1.9) gives the exact number  of triangles in T. 

Together with (1.8) this proves Theorem 1.I if p 32.  

Now assume p = 2  and let T be a minimal triangulation of S~. Since E(S2)= - 2 ,  

(1.8) gives 
~(S~) >/2 x 9 + 4  = 22. 

If  ~(S~)=22 then (1.8) is an equality and from (1.7) it follows tha t  ao=9.  From (1.3) 

we obtain cr So the 1-skeleton of T is a graph with 9 vertices and 

edges. But  by  Theorem 1.2 such a triangular embedding does not  exist. Therefore 

~($2) 322 and by (1.7), ~(S~)>~24. By Theorem 1.2 there exists an orientable triangular 

embedding of a graph with 10 vertices and 
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Figuro 2.1 

edges. From (1.4) we see that  this embedding is on the surface $2 and from (1.7) we see 

that  the number of triangles is 24, so ~(S~)=24. 

By a similar method one can also show that  Theorem 1.1 implies Theorem 1.2. 

Now we shall actually construct all the triangulations necessary to prove Theorem 

1.2. The crucial observation for this is that  the pairs (1.11) for all values of p actually 

exhaust the pairs (1.10). 

2. Low order cases 

We shall examine the situation for small values of the genus p and the corresponding 

pair (n, t) given by (1.11). 

If p = 0, then n = 4, t = 0, and the tetrahedron solves the problem. If p = 1, then n = 7, 

t =0  and we take the embedding of the complete graph K 7 in the torus first found by 

I-Ieawood [3] (see also Ringel [11], page 5). 

If p=2, then n=9, t=3 .  The authors became convinced that  an orientable 

triangular embedding (abbreviated o.t.e.) of a graph with 9 vertices and 33 edges does not 

exist and confirmed this by computer. Independently, Huneke [5] gave an explicit 

proof. Figure 2.1 shows a map on the sphere with 10 countries. We add two handles in the 

following way. Two of the vertices are denoted by I. Around each of the two vertices 

labelled I draw a small circle. Excise the interior of both circles and identify the two 

boundaries as illustrated in figure 2.2. This gives 6 new adjacencies: 

(1, 2), (1, 4), (4, 0), (0, 5), (5, 6), (5, 1). 

A similar operation at the two vertices denoted II  adds a second handle and gives 6 more 

adjacencies as illustrated in figure 2.3. The dual polyhedron of the resulting map on S 2 

is a triangulation with ~0=10 and ~1=36. This shows Theorem 1.2 for the pair (10, 9). 
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6 2 

Figure  2.2 Figure  2.3 

We remark here tha t  the above map on S 2 may  be described by a combinatorial 

scheme in the manner  first introduced by  Heffter [4] in 1891 as follows. Choose an 

orientation for each country as shown in figure 2.1. Note tha t  these orientations carry 

over to the portions of the map  shown in figures 2.2 and 2.3. The orientation of each 

country determines a cyclic sequence of the countries adjacent to it. For example the 

sequence for country x reads x. 6 4 2 0. The whole scheme consists of such a line for 

each country: 

O. 6 x 2 7 3 1 4 5 

2. 0 x 4 1 5 3 6 7 

4. 2 x 6 3 7 5 0 1 

6. 4 x 0 5 1 7 2 3 

1. 3 x' 7 6 5 2 4 0 

3. 5 x' 1 0 7 4 6 2 

5. 7 x' 3 2 1 6 0 4 

7. 1 x' 5 4 3 0 2 6 

x. 6 4 2 0 

x'. 1 3 5 7. 

(2.1) 

Because every vertex in the map is of valence 3 the scheme satisfies 

/~u/e R*. I f  the i th line is of the form i ... ~'kl ... then the kth line is of the form 

. . .  l q  . . . .  

Conversely, every scheme satisfying this rule represents a map on an orientable 

surface with every vertex having valence 3 (providing the map is connected). Passing 

to the dual polyhedron, a scheme satisfying Rule R* defines an o.t.e, of some graph. For 

further details see [11]. 

We now consider the situation where to=3.  Then (n, t )=(10,  3). In  [11] page 23, 

an o.t.e, of the graph K l o - K  8 is constructed. Here we mean tha t  from the complete 

graph K10 we have removed three edges forming a complete graph K 8. 

If  10 = 4  then (n, t )=(11,  4). So we seek an o.t.e, of a graph of the type K n - 4  edges. 

The following scheme describes the desired triangulation. 
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1. 8 3 6 7 5 9 10 4 2 

2. 3 7 8 1 4 11 6 9 5 

3. 4 7 2 5 6 1 8 10 11 

4. 5 7 3 9 6 8 11 2 1 

5. 7 4 10 8 6 3 2 9 1 

6. 11 7 1 3 5 8 4 9 2 

7. 1 6 11 10 9 8 2 3 4 

8. 5 10 3 1 2 7 9 11 4 

9. 3 11 8 7 10 1 5 2 6 

10. 11 3 8 5 4 1 9 7 

11. 10 7 6 2 4 8 9 3. 

9 

10 
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Notice that  the scheme satisfies Rule R*. 

In the first line number 11 is missing. So there is no edge (1, 11). We find that  there 

are exactly four missing edges: (1, 11), (2, 10), (6, 10), (5, 11). 

In some of the next  cases we will often use the graph 0m with 2m vertices 1, 2 ..... m, 

1', 2', .... m', where each pair of vertices is joined by  one edge except the pairs (i, i') for 

i = 1 ,  2 ..... m. For  instance, 03 is the octahedron and Om can be considered as an m-dimen- 

sional analog of the octahedron. The authors have constructed an o.t.e, of Om for each 

m ~ 2  (rood 3) in [8]. This means that  Theorem 1.2 is proven for all pairs (2m, m) where 

m ~ 2  (mod 3). 

We continue with the next  cases. To make it  short, we list the genus p, then the 

colTesponding pair (n, t), then the name of the graph with n vertices and 

edges, then the place where an o.t.e, of it is published. 

p -~ 5, (12, 6), 06, Jungerman and Ringel [8]. 

p = 6, (12, 0), K12, Heffter [4] in 1891 or Ringel [11]. 

p = 7, (13, 3), K18 - K  3, Jungerman [6] in 1974. 

p -- 8, (14, 7), 07, Jungerman and Ringel [8]. 

p = 9, (14, 1), K I 4 - K  s, Ringel-Youngs [13] in 1969. 
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2- = i = - * Z  
3 I] 

Y :  2 - ~ : z  

Figure  2.4 

In  most  of the next  cases we shall use the methods of current graphs invented by  

Gustin [1] and generalized by  others. We assume the reader is familiar with about  the first 

half of the book by  Ringel [11]. I t  is impossible to repeat all the details of this method. 

