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1. Introduction 

Let G be a connected semisimple matr ix  group, and P___ G a cuspidal parabolic~sub- 

group. Fix a Langlands decomposition 

P = M A N  

of P, with N the unipotent radical and A a vector group. Let  ~ be a discrete series re- 

presentation of M, and v a (non-unitary) character of A. We call the induced representation 

~(P, ~ | v) = Ind~ (6 | v | 1) 

(normalized induction) a generalized principal series representation. When v is unitary, 

these are the representations occurring in Harish-Chandra's  Plancherel formula for G; and 

for general v they may  be expected to play something of the same role in harmonic analysis 

on G as complex characters do in R n. Langlands has shown tha t  any irreducible admissible 

representation of G can be realized canonically as a subquotient of a generalized principal 

series representation (Theorem 2.9 below). For these reasons and others (some of which 

will be discussed below) one would like to understand the reducibility of these representa- 

tions, and it  is this question which motivates the results of this paper. We prove 

THEOREM 1.1. (Theorems 6.15 and 6.19). Let g(P, 5|  be a generalized principal 

series representation. F ix  a compact Caftan subgroup T + o / M  (which exists because M has a 

discrete series). Let 

~)= t++a, g 

(') Support by an AMS Research Fellowship. 
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denote the complexilied Lie algebras o1 T+A and G, respectively. Let 

). e (~+)* 

denote the Harish-Chandra parameter o 1 some constituent o 1 the representation 5I M o (the iden- 

tity component o t M). Set 

y : :  (~, r)e ~*; 

here we write v E a*/or the dillerential ol v. Let 0 be the automorphism ol ~ which is 1 on t + 

and - 1 on a; then 0 preserves the root system A ol ~ in g. Then z(P,  5 | v) is reducible only 

i I there is a root o~ E A such that 

n = 2 < a ,  ~,>/<~, ~> e Z; 

and either 

(a) <~, r> >0, <0~, ~'> <0, and a 4  --Oa, or 

(b) g = -Ocz, and a parity condition (relating the parity ol n and the action ol 5 on the 

disconnected part ol M) is satisfied. 

Suppose /urther that <fl, ~) ~=0 /or any fl E A. Then these conditions are also sul/icient 

/or ~z(P, ~| to be reducible. 

The parity condition is stated precisely in Proposition 6.1. 

The simplest kind of direct application of this theorem is the analysis of so-called 

complementary series representations. Whenever v is a unitary character of A, :~(P, 5|  

is a unitary representation. But :~(P, ~t | v) can also be given a unitary structure for certain 

other values of v; it is these representations which are called complementary series, and 

they have been studied by many people. The following theorem is well known, and we 

will not give a proof. I t  is included only to illustrate the applicability of Theorem 1.1 to 

the study of unitary representations. 

THEOREM 1.2. Suppose P = M A N  is a parabolic subgroup o/ G, ~EATI is a unitary 

series representation, and dim A = 1. Assume that there is an element x E G normalizing M 

and A , / i x ing  5 (in its action on I~l) and acting by a ~ a  -1 on A. Fix  a non-trivial real.valued 

character v E A;  and/or  t ER, write tv /or the character whose differential is t times that o /v .  

Let 

t o = sup {t El{ I~z(P, (~ | t, v) is irreducible/or all t 1 with It 1 [ <t}. 

Then whenever It[ <to, every irreducible composition [actor o/:~(P, 5 | is unitarizable. 
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The point is that  Theorem 1.1 gives a lower bound on t o when 6 is a discrete series. 

I t  is far from best possible, however, and the converse of Theorem 1.2 is not true; so this 

result (and its various simple generalizations) are very far from the final word on com- 

plementary series. 

The techniques of this paper are actually directed at the more general problem of 

determining all of the irreducible composition factors of generalized principal series re- 

presentations, and their multiplicities. (We will call this the composition series problem.) 

This is of interest for several reasons. First, it is equivalent to determining the distribution 

characters of all irreducible representations of G, a problem which is entertaining in its 

own right. Next, it would allow one to determine the reducibility of any representations 

induced from parabolic subgroups of G (and not merely those induced from discrete series). 

For  technical reasons this general reducibility problem is not easy to approach directly; 

but  results about it give more complementary series representations, because of results 

like Theorem 1.2. Unfortunately our results about the composition series problem are very 

weak. The first, described in Section 3, relies on the theory of integral intertwining oper- 

ators. Corollary 3.15 provides a partial reduction of the composition series problem to the 

case when dim A = l; in particular, Theorem 1.1 is completely reduced to that  case. Next, 

we study the Lie algebra cohomology of generalized principal series representations. When 

the parameter v is not too large, this leads to a reduction of the composition series problem 

to a proper subgroup (Theorem 4.23). 

Section 5 contains a series of technical results refining Zuckerman's "periodicity" 

([21]). This leads easily to the "only if" part  of Theorem 1.1. Section 6 is devoted to locating 

certain specific composition factors in generalized principal series representations, and 

thus to finding sufficient conditions for reducibility. All of the ideas described above appear 

as reduction techniques. We begin with two-well-known types of reducibil i ty--the Schmid 

embeddings of discrete series into generalized principal series, and the embeddings of finite- 

dimensional representations into principal series--and do everything possible to complicate 

them. The main result is Theorem 6.9. 

For the benefit of casual readers, here is a guide to understanding the theorems of 

this paper. We regard a generalized principal series representation as parametrized (roughly) 

by the Cartan subalgebra ~) and weight ~ defined in Theorem 1.1. This is made precise in 

2.3-2.6. Accordingly, we write g(y) for such a representation. By a theorem of Langlands, 

~(~) has a canonical irreducible subquotient ~(y) (roughly), and in this way irreducible 

representations are also parametrized by weights of Cartan subalgebras. This is made 

precise in 2.8-2.9. 

The main result of Section 3 is Theorem 3.14, which reduces the question of reducibility 
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of ~(~) to the case when dim A = 1. The notation is explained between 3.2 and 3.4, and 

between 3.12 and 3.13. For the reader already familiar with the factorization of inter- 

twining operators, all of the results of Section 3 should be obvious consequences of Lemma 

3.13. 

The main result of Section 4 is Theorem 4.23, whose statement is self-contained. The 

proof consists of a series of tricks, of which the only serious one is Proposition 4.21. A more 

conceptual explanation of the results can be given in terms of recent unpublished work of 

Zuckerman; but  this does not simplify the proofs significantly. 

Section 5 consists of technical results on tensor products of finite dimensional re- 

presentations and irreducible admissible representations. The major new results are Theo- 

rem 5.15 (for which notation is defined at  5.1) and Theorem 5.20 (notation after 5.5). We 

also include a complete account of Schmid's theory of coherent continuation (after 5 .2-  

after 5.5), and a formulation of the Hecht-Schmid character identities for disconnected 

groups (Proposition 5.14; notat ion after 5.6, and 5.12-5.14). Proposition 5.22 (due to 

Schmid) describes one kind of reducibility for generalized principal series. 

Section 6 begins by constructing more reducibility (Theorem 6.9). This leads to the 

precise forms of Theorem 1.1 (Theorems 6.15 and 6.19). Theorem 6.16 is a technical result 

about  tensor products with finite dimensional representations; it can be interpreted as a 

calculation of the Borho-Jantzen-Duflo T-invariant of a Harish-Chandra module, in terms 

of the Langlands classification. Theorem 6.18 states tha t  any irreducible has a unique 

irreducible pre-image under Zuckerman's ~-functor (Definition 5.1). In  conjunction with 

Corollary 5.12, this reduces the composition series problem to the case of regular infinite- 

simal character. 

Section 7 contains the proof of Theorem 6.9 for split groups of rank 2, which are not 

particularly amenable to our reduction techniques. 

The questions considered in this paper have been studied by so many  people tha t  it is 

nearly impossible to assign credit accurately. We have indicated those results which we 

know are not original, but  even then it has not always been possible to give a reference. 

Eearlier work may  be found in [2], [7], [10], [11], and the references listed there. 

2. Notation and the Langlands classification 

I t  will be convenient for inductive purposes to have at  our disposal a slightly more 

general class of groups than tha t  considered in the introduction. Let  G be a Lie group, 

with Lie algebra go and identity component Go; put  g = (g0)c. Notat ion such as H,  H 0, ~)0, 

and I) will be used analogously. Let  Gc be the connected adjoint group of 6, let g~=[g0, go], 
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and let G~ be the connected subgroup of G with Lie algebra ~o i. (For the definitions and 

results of the next few paragraphs, see [3].) 

De/inition 2.1. G is reductive if 

(1) 60 is reductive, and Ad (G) _ Gc, 

(2) G 1 has finite center, 

(3) G o has finite index in G. 

Hence/orth, G will denote a reductive linear group with abelian Cartan subgroups. (One reason 

for this last assumption will be indicated at  the beginning of Section 4.) 

Fix a Cartan involution 00 of G 0, with fixed point set a maximal compact subgroup 

K o of G 0. We can choose a compact subgroup K of G, meeting every component, so tha t  

K fl G o =K0; and 0 o extends to an involution 0 of G, with fixed point set K. Let  P0 denote 

the ( - 1 )  eigenspace of 0 on go, and P = e x p  (P0); then G = K P  as analytic manifolds. Fix 

on ~0 a G-invariant bilinear form ( ,  }, positive definite on Po and negative definite on [0. 

We will frequently complexify, dualize and restrict ( ,  } without comment or change of 

notation. 

PROPOSITION 2.2. Let bo c_ go be a O-invariant reductive abelian subalgebra. Then the 

centralizer G ~. o/ ~o in G is a closed linear reductive subgroup o/ G, with abelian Caftan sub- 

groups. The subgroup K N G ~'~ the involution 0 [ a~~ and the bilinear /orm ( , )  I ~o ~ satis/y the 

properties described in the preceding paragraph/or the group G. 

The straightforward verification of this result is left to the reader. All of the reductive 

groups appearing in inductive arguments will be obtained in this way from a fixed reduc- 

tive group G, and we will assume tha t  they are endowed with Cartan involutions and so 

forth in accordance with Proposition 2.2. 

Let H be a 0-invariant Cartan subgroup of G (i.e., the centralizer in G of a 0-invariant 

Cartan subalgebra). Then H =  T+A, a direct product; here T + = H  N K is compact, and 

A =exp  (~0 N P0) is a vector group. The set of roots of ~) in ~ is written A(~, ~)). More gen- 

erally, if ~1 _~ ~ and V _c ~ is ~l-invariant, we write A(V, ~1) (or simply A(V) if the choice 

of i) 1 is obvious from the context) for the set of roots of ~l in V with multiplicities. We 

write Q(V)=~(A(V))=�89 ~ '~(v)zr  The roots are imaginary on f~ and real on ao; we write 

this as A(g, ~)) _~ i(t~ ) ' +  a~. In general, a prime will denote a real dual space, and an asterisk 

a complex dual. Any linear functional y E ~)* can be written as (Re ~ )+  i(Im 7), with Re 

and I m  ~ in i(t~)' +r unless the contrary is explicitly stated, Re and Im will be used in 

this way. Then ( , > is positive definite on real linear functionals (such as roots). 
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An element 9 E D* is called regular or nonsingular if (9, a} ~= 0 whenever a E A(g, [}). 

To each nonsingular element we attach a positive root system A,+(9, 9) =A~ as follows: 

aEA~ iff Re (9, a ) > 0 ,  or Re (9, :r =0  and Im (9, :r >0. Conversely, to each positive 

root system A + we associate a Weyl chamber Ca+ = D*; 9ECa + iff A~ =A+. The closure 

C~+ of Ca+ is called a closed Weyl chamber; it is a fundamental domain for the action of 

the complex Weyl group W(g/~) on ][~*. An element of Ca+ is called dominant; an element 

of C~+ is called strictly dominant. The Weyl group of H in G, W(G/H), is defined as the 

normalizer of H in G, divided by H; it is in a natural way a subgroup of W(~/~). If a E A(fl, l~), 

we denote by sa E W(g/~) the reflection about a. 

To any element ~, E [~* we can associate a parabolic subalgebra I~ __ 9, with Levi de- 

composition 5 = [ + n, by the condition 

A(n) ={aEA(g,  [))] Re (a,  9 } > 0  or Re (a,  9 } = 0  and Im (a,  9} >0}.  

If 9 E i(t3)', then b is 0-invariant; if 9 E a0, then 1~ is the complexification of a real parabolic 

subalgebra. 

The set of infinitesimal equivalence classes of irreducible admissible representations 

of G is written (~; equivalence of representations will always mean infinitesimal equivalence. 

We consider Harish-Chandra modules (or compatible (U(g), K)-modules) as defined in [14]; 

essentially these are ~-finite representations of the enveloping algebra of g. If X is such a 

module, we denote by Xss (the semisimplification of X) the completely reducible Harish- 

Chandra module with the same composition series as X. 

We turn now to the description of the standard representations of G, beginning with 

the discrete series. (The following construction is due to Harish-Chandra [3], and detailed 

proofs may be found there.) Choose a Cartan subgroup T of K; then G has a discrete 

series iff T is a Cartan subgroup of G, which we temporarily assume. Let Z be the center 

of G; then T =ZT o. 

De/inition 2.3. A regular pseudocharacter (or simply regular character) 2 of T is a pair 

(A, ~), with A E ~, and 2 E it0 regular, such that  

dA = ~[+e(A~(~))-2e(A~*(f)). 

The set of regular pseudocharacters of T is written ~'.  For definiteness, we may some- 

times refer to a G-regular pseudocharacter. We will often write ). to mean ~[; thus if a E A(g, t), 

(:r ~t} means (a,  ~}. We make W(G/T) act on ~tE~' by acting on A and ~ separately. 

Fix 2ET ' ,  and let ga0(~)=n(~) denote the discrete series representation of G o with 
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Harish-Chandra parameter  2. Then ~(2) acts on Z fl G o by  the scalars A I z n e,. Accordingly 

we can define a representation ~c , (2 ) |  of ZGo; and we define 

aa(2) = z~(2) = Indzaa, (aao(2) | A[z) .  

PROPOSITION 2.4. Suppose G has a compact Cartan subgroup T. Then /or  each 2 E ~ ' ,  

zra(2 ) is an irreducible square-integrable representation o /G ,  and every such representation is 

obtained in this way. Furthermore, ze(2) ~ zr(2') i//  2 = a.2 '  /or some (r E W(G/T) .  

Now let H = T+A be an arbi t rary  0-invariant Car tan  subgroup of G. Let  M A  = G a = G a~ 

be the Langlands decomposit ion of the centralizer of A in G; then M is a reductive linear 

group with abelian Cartan subgroups, and T + is a compact  Cartan subgroup of M. 

De/inition 2.5. An M.regular pseudocharacter (or M-regular character) ? of H is a pair 

(2, v), with 2 an M-regular  pseudocharacter  of T+, and  ~ E.4. 

The set of M-regular  characters of H is wr i t t en /~ ' .  We use the same letter for v and 

its differential; thus we m a y  sometimes write }, = (2, v) E ~*. 

Definition 2.6. Let  H = T+A be a 0-invariant Car tan subgroup of G, and let P = M A N  

be any  parabolic subgroup of G with M A  = G A. I f  ? E/~', the generalized principal series 

representation with parameter (?, P) is 

ha(P, ?) = n ( P ,  7) = Indpa(~M(2) | ~' | 1). 

Here :7~M(2 ) (~ ~ (~ 1 is the obvious representation of P = M A N ,  and induction means normal- 

ized induction. 

The distribution character  of ~(P, 7) is writ ten | 7) or simply O(7 ). For  any  

0-invariant Cartan subgroup H of G, one can find a finite set of parabolics associated to H 

as in Definition 2.6; they  differ only in the choice of N. Our notat ional  neglect of P is 

justified by 

PR OF O SITI ON 2.7. With notation as above, i / P '  = M A N '  is another parabolic subgroup 

associated to H, then @(P, ?) = (9(P', ?). 

This s tandard  result follows from the formulas for induced characters given in [16]. 

By  a theorem of Harish-Chandra  (cf. [5]) Proposit ion 2.7 has the following well-known 

corollary. 

C OR OLLARY 2.8. With notation as above, ~r(P, ?) and g(P ' ,  7) have the same irreducible 

composition/actors, occurring with the same multiplicities. 
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So whenever a statement is independent of P, or if the choice of P is obvious, we 

simply write ~(:y) instead of za(P, ~). 

We now wish to consider a canonical family (~x(~) .. . .  , ~r(~)} of irreducible subquo- 

tients of g(P, ~), the Langlands subquotients. I t  turns out that  they are precisely the sub- 

quotients which contain a lowest K: type  of 7~(P, ~,) (Definition 4.1 below). This is proved 

in Section 4 (Corollary 4.6). Langlands' definition is more or less along the following lines: 

The parameter ~ E ~ is said to be positive (respectively strictly positive) with respect to P 

if Re (~, ~) is not negative (respectively positive) for all ~ E A(~0, U~). For any ~ E/~', we 

can choose P so that  ~ is positive with respect to P, and P,  so that  - ~  is positive with 

respect to P.  In this situation there exists an intertwining operator 

I (P ,P ,  7): ~(P, ~) -+ z(P,  ~) 

whose image is a direct sum of irreducible representations, namely, the Langlands sub- 

quotients of ~(P, ~). D. Milihi5 observed that  all irreducible subrepresentations of ~(P, ~) 

are actually Langlands quotients. We write 0~()~) for the character of ~(~). 

THEOREM 2.9. (Langlands [13], Knapp-Stein [ll] .)  Let G be a reductive linear group 

with all Cartan subgroups abelian. Every ~E (~ is in/initesimaUy equivalent to some 7~(y),/or 

an appropriate O-invariant Caftan subgroup H, ~ Efi', and index i. Furthermore, ~(~ ) ~ ~J(~) 

i]/ i=]. I /  B is another O-stable Cartan subgroup o/ G, and ~'EJ~', then ~t($) ~ ( ~ , )  only 

i / H  con]ngate to B by an element o/G taking ~ to ~'. 

We conclude this section with some elementary but useful facts about the representa- 

tions ~(~). Let [) be any Cartan subalgebra of g, and let A+_~A(~, ~)) be some system of 

positive roots; put  Q =~(A+). Associated to A+ there is an algebra isomorphism ~ from i~(g), 

the center of U(g), onto S(~) ~C~/~), the translated Weyl group invariants in the symmetric 

algebra of [). Composing ~ with translation by 0 gives an isomorphism 3(~)!~S(f))w(~/~), 

which we call the Harish-Chandra map; it is independent of A+. In particular, the 

characters of 3(fl) are identified with W(fi/[)) orbits in ~)*; so if ),Eft*, we may speak of 

"the infinitesimal character ~". (For all this see for example [8].) We say that  a repre- 

sentation ~ has infinitesimal character ~ if 3(fl) acts in ~ by the character 7. Then ga(P, ~) 

has infinitesimal character ?; and hence so do all its composition factors. 

PROFOSITION 2.10. (Cf. [1], [19]). Suppose H 1 and H 2 are O-invariant Cartan sub- 

groups o/G, and 

~1 = (~i,  ~1) ~ 1:11, ~ = (2~, ~'2) ~ ~. 
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I /  ~'(Y2) occurs as a composition/actor in ~(~1) ,  then either ~7/:(~)1) a n d  ~'/;(~2) have equivalent 

composition series, or 

<41, 41> < <42, 42>, 
and 

<Re vl, Re Yl> > (Re  ?)2, Re v2). 

Proo/. Since 71 and Y2 define the same infinitesimal character, the two inequalities 

are equivalent. The first is Lemma 8.8 of [19]; the second is a weak form of Theorem 

VII.3.2 in the Erratum Appendix to Chapter VII  of [1]. 

3. Intertwining operators 

Recall the theory of integral intertwining operators as developed in [4], [15]. 