However we do repeat  the crucial construction principles for index one current graphs 

with abelian groups. We will use these throughout this paper. See the current graphs 

of figures 2.4 and 2.5 as examples. 

(C1) Each vertex has valence 3, 2 or 1. 

(C2) The given rotation induces a single circuit. Recall tha t  �9 indicates clockwise and 

�9 counterclockwise rotation. 

(C3) I /  al, a S ..... a, are all the currents used in the current graTh then the set 

{0, __ al, +_ as ..... • a,} exhausts all elements o / the  group. 

We define the excess of a vertex P in a current graph as follows: the excess is the 

sum of the inward flowing currents minus the sum of the outward flowing currents. 

(C4) I /  a vertex o/ valence 3 is not identl/ied by a letter then its excess is zero. 

(Kirchhoff's Current Law.) 

Note: A vertex which is identified by  one or more letters is called a vortex. 

(C5) Each vertex identi/ied by one letter, such as x, is o/valence 1 and its excess is a 

generator o/ the group. 

(C6) Each element o/ order 2 in the group must be a current o / a n  end-are. 

Here we skip (C7), which we will use and state later. 

(C8) I / a  vertex o/valence 1 is not identi/ied by a letter its excess is an element o/ order 

2 or 3 in the group. 

The construction principle (C9) in [11] applies only to nonorientable triangulations, 

so we ignore it here. We add a new principle (C10), which was not used in [11]. 

(C 10) I] there is a vertex o] valence 2 then the group is o~ even order and the excess o] the 

vertex generates a subgroup U o / index  2 (the even elements). Neither o / the  currents o[ the 

two edges incident with the vertex are in U, i.e., they are both odd. Moreover, the vertex has to 

be identi/ied by two letters such as x and y. 
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p = 10, (15, 6), K 1 5 - K  4. Finding' a n  o.t.e, of this graph is exactly the  problem of 

exercise 2.3.5 on page 32 in [11]. The solution is given by the current g raphof  figure 2,4. 

Notice that  the group is Zll and the principles (C1) through (C5) apply. 

p = 11, (15, 0), K15. Ringel [10] in 1961 or [11], page 151. 

p = 12, (16, 6), K16-K4. We denote the vertices of this graph by the elements of the 

cyclic group Zt2 and the letters x, y, z, w. Then use the current graph of figure 2.5. The 

principles listed above hold. The induced circuit passes the vertex x, y of valence 2 twice. 

In  writing the'log of the circuit we write x the first time and y the second time. As usual, 

the log gives u s  the 0dine. The other  lines are obtained as usual by  the additive rule, 

however in the odd lines we interchange x and y. So the scheme is as follows. 

9 - 802904 Acta mathematica 145. Imprim6 le 5 Db:ernbre 1980 

0. 2 6 8 4 10 9 y 7 z 5 x 3 1 w 11 

1. 3 7 9 5 1 1  10 x 8 z 6 y 4 2 w 0 

2. 4 8 10 6 0 11 y 9 z 7 x 5 3 w 1 

3. 5 9 11 7 1 0 x 10 z 8 y 6 4 w 2 

4. 6 10 0 8 2 1 y 11 z 9 x 7 5 w 3 

5. 7 11 1 9 3 2 x 0 z 10 y 8 6 w 4 

6. 8 0 2 10 4 3 y 1 z 11 x 9 7 w 5 

7. 9 1 3 l l  5 4 x 2 z 0 y 10 8 w 6 

8. 10 2 4 0 6 5 y 3 z 1 x 11 9 w 7 

9. 11 3 5 1 7 6 x 4 z 2 y 0 1 0  w 8 

10. 0 4 6 2 8 7 y 5 z 3 x 1 11 w 9 

11. 1 5 7 3 9 8 x 6 z 4 y 2 0 w 10 

x. 3 0 5 2 7 4 9 6 11 8 1 10 

y. 7 0 9 2 11 4 1 6 3 8 5 10 

z. 5 0 7 2 9 4 11 6 1 8 3 10 

w. 11 0 1 2 3 4 5 6 7 8 9 10. 
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0 

Figure 2.6 Figure 2.7 

p -- 14, (17, 7). W e  consider  t he  scheme (2.2). Here  we f i rs t  have  to  reverse  the  o rde r  

of al l  the  odd  n u m b e r e d  lines, Then  R u l e / r  is sat isf ied.  The  m a p  def ined  b y  (2.2) conta ins  

t he  p a r t  shown in f igure 2.6. 

0. 12 z 0 2 10 1 y 11 5 4 6 9 13 x 3 8 

1. 13 z x 3 11 2 x 12 6 5 7 10 0 y 4 9 

2. 0 z o 4 12 3 y 13 7 6 8 11 1 x 5 10 

3. 1 z 1 5 13 4 x 0 8 7 9 12 2 y 6 11 

4. 2 z o 6 0 5 y 1 9 8 10 13 3 x 7 12 

5.  3 z 1 7 1 6 x 2 10 9 11 0 4 y 8 13 

6. 4 z o 8 2 7 y 3 11 10 12 1 5 x 9 0 

7. 5 zl 9 3 8 x 4 12 11 13 2 6 y 10 1 

8. 6 z o 10 4 9 y 5 13 12  0 3 7 x 11 2 
(2.2) 

9. 7 z I 11 5 I0  x 6 0 13 1 4 8 y 12 3 

10. 8 z o 12 6 11 y 7 1 0 2 5 9 z 13 4 

11. 9 z~ 13 7 12 x 8 2 1 3 6 10 y 0 5 

12. 10 z o 0 8 13 y 9 3 2 4 7 11 z 1 6 

13. 11 z 1 1 9 0 x 10 4 3 5 8 12 y 2 7 

z. 11 8 7 4 3 0 13 10 9 6 5 2 1 12 

y. 0 1 4 5 8 9 12 13 2 3 6 7 10 11 

z o. 12 10 8 6 4 2 0 

z 1. 1 3 5 7 9 11 1 3 .  