Let  H be a Cartan subgroup, y = (4, ?))~/~', P a parabolic associated to H. 

THE OREM 3.1. (Knapp-Stein, [ll]).  Let P'  = M A N '  be another parabolic associated to 

H. Then there exists an operator I(P, P', ~) intertwining z(P,  y) and ~(P', ~). 

Knapp and Stein use an embedding of the discrete series representations ~(4) in a 

principal series representation to reduce the proof of Theorem 3.1 to the case of a minimal 

parabolic. Since their intertwining operator depends on the choice of the embedding of 

~(4) we will show instead that  if ~ satisfies certain positivity conditions with respect to 

P, P' we can choose an intertwining operator independent of an embedding of ~(4). 

Let / t{4)  be the representation space of ~(4) and H(4) the subspace of M ~ K-finite 

vectors in / t (4 ) .  Consider H(4) as the representation space for ~t(4)|174 Q(A(a, 110)) as a 

character of P, and 

H(P, r) = {/EC~( G, H(4)), ](gp) = e(p-1)(~(4) | ~ @ 1) (p-1)/(g) for p EP ,  / K-finite} 

as the space of K-finite vectors of ~(P, 7)" Here U(g) acts on H(P, 7) by differentiation 

from the left. 

Let  P '  be another parabolic associated to H. Then by [4], N' = (N fl N') U, where U 

is a unipotent group. Define I0(P, P ' ,  y) by 

(Io(P, P', Y) 1) (g) = ( /(gu) du 
dv 

f o r / E H ( P ,  ~) and gEG. As in [4] it follows that  Io(P , P', ~) tEH(P' ,  ~), and 

I0( P, P ' ,  ?)~(P, 7) = ~(P' ,  F) I0( P, P ' ,  ?). 

1 6 -  802905 Acta mathematica 145. Imprim6 le 6 FSvrier 1981 
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THEOREM 3.2. The integral defining I0(P, P', 7) converges absolutely i~ 7 is strictly 

negative with respect to all roots in A(a0, u0). 

We prove Theorem 3.2 by reducing it to the corresponding problem in the generalized 

rank one case, which was solved by Langlands [13]. Obviously, we may assume that  G is 

connected and simple. 

We call Z(ao, go)C A(ao, go) a set o/positive roots in A(ao, go) if: 

(a) E(ao, go) U -E(ao,  go) = A(ao, go); 
(b) Z(ao, go) fl -E(a0,  g0) = 0 ;  

(c) if o:,flEE(Cto, ~o) and ~+flEA(ao, go), then o~+flEE(ao, go). 

Lv, MMA 3.3. There is a one-to-one correspondence between the sets o/positive roots and 

parabolics associated to H. 

Proo/. Let P = M A N  be a parabolic associated to H; then A(ao, rto) is a set of positive 

roots. Define for aEA(a0, go) 

g(a) = {X, X Ego, [H, X] = ~(H)X for all H Gao). 

For a set of positive roots E, put  

ll(E) = | g(~) and N(Z) =expl t (E) .  

The P ( E ) = M A N ( E )  is a parabolic subgroup associated to H. Q.E.D. 

Let  E, E' be sets of positive roots. We call a sequence E I . . . .  , En of sets of positive 

roots a chain connecting E and E'  if 

(a) E I = Z  , Z n = Z ' ;  

(b) the span of Z ~ E ,  n E,+ 1 is one-dimensional. 

The integer n is the length of the chain. 

L~.MMA 3.4. Let E, E' be sets o/positive roots. There exists a chain connecting 5: and E'. 

Proo/. Choose an Iwasawa a(I)o such that  ao= a(I)o. Then there are sets ~ and ~ '  of 

positive roots of A(a(1)o, go), whose restrictions to ao are Z and Z'  respectively. 

Let  wE W(go, a(I)o ) be such that  wE = ~ ' .  Let  w=wl ... w 1 be a reduced decomposi- 

tion of w. Then 

Wl ,, . . . . .  w,_, ... Wi l l ,  wE 

is a chain connecting ,~ and ~ ' .  
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Consider the restriction of this chain to a0. This is a sequence of sets of positive roots. 

Two subsequent sets are either equal or have exactly one root 6r in common with the 

property c:r162 ~o) for 0 < c < 1. We can therefore select a subsequence with the required 

properties. Q.E.D. 

Define the distance between Y, and Z', dist (Z, Z'), to be the minimum of the length 

of chains connecting Z and Z'. 

LEMMA 3.5. Let Z, Z' be sets of positive roots. Then 

and 

n(Z ,Z ' )0=  | 0(a) 
~e]E f) E" 

u(Z, 2;')o= | 0(a) 
~ e ~ "  

are subalgebras, and ll(Z')=it(Z, Z') |  Z'). 

Proof. The last assertion follows immediately from the definitions. Since[g (~), fl(fl)] 

g(a +fl) it suffices to show that  if ~, fl E Z N Z', then a +fl e Z N Z'. This follows immediately 

from the definitions. Since {6r 6r e Z',  a ~ Z N Z'} = {6r g e Z'  N - Z }  the second claim follows 

as well. Q.E.D. 

LEMMA 3.6. Let Z, Z', Z" be sets o/positive roots such that dist (Z, Z") =dist  (Z, Z') + 

dist (Z', Z"). Then the mapping 

~: U(Z', Z") • u ( z ,  Z')-~ u ( z ,  Z"), 

(ul, u2) -~ ulu2 

is an isomorphism of analytic varieties. 

Proof. Note first that  dist (~, ~]')= ] ~ ' ~ ( ~  fi ~')] for any two sets ~, ~ '  of positive 
_ * y  _ _  

roots. Choose a chain as in Lemma 3.4. By construction this chain has length ] ~ '~ ( ]~  N ~ ' ) ] .  

On the other hand, dist n by the definition of a ehain. 

Observe next that  it(Z, Z")0=u(Z,  Z')o| Z") o. By the previous remark it suf- 

fices to show that  if ~EZ N - Z " ,  then aEZ N - -Z '  or ~EZ'  N - Z " .  Let  now ~EZ N --Z". 

If :r N - Z ' ,  then we are done. Assume now ~ Z  N - Z ' ;  then :r and hence ~EZ N - 

Z ~ N Z ' c Z ' N - Z  ". We  proceed now by induction on d i s t (Z ,Z ' ) .  Assume first 

dist (Z, Z ' )=1 .  But then [u(Z, Z')0, U(Z', Z")0]cll(Z' ,  Z") 0. Since U(Z, Z") is simply con- 

nected, we can apply [20, Lemma 1.1.41]. 



238 B .  S P E H  A N D  D.  A.  VOGAN~ J R  

Assume now that the lemma is proved for all Z with dist (Z, ~) <dist (E, Z'). Choose 

a ~ such that dist (Z, Z') =dist  (Z, ~) +dist (~, Z') and dist (~, Z ' )=  1. Then the corn- 

mutative diagram 

uir,, :~1 • u(~,  ~') • uir,', Y:I 

completes the proof. 

v(z, z,,) 

THEOREM 3.7. Let P=P(Z),P'=P(Z') ,  

dist (Z, Z") +dist (Z", Z). Then 

Proo]. 

, u ( x ,  X') • u(x ' ,  Z") 

1 
, u(~:, :~)  

Q.E.D. 

and P"=P(Z") be such that dist (Y~, Z ' )=  

Io(P , P', y) = Io(P" , P', y) Io(P, P", y). 

[ .  
(Io(P, P', Y) t) (g) = I t(gu) du 

j r(  E,E ' )  

=~X..~,)~y..~,,) ](gu~ul)duldu 
= (Io(P", P', Y) Io(P, P", Y) 1) (g), 

where ulE U(~, ~"), use U(~", ~'). Q.E.D. 

This theorem was proved by Knapp-Stein as well. 

Now let E 1 ..... Er be a chain joining Z and Z' with r =dist (E, E'). Then 

I0(P, P', y)/(g) = (I0(PT(Er_l), P', y) ... Io(P, P(E2), Y)[)(g). 

Thus to prove convergence of the integral it is enough to consider the case P =P(E) and 

P(E') with dist (E, E ' )= 1. 

L~H~A 3.8. Let P =P(Z), P ' =  P(Z'), and P(Z, Z ' )=  M(Z, Z')A(Z, Z')N~(E, Z') be the 

smallest parabolic containing P and P'. Put PM=M(Z, Z') NP, P'M=M(Z, Z') NP'. Then 

I0(P, P', y) H ( P, y) is equal to the set o/K-finite vectors in Indea(x. ~:,) [ Io( PM, P'M, Y) H ( PM, Y)] | 1. 

Proo]. We identify [EH(P, y),y=()., v) with a K-finite Indee(r"r"):~{).)|174 

function [ on G by the formula 

l(gp)= (T(g))(p), gEG, pEP(Z, Z'). 

Then T(e) E Ind~ (z" ~:')~(~t) | v | 1. 
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Define I(P, P', 7) by the formula 

[/(P, P ' ,  7)[(g)] (P) = Io(P, P', 7)f(gP), 

Since Io(P, P', 7) formally intertwines rr(P, 7) and r 7), so does I(P, P ' ,  7). Now 

[I(P, P' ,  7) [(g)] (P) = z(P' ,  7)(g- ')[7(P, P' ,  7)[(e)] (p) 

= z(P', 7)(g-t)io(P ' p,,  7)[(P) 

= :r(P', ~,) (g-l) ( /(gu) du 
Jr( 2;,Z') 

= ~r(P', 7) (g-l) ~ ](manu) du 
Jr( 

= n(P' ,  7)(g-l) fv(r..~,l(mauu-Xnu ) du 

= n(P', 7) (g-l) f /(mau) du, 
.Iv( 

where mEM(Z, ~'1, aEA(~,, ~,')~ nENp(Z, ~.'). 
M(~.~') It But / considered as a function of ma is in Indp~ ~( )| v, and 

fv< (mau) du = Io(PM, PM, 7)/(ma). 
~ .~ ' )  

Hence 

and thus 

[T(P, P', ~)T](e)elo(PM, P'M, 7)H(PM, 7)| 1, 

p, a , I(P, ,7)[EInde(z.r~')Io(PM, PM, 7)H(PM, 7)| 1. Q.E.D. 

COROLLARY 3.9. Io(P, P', ~) is injective i// Io(PM, PM, 7) is in]ective. 

If P =P(Z),  P' =P(Z') and dist (Z, ~') = 1, then PM and P~  have parabolic rank one. 

Hence if PM=PM(ZM) for a set of positive roots ~;M in A(% N IU(Z, Z')0, re(Z, Z')0 ), then 

PM=PM(--ZM). 

THE OREM 3.10. (Langlands [13]). Let P =P(E),  P '  =P(-Y=), and suppose 7 is strictly 
positive with respect to Y,. Then Io(P , P', ~) converges absolutely. 

Since in the setting of Lemma 3.8, I0(P, P' ,  7) converges if and only if Io(PM, P'M, 7) 
converges, we see that  if P =p(F=), p' =P(E), dist I ~;, E' l  = l, then Io(P, P', 7) converges 

absolutely if 7 is strictly positive with respect to all roots in E ' ~ ( E '  N ~). Using the pro- 

duct formula for Io(P, P', 7), Theorem 3.2 follows immediately. 
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THE OREM 3.11. (Langlands [13]). Let P =P(~) ,  P '  =P ( - ]E ) ,  and suppose 7 = (~t, ~) is 

Strictly positive with respect to P. Then 

Im Io(P, P', 7) 
is irreducible. 

Thus by Theorem 3.11, if 7 is strictly positive, then ~(P, 7) is reducible iff Io(P, P', 7) 

has a nontrivial kernel. If P" 4=P is a parabolic subgroup associated to H, then by Proposition 

2.7 ~(P", 7) is reducible iff ~(P, 7) is reducible. Hence to give reducibility criteria for general- 

ized principal series representations ~(P", 7), with 7 nonsingular with respect to A(a0, ~0), 

is equivalent to finding necessary and sufficient conditions for the injectivity of I(P, P', 7). 

Now let Z1, ..., Z~ be a chain connecting Z and - • .  Then by Theorem 3.7 

I(P, P', 7) = I(P(Z~-I, P(Xr), 7) .-. I(P(]~), P(E~), 7). 

Hence I(P, P', 7) has a nontrivial kernel iff one of the factors does. 

If x, E~t and ~ ~*+1, put  G(~) -- M(Y~i, ]~,+l)A(Y.t, Z*+x). By Lemma 3.8 we have thus 

proved 

THV~ OREM 3.12. Under the assumptions above, ~(P, 7) is reducible i]] one o] the oper- 

ators I(P(]~) N G(o~,), P(Y~+x) N G(~,), 7) has a nontrivial kernel, or equivalently, iff one o] 

the representations ~(P(Y~) N G(~t), 7) is reducible. 

Since G(~,) is again a reductive linear group with abelian Cartan subgroups, we have 

thus reduced the reducibility problem for such parameters to the corresponding problem 

in the generalized rank one case. 

Now consider the general case, so that  v may be singular with respect to A(a0, 90)- 

Choose a parabolic P = M A N  so that  P is positive with respect to ~ ~ (2, v). Define a para- 

bolic subgroup P' = M'A 'N '  containing P by 

0~ = n ker (~) c a 
r A(ao. no) 

Re (*t, v> ~ 0 

A(ao, no) = {aEA(ao, flo) lRe (a,  v) > O} 

Then :~M,(P n M', (~, v)) is unitarily induced, and so is a direct sum of irreducible tempered 

representations z~, ..., Zr. Writing 

v~=vlA,, V, =ViA,M" 

we get by step-by-step induction 

~(P, 7) = Ind,,  ~M,(P N M',  (~, vt))| v2| 1. 
r 

~(P, 7 )=  | Ind,.  ~ , |174  
t = l  
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Notice that  P '  is strictly positive for v2. 

Choose a chain Z ~ ..... Zt ~ connecting 

and set 

A(ao, no nm'), -A(ao, no om'), 

Z ,=Z~ rt ') ( l< i<t ) .  

Next, choose a chain Zt ..... Zn connecting Zt and -A(a0, no). For 1 4i<~n-1 ,  let ~, be a 

root in Z, not in Y~+ 1. If  1 <i<~t-1,  then 

so by induction by stages, 

Re (v, ~> = 0 ;  

re(P(Z~), 7), re(P(~]~+l), 7) 

are induced from unitarily equivalent tempered representations; so we can choose an 

isomorphism I(i, 7) between them. If t ~<i ~<n - 1, then 

ICe (v, as> > 0, 

so the integral intertwining operator 

is convergent. Set 

I(i, 7) -~ I(P(Z,), P(Z,+I ), 7) 

I(P, 7) -= I(n - 1, 7) ... I(1, 7). 

By Theorem 3.7, I(P, 7) is (up to equivalences) exactly the integral used by Langlands 

in [13] to define the Langlands quotients of re(P, 7). This proves 

LEMMA 3.13. Let ~(7)  denote the Langlands quotient o / Ind, .  (ret|174 Then 

l" 

I(P,  7) H(P, r) " �9 ~,(7), 
4 - 1  

a direct sum of r irreducible representations. 

So one of the representations Indp a. rei | v~| 1 is reducible if and only if I(P, 7) has a non. 

trivial kernel; or, equivalently, if one of its factors does. This proves 

THEOREM 3.14. Let 7 = (~t, v)E/~; let P =P(Z)  be a parabolic associated to H, positive 

with respect to 7, and Y~l ..... Y~ n be a chain connecting ~ and - Z. Then re(P, 7) is reducible i]/: 

(a) one of the operators Io(P(~i) , P(Zi+I) , 7) has a nontrivial kernel and (~,  v) >0, or 

(b) the tempered representation reM.((P f] M'), (2, Vl) ) is reducible. 
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Again we reduced the problem to a problem for nonsingular a parameter in the gen- 

eralized rank one case and reducibility of unitarily induced tempered representations; and 

this latter problem is completely solved (cf. Theorem 4.5). 

We call the operator I(P, 7) the long intertwining operator for 7. 

COROLLARY 3.15. Let re be a composition/actor o/ re( P, 7). Then re is either a composi- 

tion/actor o/the kernel o~ a/actor o~ the long intertwining operator, or it contains a lowest 

K-type. 

Proo/. This follows immediately from the product formula of the long intertwining 

operator, and Lemma 3.13. Q.E.D. 

But  by Lemma 3.8 the kernel of a factor is the representation induced from the kernel 

of the corresponding operator in the generalized rank one case. Hence, if in the generalized 

rank one case the kernel of the operator is again a generalized principal series representa- 

tion or if we can find I generalized principal series representations such that  each composi- 

tion factor of the kernel is a composition factor of at least one of the 1 generalized principal 

series representations and vice versa, we can apply Corollary 3.15 again to compute the 

composition series of the kernel of the corresponding factor. 

Example 3.16. Let G be a complex connected group. In this case there is only one 

conjugacy class of Caftan subgroups and thus the minimal parabolic is the only cuspidal 

parabolic. By Corollary 3.15 the computations of composition series for generalized prin- 

cipal series representations (up to multiplicities) are reduced to calculating the composition 

series for the kernels of the factors of the long intertwining operator. Using Lemma 3.8 

and the fact that  for SL(2, C) the kernel of the corresponding intertwining operator is 

again a generalized principal series representation, we deduce that  the kernel of each factor 

is either zero or a generalized principal series representation. Hence applying the above 

considerations again we can compute the composition series of the kernel of each factor of 

the long intertwining operator and thus compute the composition series of the generalized 

principal series representation we started with (up to multiplicities). This gives a partial 

answer to the composition series problem for complex groups. 

4. Reducibility on the bottom layer of K-types 

We are going to need the results of [19], including its unpublished second part. Un- 

fortunately those results were proved only for connected groups. The extension to the 

present hypotheses on G poses various minor technical problems. Almost all of these involve 
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questions of definitions. Since it is not practical to reproduce [19] here, we will give only a 

careful account of the definitions and main theorems, reformulated to allow for the dis- 

connectedness of G. The theorems are certainly non-trivial; but following the arguments 

of [19] using the definitions here is trivial, and can safely be left to the skeptical reader. 

The main result is Theorem 4.5 below. 

Choose a Cartan subgroup T of K, and a system A+(~, t) of positive roots; put 2Q~ = 

~ A  ~(~) ct. Since W(G/T) = W(K/T) may be larger than W(~/t), the closed Weyl chamber 

C,A+(~)----- t* need not be a fundamental domain for the action of W(K/T) on t*; so we choose 

such a fundamental domain C1___ CA+(~) arbitrarily. With this choice, every representation 

/~E~ has a unique extremal weight flECk. Define II/zii=(fi+2Q~, fi§ this is easily 

seen to be independent of all choices. 

Definition 4.1. The Harish-Chandra module X is said to have tt as a lowest K-type 

if/t  occurs in X I~, and ]]#H is minima] with respect to this property. 

We want to describe the set of irreducible Harish-Chandra modules with lowest K- 

type ft. Just  as in the connected case, we begin with a special situation; details may be 

found in Section 6 of [19]. 

G is said to be quasisplit if it has a parabolic subgroup P = M A N  which is a Borel 

subgroup; this is equivalent to having M compact and abelian. We assume for the next 

few paragraphs that  G is quasisplit and fix such a Borel subgroup. Then MA is a maximally 

split Cartan subgroup of G. I t  should be pointed out that  M is actually a subgroup of K, 

namely, the centralizer of A in K. To each root ~ E A(11, (~), we associate a connected semi- 

simple subgroup G~E G: P N G ~ is a Borel subgroup of G ~, 1l N ~ is the sum of the ra root 

spaces of a in 1t for r > 0, and (~ N g~ is the one-dimensional subspace of a dual to ~ under 

( , ~. Up to isomorphism, there are only three possibilities for ~): 8[(2, R), 8u(2, 1), and 

~[(2, C). Put ~ = fl~ N ~. If g~ ~ 81(2, R), ~ has a natural element Z ~ (defined up to sign) 

which corresponds to 

2 Set a~ =exp (~gZa), ma =a~. Then a~ is defined only up to inverse; but m~ = 1, so m~ is well 

defined. Furthermore, aa normalizes MA; and 5~E W(G/MA) is the reflection about ~. 