F igure  2~7 shows how we swi tch  t h e  ad j acency  (0, 9) wi th  t he  a d j a c e n c y  (6, 13) a n d  

how we a d d  one handle .  Now z 0 a n d  z 1 are  a d j a c e n t  and  are  considered as one c oun t ry  z. 

I n  the  resul t ing  m a p  the re  a re  e x a c t l y  7 adjacencies  missing,  n a m e l y  

(1, 8), (3, 10), (4, 11), (5, 12), (x, y), (y, z), (x, z). 

W e  r e m a r k  t h a t  t he  or iginal  scheme (2.2) was ob ta ined : f rom t h e  or ien tab le  cascade in  

f igure 2.8. More de ta i l s  on or ien tab le  cascades m a y  be  found  in [8], [11]. The  e m b e d d i n g  
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described by  the  scheme (2.1) m a y  also be obtained from an orientable cascade, 

specifically the one given in figure 2.9. We will no t  use cascades in the  rest of the paper.  

p = 15, (17, 1), K 1 7 - K  9. Ringel [10] in 1961 or [11]. 

p = 16, (18, 9), 09, J u n g e r m a n  and Ringel [8]. 

Io = 17, (18, 3),  K 1 8 - K  s, J u n g e r m a n  [6]. 

3. Hamlle  s u b t r a c t i o n  

L~.MMA 3.1. Le t  a combina tor ia l  scheme s a t i s ! y i n g  R u l e  R* c o n t a i n  the por t i on  

a . . . .  b c d e ... 

/ . . . .  c b e d . . .  

b . . . .  e / c a ... 

c . . . .  d a b / ... 

d . . . .  ! e a c . . .  

e . . . .  a d ! b . . . .  

T h e n  the scheme obtained by  rep lac ing  the p o r t i o n  (3.1) by 

s t i l l  sat is]ies R u l e  R*.  

a . . . .  b e ... 

/ . . . .  c d ... 

b . . . .  e a ... 

c . . . .  d ! . . .  

d . . . .  / c ... 

e . . . .  a b ... 

(3.1) 

(3.2) 

This can be proven by  checking Rule R* directly. The change f rom (3.1) to (3.2) 

is shown geometrically in figures 3.1 and 3.2 and essentially consists of the subtract/on o1 a 

hand~. 
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Figure 3.1 Figure 3.2 

The operation has the following properties: 

(1) We lose 6 vertices and gain 2. 

(2) We lose 6 edges and gain O. 

The dual map interpretation of these properties is particularly relevant to Theorem 

1.2: I t the scheme (3.1) represents an o.t.e, o t a graph with n vertices and 

(;), 
edges then there is an o.t.e. (3.2) o t a graph with n vertices and 

(n) - (t+6) 2 

edges. 

I f  we wish to find a portion of the form (3.1) in a given scheme it is not necessary 

to search for the whole portion (3.1). I t  suffices to look only for the par t  

a . . . .  b c d e ... 
(3.3) 

t . . . .  c b e d .... 

The rest of (3.1) then follows by applying Rule R*. 

Many current graphs used in [11] to determine the genus of Km contain a portion 

called an arithmetic comb. More specifically they  contain a portion as in figure 3.3. 

I t  is important  tha t  the upper vertices have clockwise rotation, and the lower 

vertices have counterclockwise rotations. We shall prove tha t  the map defined by a 

current graph having a par t  as in figure 3.3 contains portions of the form (3.1). Using 

Kirchhoff 's Current Law (C4) we obtain from figure 3.3 the more complete figure 3.4. 

Then line 0 and line h (by the additive rule) of the constructed scheme read 

0 . . . .  , r + h ,  g + h ,  - t ,  g, r, g - h ,  - t - h ,  ... 

h . . . .  , g + h ,  r + h ,  g, - t ,  . . . .  
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t * h  g §  t 

- -  r r - g  r * h  

Figure  3.3 F igure  3.4 

Therefore, if the current graph (index 1) has the group Zm, we have 

i . . . . .  r + h + i ,  g + h + i ,  i - t ,  g + i  . . . .  
(3.4) 

h + i  . . . . .  g §  r + h + i ,  g+i ,  i - t  . . . .  

for i =0,  1, 2 ... . .  m. This is exactly the form (3.3), so we can actually subtract  a handle 

m-times. One may  easily check tha t  the 6m vertices (6 for each handle) and 6m edges 

to be subtracted according to (3.4) are all distinct. Therefore the subtraction of the m 

handles can be done simultaneously or one after the other. 

To summarize, whenever a current graph contains a portion of the form (3.3) we can 

subtract  from one to m handles where m is the order of the group used. 

Therefore if the current graph represents an o.t.e, of a graph of the type K n - t  o 

edges then we may  obtain o.t.e.'s of graphs of the type K n - ( t o + 6 i )  edges for 1 ~i<~m, 

where m is the order of the group. In  proving Theorem 1.2 we don ' t  need to subtract  this 

many  handles. In  fact, i need never be taken higher than n/6, since Theorem 1.2 only 

concerns pairs of the form (n, t) where t ~<n-6.  In  our applications we will always have 

m >n/6. Thus exhibiting a current graph representing an o.t.e, of K n - t  o edges which 

contains a portion of the form (3.3) will be sufficient to prove Theorem 1.2 for all pairs 

(n, t) with to<~t<.n-6. 

4. General  cases  

We now proceed with the proof of Theorem 1.2. The proof breaks down natural ly 

into twelve cases depending on the residue class n (mod 12) in the given pair (n, t). We 

shall handle these case in the following order: 4.1. Case 3; 4.2. Case 0; 4.3. Case 4; 

4.4. Case 1; 4.5 Case 6; 4.6. Case 2; 4.7. Case 10; 4.8. Case 7; 4.9 Case 5; 4.10. Case 9; 

4.11. Case 11; 4.12. Case 8. 

4.1. Case 3. Let  n = 12s + 3. I t  is known tha t  there exists an o.t.e, of K ,  (see [11], page 151). 

So Theorem 1.2 holds for all pairs (n, 0). For the pair (15, 6) see chapter 2, p = 10. 

The current graph in figure 4.1.1. gives an 0.t.e. of the graph K ~ 7 - K  4 and there are 
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5 6 4 7 

9 I 0  8 

Figure 4.1,1 

�9 = ~. Z 

: 0 w 

II 

Z23 

23 subtractable handles (figure 3.3 applies). This proves Theorem 1.2 for the pairs 

(27, 6), (27, 12) and (27, 18). 

Remark. Figure 4.1.1 is identical to figure 6.5 of [11] except that  the group Z~8 is used 

instead of Z22. If we t ry  the generalization for n = 1 2 s + 3  as in figure 6.6 of [11] using 

the group Zt2~_z, we conflict with property (C5). The current of the arc (directed edge) 

incident with vertex y would be  5 s - 1  and (Ss-1,  1 2 s - 1 ) = ( 8 - 3 ,  7). So (C5) fails if 

s = 3 (rood 7). 

However the current graph of figure 4.1.3 works for every s~>3 (figure 4.1.2 shows 

the example s=3)  and defines an o.t.e, of K I ~ + a - K  4. I t  also has parts as in figure 3.3 

so handles can be subtracted. This gives the proof of Theorem 1.2 for the pairs 

(12s+3, 6i) where i=1 ,  2 ..... 28-1 .  

4.2. Case O. Le t  n be of the  form n = 12s. There  exis ts  an  o.t .e,  of K ,  (see Ter ry ,  Welch,  

u  [14], or  [11]). Here  we cons t ruc t  an  o.t.e, of the  g raph  K n - K  4 using the  cur ren t  

graphs  in  f igure 4.2.1 for s >/4, f igure 4.2.2 if 8 = 3, and  f igure 4.2.3 if s = 2. The  f irst  two 

figures have  big enough por t ions  of : the  a r i t hme t i c  comb (as f igure 3.3), so t h a t  a hand le  

can be sub t r ac t ed  / - t imes  ( i = l ,  2 . . . .  , ( n - 6 ) / 6 ) .  This  leaves the  case a = 2  to consider.  

Here  we have  ano the r  w a y  to  f ind  sub t r ac t ab le  handles .  Assume f igure 4.2.4 is p a r t  of a 

cur ren t  g raph  as for  ins tance  in  figures 4.2.3 and  4.3.1. The  l ine 0 and  l ine 2 t  read  

w ~  

5 

x 

12 16 13 

4 3 2 

Figure 4,1.2 

Y 

15 t I -.% 

z 

5 
= A 

Z35 
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we 

 :-LI 
x 

4s 6s-2 

2s-2  

5s-3 5s+ I 5s-2 5s 

4 3 2 

3s+2 3s-2 3s+l 3s-I 

Figure 4.1.3 

Y 

I, 
6s-I 

z 

2s--I_ A 

7/'~2s-I 

0 . . . .  , t ,  w ,  - - t ,  x ,  - 3 t  . . . .  
(4.2.1) 

2t . . . .  , w, t, x, --t, .... 

This contains a par t  as in (3.3) which guarantees t h a t  a handle  is subtractable.  

We can get  more subtractable  handles  b y  using the  add i t i ve  rule [11], page 25. 

However,  o n e  has to be very  careful because some of these handles m a y  interfere  with one 

another  (cannot  be subtracted simultaneously).  For  instance, in the map  defined by  the 

current  graph  in figure 4.2.3, the following four  handles are subtractable:  

0. 3 w 17 x 

6. w 3 z 17 

2.  5 w 19 x 

8. w 5 x 19 

4.  7 w 1 x 

10. w 7 x 

6. 9 w 3 x 

12. w 9 z . 

4s-2 
A " 

5s-2 5s 5s-3 4s * l  

t 2 3 " 0 0  

- - ' 12s-4  

Figure 4.2.1 

6s-3 4s 

i t: 2s -4  2s- 

x 

2s~.l Y 

w ~ .  = 
4s- i  

6 s - 2  

' 2s-2 

' 4s-2 

,2s 

2S-I 
= z  
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13 15 12 16 

w e  ~ - = 14 2 3 4 
Y 

s ,o ~ ~, o z  

Figure 4.2.2 

But the first and the fourth are not independent because one of the six triangles 

involved in the first handle, namely (6, w, 3) is also involved in the fourth. 

But this doesn't matter. We just take the first two handles. This proves Theorem 1.2 

for the pairs (24, 6), (24, 12), (24, 18). For the pair (12, 6) see chapter 2, p = 5 .  

4.3. Case 4. In  [11] page 90, an o.t.e, of K,  is constructed for each n of the form n =  

128§ For s>~3, the current graph contains portions as in figure 3.3, so handles can be 

subtracted (28-1)  times. 

If  a - 2 ;  we consider the current graph in figure 4.3.1 which gives us an o.t.e, of 

K ~ s - K  4. Since figure 4.2:4 applies with t = l ,  the portion (4.2.1) of the scheme becomes 

O. 1 w 23  z 

2. w 1 z 23 

This gives one subtactable handle. We need two more which we get by the additive rule: 

4. 5 w 3 z 

6.  w 5 x 3 

8. 9 w 7 x 

10. w 9 x :7 

Note that these three handles do not interfere with each other. For s = 1 see chapter 2, 

p : 1 2 .  

4.4. Case 1. I t  is known that  there exists an o.t.e, of Kl~_l. 1 - K  3. For 8= 1 see chapter 2, 

p = 7. For s = 2 use figure 6.5 of [11 ] and for s > 2 use figures 6.7 and 6.8 in [11] and their 

x 

Y 

9 5 

I 0  6 

Figure 4.2.3 

I 
: ; Z  

w~ 
t x 3t  

y 

Figure 4,2.4 
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z 8 7 13 
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generalizations. All these current graphs have the standard arithmetic comb with at least 

3 verticals, which allows handle subtractions, except for s=3. 

For 8---3 we use the current graph in figure 4.4.1. Here for the three verticals on the 

right, figure 3.3 applies with g = - 6 ,  h = - 8 .  So we can subtract handles. 

4.5. Case 6. In  [11] page 155, an o.t.e, of K , - K  8 is constructed for each n of the form 

n = 12s + 6. (s/> 2.) If  s = 1 see chapter 2, p = 17. This proves Theorem 1.2 for the pairs 

(n, 3) where n - 6  (rood 12) and n~>lS. 