Just  as in the connected case, a representation 6 E h~ is called/ine if its restriction to the 

identity component of M N Go 1 is trivial. A representation # E/~ is called fine if whenever 

95 ~ 8[(2, It), /zl~ is trivial; and whenever g~ =~ 8[(2, R), #(Za) has only the eigenvalues 0 

and 4-/. If ~E,M ~ is fine, we let A(~)c/~ denote the set of fine K-types whose restriction 

to M contains 8. Let M'  be the normali~er of A in K, so that W=M'/M= W(G/MA). 
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If (~ E ~ is fine, we let W~ ~ W be the stabilizer of (~ with respect to the natural action of 

W on /~ .  The set of good roots of a in g with respect to ~ is defined to be 

h~ = {aEA(~, a)[fi~ m ~[(2, R), or g~ = ~[(2, R) and 5(ma) = 1}. 

Then A~ is a root system just as in the connected case; and we define W(As)= W ~ Just  

as in the connected case, one shows that  W~ W~, in fact as a normal subgroup. Let  

~=~lMnz~ Then obviously W~176 and it is not hard to see that  W~___ W~. Set R~= 

W$/W ~ I t  was shown in [19], Section 9, tha t  if G is connected, then R 8 is a product of 

copies of Z/2Z. By the preceding remarks, R~___ R-; so R~ is a product of copies of Z/2Z 

in general. In particular, / ~  is a group. I t  is possible, just as in the connected case, to 

define a natural action of ~8 on A(~); this is rather complicated, and we will not repeat 

the definition here (cf. [19], Section 9). This action turns out to be simply transitive, so 

that  in particular A(0) is nonempty. If vEA, put  

R~(v) = {eERsIaEW ~ and a.~EW~ 

Put  y =(~, v)E h3/• ~.  Then y can obviously be identified with an M-regular pseudo- 

character of MA, so we get a principal series representation ~(P, y). The set of lowest 

K-types of ~r(P, y) is A(6)--this is a trivial consequence of the corresponding result for 

connected groups ([19], Section 6). By an extension of the methods of [19], one can show 

that  if be E A(5), then 5 occurs only once in be lM, Hence be occurs exactly once in ze(P, Y) le, 

so there is a unique subquotient ~(~, be) of ~(P, ?) containing the K-type #. These results 

and several others are summarized in 

TH~.OREM 4.2. Let G be a quasisplit reductive linear group with all Cartan subgroups 

abelian, and let P = M A N  be a Borel subgroup o/G. Suppose ~EJV~ is/inc. I/beEA(~), then 

be lM is the direct sum o/the M.types in the W orbit o/~ in Ii~l, each occurring with multiplicity 

one. The group t~  acts simply transitively on A((~) in a natural way. Let ~=(d}, u)E/~ • A. 

I]  be' EA(5), then be' occurs in ~(y, #) itf be' is in the orbit o] be under the action o/J~$(v), the 

annihilator o/R$(v) in J~. 

This can be proved by the methods of [19], where it is proved for connected reductive 

groups. Although the argument is not entirely trivial, we will not digress to give it here. 

I t  is worth remarking that  the result can fail even for linear groups if the Cartan subgroup 

M A  is nonabelian; the simplest example has G0=SL(2 , R)•  SL(2, It), and IG/Gol =4. 

This gives an example of a tempered principal series representation of a reductive group, 

whose irreducible constituents have multiplicity two. The assumption that  all Cartan 

subgroups are abelian is the simplest way to avoid such problems. 
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We return now to the general problem of determining all representations with lowest 

K - t y p e / z E g ;  recall the extremal weight fiEii~. Let 2=~(fi)Ei~ be the parameter asso- 

ciated to fi by Proposition 4.1 of [19]. (If A + is a 0-invariant positive root system for the 

fundamental Cartan t + O ~ in g such that/Z + 2~ is dominant, then ~ is close to fi + 2Qc- 

o(A+). For details see [19].) Let  b = l + n  be the parabolic subalgebra of g defined by 2; 

then I is quasisplit, and fi -2~(n  N p) is the highest weight of a fine L 0 N K-type. Via ( , ) ,  

we identify 2 with an element t] E t; let L be the centralizer in G of tx. Then the Lie algebra 

of L is in fact 10, and L normalizes n. Suppose X is a Harish-Chandra module for G. If 

/Z ~ g ,  let X ~ denote the extremal weight vectors of the/z-primary subspace of X. Analogous 

notation is used for L. We know from [19] that  H~(n, X) is a Harish-Chandra module for 

L~. :But L N K acts on H~(~I, X) in a natural way, so H~(n, X) becomes a ttarish-Chandra 

module for L. Let/ZL denote the representation of L n K generated by the/2 weight space 

in/Z; then/zz is irreducible. Recall that  g =dim (1l fl p); define 

m - 2 e ( n  n p) = m  | [AR( n n ~,)]*. 

Just  as in Section 3 of [19], one obtains a natural map 

~o~: H~ N L X) u~ | AR(n N p)* -~ H~(n, X) ~', 2Q(~ n ~) 

which can be used to compute the action of U(g) K~ on H~ fl 3, X) u~ whenever/~ is a lowest 

K-type of X. 

Now L is quasisplit; let H = T 'A be a maximally split Cartan subalgebra. Furthermore, 

/ZL- 2~(rt N p) is a fine L N K-type; so we can choose a fine T+-type 2L =~tL(/Z -2~(rt fl p)) E ~+ 

such that/zL -2~o(n N p) EA(2L). 

' 2 LE~MA 4.3. With notation as above, suppose that/zr.- Q(n N o)EA(2L). Then there is a 

unique K-type/Z', containing some extremal weight fi', such that/Z'L is the representation o/ 

L fl K generated by the fi, weight space in/Z. Furthermore, ~{/~') is conju(jate to ~(/Z) under 

W(G/T). 

The easy proof (using Proposition 7.15 of [19]) is left to the reader. 

Let P = M A N  be a cuspidal parabolic subgroup of G associated to H. The pair 

= 2~(/z) = ( ~ L |  n p), ,~.(/z) I ~+) 

is an M-regular character of T+ (cf. [19], Section 7). Suppose vE~;  put  7=(2 ,  v), and 

define R~ = Ra~, R~(v) = R~L(v ). 
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L~MMA 4.4. (el. [19], Proposition 7.9). The set o/ lowest K-types o/ze(P, y), which we 

write A(2), is precisely the set described by Lemma 4.3. These K-types occur with multiplicity 

one in ~(P, ~). 

]?or ~u 6A(~t), we can now define ~o(~',/~) =~(Y, #) to be the unique irreducible sub- 

quotient of ~(P, ~) containing the K-type /l. Since we have set up a natural bijection 

A(2) ~ A(2L),/~ acts simply transitively on A(2). 

THEOREM 4.5. (cf. [19], Theorem 10.1). Let G be a reductive linear group with all 

Caftan subgroups abelian. Then the sets A(2) partition 1~; and A(2)=A(~t') i// T+ is con- 

]ugate to (T+)' by an element o/G talcing 2 to 2'. I/~6A(~t),  then the set o/irreducible repre- 

sentations o/G with # as a lowest K-type is (~( (2, ~), [l) ). The set o/lowest K-types o/~((2, v), #) 

is _~(~)./~_A(2). The L N K-type,/~L -2~(r~ N ~p), occurs exactly once in HR(n, ~((~,  ~), t~)); 

this is accounted /or by the occurrence o/ ~L((~tL), V), (/~L--2~O(II N p)) as a composition /actor 

in the cohomology. 

I / ~  is unitary, then every component o/ 7e((2, v)) contains a lowest K-type. 

COROLLARY 4.6. (cf. [19], Corollary 10.15). The set o/Langlands subquotients o/7e(y) 

is {~(y, ~)1/~ EA(2)}, which has order IRa(v)/; this is one unless ~ annihilates some real root. 

Our next goal is to describe a family of representations which will be used to con- 

struct reducibility of generalized principal series. I t  has been known to several people 

(notably Schmid) for some time that  the character identity of Proposition 5.14 describes 

the reducibility of certain generalized principal series representations, and that  this re- 

ducibility is "analogous" to that  of principal series representations for SL (2, R). The re- 

sults below explain and generalize this analogy. To simplify the exposition, we assume 

for the remainder of this section that  G is connected. Generalizations of the results to 

disconnected groups are needed in Section 6; the reader can easily supply the additional 

details. Accordingly we make notational simplifications as in [19]; for example, representa- 

tions of K are now identified with their highest weights. 

Let 5 =l  + n  be a 0-invariant parabolic subalgebra of ~, compatible with our fixed 

choice of A+([). Let L be the normalizer of 5 in G; the Lie algebra of L is 10. Let V be a 

Harish-Chandra module for L. We want to construct a representation of G which is "holo- 

morphically induced" from V, in analogy with the Borel-Weil theorem for compact groups. 

Formally there is an obvious way to do this, using the cohomology groups of a certain 

sheaf defined by V on the complex manifold G/L. Unfortunately, this approach presents 

formidable analytic problems: The sheaf in question is not coherent unless V is finite- 

dimensional. So we use some infinitesimal properties which this holomorphically induced 



R E D U C I B I L I T Y  OF G E N E R A L I Z E D  P R I N C I P A L  SERIES  R E P R E S E N T A T I O N S  247 

object ought to have as its definition. Fix an L N K- type /z  -2~(rt  N p) occurring in V, and 

assume tha t  # is dominant for A+(t). (Such/z need not exist, of course.) Recall tha t  V ~-2q(n n ~) 

is the space of extremal weight vectors in the L N K-pr imary  subspace of V corresponding 

to the L N K-type/z  - 2~(11 fi p). Then V "-  2Q(n n v) is a finite-dimensional module for U([) L n K. 

Recall from [19], (3.2), the map ~: U(g)K~U([) LnK. Via ~, we can consider V z-2q(nnv) as a 

module for U(g) K. Since it is finite-dimensional, it has a finite composition series; write 

W ~ for the direct sum of the composition factors. By a theorem of Harish-Chandra, the 

action of U(g) K on a single K- type  of an irreducible Harish-Chandra module determines 

the module completely. Therefore, there is at  most one completely reducible Harish- 

Chandra module X =Xa(b,  V,/~) =X(l~, V,/z) with the following properties: 

(a) Every  irreducible constituent of X contains the K- type  #. 

(b) X ~ is isomorphic to the U(g} r module W, defined above. 

Since not every module for U(g) K can occur as Y~ for a Harish-Chandra module Y, the 

existence of X(l), V,/~) is not obviouus. We want to prove this existence, and derive some 

simple properties of X(b, V, #). For this purpose it clearly suffices to consider irreducible 

V, as we do from now on. We begin with a holomorphie "induction by stages" result. 

LEMMA 4.7. Suppose D'~_[; say l ~ '= [ '+n ' ,  with l'__I, rt'_c n. Then 

XG(5', XL'(~ n 1', V, # -2q(11' n p)), #) = X(5, V, ,u); 

i.e., i / the left side exists, then so does the right, and they are equal. 

Proo]. Write ~': U(fi) ~c-~ U([') L'n K, ~v: U(I') L'n ~:~ U(I) L n K for the maps of [19], (3.2). 

Then ~ =~vo~',  as follows trivially from the definition. The assertion of the lemma is now 

a formal consequence of the definition of X(I), V, #). Q.E.D. 

LE~IMA 4.8. Let Y be a Harish-Chandra module /or G such that V is a composition 

/actor o/HR(n, Y) (with R =dim (11 N p)). Suppose that V u-2e(nn~) lies in the image o/ 

Z~o~: H~ ~ ~, Y)u | [AR(11 N p)]* -* HR(11, y)u-2Q(n n ~) 

Then X(b, V,#)c_ Yss. 

Proo/. By Theorem 3.5 of [19], the pullback of V "-2q(n n ~) to a U(g) K module via ~ is a 

subquotient of Y". The conclusion is immediate. Q.E.D. 

LEMMA 4.9. Suppose b ~ is the O.invariant parabolic subalgebra associated to #0, with 

/~~ N p)EA(2~ Define ~t~ ~ using 200 as in the first part o/this section. Then 

X(5 o, ~((,~~ v), #o _2e(11o n p)), #o) = :~((2o, ~,), #o). 



2 4 8  B. SPEH AND D. A. VOGAIg, JR 

Pro@ This is simply an assertion about  the action of U(g) K on ~((2 ~ v), #~ ~~ I t  

follows from Theorem 4.5 and Lemma 4.8. Q.E.D. 

Suppose X is a Harish-Chandra module containing the  K - t y p e / z .  Recall f rom [19], 

Definition 3.13, t ha t / z  is said to  be strongly n-minimal in X if whenever  F is an irreducible 

representat ion of K such t ha t  (H](11 N 3, F ) |  [A]'(lt N p)].)~-2q(tm ~)~0, then  either (J, J') = 

(0, R), or F does not  occur in X. By  [19], Theorem 3.14, 

~ :  X ~ | [AR(rt fl p)]* -~ Hn(rt, X) ~-2e'n n ~) 

is bijective if/z is strongly 11-minimal in X. Because of Lemma  4.8, therefore, we are ve ry  

interested in this condition. One can sometimes reformulate  the condition much more 

simply. 

L E • • A 4.10. There is a constant N = N(G) with the/ollowing properties: Let b = I + 1l_~ g 

be a O-invariant parabolic subalgebra compatible with A+(~), and suppose I~Et~ satisfies 

(/~, cr > N / o r  every root o~ of t in 11. 

(a) I / X  is a Harish-Chandra module not containing the K-type of highest weight 

- (fl ,  + . . .  + fl,) 

/or any non.empty subset {ill ..... flz} of the roots of t in 11 (~ p, then # is strongly 11-minimal in X .  

(b) Let b = [ + f i ~ |  be the O-invariant parabolic associated to /~ -2~(nN p). Then b= 

1+ (1l + 1l) =l+n___ b is the O-invariant parabolic in g associated to/~. 

Proof. Let  F be a K- type  of highest weight ~, and suppose 

(H~(11 N 3, F) | [A~'(rt N p)]*)~-2q(" n ~ ~=0, 

with (J, J ')=#(0, R). Le t  l = R - J '  (with R = d i m  11 fl p). By  the computa t ion  at  the be- 

ginning of Section 5 of [19], there  is an element  aE W(K/T)  such t ha t  

with the fl~ dist inct  roots of t in 11 N p. Fur thermore  a satisfies the following condition: let 

A~ + = {~ E A+(~, i)l a - l a  ~/A+(~, ~)}. 

Then A, + consists of exact ly  J roots of t in 1l fl ~, and the length of a is J .  We claim tha t  

the hypothesis  on /z  forces J = 0. So suppose ar A~ +. Then  

(~, a(7 +er = ( a-~a, 7 +0~) < 0 
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since y + ~r is dominant, and ~-1cr ~ A +(3, t). On the other hand 

<~, ~(r +~c)> = <~, ~ +~o-~1 ... -~t> > ~v-  <~, ~ ~t>. 

If N is large enough, this is positive, a contradiction. So A~* is empty, J=O, and ~ has 

length 0. So ~=1.  Since (J, J ' )~ (0 ,  R), J '~R;  so l~0 .  The equation for ~ reduces to 

So if X satisfies the hypothesis (a), F does not occur in X, and/~ is strongly r~-minimal. 

For (b), we have to recall how the parabolic is associated to a K-type ([19], Proposi- 

tion 4.1). Notice first that  

2~(n) = 2Q(n n ~) +2Q(. n ~) 

is the weight of the one-dimensional representation A R* s(rt) of I. So/~ is also the parabolic 

associated to 
(#-2~(n N p)) +2e(n) = t t  +2e(n N 3). 

Now b is defined as follows. We choose a positive root system A+(I, t) for i in [, so that  

[tt +2~(n r) 3)] +2~(A+([ ~ 3, i)) = #  + 2~ 

is dominant for A+([, t). Next choose {fit, ct} as in Proposition 4.1 of [19]; this means in 

particular that  

~(t) =g+2e~-~(a+([) )+�89 ~ c,~t 

is dominant for A+([), and that  

h(b, t) = {aeh( i ,  t ) l (a ,  ;~(i)> >/0}. 

Now we consider the parabolic defined by/~. We must begin by choosing a positive 

root system A+(g, t) so that  g +2~o is dominant. By the hypotheses on/x, 

A+(g, t) = A(n, t) U n+(i, t) 

has this property. Next we must look at 

~(g) = g + 2Qc-Q = g + 2Q~ -~(A+(I)) -Q(A(n, t)). 

Since ~(A(n, t)) is or~hogonal to all the roots of t in [, and A(~]) has a large inner product 

with the roots of t in n, the set {fit, c,} satisfies the hypotheses of Proposition 4.1 of [19] 

for #. Thus 

2(~) = ~ + 2e~ - e + �89 Y c,fl, = ~(I) -e(A(n, 0) 
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defines the parabolic b associated to It. So 

A(b, t) = {aeA(g, t) l(~ , ;t(g)> ~>0} 

= A(n, t) U {~eA([, t)l(~, 2(~)) >~0} 

: a(n,  t) u (~ea(~ ,  t)l<~, ,~(t))~>o} 

= a(n,  t) u A(~, t). 

Here the second equality follows from the hypotheses on It, and the third from the fact 

that  e(A(rt, t)) is orthogonal to the roots of 1. This proves (b). Q.E.D. 

Because of the condition in Lemma 4.10 (a), the following technical result is useful. 

L~M~A 4.11. In the situation o/Lemma 4.7, every K-type It1 occurring in ze(2 ~ ~) is o] 

the/orm Ito + Q, with Q a sum o/roots in b ~ 

This is established in the proof of Lemma 8.8 of [19]. 

Definition 4.12. The K-type/~ of the Harish-Chandra module X is said to lie on the 

5-bottom layer if every K-type occurring in X is of the form It +Q, with Q a sum of roots 

in b. The K-types of X of the form It +Q0, with Q0 a sum of roots in f, constitute the b- 

bottom layer o/K.types. 

PROPOSITIO~ 4.13. With notation as above, X(5, V,p) exists; and It lies on the b- 

bottom layer o/ K-types o/ X. 

This requires a lemma, which is borrowed from the proof of Lemma 7.3 of [19], and 

inspired by results of Jantzen and Zuckerman. 

L~MM), 4.14. Suppose b = l + r t  is a O-invariant parabolic compatible with A+([), and 

ItEl~. Suppose that tt is on the 5-bottom layer o/ K.types o / a  Harish-Chandra module X ,  

and that (with N as in Lemma 4.10) 

(it, a} > N 

/or all ~EA(rt). Let ~, be a positive integral multiple o] 2~(n); then we can regard C ~ as a 

one-dimensional representation o/l  (namely a tensor product o/copies o / (A t rt)*, with t = dim 11). 

Suppose finally that tt -~, is dominant/or A+([). Then there is a Harish-Chandra module Y 

(depending on X,  tt, and ?) such that 

(a) Every K-type o/ Y is o/the/orm 

t t - •  +Q, 
with Q a sum o/roots of t in 5. 
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(b) I /p"  - 7  is a K.type such that be - tz '  is a sum o/roots o/ t in 1, then the multiplicity 

o /# '  - 7  in Y is the multiplicity o/I t' in X.  