We arc going to construct an o.t.e, of a graph of the form K . , - 9  edges. If  8 is even, 

consider the current graph in figure 4.5.1. All the construction principles (C 1), (C 2), (C 3), 

(C4), (C5), (C6) and (C8) are valid except that  the vortex w violates the rule (C5). In  

fact the current 2s does not generate the group Z128+ =. I t  only generates the subgroup 

of all even elements. This causes (see Case 2 in [11]) line w in the scheme to consist of two 

cycles instead of one; one with all the even elements, one with all the odd ones. 

Therefore the map defined by the current graph has two countries, w 0 and w 1. w 0 is 

adjacent to all the even numbered countries, w 1 is adjacent to all the odd ones. 

6s*l 4s* l  5s.2 5s 5s+l 

2s-I �9 �9 �9 3 2 I 

2S§ 3S*2 3s 3S+I 

Figure 4.5.1 
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- - - ' 1 2 s - ~ 2  
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w o 

w I 

Figure 4.5.2 

4 6s+l 

Figure 4.5.3 

Parts  of line 0 and line 6s+  1 of the scheme are: 

0 . . . .  4 s + l ,  6 s + l ,  108+2, w o ... 

6 s + l  . . . .  108+2, 0, 4 s + l ,  w 1 .... 

Therefore the map has the local portion in figure 4.5.2. This can be modified as in figure 

4.5.3. The result is tha t  w o and w 1 have been merged into a single country w and 

adjacencies 
(10s+2,0)  ( 0 , 6 s + l ) ,  ( 6 8 + 1 , 4 s + 1 )  

have been lost. There are 6 more missing adjacencies: 

(x, y), (x, z), (x, w), (y, z), (y, w), (z, w). 

The dual of this map  is an o.t.e, of a graph of the type K n -  9 edges. This proves Theorem 

1.2 for the pair (n, 9). There are subtractable handles (figure 3.3 applies). So in fact we 

have proved Theorem 1.2 for the pairs (n, 9), (n, 15) ..... (n, n - 9 ) .  

Suppose s=3.  Consider the current graph in figure 4.5.4 and apply the construction 

using figures 4.5.2 and 4.5.3. Since there are subtractable handles we have proved 

Theorem 1.2 for the pairs (42, 9), (42, 15), ..., (42, 33). 

I f  s >~ 5 and odd consider the current graph in figure 4.5.5. Replace 10s + 2 by  3s + 1 and 

4s + 1 by  9s +2  in figures 4.5.2 and 4.5.3. Then apply the same construction as before. []  

19 15 16 14 17 6 

4 ~  13 

9 8 I0 7 38 

Figure 4.5.4 
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4.6. Case 2. This t ime let n be given in the form n = 12s + 14. I t  is known t h a t  there exists 

an  o.t.e, of K n - K = .  See Ringel -Youngs  [13] if s is even and J u n g e r m a n  [7] if s is arbi t rary.  

This proves Theorem 1.2 for the pairs (n, 1). 

Now consider the index one current  graph  (s >/3) in figure 4.6.1 using the cyclic group 

Z12s+e and the  extra  symbols x, y, u, v, a, b, c, and  w. I f  8 = 1, we use the current  graph  in 

figure 4.6.2. I f  8 = 2 ,  we use the current  graph in figure 4.6.3. There are four vortices in 

f igure  4.6.1: 

t h e  excess of v o r t e x  (x, y) = 2 

t h e  excess of v o r t e x  (u, v) = 68 + 8 

t h e  excess of v o r t e x  (a, b, c) = - 3  

the  excess of v o r t e x  w = 2 

and (2, 12s + 6) = 2, 

and (68+8,  12s+6)  = 2, 

and  ( - 3 ,  1 2 8 + 6 ) = 3 ,  

and (2, 12s + 6) = 2. 

The  f i rs t  two agree wi th  t h e  c o n s t r u c t i o n  pr inc ip le  (C10). The  t h i r d  agrees  w i th  t h e  

p r ev ious ly  o m i t t e d  fo l lowing pr inc ip le .  

(C7) The currents leading into a vortex identi/ied by thre~ leSters, such as a, b, c, are 

congruent to one another (mod  3) but not congruent to 0 (mod 3). The excess o/ the vortex 

generates a subgroup o / i n d e x  3. 

T h e  c u r r e n t  g raphs  in  f igures 4.6.2 a n d  4.6.3 also sa t i s fy  these  pr inc ip les .  

X I 6s-2 4 3s+4 3s-2 

T i 
6s*l 

QJI b r-72 
: . . . .  --//'12s+6 2 C 6s+2 5 6s-I 3s-I 3s.5 

Figure 4.6.1 
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W - 

x 5 x 5 7 2 

9 6 15 
I v 

(] Z S O  - W ~  = �9 

8 C 4 

Figure 4.6.2 Figure  4.6.3 

As in Case 6 in section 4.5 the fourth vortex w generates two countries w0, w z. wo(wz) 

is adjacent to all even (odd) numbered countries. 

We note that  the currents of the verticals in figure 4.6.1 form the arithmetic 

sequence: 
6 s - 3  . . . . .  12, 9, 6. (4.6.1) 

Since s >~ 3 this means we have subtractable handles. We Mso have subtractable handles in 

figure 4.6.3. In  figure 4.6.2 we don' t  need them. 

We consider the lines 0 and 6s + 1 of the scheme generated by the current graphs of 

figure 4.6.1. The lines have the following parts 

0 . . . .  c, 2, w0, 12s +4, a, 6s+5,  u, 3, x, ..., y, 12s+3, v, 6 s + l ,  b ... 

6 s + l  . . . . .  w~, 6 s - l ,  b, 0 . . . . .  

This gives a partiM picture of the map around the country 0 as illustrated in figure 4.6.4. 

We modify the map as illustrated in figure 4.6.5. We now proceed to add handles in 

order to unify w 0 and w 1 and gain additional a~ljaceneies. 

First  handle. Consider the map on a torus shown in figure 4.6.6. Excise country 0 

from figure 4.6.5 and the unnamed country in the middle of figure 4.6.6. Then identify 

the two resulting boundaries in the  obvious way. After this there is a new country, 

named 0, that  is adjacent to the same countries as the old country 0 was in figure 4.6.5. 