(c) The natural map (de/ined be/ore Lemma 4.3) 

~-Y: H~ n ~, Y)~-~ | [(AR(n n p)]* -* H~(rt, y)~-y-2Q(,, ~) 

is in]ective, and its image is isomorphic to 

HR(rt, X)~-2q(n n v) | C_y 

as a module/or U(I) Ln K. 

(d) I / ~  is another K-type o/ X satis/ying the hypotheses o/the lemma, then the Harish- 

Chandra module Z associated to X,  6, and 7 is isomorphic to Y. 

We refer to the process of going from X to Y as "shifting". 

Proo/. Since 7 is integral and dominant for any positive root system A+ containing 

A(II), there is an irreducible finite dimensional representation F_ r of lowest weight - 7 .  

We define 
Y = X |  F_y; 

then (d) is obvious. Let  99 be a K-type of Y. Then there is a_K-type 991 of X and a weight 

992 of t in F_y such that  

99 = 991 + 992. 

Since # lies on the b-bottom layer of X, and - 7  is the lowest weight of F_y, we can find 

sums of roots of t in b, Q1 and Q2, such that  

Setting Q = Q1 + Q2, this gives 

991 =/~ +Q1 

992 = - 7 + Q 2 .  

99 = # - 7 + Q  
proving (a). 

For (b), let E u'-r be a copy of the representation of K of highest we igh t / z ' - 7 ,  We 

want to compute 
dim HomK (E u'-y, Y). 

Now 

HomK (E ~'-~, Y) = H e m  K (E ~'-y, X |  "" HomK (E"-~| X). 

The representation contragredient to F_y is the one F v of highest weight 7; so we want 

HomK (E~'-Y| ~, X). 

17 - 802905 Acta raathematica 145. Imprim$ le 6 F6vrier 1981 
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Now one knows t h a t  E~'- e |  v contains the  K - t y p e  E ~' of highest  weight  # '  (the "Car t an  

p roduc t "  of E ~'-~ and  E ~) exac t ly  once, and t h a t  every  other  const i tuent  is of the  form 

E ~'-r+~, with ~ = ~  a weight of t in F ~. Such a ~ is of the  form 

with  s a weight of t in It and Q a sum of roots in b. So these o ther  const i tuents  are 

E ~ ' - 8 - o ,  

which cannot  occur in X since # '  is on the  b -bo t tom layer.  So the  mul t ip l ic i ty  we wan t  is 

d im Hom~c (E ~', X),  

which proves (b). 

To prove (c), write 

FI_~ = 11" F_u; 

then  

F_~,/FI_~,~C_r 

as an t-module. To s tudy  Y, we use the  long exact  sequences in cohomology a t t ached  to 

the  shor t  exac t  sequence 

O ~  X | FI_~,~ X @) F _ r ~  X | 

of g modules. Wri te  

A =- AR(n N p)*; 

then  we have a commuta t i ve  d iagram with exact  rows 

...____~Hn(rt, X Q F 1 ) l , - r  ~.~(nn~) ,Hn(rt, y ) ,  r 2o~nn~) 

0 ,I-I~174174 , Ho(nN L Y)"-~ |  

fl , Hn(lt, X),, 2~nn~(?~C. ,~ . . . .  

: r ~ |  l 
0C 

' [ H ~ 1 7 4 1 7 4  , , . . .  

Now (c) says t h a t  ~z~ -y is injective,  and fl is an isomorphism of the image of ze~)' ' onto 

t h a t  of n0" | 1. We will show t h a t  

H~ N ~, X | F 1 ~)~-~ = O, 

and  

7e~ is bijective. (*) 
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Assume this for a moment.  The first assertion shows that  ~ is injeetive; by (b), the domain 

and range have the same dimension, so a is bijeetive. Thus (g~| 1)o~ is also bijeetive. But  

( ~ |  I )o~ = ~ o ( ~ : ~ - ~ ) ,  

so the assertions of (c) are immediate. 

To prove the first claim of (*), choose a filtration of Fl_r as a g N ~ module, so tha t  

the successive subquotients are one-dimensional. Using the spectral sequence of the filtra- 

tion, we are reduced to showing tha t  

H~ N r, X) "-~-~ = 0 

whenever ~ is a weight of Fl_r. Such a weight is of the form - y  + e  +Q, with e EA(rt) and 

Q a sum of roots in b; so we must  show tha t  

H~ N ~, X) ~-e-~ = 0. 

This follows from the fact that /~ is on the b-bottom layer of X. 

Finally, we must  show tha t  ~ is bijective. As was remarked before Lemma 4.10, it is 

enough to show that /~ is strongly n-minimal in X. This follows from the hypotheses and 

Lemma 4.10. Q.E.D. 

COROLLARY 4.15. ]n the setting o/ Lemma 4.14, suppose [7 is a Harish-Chandra 

module/or [; set V : I?| r. Suppose that 

X = x(b,  17, ~). 

Then X(b, V , / z -F )  exists, and is contained in Yss. 

Proo/. This follows from Lemmas 4.8 and 4.14 (c). Q.E.D. 

This corollary allows us to reduce some problems about X(b, V,/~) to the case when # 

is very nonsingular (in the sense of Lemma 4.10) by "shifting". 

Proo] o/Proposition 4.13. Choose N as in Lemma 4.10. Let /z  ~ 2o(1l N p) be a lowest 

L N K- type  of V, and ~0: [0+~0= [ the associated parabolic. Then 

b ~ = I ~ 1 7 6  : [ ~ 1 7 6  b=_ g 

is a 0-invariant parabolic, compatible with A+(f). 

Assume first that  (/z, ~ ) > N  and (#0, ~ ) > N  for all ~EA(II). Then/~0 is dominant  for 

A+(f), and b ~ is the associated 0-invariant parabolic by Lemma 4.10 (b). Let  H = T+A = L o 
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he a maximally split Cartan subgroup; say #o-2~(noOp)EA(~t~ Construct A~ 

AL(~u ~ N p)) and ~o =2o =2a(/~o) using 2Oo as before. By Theorem 4.5, V =~L((2 ~ v), 

/~~ N p)) for some v ~ .  Define 

X = ~A(2~, v), ~0). 

Then X is our candidate for X(b, V, #). Since b ~ 5  ~ Lemma 4.11 implies that  ju and/~0 

lie in the l~-bottom layer of K-types of X. In particular, if {fl,}___A(nN p ) , # - ~ / ~ ,  and 

# 0 _ ~  fl, do not occur in X. By Lemma 4.10 (a),/~ and #o are strongly n-minimal in X. 

In particular, ju ~  2~(~t N p) occurs exactly once in H~(n, X). Let V~ denote the correspond- 

ing h'reducible composition factor. We claim that  V = Vr By Lemma 4.8 X =X(B, VI, #o). 

By Theorem 4.5 there is some v,~A such that  V~=~.((,~ ~ v~),#~ p)); then by 

Lemma 4.9, V~ =X(5 ~ :~0((Roo, v~), #0_2~(n N p)), #o_2~(rt N p)). By Lemma 4.7, this 

implies that  X=X(5~176 vx),#~176 By Lemma 4.8 again, this is 

~(()t ~ vl) , ~u~ ~Tow we can use the uniqueness statement in Theorem 2.9 to deduce that  v 

is conjugate to v~ under the stabilizer of ~ in W(G/H). I t  follows easily that  V = V~. 

We have now established that  V occurs in Hn(n, X). But we also know that  :z~ is 

bijective. By Lemma 4.8, it follows tha t  X(5, V, # ) ~  X~; since X is irreducible, in fact, 

X =X(5, V, la). That # is on the 5-bottom layer of X follows from Lemma 4.11. 

We now drop the hypotheses (#, ~ > > N  and (#0, ~ ) > N  for ~6A(n). Let 7 be a 

multiple of 2~(n) so large that  (y +~u, ~ ) > N  and <y +#o, cr for all ~6A(n). Set 17= 

V| By the first part of the proof, 

X = X(b, 12, ~, +7) 

exists, and/z +y lies on the w layer of X. By Corollary 4.15, X(l~, V,/~) exists, and 

is contained in the semisimplification of the module Y associated to X and y. By Lemma 

4.14 (a),/~ lies on the ~-bottom layer of Y, and so also on the ~-bottom layer of X(I~, V,/~). 

PROrOSITIO~ 4.16. In  the setting o/Proposition 4.13, suppose #1 lies on the t)-bottom 

layer of X(w V, I~). Then the multiplicity of #1 in X(5, V, i~) is less than or equal to the mul. 

tiplicity o/1~1 _ 2q(n N p) in V. Equality holds i/(#1, o~) > N and (l~, o~) > N/or  every 0r E A(ll)). 

Proo/. We first establish the inequality. This is clearly consistent with Lemma 4.14 and 

Corollary 4.15, so we may assume that  (with/z ~ defined as in the proof of Proposition 4.13) 

<#1, a ) > N ,  </z, o~)>N, and (~u ~ ~ ) > N  for all gEA(n). Then #1 is strongly n-minimal in 

X(b, V,/z); so HR(n, X) has a unique irreducible subquotient V 1 containing the L N K-type 

#1_2~(1l i3 )p); and X(~, V, #) =X(b, V 1,/~1). Let  #~ -2~(rt N p) be a lowest K-type of V 1. 
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By a further shift we may assume that  </S2, ~> > N  for all aEA(rt). By the proof of Proposi- 

tion 4.13, X(b, V 1,/Sl) =X(b, V 1,/S2), and X(b, V,/S) =X(b, V,/so); furthermore,/sz and/so 

are lowest K-types of the corresponding modules. Since X(b, V,/S)=X(b, V 1,/Sl), it fol- 

lows that  #z is a lowest K-type of X(b, V,/s0). Using Theorem 4.5, it  is easy to deduce 

that  V = V 1. This completes the proof of the inequality. 

For the last statement, notice that  we can still define V 1 as before. Since/S does occur 

in X(b, V,/S), the proposition implies that/S -2~(rt fl p) occurs in V 1. Since Hn(rt, X) ~-2Q(n n ') 

pulls back to an irreducible module for U(g) K, it is irreducible for U(I) Ln ~. I t  follows that  

V = V x, proving the desired equality. Q.E.D. 

For completeness we state now a result which will be proved in Section 5. Notation 

is as above. 

THEOREM 4.17. Let b~_g be a O-invariant parabolic subalgebra, V=~((2 ~ v),/s ~  

2e(n/3 p)) an irreducible Harish-Chandra module, and/S -2Q(rt f] p) an L N K-type o] V, such 

that /S is dominant /or A+(~). Suppose /urther that i] ~=(),~ v), then Re<~, ,~>>0 or 

Re <y, a> =0  and Im <y, zr ~>0/or every root ~ o/ ~ in 1t. Then X(b, V,/S) is irreducible; 

and a K-type/Sl on the b-bottom layer occurs exactly as o/ten as/Sl _ 2~(11 f~ ~) occurs in V. 

I t  seems likely that  the hypotheses on ~ are completely unnecessary; at least they 

are far too strong. 

To see how these modules fit into the generalized principal series, we need to compute 

the action of U(g) K on the bottom layer of such representations. We begin with 

LEMMA 4.18. Let /Sl be a K-type on the b-bottom layer o] X(b, V,/S). Then X(b, V,/S) 

and X(b, V,/Sl) have a composition ]actor in common; more precisely, X(b, V,/S)I,' is a com- 

position/actor o] the pull-back o] V t''-2q(" n ~) to U(g) K. 

Proo[. This is consistent with shifting, so we may assume that  <#, :r > N  and 

</Sl, a> > N  for all :tEA(n). In that  case we have seen that  X(w V, #) =X(b, V,/Sl). Q.E.D. 

Fix now a K-type/so, with b ~ =[o +no the associated parabolic; say #~176 A para- 

bolic b~_ b ~ is called permissible for the principal series ~t(), ~ v). Define ~o and ~Oo as usual. 

Suppose/S occurs on the b-bottom layer of X; we want to compute the action of U(g) K 

on =(~o, v)~'. 

PROPOSITION 4.19. The U(g) K module ~a(~ ~ v) ~ has the same composition series as 

the pullback o] ~L(t ~ V) "-~(" n ~) via ~. 
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Proo/. I t  suffices to establish this for an algebraically dense set of v ~ -4. So we consider 

only unitary v which are annihilated by  no real root. In  this case g(20, ~) and z~(2o, ~) are 

irreducible by Theorem 4.5, and so 

~(~0, ~) = X(5, ~(2o, ~), ~0), 

as we saw in the proof of Proposition 4.13. Lemma 4.18 now implies that  ~(20, ~), is a 

composition factor of the pullback of ~(~0, ~),-eq(,,n ,) via ~. But  a straightforward (and 

tedious) computation using Frobenius reciprocity and the Blattner multiplicity formula 

shows that  these two spaces have the same dimension. Q.E.D. 

(The last multiplicity computation can be avoided using the proof of Theorem 4.17; 

the argument is left to the reader.) 

COROLLARY 4.20. In the setting o/ Proposition 4.19, suppose that 7e(~t ~ ~) has com- 

position /actors V 1 ... Vs (listed with multiplicity), and that V, (1 ~<i <~r, r<..s) contains an 

L N K-type / ~ - 2 0 ( n  N p) such that [z~ is dominant /or A+(~). Then ~(2 ~ r) has (perhaps 

among others) the composition/actors X(b, V 1, /~1) ... X(5, V,, ~ )  (occurring with at least the 

multiplicities listed). 

This result gives a great deal of information about  reducibility on the 5-bottom layer 

of K-types.  We conclude with a sufficient condition for this to be all the reducibility. 

Let  5 be a permissible parabolic for the representation ~(20, v), and ~)= t + + r the Cartan 

subalgebra associated to the representation. We may  assume tha t  if t -= ( t+ )  • N i, then a 

is spanned by pt and a-, with a -  obtained from t -  by successive Cayley transforms through 

imaginary roots orthogonal to 20. This gives an isomorphism from ~)0 = t  + pt to ~). (For 

more details see [19].) In  this way we identify (2, r) with a weight (2, f)  of ~o The par- 

ameter  (~, v) is called positive/or b if Re <a, (~, v )~>0 for all aEA(n, ~). In  this case b is 

called a positive permissible parabolic. Since <a, ~t)>0 for aEA(n), the condition means 

that  Re v is not too large. 

P R o P o s I T I O N 4.21. I / b  is a positive permissible parabolic/or ~(2, ~), then every com- 

position/actor o/ ~(~t, r) contains a K-type in the 5-bottom layer. 

Pro#. Choose 7Ei(t+) ' so tha t  (7, a ) > 0  if aeA(n),  and <7, : r  if aEA(1). Let  

V 1_ ~(2, v) be a composition factor with lowest K- type  #1. We want to show tha t  (7, #1) = 

<7,/~5. Following [19], Proposition 4.1, we can write ~t 1 =~(/~1)=~1 +2~c_ ~ + ~  c~fl~; here 

O=o(A+), with A+ a 0-invariant positive root system such that  #+2~c  is dominant,  and 

the fl~ are orthogonal imaginary roots spanning a subspace (tl) - of t. Then (tl) + = ((tl)-) • 
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is the compact par t  of the Cartan subalgebra associated to/x 1, and V 1 =zt(21, v 1) for some 

v ~. As in the preceding paragraph we may  identify v 1 with a weight fil of ( t l ) - + p  t. We 

are free to modify ~ by reflections about any of the fl~, so we may  assume tha t  Re <?, ~l> > 0. 

We know that  #1 =/t  +Q, with Q a sum of roots in 5. As in the proof of Lemma 8.8 of [19], 

one sees tha t  21 =2 +Q +QD with Q1 a sum of positive (nonintegral) multiples of roots in 5. 

So 

Re <7, ( 2~, ~)> ~> <~, 2~} ~> <~, 2>; (4.22) 

equality holds only if Q involves only roots in {, which is what  we wish to prove. 

On the other hand, (2, ~) and (21, ill) must  define the same infinitesimal character, 

so they differ by some nEW(g, ~0). Choose a positive system A+(g, ~0)_A(n, ~0) so tha t  

Re (~, (2, ~)> ~ 0 for all zr E A+; this is possible by the positivity of 5. Then o" (2, ~) = (2, ~) - 

~ , ~ +  n~zr with Re nt>~0. Hence 

Re <?, (21, px)> = Re <F, 0(2, ~)> 

= Re <7, (2, ~)> - ~  Re n,<y, ~,> ~< <?, 2>. 

So equality must  hold in (4.22). Q.E.D. 

For the convenience of the reader, we summarize the definitions of this section and 

Theorem 4.17, Proposition 5.18, Corollary 4.20, and Proposition 4.21 in one theorem; 

although the first two results will not be proved until the next section, we will not use 

this theorem until after they are proved. We will formulate this for disconnected groups, 

leaving to the reader the necessary extensions of the intermediate results. 

T H E O R E M 4.23. Suppose H = T+A is a O-stable Cartan subgroup of G, and F = (2, v) E 121 '. 

Let 5 = I + r t  be a O-invariant parabolic subalgebra of ~ such that ~ I ,  and let L be the normal. 

izer o /5  in G. Assume that 

(a) ~ is nonsingular, i.e. 

<o~, ~> # 0 

whenever aEA(g, ~) 

(b) b is a positive permissible parabolic/or ~, i.e. 

Re <~, ~> ~ 0 

/or all ot E A(rt, ~). 

Then the composition series o/~a(~) can be computed in terms o/the subgroup L o] G. 

More precisely, de/ine 
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by 
,tz = (A| [A~(rt • p)]*, ,{-q(n)), 

and list the composition/actors o/ZtL(~Z) as V~ ... V~ (with multiplicity); say 

~'L = ( ~ ,  v*). 

De/ine 
~,~ = (2 ~, v ~) e (I:Iq' 

by 
X* = (A~| N p), ~ +q(n)). 

Then the composition/actors ol ~ta@ ) (with multiplicity) are {~o(~'*)}. 

5. Coherent continuation of characters 

We begin by recalling the basic facts of character theory for G (cf. [5]). Let  ~t be an 

admissible representation of G on a Hilbert  space, with a finite composition series, such 

tha t  ~[ K is unitary. I f  / E C~(G), we define ~t(]) = ~a/(g)z(g) dg. Then ~(/) is an operator of 

trace class, and/~->tr  ~t(/) defines a distribution on G. This distribution is called the char- 

acter of ~r, and is written | | depends only on the infinitesimal equivalence class 

of ~; so if X is the Harish-Chandra module of K-finite vectors for ~r, we may  define | = 

| Every  irreducible Harish-Chandra module can be realized in this way ([14]) and 

therefore has a well-defined character. In  the above situation, suppose X has the irreduc- 

ible composition factors X 1 ..... Xr (listed with multiplicity). Then |  ~ 1 | We 

take this as the definition of O(X) whenever X has a finite composition series. If  X 1 ..... Xr 

are inequivalent irreducible Harish-Chandra modules, then | , ..., | are linearly 

independent. 

By a virtual representation we will mean a formal finite combination of irreducible 

representations with integer coefficients. By the preceding remarks, such an object can he 

assigned a distribution character, which vanishes only if the virtual representation does. 

By a character we will always mean the character of a virtual representation. 

Let X be a Harish-Chandra module, and 6: ~(g)-+C an infinitesimal character. Define 

P,(X)  = {xeXlV:e3( )3n>0 such tha t  (z -6(z ) )= ,x=0) .  

Then P~(X) is a submodule of X, and every composition factor of Ps(X) has infinitesimal 

character & Furthermore,  
x = Y P~(X) .  

t5 

The sum is direct; if X has finite composition series, i t  is finite, Clearly, P8 gives rise to a 

unique homomorphism P8 from the group of characters to itself, satisfying P~(O(X))= 
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O(Ps(X)). Suppose next tha t  F is a finite-dimensional representation of G. Then X |  

is a Harish-Chandra module; it has finite composition series if X does. In  tha t  case 

@(XQF)  =@(X). @(F); it is enough to verify this when X is irreducible, in which case it 

follows easily from the definitions. (Notice tha t  @(F) is a smooth function on G, so tha t  

O (X). O (F) is well defined.) I t  follows tha t  multiplication by  | (F) defines a homomorphism 

from the group of characters to itself. 

Formally, we need no more results from character theory. However, the consistency 

and completeness of the definitions to be made below rely heavily on a deep theorem of 

Harish-Chandra: tha t  every character is integration against a function in L~oc(G). 

We fix for the remainder of this section a maximally split 0-invariant Cartan sub- 

algebra H0=  (T+)OA ~ of G, and a positive root system A~~ A(~, l) 0) compatible with an 

Iwasawa decomposition of G. Every  irreducible finite-dimensional representation F of G 

has a unique highest weight #E/~  ~ which occurs with multiplicity one and characterizes 

F; we write F = F(#). (We will also write F ( - /~ )  for the dual of F(#), which has lowest 

weight -/~.) Every  dominant weight of F is also the highest weight of some finite-dimen- 

sional irreducible representation. The set of weights of F is written A ( F ) _ ~  ~ Suppose 

/~EA(F); say O=~vEF, h.v=/~(h)v for hEH ~ I f  H is another Cartan subgroup of G, and 

y E 3" is nonsingular, we can consider/~ as a character of H in the following way. Let  ~c  

be the simply connected cover of Go. Then the complexified differential of F exponentiates 

to a representation of Gc on F. Choose c EGc so tha t  c. ~0 = 3, and c. A)~, = A~ ~. Then c - t .  v 

is a weight vector for H; we calf the corresponding weight/z ,  or/~A~. I t  is independent 

of c and F. 

We summarize now the main results of Zuckerman on coherent continuation. 

Definition 5.1. Suppose/~ E/~0 is a dominant weight of a finite-dimensional representa- 

tion, and 2 E (Do)* is dominant. I f  X is a Harish-Chandra module, put  

q)~+~X = P~+~(P~(X) | F(#)) 

V~+~X = P~(P~+~(X) | F(-/~)). 

Analogous definitions are made for characters. Finally, we define A(2) to be the category 

of Harish-Chandra modules with infinitesimal character 2. Recall that  a module all of 

whose composition factors are isomorphic is called primary. 

THEOREM 5.2. (Zuekerman [21]). v2~ +~' maps primary modules to primary modules. 

1 / 2  and 2 +# have the same stabilizer in W(~/~), then q)~+, restricts to an isomorphism of 

.,4(2) with A(2 § l~), with natural inverse y~+~'. 
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Our goal is to reformulate this theorem in character-theoretic terms, and then to 

consider natural  generalizations of it. Suppose then tha t  ~ E(~~ * is dominant and non- 

singular, and tha t  the character (9 has infinitesimal character 7. Let  #E/~  ~ be a weight 

of a finite-dimensional representation. We want to define a new character S~. (9, which 

is to have infinitesimal character ~ +#.  (The following construction is due to Hecht  and 

Schmid [6], and Zuckerman [21], among others; but apparently no complete account of it 

has been published.) We begin by defining S,-(9 simply as a function on G'. Now | is 

invariant under conjugation, and we want S~. (9 to be also; so it suffices to define S, .  (9 

on each connected component of H N G', with H an arbi trary Cartan subgroup of G. Fix 

such a component HI. Then (9]~i can be written uniquely as a sum of terms of the form 

a -exp  (~(log hho))/A(h); here A is a "Weyl denominator",  ~tE 3" is a weight defining the 

infinitesimal character of (9, and one must choose h 0 and the definition of log appropriately. 

(For all this see [21].) We define S, .  @ to be a similar sum, but  with the above term multi- 

plied by the weight #~ E/~. 

LEMMA 5.3. I] F is a finite-dimensional representation o/G, then 

(an identity o/]unctions on G'). 

o .  (9(F) = E s . .  o 
u G A(/~) 

Pro@ If  7 E ~}* is nonsingular, then obviously 

O(F) (h) = ~. /tr(h ) 
/.8 e A(F) 

for all h E H. The result follows immediately from the definitions. Q.E.D. 

LEMMA 5.4. In  the setting o/Lemma 5.3, suppose ~E(D~ *, and that (9 has in/initesimal 

character ~o E (~~ Then 

Pe((9. @(F)) -- ~ S~,. | 
,u �9 A(F) 

,u ~, yo e W(g/~o).~ 

Pro@ This follows from the earlier remarks on the form of a character with a given 

infinitesimal character. Q.E.D. 

LEMMA 5.5. Suppose (9 has a nonsingular in/initesimal character represented by the 

dominant weight 7~176 *, and that tt E12i ~ is a dominant weight o / a  [inite-dimensional re- 

presentation. Then 
4 ~  ~)a 
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I /also 9,0 _ ~  is dominant, then 

S_..  O = GLAO).  

In  particular, S t .  6) and S ~. 6) are characters in this case. 

Proo/. Consider the first statement; it asserts that  

S t.  6) = P~,+,(O. 6)(F(/~))). 

By Lemma 5.4, the right side is just 

&.6). 
~+7~ w~fl/h0). (#+7 G) 

Suppose f%6A(F), w6 W(g/~~ and/~ +9,~ (/~ +9,~ We want to show that  fi=/~. We 

have ~ - w . f i  =wg, ~176 Since w.fis  A(F), # -w ' /~  is a sum of positive roots. On the other 

hand, we can write w g , ~ 1 7 6  n~a~, with a~6A+, and Re nt~<0. This is possible only if 

=w[~ and 9,0 =wg,0. Since 9,0 is nonsingular, it follows that  w = 1. This proves the first 

statement. The second is similar. Q.E.D. 

PROPOSITION 5.5. S~'(9 is a character. 

Proo/. The proof of Lemma 5.2 of [6] carries over without change to the present 

situation. Q.E.D. 

Passage from 6) to S t 6) is called coherent continuation. For general considerations, 

the following notation will be useful. Suppose 6) has infinitesimal character represented 

by a nonsingular dominant weight 9, 6 (Do) *. Then we write 6) = 6)(9,), and S , .  6) = 6)(9, +/~). 

Lemma 5.3, for example, can be written as 

6)(9,). 0 ( F ) =  ~ 6)(9,+~). 
G A(F) 

Other notation for more specific representations will be modelled on this. 

Suppose for a moment that  0(9,) is irreducible, and that  9, +#  is dominant and non- 

singular. I t  follows from Zuckerman's theorem that  0(9, +~u) is also irreducible. (For we 

choose ~ dominant so that  v - #  is also dominant. Then 6)(9,+~) is irreducible by one ap- 

plication of Theorem 5.2, and so 6)((9,+v)-(v-/~))=6)(9,+/~) is irreducible by a second 

application. Such arguments are henceforth left to the reader.) If 9,+lu is dominant but 

possibly singular, then 0(7 +#) is at least primary. We will first prove that  in this last 

situation 0(9, +/~) is in fact irreducible or zero. This result will then be used to get informa- 

tion about 0(7  +#)  when 9' +~u is not even dominant. 
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We need to understand coherent continuation of generalized principal series repre- 

sentations. We begin with the discrete series; so suppose for a moment tha t  G has a com- 

pact Cartan subgroup T. Fix a positive root system ~F___ A(~, t). 

De/init ion 5.6. A ~F-pseudocharaeter (or ~F-character) of T is a pair (A, ~), with A e ~, 

2Eito, and dA =2+0(XF)-2~(~F N A(~)). 

The set of ~F-pseudocharacters of T is written ~ .  If # is a weight of a finite-dimen- 

sional representation, we write ~t +f~,  = (A |  X + / ~ ) .  Notice that  if X is strictly dominant 

with respect to ~ ,  then ~t is a regular pseudocharacter of T. To each 2 fi ~ we associate a 

character O(~F, ~t) as follows: O(~F, X) as defined by Hecht and Schmid [6] is a character 

of G 0. Extend this to ZG o so that  O(gz)=O(g)A(z ) ,  and then to G by making it zero off 

ZG o. Clearly 0 ( ~ ,  ~t) has infinitesimal character ~t; and if ~ is strictly dominant for XF, then 

O(W, 4) = O(~(~)). 

LEMMA 5.7. Suppose 2 E T ' ,  with ~ =A~. Then 

G .  O(=(~)) = O(~, 2 +~). 

Proo/. For connected G this is the definition of O(W, 2 +/~) ([6], p. 133). The extension 

to the present case is trivial. Q.E.D. 

Now let H = T + A  be an arbitrary 0-invariant Cartan subgroup of G, P = M A N  an 

associated parabolic subgroup, and ~F a system of positive roots for t + in hi. We define 

the set / ~  of ~F-pseudocharacters of H in the obvious way. If xE ~]* is regular, yE/~',r, 

and/z  is a weight of a finite-dimensional representation, we define y +/~x in analogy with 

the case when H is compact. Set 

| y) = Ind~ @(~F, 4) | ~, | 1. 

(The representation induced by a formal difference is the formal difference of the induced 

representations, so this makes sense. As the notation indicates, O(~F, y) is independent 

of P, cf. Proposition 2.7.) If ~ is strictly dominant for ~F, then | 7) =@(Ye(Y)). 

LE•MA 5.8. Suppose ~MA is a representation o / M A  w i th / i n i t e  composition series; pu t  

~a=Ind~ ~Ma| I[  F is a /inite-dimensional representation o/ G, choose a /amily  0 = 

F o G F a ~_... c_ F n = F o /P- invar ian t  subspaces o / F ,  such that N acts trivially in  V~ = FdF~_ x. 

Then 7~ a @ F has a / a m i l y  0 = H o ~_ H 1 ~_ ... ~_ H n =re a | F o/ G-invariant subspaces, such that 

HdH~_ 1 ~ Ind~ [ ( ~ a  | V~)| 1]. 
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Proo/. For formal reasons, zes@F "~ Inde a [(gMA@ 1)@eF] e]. The result now follows 

from the exactness of Ind. Q.E.D. 

Possibly replacing H by a conjugate, we may  assume tha t  A ~  A; then H~ MA.  

COROLLARY 5.9. In  the setting o/ Theorem 5.2 and Lemma 5.8, suppose ~T~MA has in- 

/initesimal character 2 +be. Then so does 7~a; and 

~0a~+s(sc) = I n d e  a (~0aa+SSMA). 

Proo/. That  ~s  has infinitesimal character ~t +be is obvious. In  Lemma 5.8, take _P = 

F(-be);  we may  as well choose the V~ to be irreducible. An argument  like tha t  given for 

Lemma 5.5 shows tha t  Indp s [(ZMA | V~)| 1] has a composition factor of infinitesimal char- 

acter ~t only if V~ contains the -be. In  tha t  case V~ = FMA (--/~), since --be is extremal in F.  

Furthermore, only P~(~M,~| contributes to P~(zea| This shows tha t  
d a ~+s In  p ( ~  SMA) is a subquotient of s s |  containing all the composition factors of 

infinitesimal character ~. The corollary is immediate. Q.E.D. 

The preceding result is hinted at  in the closing remarks of [21]. 

C o R O L L A R'Z 5.10. In  the setting o/Lemma 5.8, ~a | F has the same composition series as 

Ind p a [(~MA | F IMA)| 1]. 

COROLLARY 5.11. Suppose 2E(~~ * is G-regular. I /  (gMA is a character/or M A  with 

in[initesimal character ), and be is a weight o / a  ]inite-dimensional representation o] G, then 

S,.  [Ind~ ((9 | 1)] = Ind~ [(S," (9) | 1]. 

COROLLARY 5.12. Suppose ~,Elfl ', with tF=A~(ul) .  Then 

S..  O(=(y)) = O(W, y +bey). 

These are obvious. 

The Langlands classification theorem provides a natural basis for the space of char- 

acters with a fixed nonsingular infinitesimal character ),, namely, the characters of gen- 

eralized principal series representations. We want  to express the various O(tF, ~) in terms 

of this basis. Evidently it suffices to do this in case H = T is compact. For this purpose 

we use the character identities of Hecht  and Schmid [17]. Their extension to the present 

situation is straightforward, but  requires a brief discussion. The first identity says tha t  if 

~EW is a simple compact root, then 0 ( ~ ,  2 ) + O ( s ~ F ,  ~t)=0; this is a trivial consequence 
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of the result for connected groups. The second begins with a noncompact simple root 

f lE~,  and involves a Cartan subgroup HZ = TPAB. Here ag is a one-dimensional subalgebra 

of Po contained in the sum of the fl and - f l  root spaces, and tP is the orthogonal comple- 

ment of fl in t. Let  P~ = M~A~N ~ be an associated parabolic subgroup. The roots of TP 

in M z are identified with the roots of t in g orthogonal to/5; so ~ n (t~) * = q ~  is a positive 

system. Put  Hq=(TZN T) .A  ~, T~=T~N T. If A=(A,~), we define 2 ~6 (~ )v p  as 2~= 

(A[rr ~It~); that  dAIt{=X+e('FB)-2e(~FP n A(m N 3)) follows from (7.21) of [16]. Finally, 

we define v ~ 6 ~ so that  if/~ is the unique real root of ~a in g, then <v~,/~> = <2,/5). Set 

M~_ m~r~  1 - -  "L1 .Lr~ O* 

L~,MMA 5.13. With notation as above, 

O(tF, 2) + O(@ iF, 2) = IndG~A~p O(tF ~, 2{) | 1. 

Proo[. This is in essence the Hecht-Schmid identity ([16], Theorem 9.4), combined 

with the definitions of the @(iF, 2) for disconnected groups. The definition given in [16] 

for the inducing distribution O(tF a, 2{) is formulated in a slightly different way, but it is 

easy to check that  the two definitions agree. Q.E.D. 

Put  M{=Z(M~).M~oD_M~. Then M{/M~ ~ Tt~/T{. This group is nontrivial exactly 

when the reflection @E W(fl/t) about the root/5 lies in W(G/T). In that  case it has order 2; 

so ~t{ has exactly two extensions 2~, and 2 ~ _ to T~; these are the constituents of IndT; ~ .  
T I 

Set 7~ = (2~, v~). If T~ = T a, set ~P = ~ ,  7 a = (2 a, v~). 

P l~oeos lw lO~  5.14. Suppose T c G  is a compact Caftan subgroup, qP~_A(6, t) is a 

positive root system, 2 E ~',~,, and fleu~ is a noncompact simple root. I[ sz ~ W(G/T), 

O(T,  ~)+ O(sz'F, ~) = O (~  ~ , / ) .  
I/st~E W(G/T), 

O(T,  2) + O(sa~F, ~) = O(W ~, yr +O(~F a, ~ ) .  

This is an immediate consequence of Lemma 5.13. I t  should be emphasized that  the 

result is only a reformulation of the Hecht-Schmid character identity. Most of the tech- 

nicalities involved have appeared already in [12], formula (7b). I t  is an easy exercise to 

see that these identities allow us to write any O(~F, 2) as an integral combination of char- 

acters of generalized principal series, at least if ). is nonsingular. In particular, the various 

S," 0(7t(7)) are computable. 

For future reference we record the condition for a character @(~F, y) to occur on the 

right side of one of the identities of Proposition 5.14. Suppose y is a ~F-pseudocharacter of 
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H = T+A, with dim A = 1. Then there must  be a real root  fl of ~ in ft. By  a Cayley trans- 

form, /~ gives rise to the compact  Cartan subgroup T of G. Choose a positive root  system 

~ for t in ~, such tha t  if fl is the Cayley t ransform of ~, then fl is a simple positive root, 

and (identifying i z = ( f l )  • with t+)~I~' 1 [1 [ Z : ~ ;  this is certainly possible. Le t  ~ i *  be the 

Cayley t ransform of ~. Fix a map ~ :  SL (2, R)-~G, a three-dimensiona! subgroup through 

the real root  ~; we may  assume tha t  T~(~x -~) =0(~(x) ) .  

Then 

is independent  of the choice of ~ ,  and m~ = 1. Suppose there  is a ~Fl-pseudocharacter 

= (A, ~) of T so tha t  O(~F, ~) occurs on the  right in the corresponding character  identi ty.  

Then 

7(m~) --- A(m~) = ( - 1)', 

where n=2( f l ,~+Q(LF1) -2~(~INA([ ) ) / (~ ,~  is an integer. Write  n~=2(f l ,~) (~l ) - -  

2Q(LIPI N A(l[))/(fl, fl), and e~=(-1)n~ .  Since (fl, ~ ) = ( ~ ,  ~),  the condition can now be 

writ ten as 

7(m~) = e~. ( -- 1)"(Y' ~Ir (*) 

We leave to the reader the verification tha t  ea is independent  of the choice of LF1, and tha t  

the condition (*) is in fact sufficient for the existence of a character  identi ty.  

One might  expect  tha t  the characters O(~F, 2) with 2 dominant  (but possibly singular) 

have special properties. This is the case - - they  are called limits o/discrete .~eries, and are 

tempered and irreducible (or zero). (See [6], Lemma 3.1, |2l] ,  Theorem 5.7, and [19], 

Lemma 7.3.) The corresponding representat ions are writ ten ~(~F, 2). More generally, 

(~(~t~, ~) is called a limit o/generalized principal series if ~, = (2, ~) and ~t is dominant  for LF, 

and we define ~(P,  xF, ~) = Ind~ z~(~F, 2) | v ~ 1. Most of the theory  of generalized principal 

series holds for these representations as well, since Langlands discusses induction from any 

tempered representat ion in [13]. If  ~, is un i ta ry  (and 2 is dominant  for ~F) then ~(P,  LF, y) 

is tempered; it is not  necessarily irreducible, but  every  tempered irreducible representat ion 

arises in this way (cf. [12]). 

THE OREM 5.15. Suppose ~E(~~ * is dominant and nonsingular, /~Eft ~ is a dominant 

weight el a/inite-dimensional representation, and ~ /~ is dominant. Suppose ze E ~ has in- 

/initesimal character ~. Then ~_,(7e) is irreducible or zero. 
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Proo/. Zuckerman's Theorem 5.2 asserts tha t  yJ;_,(:z) is primary. By Theorem 2.9, 

there is a 0-invariant Cartan subgroup H = T+A of G, and a regular character y = (2, v ) e l i '  

such that  n ~ ~(7)" Choose P = M A N  so that  v is negative with respect to P. Then there is 

an exact sequence 

0 -~ ~(~) -~ ~(P, y) -~ Q-+ o. 

Set X 1 =~_u(ff(~)), X~-~p~_,(Q). Suppose ~ defines the positive root system ~F___ A(t +, rll). 

Put  yx=(21, v~)=y _/~r. Then 2 ~ is dominant for tiP. By Corollary 5.9 and Lemma 5.7, 

Y~i_,(7~( P, y)) = ~(P, tF, y~), 

so we have an exact sequence 

O~ X~-~z~(P,~F, y~)~ X~ ~O. 

We know that  X 1 is primary; we want to show that  it is irreducible. Define p1 = M A N  ~ 

so that  

h(rt 1, a) = {~eA(~, a) lRe (v ~, a } < 0  or Re (v 1, :r and ~EA(n, a)}. 

Now ~M(tF, 21) is tempered and irreducible, so by a theorem of Harish-Chandra we 

can find a 0-invariant Cartan subgroup H* of M and a unitary pseudocharacter 72E (/~-)' 

such that  ~(tI~, ~t 1) is a constituent of ~M(Y*). Put  H a =H'A, and let yaE (lia), be defined 

using ~ and vl in the obvious way. Choose a parabolic subgroup pa~p1 associated to H a. 