1 2 s ~  

w I I 6s-I 

Figure 4.6.4 

x u 
�9 e l o  e �9 

Q 

Y 

v % 

w I \ 

Figure 4.6.5 
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Figure 4.6.6 Figure 4.6.7 

Second handle. Consider the two vertices both  named I I  in figure 4.6.6. Excise a 

little disc around each of them. Ident i fy the two resulting boundaries as shown in 

figure 4.6.7. That  way several adjacencies are achieved and w o and w 1 also become adjacent. 

We remove the boundarY between w o and w I and call the new country w. 

Third handle. Excise a small neighborhood around each o f  the two vertices I I I  in 

figure 4.6.7 and identify the boundaries as in figure 4.6.8. 

Fourth handle. Do the same with vertices IV according to figure 4.6.9. 

After all this we have constructed a map  with the countries 0, 1 . . . .  ,128+5,  a, b, c, 

x, y, u, v, w. Exact ly  seven pairs of countries are not adjacent: 

(0, 12s+3), (0, 3), (0, 128+4), (0, 2), 

( 6 s + l ,  6 s - l ) ,  (6s+ 1, b), (a, c). 

The first five of them were lost in the transformation from figure 6.4.4 to figure 4.6.5. 

The construction is the same in the cases 8=  1 (from figure 4.6.2) and s ~ 2  (from 

figure 4.6.3). Only the numbers on certain countries in figure 4.6.4 are changed. Since 

the lettered countries are unchanged, the rest of the construction is identical to the ease 

s >~ 3. The dual of the map obtained by  the construction is an o.t.e, of a graph of the form 

K ~ - 7  edges. This proves Theorem 1.2 for the pair (n, 7). I f  we stop the process after the 

r 

Figure 4.6.8 Figure 4.6.9 
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4 6 
o z  

19 

Figure 4.7.1 

t h i r d  (second) hand le  we ge t  t h e  proof  of Theorem 1.2 for  the  pa i r  (n, 13) ( the pa i r  (n, 19)). 

This  a l r eady  proves  Theorem 1.2 if n =26 .  Tf n >/38 t hen  we need to  s u b t r a c t  handles .  

F o r t u n a t e l y ,  as  we said  before,  we can  a p p l y  figure 3.3 to  do  so. 

4.7. Case 10. I f  n = 10 (rood 12), the re  exis ts  an  o.t.e, of t he  g raph  K n - K s .  The  s t a n d a r d  

proof  [11] page  29 for  n>~34 uses a nice i ndex  one cur ren t  g raph  which has  big  enough 

por t ions  of an  a i r i thmet ic  comb to  s u b t r a c t  handles .  

F o r  n = 2 2  we shall  use t he  i ndex  one cur ren t  g raph  of f igure 4.7.1. I t  genera tes  an  

embedd ing  of KI~ , -K  s. The  0-line of the  scheme is: 

0. z 6 8 7 16 14 15 x 4 18 11 17 3 10 y 9 12 1 5 2 13. 

Therefore  the  scheme conta ins  the  por t ions  

0 . . . .  8 7 4 18 

1 . . . .  0 12 18 4 

4 . . . .  1 18 0 

7 . . . .  0 8 12 9 

8 . . . .  12 7 0 

9 . . . .  7 12 0 

12 . . . .  18 1 0 9 7 8 

18 . . . .  0 4 1 12 

9 12 1 ... 

(4.7.1) 

Figure 4.7.2 

0 ~ 0 

/ N 

~ ~ 

Figure 4.7.3 
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Now we replace the portions (4.7.1) by  

0 . . . .  8 12 18 

1 . . . .  0 4 

4 . . . .  1 0 

7 . . . .  0 9 

8 . . . .  12 0 

9 . . . .  7 0 

12 . . . .  18 0 8 

18 . . . .  0 12 

9 7 4 1 ... 

(4.7.2) 

Notice tha t  we only changed the order in line 0. In  the six other lines we dropped one or 

two or three numbers and did not change the order. We can easily check tha t  after this 

operation Rule/~* still holds t h r o u g h o u t t h e  whole scheme. We lost the six adjacencies 

(1, 18), (4, 18), (7, 8), (7, 12), (9, 12), (1, 12). 

So we really have constructed an o.t.e, of a graph of the type K 2 z - 9  edges which 

proves Theorem 1.2 for the pairs (22, 3) and (22, 9). The transformation from (4.7.1) to 

(4.7.2) can be interpreted as a subtraction of a handle. But  it  is not easy to illustrate 

geometrically. I t  is more instructive to explain the reverse operation which goes from 

the map described by (4.7.2) back to the map described by  (4.7.1). For (4.7.2) the 

surroundings of country 0 are pictured in figure 4.7.2. Consider figure 4.7.3 as a map 

on a torus (identify opposite sides of the rectangle) and excise the unnamed country from 

figure 4.7.3 and the country 0 from figure 4.7.2. Then identify the two boundaries in the 

obvious way. The result is a new map with six more adjacencies. I t  is in fact  the map 

described by  (4.7.1). 

In  order to prove Theorem 1.2 for the remaining pair (22, 15) we need to subtract  

one more handle. This call easily be done in the following way: add + 1 to all the elements 

occurring in the schemes (4.7.1) and (4.7.2). [ ]  

4.8. Case 7. We shah prove Theorem 1.2 in case n - 7  (mod 12): In  [11] page 26 an o.t.e. 

of Kn is constructed based on the current graph in figure 2.15 of [11] with the group Zn. 

I f  n i> 31 it has a portion exactly as in figure 3.3 so we can subtract  handles. This proves 

Theorem 1.2 for the pairs (n, t) with t = 0 ,  6, 12 ..... n - 7 .  I f  n=19  the current graph in 

figure 2.13 of [11] does not have enough vertical arcs to use the above method. 

So we use the index 3 current graph in figure 4.8.1, which is a slight modification of 

figure 10.1 in [11]. I t  defines an o.t.e, of K19. 

The theory of index 2 and index 3 current graphs appears in [11] chapter 9. In  the 
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 lot 

9 6 

Figure 4.8.1 

interest of brevity we omit the details here. Note tha t  the current graph of figure 4.8.1 

has a portion of the type shown in figure 3.3. We wish to show tha t  this means tha t  there 

are subtractable handles just as in the index one case, providing h is a multiple of 3. 