Then clearly ~(p1, tF, 71) is a direct summand of ~(pa, 7a). Furthermore, v a is negativo 

with respect to p a  By Theorem 2.9, the irreducible subrepresentations of ~(P~, ya) are 

inequivalent and occur exactly once in the composition series, so the same statement holds 

for g(p1, tF, yl). In particular, a primary subrepresentation of ~(p1, tF, yl) is irreducible or 

zero. To complete the proof, we need only show that  ~(p1, tF, yl) ~ ~(p, iF, yl). Using ~ ~-~,, 
it is enough to show that  ~(p1, ~) ~ ~(p, ~). 

LEMM). 5.16. Suppose H = T+A is a O-invariant Cartan subgroup o/G, with dim A = 1. 

Suppose y Eli' is nonsingular, and that A~ (~, ~) is O-invariant. Then re(y) is irreducible. 

Assuming this lemma for a moment, we show that  ~(pl,  y ) ~ ( p ,  y). Recall from 

Section 3 the intertwining operator 

I(P 1, P): :z(P 1, y) -~ :r(P, y). 

We want to show that  I(P 1, P) is an isomorphism. Using Theorem 3.7 to factor I (P 1, P), 

we may assume that  dim A = 1, and that  P=OP1; in this situation we want to show tha t  
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~t(P, ?) is irreducible. If ? is unitary, this follows from Theorem 2.9, so we may assume 

Re v#0.  Suppose Gg E/~(~ 1, a). Since P =OP 1, ~ CA(rt, a), so Re <v 1, ~> <0, and Re <r, ~> >0. 

We claim that  A~(g, ~)) is 0-invariant; for let (fl, zc)EA~(g, l)). (Here fiE(t+) *, ~Ea*.) Of 

course 0(~, ~)=(8, - -~) ,  so we may assume ~g=0. Suppose ( 8 , - ~ ) $  A+. Then clearly 

Re <~, v> >0, so ~ EA(n 1, a), and ( - 8 ,  ~)EA~. Since 71 is dominant for A~, 

2 Re <z(, vl> = Re <(fl, ~), (21, ~1)> + R e  <( - 8 ,  ~), (~1, vl)> /> 0, 

a contradiction. Q.E.D. 

Proo] of Lemma 5.16. By Corollary 4.6, we may assume that  G s connected. Since 

A~ is fixed by 0, so is ~(A~); so ~(A~)Et +. By an application of Theorem 5.2, it suffices to 

prove the lemma with ? replaced by ?+2~(A~). In this case it is easy to check that  if 

E A +, then <~, 2> > 0. Thus the 0-invariant parabolic subalgebra b associated to 2 is just 

the Borel subalgebra corresponding to A~. Hence the 5-bottom layer of K-types of n(?) 

consists of the lowest K-type alone. By Proposition 4.21 zr(?) is irreducible. Q.E.D. 

As a corollary of the proof, we have 

COROLLARY 5.17. I f  ?E121 ' is nonsingular, tx is a weight o] a ]inite-dimensional re- 

presentation, and ? -ixr is domiTutnt /or A~ ~, then S_~,(~t(~F, ?)) is a Langlands subquotient o/ 

~t(~, ? -Ix~). In  particular, if ? -ixr is strictly dominant, 

z_.(~(r)) = ~(r-ix~). 

We will see much later (Theorem 6.18) that  if S ~(:~(~, ? ) )40 ,  then :t(u/", ? - Ix , )  has a 

unique Langlands subquotient. 

We can now prove Theorem 4.17. With notation as in its statement, choose a large 

multiple ?~ of 2Q(n), so that  Ix +71 and Ix~ +?1 both satisfy the strong nonsingularity 

condition of Proposition 4.16. As in Lemma 4.14, we can regard 71 and _ ? i  as the weights 

of one dimensional representations C r, and C_r, of L; set 17 = V| If we also write 71 

for the restriction of ?~ to the Cartan subgroup H of L to which V is attached in the Lang- 

lands classification, then 

~ :~L((~ ~ v) +?~, Ix0 +?~ _ 2 e ( .  n p)). 

By the proof of Proposition 4.15, 

Let F denote the finite dimensional irreducible representation of G of lowest weight -?~. 

The representation Y attached to X(5, 17, # +71) by Lemma 4.14 is 

Y~= X(b, ?, IX +?~) | F 

18 - 802905 Acta rnathematica 145. Imprim6 1r 6 FSvricr 1981 
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by definition; and X(3, V,/t)_ Y~8 by Corollary 4.15. Set Yo=P~(Y) (the submodule of 
infinitesimal character Y); then 

ro = 'F~+~'(x(~, IL #+Tq) 

~_~ 1t2~t7I(2~G(7 +71,/tO +71)) 

~ ( 7 ,  / t~ 

by Corollary 5.17. On the other hand, Lemma 4.14 calculates the action of U(g) ~, and 

hence, of ~(g), on the K-primary subspaces Y(/t) and y(#l).  This calculation shows that  

Yo =- Y(~), Yo =- y(/tl); 

so the multiplicity of # and ~1 in Y0 is the same as in Y. In particular 

~o(y, #0) ~ Y0 -~ X(b, V,/~); 

since the first of these is irreducible, equality holds. Lemma 4.14 (b) and Proposition 4.16 

complete the proof. Q.E.D. 

PROPOSITION 5.18. Suppose G is connected. Let f i = [ + n  be a O-invariant parabolic 

subalgebra o/G.  Let H be a O-invariant Caftan subgroup o / G  contained in L, and 7z E 121 ' a 

regular pseudocharacter with respect to L. Suppose that 7L is nonsingular /or [ and that/or all 

aEA(n, D),Re <a, yL>>0 or Re <C~,7L>--0 and Im <Cr Associate to 7L=(/tL, ~) a 

regular pseudocharacter Yo = (~to, ~) o / H  with respect to G as in Sectio~ 4 (pros/o/Proposition 

4.13). Then whenever # is a K-type such tha t / t -2~(n  N p) occurs in ~L(TL), we have 

X (b, ~L(TL), /t) - ~ ( 7 c ) "  

Proof. This follows from the preceding proof, together with Corollary 5.17. Q.E.D. 

Like the results of Section 4, Proposition 5.18 generalizes readily to disconnected G. 

To study the problem of coherent continuation across walls, we will make heavy use 

of Theorem 5.15. This means that  we want to be able to stop on a wall, which in turn 

requires that  we have lots of weights of finite-dimensional representation available. So we 

need 

LEMMA 5.19. Let G be a linear reductive group with abelian Cartan subgroups. Then 

there is a linear reductive group ~, with abelian Caftan subgroups, and a sur~ective map ~--+ G 

with /inite kernel, with the /ollowing property: Whenever ~ E ~* is an integral weight o/ a 

Cartan subalgebra o/g,  there is a character A o/the corresponding Cartan subgroup I~ o / ~ ,  

occurring in a/inite-dimensional representation o/ ~, such that d A - 2  annihilates every root 

o/ ~) in g. 
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Proo/. Let H = T+A be a maximally split Cartan subgroup of G; recall tha t  Z is the 

center of G. Pu t  R~ = (t E T+ l t ~ EZ}. I t  is easy to show tha t  G = R~(ZGo). Set R ~ = R 1 N ZGo; 

then R1/R ~ is a product of s copies of Z/2Z. Choose elements gl ..... g~ E R~ of finite order 

so tha t  the ~ generate R~/R ~ Let R be the group generated by  the g~, and R ~ = R ~) ZG o. 

Then R is finite and abelian, and acts by automorphisms on ~o. Choose a linear covering 

~0 of G o such tha t  the automorphisms of R lift to ~0, and such tha t  integral weights lift 

to characters as described in the theorem. Let  

G=R•215 

a semidirect product with Z central and ~0 normal. This group clearly satisfies the condi- 

tions of the lemma. Q.E.D. 

THE OREM 5.20. Let @(~) be an irreducible character, with y strictly dominant, and let 

be a simple positive root. Suppose r is a positive integer such that ( y -  r~) lies in the same 

Weyl chamber as s~. y. 

(a) I / 2 ( ~ ,  ~,)/(a, ~r is not an integer, then @(y-ro~) is an irreducible character. 

(b) I f  2(a,  ~) / (a ,  a ) = n  is an integer, then either O ( ~ - n ~ ) = - O ( y ) ,  or O ( y - n a )  is 

the character o] a representation. 

Proo/. Consider first (a). Choose a dominant weight of a finite-dimensional representa- 

tion so large tha t  y - - r~  § is strictly dominant. Then @ ( ~ - r a  +/~) is an irreducible char- 

acter by Theorem 5.2. Put  @q)=P~ r~(O(~-ro~+ll)~)F (-ju)),  which is the character of a 

representation. We claim ( ' ) 0=O(y - r~ ) .  By Lemma 5.4, it suffices to show tha t  if 

~EA(F(- I~) ) ,wEW(~/~~ and ~ - r a + # + p = w ( ~ - r a ) ,  then w = l  and p = # .  Write 

f i =  - # §  with Q a sum of positive roots. We can write w ( ~ - - r a ) : - y - - r ~ - Q l §  Here 

where Re n~>~0, and Re s ~ 0 .  Thus 

y - r ~  +Q :: ~, -rzr -Q~ +s~. 

Such an equation can hold only if Q =sa, and Q1 =0.  In particular, s is an integer, lit follows 

easily tha t  w =s~ or 1 and tha t  s =2(~,  y - r ~ ) / ( ~ ,  a)  or 0 according]:/. Since 2(a,  ~) / (~,  a )  

is not an integer, the first case is impossible. So 0 ( ~ - r a )  is the character of a representa- 

tion. I t  follows immediately from the definitions tha t  S_~(@(~,- ra)) = 0(~). In particular, 

O(~-r:r Suppose it is not irreducible; say O ( ~ - r a ) = O ~ ( ~ - r a ) + @ . ) ( ~ - r ~ ) ,  with O~ 

and ~)~ characters of representations. By the preceding results, O(y)=  @~(~)§ @~(~) (here 
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0,@)=S_T,O,(y--ro*))  and  Ot(~') is a nonzero charac ter  of a representat ion.  This con- 

t radicts  the irreducibil i ty of O@) and proves  a). 

For  (b), af ter  passing to a covering group of G in accordance with  L e m m a  5.19, we 

choose a weight /x  of a f ini te-dimensional  representa t ion  such t h a t  y - n x  + #  is dominant ,  

and 2</~, a>/<a, o*> = n .  Suppose O@) is the  character  of n@). We can choose a dominan t  

weight  v of a f ini te-dimensional  representat ion,  so t h a t  v - g  + n a  is dominant .  B y  Theorem 

5.2, it clearly suffices to establish the analogue of b) with y + v replacing ~,. Set ~(y - n a  +t~) = 
~'+v ?) ~v v ~+, (~(y  + )). B y  Theorem 5.15, z t ( y - h a  +~u) is irreducible or zero. Define 

v-,~+m~l^,-nzr +/t)). 

Say 2<a, y + v>/<a, o*> = m .  Arguing as for (a), one sees t h a t  

0(~o) = 0(~' + v) + 0(~' + v -- m~). 

I f  ~ ( y - n x + # )  =0 ,  then  O(y + v ) + 0 @  +v-ma)=0, and  we are done. Otherwise we have  

H o m  (ze(~, + v), Zo) = H o m  (z(~' + v), ~,-n,,+~,.,,~,+~ ~/., ".rv ~,, ~vr-n~*l, ""~t" + v)) 

= H o m  (~v~+~,+~, ze(~, + v), ~rr~,+~, ~(~, + v)) 

= H o m  (~(y - n o ,  +#) ,  ~(~, - na  +,u)) = C 

since y~ is left adjoin t  to ~ ([21], L e m m a  4.1). So zt(y +v)  is a composi t ion factor  of 7t0; so 

0 (y + v - m a )  = O(n0) - O(~, + v) is the  character  of a representat ion.  Q.E.D.  

De/inition 5.21. In  the set t ing of 5.20 (b), O(y) is called a-singular or a-nonsingular 
according as 0(7--no*) = - |  or not .  

By  the proof of Theorem 5.20, O(y) is o*-singular iff its coherent  cont inuat ion to the a 

wall of the Weyl  chamber  is zero. Suppose O(y) is a-nonsingular ,  and  suppose y + #  lies 

on the  o* wall. Clearly S , . O ( y - h a )  = 0 ( ? - n a + s = # )  = O ( y  +# ) ,  which is irreducible. B u t  

Sg takes  each irreducible const i tuent  of O ( y - n a )  to an irreducible charac te r  or zero; so 

we can write 

O@ - no*) = Oo(y - no*) + ~ O~(y - na); 

here @, is an irreducible character ,  O, is a-singular for i >/1, and  S , .  0 0 @ -  n a ) =  Sr.  | 

whenever  y + p  lies on the a wall. Corollary 6.17 says t h a t  |  = |  a fact  which 

has m a n y  consequences in representa t ion  theory.  E v e n  Theorem 5.19 can be useful; how- 

ever, we conclude this section with a simple appl icat ion of it. 
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PROPOSITION 5.22. (Schmid). In  the setting o/Proposition 5.14, suppose ~E~" is 

dominant /or ~q2". Then ~(2) is a composition/actor o/both ~(~+) and 7e(~_) (i/ s~E W(G/T)) 

or o/g(~P) (i/ s~ ~ W(G/T)). 

Proo/. Since G is linear, 2(~t,/~/(/~, f l ) = n  is an integer. Define s~,~=~-nfl. For de- 

finiteness we assume s~(~ W(G/T); the other case follows by a fairly easy argument. By 

Proposition 5.14, 

= s_,~[| 

By 5.20(b), the only irreducible character which can occur on the right with negative 

multiplicity is @(s~2). Since O(s~)~@(~), O0 t) occurs with non-negative multiplicity in 

(~(~)-| so G(~) occurs with positive multiplicity in @(~Z). Q.E.D. 

Schmid actually computed the composition series of ~(~Z). His results follow from 

Theorem 4.23, applied to the parabolic b defined by ~z =~] t~. That theorem reduces us to 

the case 90 ~ ~[(2, It), where the composition series of principal series are well known 

([20], 457-458). The conclusion is that  if s~ ~ W(G/T), g(~z) has exactly three composition 

factors, namely ~(~),g(~t), and g(s~t). If sze W(G/T), then z(r~: ) has two composition 

factors, namely ~ ( ~  ) and z(2). These facts will be used in Section 7. 

6. Conditions tor reducibility 

PROPOSITION 6.1. Let G be a reductive linear group with abelian Cartan subgroups, 

and let H =  T+A be a O-invariant Cartan subgroup. Fix y =(~, v)EfI' such that the corre- 

sponding weight y E l}* is nonsingular; write A+ = A~. Then the generalized principal series 

representation ze(y) is reducible only i/ 

(a) there is a complex root o~EA~, such that 2(~, ~)/(:r a) is an integer, and Oo~A~; or 

(b) there is a real root :r with the /ollowing property. Let ~ :  SL(2, R)-+G be the 

three.dimensional subgroup corresponding to ~, with q~a chosen so that 

Set 

m~ = q) 0 - 

Then 2(~, ~)/(a, ~) is an integer, even or odd according as ~(m~) is e~ or -e~. (Recall that e~ 

was de/ined a/ter the proo/ o/ Proposition 5.14.) 
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Proof. This result is consistent with the reduction technique of Theorem 3.14, so we 

may  assume tha t  dim A = 1. We proceed by induction on the number of complex roots 

fle A~ with Off ~ A~. Suppose first tha t  there are no such roots. Then if fl E A~ and fl is not 

real, OflEA~. If  there are no real roots, :~(7) is irreducible by Lemma 5.16. So suppose 

tha t  there is a real root ~. I f  ~ is not simple, we write ~ = Q  +t2, with e~EA~. Then - ~ =  

0cr = 0Q + 0e~ e A~, a contradiction; so ~ is simple. Le t  b = 1 + n be the corresponding para- 

bolic (i.e., Lo=Ho'q)=(SL(2, R)). Clearly b is 0-invariant. Possibly shifting by 2~)(rt) in ac- 

cordance with Theorem 5.2, we see tha t  b is the parabolic defined by 2. Suppose :r(7) is 

reducible. By Proposition 4.19, every constituent of z(y) contains a K- type  on the 5- 

bot tom layer. By Theorem 4.15 and the other results of Section 4, we deduce tha t  the 

principal series representation :rz(yz) is reducible. But  the semisimple par t  of t0 is ~[(2, R); 

so it follows from known results about SL(2, R) that  condition 6.1 (b) holds. (Notice tha t  

this argument also establishes the converse of Proposition 6.1 in this case.) 

Now suppose that  Proposition 6.1 has been established whenever there are n - 1  com- 

plex roots fl E A~L with 0fl ~ A~t, and tha t  there are n such roots ia A~, with n > 0. I t  follows 

that  there is a simple root ~ e A~ with 0:r ~/A~. If  :r is real, suppose fle A~ is complex and 

0fl~A~. Clearly 0fl =s~fl; since ~ is simple, 0fleA~, a contradiction. So ~ is a complex root. 

Suppose :r(y) is reducible. If  2(~, y ) / (~ ,  ~) is an integer, there is nothing to prove; so 

suppose it is not. Possibly shifting y by 2O(A~) in accordance with Theorem 5.2, we may 

assume that  2 Re (c~, y>/(cr ~>~1.  In  this case we can find an integer r > 0  such tha t  

y - r ~  is dominant and nonsingular for s=(A~). By Corollary 5.12 and Theorem 5.20, the 

generalized principal series representation :~(y-r~)  is reducible. Clearly the set of complex 
+ 

roots fleA~ ~ such that  0flCA~_,= consists of the corresponding set for A; ,  with ~ re- 

moved; so it has order n - 1 .  By induction, 6.1 (a) or 6.1 (b) holds with y - r ~  replacing y. 

I t  follows easily that  6.1 (a) or 6.1 (b) holds for y. Q.E.D. 

Our goal is to establish the sufficiency of the reducibility criterion of Proposition 6.1. 

We begin with a simple but  very useful computation, and continue with a series of tech- 

nical lemmas. 

LEMMA 6.2. Let ~ = t  + + a be O-invariant Cartan snbalgebra o/~. Suppose T = (2, ~)E ~)*, 

and ~eA(~, ~)). Put n=2(~, ~)/(~,  ~), ~=~-n~=s=~=(2=, ~).  Then 

(2~, 2~)-(A, 2) = n(y+s~y, -0~). 

The proof is left to the reader. 
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C OR OLLAR Y 6.3. In the setting o/Lemma 6.2, suppose o~ is complex and positive simple 

/or A~, and that n is an integer. Then (2~, 2~ ) - (2 ,  2~ is positive i[/ -Oo~EA~. 

Proo/. Since - 0~ 4 + st, - 0~ e A~ iff - 0~ e A+v. Q.E.D. 

LEMMA 6.4. Let H = T+A be a O-invariant Cartan subgroup o/G, tF a system o/positive 

roots/or t + in m, and y = (2, v) E I:I' with 2 dominant/or tF. Suppose 7 is nonsingular, and 

that aEtF is a compact simple root which is also simple/or A~. Suppose •1 is an irreducible 

constituent o/:z(y), with character 0 r I[ 2(~, 7}/(a, ~} =n, then 

S_n0r  = - -  0 1 .  

Proo[. Write 0(7 ) =O1 + ... +Or,  a sum of irreducible characters. By Corollary 5.12, 

S_~(O(y)) = O(~F, 7 - n ~ ) =  O(~F, ( 2 - n ~ ,  ~))= O(s~F, (2, v))= -O(~F, (2, ~))= - O ( 7  ). Here 

we have used the fact tha t  discrete series characters depend only on the W(G/T) orbit of 

the parameter,  and the first Hecht-Schmid character identity. Define the rank of a char- 

acter to be the sum of the multiplicities of its irreducible constituents; we write rk (0) for 

the rank of O. Then rk (0(7)) =r ,  and rk (S_,~(0(7))) = - r .  By Theorem 5.20, rk (S_~(O~)) ~> 

- 1 ;  equality holds iff S_,~(O,)= -0~ .  So we must  have S _ ~ ( O , ) =  - O ,  for all i. Q.E.D. 

We will write O(y) for the character of ~(7)" 

LEMMA 6.5. Let H -  T+A be a O-invariant Cartan subgroup o[ G, and 7=(2 ,  v)E/~'. 

Suppose 7 is nonsingular, and that o~EA~ is a complex simple root such that 2(~, 7 ) / (a ,  :r ==n 

and OaEA~. Put 7~=7 n~. Then S_,~(~(7))::~(7~)+0o, with 0 o the character o/ a re- 

presentation. 

Proo]. For a fixed infinitesimal character, we proceed by downward induction on ]2]. 

Write 0(7) =: 0(7) + (')1 + ... + 0~, with O, an irreducible character, and 0(7~) = ~-)(7~) + 0 ' ,  

with O' the character of a representation. By Corollary 5.12, S_ ,~(O(7) )=O(7-na) ;  so 

r 
s ,~ (0 (7 ) )  = ~-)(7~)+ 0 ' -  ~_ ~ s_ ,~ (O, ) .  (6.6) 

t , 1  

By Theorem 5.20, it is enough to show tha t  0(7~) cannot be a constituent of any S_,~(Ot). 

Suppose then that  ~(?a) is a constituent of S - ~ ( O 0 ,  say; put  O1=0(71) , with 71EltJ~l, 

and alEAv+ the simple root corresponding to a. If  a 1 is imaginary and compact,  Lemma 

6.4 implies that  S - ~ ( 0 1 ) = - O 1 ,  a contradiction. Suppose a 1 is imaginary and noncom- 

pact; for definiteness, say s~,E W(M1/T~ ) (the other case being easier). Construct (7~') 

as in Proposition 5.14, and let ~F be the positive root system in M 1 determined by 21. Then 

S n a ( O ( T i )  ) = O(kY,  (71)~,) 

= O((TP)+)  + o ( ( 7 ~ ' ) - )  - 0 ( 7 0  
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m 
by Proposition 5.14 and Corollary 5.12. So if (9(YI) = (9(Yi) + (9", 

= S "(9"' S_n~c(~(yl) ) ( 9 ( ( ~ x ) + )  --}- (9((~2~x)_) --  (9(Yl)  - -  - ha (  )" 

Since (9(7~) occurs on the left with positive multiplicity, Theorem 5.20 implies that  either 
rp~ C 1 O(~) occurs in (9((y~')• or O(ya) occurs in (9 _ (9(~)_ (9((y~,)• by Proposition 5.22. 

By Proposition 2.10, (2~ ~, 2~'> ~<(2~, 2~). But 2~' is just the projection of 2~ orthogonal 

t o  ~ ;  s o  

952 

~b 2 
= <2. 2x>- ~ <~, ~>. 

Combining this with Lemma 6.2, we get 

n 2 
= n ( e  + 8 ~ e  , - 0 ~ >  -~ ~ -  ( ~ ,  0~> - ( (41 ,  21 )  - ( 2 ,  2> ) .  

We now shift ~ by a dominant weight of a finite-dimensional representation in accordance 

with Theorem 5.2, so that  after shifting, (7, a> is still small, but Re (7, e> is large for 

every other simple root e. Since 0a must involve such other roots, the first term 

n(~ +say, -0a> above becomes large and negative, while the second remains small, and 

the third is always negative by Proposition 2.10. So we get (2~,2~><(2~',2~'>, a con- 

tradiction. So ~1 is not imaginary, and therefore S_n~((9(71) )-- (9(~1-nal), a generalized 

principal series character. An argument similar to several already given shows that  (9(~a) 

is a constituent of either (~)(~?1) o r  0 ( ~  1 - - n ~ , ) .  Since {2: [ < 12{ < [2~ [, the first is impossible. 

If 0a~ is negative, then [(21)~,[> 1211, and we would still have a contradiction. So 0cq is 

positive--in particular ~1 is complex--and O(y~) occurs in (9((~'1)~,). By inductive hypo- 

thesis, S-n~(O(~I))=O((~q)~)+ (9", with (9" the character of a representation. Consider the 

occurrence of O((7~)~,) in (6.6). We have [21 >12~1 >~[(21)~,1, so 0((7~)~)~0(7). By 

Theorem 5.20, O((Yx)~,) occurs with nonnegative multiplicity on the right side of (6.6). 

So either (9~ = O((~'1)~,) for some i, or O((~1)~) is a constituent of O', or O(7~)= (~((Yt)~,)- 

Since 121 > 12 1/> 1(21)~,1, Proposition 2.10 implies that  the first two are impossible; so 

(9(~) = (9((71)~,). From the uniqueness statement in Theorem 2.9, one deduces easily that  

=71, a contradiction. Q.E.D. 

LEM~A 6.7. Let H =  T+A be a O-invariant Cartan subgroup o/ G, with dim A =1. 

Suppose 7E121 ' is real and nonsingular, and flEA~ is a complex simple root such that 
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2(fl, y}/{fl, fl} is not an integer. I / r  is a positive integer such that ~ -r f l  is nonsingularand 

dominant/or s~(A~), then S_~(-O (~ ) ) = 0(~ - rfl). 

Proo/. After shifting ~ by a weight of a finite-dimensional representation, we may 

assume that  r and 2(fl, ~ / (} , ,  ~) are small, but tha t  <~, e) is large for any other simple root 

E A~ ~. Since the expression of __ 0fl as a sum of simple roots must involve such other simple 

roots, [<y, Ofl~] is large; so I<~,,fl-Ofl~] =l<~,fl-ofl~l is large. Let  P = M A N  be the 

parabolic defined by - v .  Choose a small weight # of a finite-dimensional representation, 

such that  ~u - r f l  is dominant. Set 

~ = P ,_~(~(~  + ~ )  | F( - ~  + r~)); 

then, as we saw in the proof of Theorem 5.20, O(:TC1)=S_rfl(O(~)). NOW :~(~2-~#)is a sub- 

representation of z(P,  y +#); so :7~ 1 is a subrepresentation of Pr_~(Tr(P, ~ ~/~) | F( - #  + rfl)). 

Using Lemma 5.8, one sees that  this last representation is just ~(P,~-r f l ) .  Since 

[{~,, fl-Ofl}[ is large and r is small, P is the parabolic defined by - v  +rfl. I t  follows that  

~ =7~(P, y -rfl). Q.E.D. 

LE~MA 6.8. In  the setting o/Lemma 6.5, suppose dim A = 1. 

(a) I /  0(~) is a constituent o/ O(~a), then S_,~(O(y))=O(~)+O(~)+Oo,  with 0 o the 

character o/ a representation. 

(b) I /  0(~) is not a constituent o/ O(~a), then S-n~([~(ya))=O(~)+@0, with @o the 

character o/a representation (so O(~a) is not a-singular). 

Proo[. We begin by shifting ~, as in Lemma 6.7, so that  (y, a> is small, but  (~, e> is 

large for a # e  EA~; then let P be the parabolic defined by - v .  Possibly passing to a cover 

of G, we choose a weight # of a finite-dimensional representation, such that  2</~, a>/<a, a> = 

n, and (#, e)==0 for e:~a, ~ a simple root of A~. Put  ~0 = Y - # ;  then v~, v 0, and v are~all 

negative for P. By Lemma 6.5, ~(~) is not a-singular; so by Corollary 5.17, yJr~~ 

By Corollary 5.9, v2~(~(P, y))=V~o(rl(P, ~))=r~(P,  go). A short computation with Lemma 

5 .8  shows that  there is an exact sequence 

0 -~ ~(P, ~) -+ q~o(u(P, ~0)) -~ ~(P, Ya) -~ 0. 

By the remarks following Definition 5.21, S_.~((~(7)) has a unique constituent @1 such 

that  S_~(01)= 0(70). Let ~t be an irreducible representation such that  ~ , r q  =~(7o). Then 

Homo (~1, ~~ P, Y0)) =Homo (~PrVoni, n(P, 7o)) by [21], Lemma 4.1. But ~~  =~(7o); so 

the right side has dimension one. I t  follows from the exact sequence above that  rr I is a 
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subrepresentation of ze(P, 7) or of n(P, 7~). Since r and r~ are negative with respect to 

P, ~ 1 ~ ( 7 )  or ~(7~)" Finally, ~ ~  by [21], Lemma 3.1; so ~~ 

0(7)  +S- ,~(0(7) )  has exactly two constituents 01 and 02 such that  S_,(O,)=(~(70). Con- 

sider now 6.8 (b). By the exact sequence above, 0(7) occurs only once in ~~ 70)); so 

O(y~) must satisfy S_~(0(~=))=0(7o)~0. In particular, 0(7~) is ~-nonsingular; so by 

Lemma 6.5, S ,~{(~(7))=O(7~)+ O0, with O0 a-singular. Applying S _,~ to both sides, we 

obtain 6.8 (b). For 6.8 (a), suppose S , (@(7~)  ) is nonzero. By Corollary 5.17, it must be 

0(70); so S , ( 0 ( 7 ~ ) ) = S _ ~ ( 0 ( y ~ ) ) + 8 , ( 0 ( 7 ) ) + 8 _ ~ ( 0 1 )  would contain (~(7o) twice. But  

S ~(0(7~) ) =0(7o), a contradiction. So the only character 0 satisfying S / , ( 0  ) =(~(70) is 

0(7)- So 0(7) must occur in S .... (0(7)). Q.E.D. 

T ~ E o n n M  6.9. Let G be a reductive linear group with abelian Cartan subgroups, and 

let H ~ T+A be a O-invariant Caftan subgroup. F ix  7 = (2, ~) E I2I ' such that the corresponding 

weight 7 E ~* i.s a nonsingular; write A+ = A~. Suppose there is a complex simple root a E A + 

with the/ollowing properties: 

(a) 2(a,  7 ) / (a ,  a) =n  a positive integer, 

(b) 0aCA+. 

Then ~ ( 7 - ~ a )  is a composition/actor o/7~(7 ). 

Proo/. Write 7 : - 7 - n a "  We proceed by induction: We may assume that  the result 

has been established for all groups of lower dimension than G. By step-by-step induction, 

we may assume dim A :-1. Using a covering group argument like that  given for Lemma 

5.19 to write ( /as  a direct product, one sees that  we may assume (I is simple. Define r(7 ) :~ 

I {a E A+ [ a is complex, and 0a r Ar } I. We may assume the result is known for representa- 

tions ~rG(7') with r(7' ) <r(7 ). By induction, the result also holds for generalized principal 

series attached to Cartan subgroups H'  of G with dim A' > 1. Write a = ( a  +, a-) in ac- 

cordance with l)=t+-§ Then 0 a = ( a  +, - a - ) .  Since ~Ei(td )', (a  +, 2} is real; it follows 

that ~ is real, and that  in fact (~, a-} >0.  In particular, 7 is real. 

The strategy of the proof is now simple. We will give three more reduction techniques 

(Lemmas 6.10, 6.II,  and 6.12). An examination of cases will determine when all of these 

techniques fail--certain cases involving rank one groups, and the split real forms of rank 

two. The rank one eases are dealt with as they arise, using essentially only the existence 

of the trivial representation. The split real forms of rank two are discussed in Section 7. 

L~M~A 6.10. Suppose there is a proper O-invariant parabolic I~=~+n~g,  with l~_~, 

such that A(n)~A +. Then Theorem 6.9 holds. 
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Pro#.  If ~ E A(11), then also 0a ~ A(lt); but  this contradicts 0~ S A+. So ~ ~ A([). Since 1t 

is 0-invariant, 2~(rt)~t+; by Theorem 5.2, we can replace ~ by ~ +2~(rt) without changing 

anything, so we may assume that  the parabolic 50 = ~0 + 110 defined by 2 is contained in b. 

Let  L be the normalizer of ]b in G; the Lie algebra of L is I0. Then 2z can be defined as in 

Section 4, and yz = (2z, v). Since dim L < d i m  G, the inductive hypothesis implies that  

Y~Z(~L--n~)~_~(VL ). The generalizations of Lemma 4.18 and Proposition 5.18 to discon- 

nected G now imply Theorem 6.9. Q.E.D. 

LEMMA 6.11. Suppose there is a complex simple root f l#-0o~ orthogonal to ~, with 

Ofl $ A +. Then Theorem 6.9 holds. 

Proo/. If 2(y, fl>/(fl, fl> is not an integer, this follows easily from Lemma 6.7 and 

Theorem 5.20; details are left to the reader. So suppose 2<~, fl}/<fl, t~}=m, a positive 

integer. Define ~ = ~ - m f l ,  7 ~ = 7 - m f l - n o c .  Furthermore, r(y~)=r(7~)=r(~)- l ;  so 

Theorem 6.1 holds for z ( ~ )  and ~(7~); i.e., 7~(~) is a composition factor of ~t(y~) and 

~r(ya). By Lemma 6.8, S _ ~ ( ~ ( ~ ) ) = ( ~ ( ~ ) + O ( 7 ~ ) + 0 0 ,  with 00 the character of a re- 

presentation. Write 

0(~,~) = 0(7'~) + 0(~%9) + O~ + ... + 0~. 
Then 

s .... ( 0 ( ~ ) )  = 0 ( 7 )  - ( 0 ( ~ )  + 0 ( ~ )  + 0 0 ) -  Z s_.AO:). 
i 1 

By Lcmma 6.5, the left side is the character of a representation; so the fl-singular character 

0(?~) must occur with nonnegative multiplicity. By Theorem 5.20, this is possible only if 

0(7~) occurs in O(y), or if O~=~(y~) for some i. In the second case, O(y~) =~)(y~)+O', 

with O' the character of a representation. Applying S .... to both sides, we get O(y~)=  

O(y)+O"+S_n~(O'),  with 0"  the character of a representation. By Lemma 6.2, I),~1 > 

[)~[ > ]~tl; so by Proposition 2.10, O(y) does not occur in O(y~Z). By Theorem 5.20, we 

deduce that  0(7) occurs in 0 ' ~  O(y~), which is impossible since [~t~[ >[X[. This contradic- 

tion proves that  0 ( y : ) ~  O(y). Q.E.D. 

The last reduction technique is by far the most subtle. Through it, the structure of 

the discrete series enters. I t  is quite complicated in its most general form; to convey the 

idea we give here only a simplified version, which suffices to prove Theorem 6.9 for the 

classical groups. Generalizations are discussed as they are needed below. 

LEMMA 6.12. Suppose there is a simple imaginary noncompact root flEA~, such that ~+ 

is not a multiple o/ft. Then Theorem 6.9 holds. 
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Proo/. We begin with a simple observation, which will also be the basis of generaliza- 

tions of the lemma. Suppose 00 is a character of a representation, O(Ta) occurs in 00, and 

O(y) does not occur in S-na(Oo). Then Theorem 6.9 holds. For suppose not; write @0 = 

(Y)(ya) § 04 as a sum of irreducible characters. By Lemma 6.5, S_na(Oo)=O(7)+ O ' §  

~=l S-na(~)t), with O'  the character of a representation. By Lemma 6.8 (b), (~(7) is g- 

nonsingular. (I t  should be pointed out tha t  the roles of Y and ya are reversed here with 

respect to the notation of Lemmas 6.5 and 6.8.) Theorem 5.20 and the remarks after it 

now imply tha t  O(y) has nonnegative multiplicity in each S_n~(| Hence O(7) occurs in 

S n:(@o), a contradiction. So our goal is simply to construct 00; this will be the character 

O@B) defined below. 

We use obvious notation based on tha t  introduced before Lemma 5.13. Thus H Z =  

(T+)PAZ will be the Cartan subgroup obtained from H by  a Cayley transform through ft. 

Fix a character yD E (/tP)' as described t he r e - -  there are two choices 7~, simply take one 

of them. By Proposition 5.22, ~(7) is a subquotient of ~(~) .  Similarly, we can define y~ 

from y~, and obtain g(ya) as a subquotient of ~(7~). Write ~ for the root of ~P in G corre- 

sponding to c E A(g, ~) under the Cayley transform. We may  choose 7~ =7  B - n ~ .  We claim 

tha t  ~ is a complex root; since ~+ is not a multiple of/~, this is clear. Furthermore,  0~ = 

s~ (0~) = s~(Oa) is a negative root, since 0 a #  - f l  is ncgative, and fl is simple. Since dim AB = 2, 

Theorem 6.9 is available by inductive hypothesis; we deduce tha t  ~(7~) occurs in ~(y~). 

We claim tha t  ~(y) does not occur in ~(y~). To see this, we may  assume tha t  (Y, ~) and 

<y, fl) are small, but tha t  <7, ~) is large for every other simple root e. Since ~+ = �89 + O a ) #  

eft, it is easy to see tha t  - O a  must  involve simple roots other than ~ and fl; so <7, - 0 ~ )  

is large. By Lemma 6.2, <2a, ~t~) - <2, ~t) is large. On the other hand, <)~a, ~t~) - <~t~, ~ )  = 

<,~t~,fl>2/<fl, fl>--<y-n~,fl>2/<fl, fl> is small (since n=2<~,7>/<~,~>);  so <~,~t~> 

(2, 2) >0.  By Proposition 2.10, 7:(7 ) does not occur in ~t(7~ ). 

Now S,,~(|174 so to complete the argument sketched at  the beginning of 

the proof, we need only show that  ~(7~) occurs in n(7~). Let  0:#Xe(a~) * be orthogonal 

to $. Theorem 6.9 implies tha t  Yt(7~ +cX) occurs in ~r(7Z+cX ) for all sufficiently small 
+ 

c~C (i.e., whenever 7Z+cX is strictly dominant for ATe). Let  g~ be a lowest K- type  of 

n(7~), and let m be the multiplicity of/u~ in n(y~). Possibly after an appropriate shift of 7, 

we claim that  g~ has multiplicity m in ~(7~ + cX) for an algebraically dense set of c. Assume 

this result for a moment.  Then the U(g) n~ module n(y~+cX)"~ is a subquotient of 

n(7Z+cX)~'~ for an algebraically dense set of c. By a simple analytic continuation argu- 

ment, every composition factor of n(7~)~'~--iu particular n(y~)"~--is a composition factor 

of zt(7~)"~. Thus ~(7~) occurs in ~t(y~). 

I t  remains to establish the multiplicity assertion. We consider those (small) c with 
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the property that  if ?~ +cX is integral with respect to ~ CA(g, [)~), then ~- is proportional 

to i - .  This is clearly an algebraically dense set. For such c, the only factor of the long 

intertwining operator for ~z(?{ + cX) which can fail to be an isomorphism is the one corre- 

sponding to the restricted root ~-. The corresponding parabolic subgroup has Levi factor 

2~%zI~ = 0~; a ~ is spanned by X, and 

A(g~, llZ) = {~[~- is proportional to ~-}. 

List the composition factors of ~ ( ) , ~  + cX) as ~(~ ,~  + cX), ~ ( 7 1  + cX) ..... ~ ( ~ ,  + cX). 