We note tha t  one of the circuits [i] with i - -0,  1, or 2 has the form 

[i] . . . .  r+h,  g+h,  - t ,  g, r, 9 - h ,  - t - h  . . . . .  

Since h is a multiple of 3 it  follows tha t  for any ~ - i  (mod 3) the scheme contains the 

portion 
i . . . . .  r + h + i ,  g + h + i ,  j - t ,  g + i  . . . .  

j + h  . . . . .  g + h + j ,  r + h + j ,  g+i ,  j - t  . . . . .  

This is exactly of the form (3.3), which implies tha t  there are subtractable handles 

for j = i ,  i + 3 ,  i + 6  . . . . .  i + m - 3 ,  where m is the order of the group. In  every application 

this will be more than enough handle subtractions. 

In  the present case [i] = [2], and we can subtract  2 handles. This proves Theorem 1.2 

for the pairs (19, 6) and (19, 12). 

Remark. For later application (see section 4.10) we note tha t  by  subtracting one more 

handle we obtain an o.t.e, of a graph of the type K19-18  edges. 

4.9. Case 5. For each n-=5 (rood 12) there exists an o.t.e, of the graph K n - K  2. The proof 

is given by  an easy index 3 current graph in [11]. I t  does not exactly contain an arithmetic 

comb. In  fact every second rung in the ladder like graph is a "globular" rung. However, 

this can easily be changed so tha t  the left half of the ladder has ordinary rungs and the 

rungs on the right hand half are all globular. See figure 4.9.1 as an example for n=29 .  

For n/> 29 the left par t  of the ladder is big enough tha t  figure 3.3 applies and therefore 

handles can be subtracted. For  n = 17 see chapter 2, 1o = 14 and 15. 
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4.10. Case 9. Guy and Ringel  [2] have constructed an o.t.e, for K12s+ 0-K s for s 1>4 using 

an  index 3 current graph with the group Zl~,+ s. For tuna te ly  it has the  s tandard  ari thmetic 

comb of at  least length 3 if s >/5. So we can subt rac t  handles and  this proves Theorem 

1.2 for the  pairs (12s+9,  t) with t = 1 5 ,  21, 27 . . . . .  1 2 s + 3  and s~>5. 

I n  the same paper  Theorem 1.2 is proven for (12s+9,  9) and  (12s+9,  3) when s~>4. 

J u s t  take  the dual of the constructed map  after adding the first and the  second handle.  

Several cases remain to  be t reated.  One of these, namely  (33, 9) requires its own 

method,  which we now give. Consider the index two graph  of figure 4.10.1. Each  of the 

vertices w0, wl, u0, u t has a current  excess generat ing the  even subgroup.  Thus  each of 

w o and u0, which lie in the [0] circuit, becomes a coun t ry  adjacent  to all the even-numbered 

countries, while w t and u 1 are adjacent  to  the  odd-numbered  countries. The logs of the 

port ions of the  circuits depicted near  the  vertices w 0 and  w 1 are 

[o] .... We, 8, 7 . . . .  

[1] .... w t, 16, 23 . . . . .  

So the scheme has the por t ion 

0 . . . .  , w o, 8, 7, ... 

7 . . . . .  w 1, 23, 0 . . . .  

leading to figure 4.10.2. The al ternat ive figure 4.10.3 merges w o and  w 1 into a single 

count ry  w and removes the three adjacencies (8, 0), (0, 7) and (7, 23). The  same method  

creates a count ry  u from u o and  u 1 and  removes three more adjacencies. T h e  end result  is 

an  o.t.e, of a graph  K 8 8 - 9  edges. The 9 missing adjacencies are the six above plus (x, u), 

(u, w) and (w, x). 

I n  order to handle the rest of the cases we use the following induct ion  type  theorem. 

THEOREM 4.10.1. I !  there ex/a~ o.t.e.'s o I graphe o[ the type K~,.I - h  1 edges, K~t+t-ha 

edges and K~t+l-h3 edges, t>~2, and each oj these three graphs has a vertex o/ valence 2t, 

then there exists an o.t.e, o] a graph o[ the type Kst+3-(hl + h~ + hs + 3 ) edges. 



146 M. J U N G E R M A N  A N D  G.  R I N G E L  

x 
Uo I w o 

ul 13 , , 3 / ~  ~,./'//o3 

""" J~4 

Figure 4.10.1 

This theorem is proven for h a = h z = h s = 0  on page 162 of [11]. The generalization is 

obvious enough that  we do not repeat the proof here. 

We will apply Theorem 4.10.1 using o.t.e.'s of the following types]of graphs: 

Kas, K19-  6 edges, Kag-  12 edges, 

Kls, K15-  6 edges, K15-12 edges, 

K n - 4  edges, K n -  10 edges, 

K 7, K 7 - 6 edges. 

K19 - 18 edges, 

Except  for the three which will be described below these o.t.e.'s have been constructed 

earlier (see section 4.8 and chapter 2). We note that  each time a handle is subtracted the 

valence of only six vertices decreases. Therefore the graphs used above satisfy the 

valence hypothesis of Theorem 4.10.1. 

w] 

Figure 4.10.2 

~ J 

o 

J 
Figure 4.10.3 
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F i g u r e  4.11.1 

14 I 3  

3 2 I 

A 
I0 7 9 8 

~ o  

The three o.t.e.'s which remain to be constructed are the following. 

(a) In  order to find an o.t.e, of a graph of the type  K16-12  edges, take an o.t.e. 

of K 1 4 - K  2 (see chapter 2, p = 9 ) .  In  the interior of any tr iangle place a new vertex v 

connected to the vertices of the triangle using three new edges. The result is an o.t.e, of a 

graph K15-12  edges. At least one of the vertices of the original triangle has valence 14. 

(b) Using the same methods as in (a) we get an o.t.e, of a graph of the form 

K l l - 1 0  edges from an o.t.e, of K l o - K  8 (see chapter 2, p=3) .  

(c) An o.t.e, of a graph of the type K ~ - 6  edges is given by  the following scheme. 

Note tha t  vertex x has valence 6. 

x. 1 0 3 2 

o. 2 3 x 1 

2. 4 5 x 3 

4. 0 1 x 5 

1. 0 x 4 

3. 2 x 0 

5. 4 x 2. 

5 4 

4 

0 

2 (Kv - 6 edges) 

Using various combinations of these o.t.e.'s in Theorem 4.10.1 and the o.t.e, of 

K 3 3 - K  8 in [15] we obtain all the remaining embeddings necessary to complete the proof 

of Theorem 1.2. For instance let t=9 ,  hl=h~=18 , h2=12. Then we obtain an o.t.e, of 

K 5 , - 5 1  edges. 

I 20 6 T-" 

,2 9 II I / b  Y 

F i g u r e  4 .11.2  
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'~ / \ \ '~ 

II 

F i g u r e  4 . i i . 3  

4.11. Case 11. Lot n be of the form n = 1 2 s + l l .  An o.t.e, of K n - K 5  is constructed in [11] 

or in Ringel-Youngs [12]. I t  has subtractable handles for s~>4. 

For s~=2 see figure 4.11.1 and for s=3  see figure 4.11.2. These current graphs give 

o.t.e.'s of K , , - K  5 with subtractable handles. This proves Theorem 1.2 for the pairs 

(n, 10), (n, 16) . . . . .  (n, n - 7 )  if n>~35. 

We now construct an o.t.e, for a graph of the form K . - 4  edges for n >--35. Consider 

first the case n--35.  The index 2 current graph of figure 4.11.3 gives an o.t.e, of K 3 5 - K  5. 

The 0 line reads 

0 . . . .  a 1 b 15 c ... x 29 y .... 

So the (dual) map  contains the portion shown in figure 4.11.4. We modify this as shown 

in figure 4.11.5. We add one handle at  the vertices marked I according to figure 4.11.6, 

then the only missing a~ljacencies are 

(0, 29), (0, 1), (0, 15), (a, y). 

Figure 4.11.4 Figure 4.11.5 Figure 4.11.6 
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Figure 4.11.9 
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Figure 4.11.11 
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Figure 4.11.12 
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Figure 4.11.15 
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A i 0 1 . i g i 4  : - = = = - = = -= o y 
b 

I 2 3 I 3 ~ ' ~ ' 2 7  

Figure 4.11.16 Figure 4.12.1 
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6s-2 4 6s-5 3s-5 3s+4 3s-2 6s-I 

. . . .  y B 6s-4 5 3s+5 3s-4 3s+2 3s-} c" 6s-2/~ 

- ~- o y  X 0 -~ 6S+I 

Figur~ 4.12.2 

W e  use f igure 4.11.7 for s odd and  s>~3 and  f igure 4.11.8 for s even a n d  s~>4 to ob t a in  

o.t.e.'s of K n - K s .  

I n  each of these  cases the  ver t ices  a, b, c, x and  y are  a r ranged  as in t he  above  case 

n = 35. W e  can a d d  a handle  in e xa c t l y  the  same manner .  This  proves  Theorem 1.2 for the  

pa i r s  (n, 4), n>~35. F o r  n = l l  see chap te r  2, p = 4 .  

w 

4 

w l  

iT2 Z,s 

8 
6 7 

�9 2 

) x  

i 

4 5 

6 

F~8~L'~ 4.12.3 



152 M, JU:NGF.~MAN AND G. RINGEL 

A 2 6%-4 3s-7 3B+5 
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Figure 4.12.4 

6s-3 "~ C 

3S-I 

2 A 

3s+l 

Z I2s*6 

3$ -5 E 
6s-2 ~ 

3s+4 3s-8 6s~5 

~ o , .  6s:6[ : F~ ) 

3s+5 3s-7 6s-4 2 

I t  remains to consider case n = 23, which unfortunately has to be handled by an ad 

hoc method. 

The current graph in figure 4.11.9 gives an o.t.e, of the graph K 2 ~ , K  8. The dual map 

contains the portion shown in figure 4.11.10. We make the modification shown in figure 

4.11.11. In  particular we divide country 0 into two parts named 0 and 19. Finally we add 

c b 
/ / 

5 6s-I 3s-7 3s+JI ~3s-4 3s+8~ 3s-I 3s+5 4 

~ ~  1 1 I 3s-5 _ 3s+7 1 1 1 _ _ I 1 ~  - J l  _ 

,,,,Cb,-, '"'V, d%o.~ 
'"V\ Y 

, 6s-2 3,-s 3s.,o 6 , .2 f  3,-2 / \ 6~t 

I I .~ ?" 
g - - --C = . . . . . .  E ~ § "6~-i 3 s = r  3~+If ]" 3s--I - 3;+5- ;~ I zs  

3s-41 / ~  3s+8 

6s-3 
Figm'e 4.12:5 
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a handle at  the vertices marked I to obtain  6 adjacencies shown in figure 4.11.12. This 

gives an o.t.e, of a graph  of the type  K 2 3 - 1 6  edges. 

The current  graph in figure 4.11.13 gives an o.t,e, of K ~ 3 - K  5. The dual contains the 

port ion shown in figure 4.11.14, which we modify  as in figure 4.11.15. Then we add a 

handle replacing the vertices marked I by  the port ion shown in figure 4.11.16. This 

results in an o.t.e, of K2a minus the four edges (0, 7), (0, 2), (0, 17), and (a, c). 

4.12. Case 8. Le t  n be of the form n = 1 2 s + 8 .  First  we consider the pairs (n, 10), (n, 16), 

.... (n, n - 1 0 ) .  I f  n = 2 0  we use the o.t.e, of the octahedron graph 010 which is constructed 

in [8]. We use figure 4.12.1 for n = 3 2  and figure 4.12.2 for n>~44, to  obtain  o.t.e. 's of 

K n - K  5. All these have subtractable handles (figure 3.3 applies). Now only the pairs 

(n, 4) remain. I f  n = 2 0  consider the index two current  graph of figure 4.12.3. Note  tha t  the 

two vortices w 0, Wl are arranged just  as in figure 4.10.1. Using the same construct ion as in 

figures 4.10.2 and 4.10.3 we merge w 0 and  w 1 into one count ry  w. We obtain  a map  with 

20 countries missing only four adjacencies. 

For  n = 12s + 8/> 32 and s even we use the same method with figure 4.12.4. For  s odd and 

s>~3 use figure 4.12.5. We note in bo th  cases t h a t  the vortices w 0 and w 1 are arranged 

in the manner  which allows the  modification as shown in figures 4.10.2 and  4.10.3. 
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