(Since ~ is central in G~, ?~ may be chosen to be independent of c.) By Corollary 3.15, 

every composition factor of zea()J~+cx) other than the Langlands subquotient occurs in 

some ~z(p~ +cX). All of this data transforms coherently after shifting in accordance with 

Theorem 5.2. To prove the multiplicity assertion, it is therefore enough to show that,  

after shifting ? appropriately, the K-type/z~ does not occur in ~zz(~ +cX) for any i. Be- 

cause of Lemma 8.8 of [19], it suffices to prove that  I ~  ] < l~ t  I for all i (and appropriately 

shifted ?). Suppose this is not the case, i.e. that  for all shifted )~ there exists an i with 

Define P,(?~)=(;~, ~ } - ( 2 ~ ,  2~}; this can be regarded as a homogeneous quadratic 

polynomial on (D~) * by coherent continuation. Since p~ and ?~ define the same infinite- 

simal character for the group (1~, P~(?~) is a function of the various (s, ?~}, with e a root 

of DZ in g~. Denote by B the projection of (t)~) * on the span of A(g a, [)z); then P,(r~)= 
P~(B?~). Now consider the set C(cl, cz) of ?~+ttr~, with tt a dominant weight of a finite- 

,Z dimensional representation, and (y + try, ~) = c 1, (?  +fir, fl} = c2" If (?)~ e C(cl, c2) , it is easy 

to compute that  (2~,)l~)-((;t  )~, (;t')~) =/(c,, c~). If (~;, 2,)-~(;t~, ~:), it follows that  

0 ~P~(0"}~)<~/(c~, c~). Define a scmilattice in a Euclidean space to be the intersection of a 

cone with non-empty interior and a lattice. Let T be the real subspace (i.e., the real span 

of the roots) in B(D~)* , and 

T~ = { x e T l ( ~ ,  x) =0}. 

Because a E T and fl ~ T, it is easy to see that  the projection B(cl, c2) of C(cl, c2) on T is 

translate of a semilattice in T~. Our hypothesis says that  for each x E B(c I, c2) there is an i 

such that  P~(x) <~/(Cl, c~). An elementary argument (which is left to the reader) now implies 

that  for some i, P~(x)=c((~, x)) 2. 

Suppose ~ is associated to the Cartan subalgebra D~ of g. Choose an automorphism 

of ~ ,  inner for (G~)c, such that  a maps t), to I)P and ,~, to )J~. Let  0' be the involution of DP 

induced by 01 ~ and 0. Then 
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4 X[r162 [ a o  I'r162 [ ~ 1  

= �89 (9,, o9,> -�89 (~ ,  o~> 

= �89 [<~,~, o'~,~> -<~,~, o~,~>]. 

Now we make use of a simple geometric result. (We would like to  thank  Jorge Vargas 

for a helpful discussion.) 

LEM~A 6.13. Let V be a/ ini te-dimensional  real vector space with positive de/inite inner 

product ( , ). Suppose 0 and O' are sel/-ad]oint involutive automorphisms o/ V, and that 

((O-O')v, v> = c(a, v) 2 

/or some O ~ E  V and some constant c. Then 0 and O' commute; and either 0 = 0 ' ,  and c=O, 

or 0:r = +_ r162 and O' =s=O. (Here s a is the reflection about or 

Proo/. Recall tha t  V is the orthogonal  direct sum of the + 1 and - 1  eigenspaces of 

either 0 or 0'. By polarization, 

((O-O')v, w) = c(~, v)(a, w). 

If  c = 0, obvious ly  0 - 0 '  and we arc done. So suppose c ~ 0 .  I t  follows tha t  0 - 0 '  annihilates 

~• If  vE V ~ and wE V ~ then (Or, w)  =(O'v, w)  = ( v ,  w); so for such v and w, 

0 =c(~,  v)(~, w}. 

I t  follows tha t  either V ~ o~ L, or V~  ~-; assume the first. The - 1  eigenspace of 0 is 

(V~ ~, so 0a = - a. In  part icular  a ~ is 0-invariant. Since 0 0' annihilates cr ~, 0 ]~•  

In  part icular  a• is 0' invariant,  so 0'~ = _+ a. Since c # 0 ,  we sce tha t  0 'a  :.-~. Q.E.D.  

Applying this lemma to tile present situation, we deduce tha t  05 ::  _ ~, contradict ing 

the fact  t ha t  $ is complex. Q.E.D.  

We now begin a case-by-case analysis, determining when these reduction techniques 

fail and analyzing the remaining cases. Recall t h a t  go is assumed to be simple, t ha t  P = 

M A N  is cuspidal, and tha t  dim A = 1. If  G =ZGo, we m a y  also assume tha t  G is connected. 

Suppose tha t  {st} are the simple roots of A~, and tha t  0 ~  n~stEn. Then the parabolic 

subalgebra corresponding to the simple roots { s t i n t S 0  } is 0-invariant. By  Lemma 6.10, 
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we m a y  therefore assume t h a t  n ~ 0  for all i. I f  G is complex, these conditions force G 

SL (2, C) (or its adjoint  g roup - -we  will often be somewhat  vague about  such distinctions). 

I n  this case Theorem 6.9 is well known.  Alternatively,  the a rgument  given below for 

G =Sp in  (2n + 1, 1) applies to SL (2, C) ~ Spin (3, 1). So we m a y  assume g is simple. Suppose 

first t ha t  rk G = rk K, or equivalently, t ha t  there is a real root  ~. Then the expression of 

in terms of simple roots mus t  involve all of them. I f  s is simple, then 0 e < 0  iff <e, (3> >0 .  

If  g is of type  An, list the simple roots as e 1 .. . . .  r with e~ adjacent  to E~+I. The only 

root  involving all the simple roots, and hence the only possibility for ~, is Q + ... +~n. The 

only complex simple roots are Q and en; 0el and 0~n are both negative, and el A-en if n 93 .  

So Lemma 6.11 applies if n ~> 3. If  n = 1, go = ~[(2, R), and there are no complex roots. I f  

n = 2 ,  necessarily go =~ 31I(2, 1). Theorem 6.9 is known in this case (cf. [1]), but  for com- 

pleteness we sketch a proof. One can argue as for SO (2n, 1) below; but  for var ie ty  we give 

another  argument ,  which also applies whenever the SO(2n, 1) a rgument  is used. Since G 

is linear, ~t is the restriction to t + of some integral weight x of ~; so ?-x=c6=c(el+e2). 

But  y - x  is integral with respect to  either Q or Q, so we deduce t h a t  cEZ.  Hence 7 is 

integral. After a shift we m a y  assume ~, =~. Since A + is clearly invariant  under  - 0 ,  we 

must  have ~Ea*, i.e., 2 = 0 .  Now G has no outer  automorphisms which are inner for Go; 

so G=ZGo, and thus G=G o under  our current assumptions. So M--Mo, and ZM(~t) is the 

trivial representation. In  particular zr(y) contains the trivial K-type.  Now the generalized 

principal series representations with infinitesimal character  t) are z(y), ~(y~,), ~(y~:), and 

three discrete series. Of these, only ~(y) contains the trivial K-type.  Since the trivial 

representation of G has infinitesimal character  ~, this forces ~(y) to be the trivial repre- 

sentation. Le t /~  be the lowest K- type  of ~(7~)" By  computat ion,  /x has an M-invar iant  

subspace, and hence, occurs in zt(y); but  of course it cannot  occur in ~(7). A computa t ion  

shows tha t /~  does not  occur in ~(~,~) for f l #~ ,  or in the discrete series representations 

with infinitesimal character  ft. Therefore 7t(7 ) must  contain ~(7:) as a subquoticnt .  

Next  suppose $ is of type  B ,  (n 7~ 2). List the simple roots as Q ..... e~, with ~:~ adjacent  

to ~t+l, and ~ short. Then 6 =:Q-~-... +en, or 6 =:Q + ... +ei-~ + 2 ~  + ... + 2 ~ ,  with 2 ~ i :  n. 

Consider first the second possibility (so tha t  (~ is long). The complex simple roots e~ with 

0 ~ < 0  arc ~l and e~ (if i > 2 )  or e2. If  i > 2 ,  r so by  Lemma 6.11 we may  assume i - 2 .  

In  tha t  case 5 is dominant ,  so every root  fl~A+(f+, Ilt) which is simple for lu is also simple 

for B. Now the real root  of the rank one form ~o(2n, 1) of g is short; so In is noncompact .  

Hence we can find a simple noncompact  imaginary root  ft. Now 2:r =e2+0e.o =r +s~e~ 

involves all the simple roots except perhaps ez. So if n > 2, zr + cannot  be proportional  to ft. 

By  Lemma 6.12, we m a y  assume n = 2 .  By  the classification of real forms, ~0 ~ 80(3, 2), 

which is split. This case is t reated in Section 7. We are left with the case ~ = ~ + . . .  +en, 
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which is dominan t .  B y  the  a rgumen t  jus t  given,  e i ther  n~--2 and  g o ~ 0 ( 3 ,  2), or  g0 ~ 

~ ( 2 n ,  1). The  f irst  case is t r e a t e d  in Sect ion 7. The  second is known (cf. [1]), b u t  aga in  

we sketch a proof  for completeness.  The only  s imple roo t  :c wi th  0:c < 0 is sl. The  real  dua l  

of ~ m a y  be ident i f ied  wi th  Rn; if {et} is the  s t a n d a r d  basis of R n, t hen  we can a r range  

st = e t - e t + l  (i <n) ,  gn =e , .  Then ~ = e  I. W r i t e  

y = (~, 2~ . . . . .  2,).  

Now ? is in tegra l  wi th  respect  to  the  imag ina ry  compac t  roots  e2, ..., e,; and  b y  hypothes i s  

? is in tegra l  wi th  respect  to  e 1. So ? is integral ,  and  af te r  a shif t  we m a y  assume t h a t  

?=~=(n-�89 n - ~  . . . . .  �89 Since M N G o is connected,  i t  is easy  to  deduce  t h a t  ~(?) is a 

one-dimensional  representa t ion .  B y  L e m m a  6.8, Theorem 6.9 a moun t s  to  showing t h a t  

~(?) is :c-singular. Bu t  the  coherent  con t inua t ion  of a f in i te -d imensional  r epresen ta t ion  to  a 

wall  is a f in i te-dimensional  r ep resen ta t ion  with  s ingular  inf ini tes imal  character ,  and  there .  

fore i t  vanishes.  So ~(?)  is :c-singular. 

Suppose nex t  t h a t  ~ is of t y p e  Dn (n ~>4), wi th  s imple roots  el . . . . .  ~ ,  wi th  et-1 a d j a c e n t  

to  ~t for i < n ,  and  en a d j a c e n t  to  e,-2. Then necessar i ly  5 = Q  §  + 8 1 _  1 + 2 ~  t § ,,, 4-2~n_ 2 + 

e~-I +e~ (2 ~<i < n  -- 1). The  complex  simple roots  ~t wi th  0~ < 0  are  ~1 and  ~t (if 2 ~<i ~<n - 2 ) ,  

or el, e,,  and  ~ - 1  (if i = n - 1), or  e2 (if i = 2). I n  the  f i rs t  two cases these  sets  a re  m u t u a l l y  

or thogonal ;  so b y  L e m m a  6.11 we m a y  assume i=2. Then  5 is dominan t .  Arguing  as for 

t ype  Bn, we deduce  t h a t  G mus t  have  real  r ank  one. B u t  then  b y  the  classif icat ion of r a n k  

one real  forms, go ~ ~ ( 2 n  - 1, 1), cont rad ic t ing  rk  G = r k  K.  

Nex t  t ake  g of t ype  Cn, n>~3, wi th  s imple roots  el . . . . .  en, et a d j a c e n t  to  et+l, and  en 

long. The possibil i t ies for 5 are  5=2el+2sz+...+2en_l+en, or 5=Sx+...+st_l+2et+...+ 
2e,_x +e , ,  wi th  2 <-i ~ n. Consider  the  first  possibi l i ty .  I n  this  case ~} is dominan t ;  as usual  

we m a y  assume by L e m m a  6.12 t h a t  g0 has  real  rank  1. B u t  t he  real  roo t  of t he  r ank  one 

form of g is short ,  and  6 is long, a contradic t ion .  I n  the  second possibi l i ty ,  the  complex  

roots  st wi th  0e~ < 0  are  el and  et (if i >2)  or e2 (if i =2) .  I n  the  f irst  case s1• so by  L e m m a  

6.11 we m a y  assume 5 = e 1 + 2e2 + ... + 2e~_~ + e~. Then  (~ is dominan t ;  so as before L e m m a  

6.12 allows us to  assume g0 ~ ~ p ( n - 1 ,  1). This real  form has no ou te r  au tomorph i sms  in 

Go, so G=ZGo, and  we m a y  assume G is connected.  The  simple roots  el and  es th rough  e .  

are  imaginary ,  so ? is in tegra l  on those  roots.  Also ? is in tegra l  on e~ by  hypothes is ,  so a f t e r  

a shift  we m a y  assume ? =Q. J u s t  as in the  case of t y p e  Bn, i t  follows t h a t  ~(?) is one- 

dimensional ,  and  hence :c-singular. 

Before considering the  excep t iona l  groups,  we dispose of the  poss ib i l i ty  t h a t  there  is 

no real  root.  I n  th is  case H is a f undamen ta l  Car tan  suba lgebra  of ~, so t h a t  we mus t  have  

rk  9 = r k  k + 1. There  are  ve ry  few such algebras:  B y  the  classif icat ion of real  forms (cf. [20]) 
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they are 8[(3, R), 8[(4, R) =~ 80(3, 3), 31i*(4) ~ 80(5, 1), and 80(p, q), with p and q odd. 

SL (3, R) is dealt with in Section 7. Consider then ~ ( p ,  q); say p + q = 2n. We may  identify 

h with R n, and the simple roots with e, = e , - e ~ +  I (i <n)  and e~ =en-1 +e , ,  The involution 0 

is just reflection about some e~. Writing e~ in terms of the simple roots (recall tha t  it must  

involve all of them), we see tha t  i = 1; so e2 through e~ are imaginary, and we must  have 

=el. As usual it follows tha t  7 is integral. I f  M is noncompact,  then some e~ (i >/2) is non- 

compact, and we can apply Lemma 6.12. So we may  assume M is compact, i.e., go= 

80(2n-1 ,  1). This real form has no outer automorphisms in Go, so we may  assume G = G  o. 

After a shift, we have 7 =~" The argument now proceeds exactly as for SO(2n, 1). 

Finally, we turn to the exceptional groups. The split form of G 2 (which is the only 

noncompact,  noncomplex form) is treated in Section 7. Recall tha t  there is a real root 8, 

which involves all the simple roots in its expression. For each type of root system, one 

begins by listing the roots involving all simple roots. Given an explicit realization of the 

root system, this is not difficult. One simply computes the fundamental  weights corre- 

sponding to the two or three "extremal"  simple roots. The roots 8 under consideration are 

those having a positive inner product with these fundamental  weights. (Even for E s there 

are only 44 such roots.) I t  is then a simple mat ter  to determine which simple roots 

satisfy 0a < 0; they are the simple roots having positive inner product with 8. I f  there are 

two such roots orthogonal to each other, Lemma 6.11 applies. (It  is an amusing exercise 

to verify tha t  for g not of type A 2, two simple roots having positive inner product with a 

root involving all simple roots are necessarily orthogonal. We will not need this, however.) 

This much of the computation will be left to the reader. For each root system, we will 

simply present a list of the remaining possibilities for 8. Next  we list the simple roots of t + 

in nl; the roots of m are just those orthogonal to 8, so this is a straightforward computa- 

tion. If  m is compact, then G has real rank one; so g is of type F 4, and 8 is short. This 

case will be treated last. Otherwise, there is a noncompact root fl, simple for A+(t +, m). 

If  fl is actually simple in A~, we apply Lemma 6.12. Otherwise we can write fl=>~ n~e~, 

with et E A~ simple; say, n~ ~=0. Now (fl, 8> = 0; but if (et, 8> = 0 for all i, then fl is not simple 

in A(t +, m). So (et, 8> > 0  for some i. I t  follows from a remark made above tha t  e~ =~; or 

one can simply observe tha t  in each case computed below, fl involves ~. I f  fl involves only 

one other simple root, the proof of Lemma 6.12 goes through with almost no change. 

(Notice tha t  if ~+ is proportional to fl, then fl must  involve all the simple roots except 

perhaps ~ by the argument given for type B~. This never happens, as follows from the 

computations below; we make no further mention of the point.) So serious problems arise 

only when fl involves at  least three simple roots; this will happen only for types E~ and 

E s. The main conclusion of our case-by-case computations is 

18t-802905 Acta mathematica 145. Imprim6 le 6 F6vrier 1981 
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Observation 6.14. Suppose fl involves n ~> 3 simple roots e~ . . . . .  e~. Then  n = 3 or 4, and  

the  e~ span a root  sys tem of type  A~. We m a y  a s s u m e  2(el ,  (~ / ( e l ,  el~ = --2(en,  (~)/(en, en) = 1, 

t h a t  e~ =~ ,  and  t h a t  e~ is ad jacen t  to e~+~. In  this case e~ ... en_~ are  or thogonal  to (~ and  

to  f l = Q +  ...-t-e~. Before verifying this observat ion,  we show how to  ex tend  L e m m a  6.12 

to cover this case. J u s t  as in t h a t  si tuation,  we can use fl to const ruct  a Car tan  subgroup 

HZ, and representat ions z(~Z) and  z ( ~ ) .  The  simplici ty of fl first  entered in the  verif icat ion 

t h a t  ~(~) does not  occur in ~{y~). To see this, we now shift  ~ so t h a t  (y,  e~) is small  for  

i =1  . . . . .  n, bu t  (7,  e) is large for every  other  simple root  e. Since O~z=s~(~)=~-r(~,  - 0 ~  

mus t  involve all the simple roots except  perhaps  ~. Since ~ has  r ank  7 or 8, and  n < 4, i t  

follows tha t  - 0 a  involves some simple root  e ~ (e~). So ( - 0 : r  7 )  is large. The  a r g u m e n t  

now proceeds as in L e m m a  6.12. The  nex t  use of the  simplici ty of fl was to ver ify the  

following fact,  with no ta t ion  as in L e m m a  6.12: For  some str ict ly dominan t  shifted y, 

12a I < 12~ ] for all i. Suppose not.  We consider the  set 

C ( c ~  . . .  %-0 of r~+~,  

with ju a dominan t  weight  of a f ini te-dimensional  representat ion,  and  (7+juv,  e~)=c~ for 

i = 1 . . . . .  n - 1. Now (2~, 2~) - (2~, 2~) depends only on (fl, Ya) = (sail, 7 ) .  Since s a i  1 = 

e l+ . - .  +en_~ b y  Observat ion 6.14, (2~, 2~)-(~ta ,  ) t : )= ] (e  1 ... cn-1). J u s t  as in L e m m a  6.12 

it  follows t h a t  0 ~Pt((~')~) ~</(cl ... cn-1) whenever  (7')~ E C(c I ... cn_l). We want  to  describe 

the  projection of C(c I ... cn-1) on T. Recall  t h a t  the  roots of ~P in ~a are (~[~[a~ =cala~}. 

This set is just  

{ ~ l ( ~ ,  ~)  = c ( ~ ,  ~), (~, ~) = c ( ~ ,  ~)}. 

Since e2 through g~-i are or thogonal  to $ and fl, t hey  lie in A(~a, ~ ) ,  and  are in fact  imagi.  

nary  roots. Fur thermore ,  cr obviously lies in A(~a, ~B). P u t  T o = ( x E T [ ( ~ j , x ) = O ,  

i = 1  . . . . .  n - I ) .  Then  B(c I ... cn-1) is a t rans la te  of a semilat t iee in T 0. An e lementa ry  

a rgumen t  like t h a t  omi t t ed  in L e m m a  6.12 now shows t h a t  for some i, P i (x )  is a funct ion 

only of the  various (~j, x )  for j =1 ,  ..., n - 1 .  On the  o ther  hand,  this polynomial  was 

rewri t ten as �89 O'x) - (x ,  Ox)]. Le t  W denote  the  span  of el th rough  en-1. Exac t l y  as in 

the  proof of L e m m a  6.13, we deduce t h a t  0 ' - 0  annihilates W • Since O ' - 0  is self-adjoint,  

~C~lel ~- ~'~J=2 Cifet. 0 ' - 0  preserves W. For  2 < ~ i < ~ n - l ,  Oe~=e~; so we can write 0'ej n-1 We 

claim c~i = 0  for all i. Suppose not .  Then  

( )1( ) 
O,el = 1 (O,)2e~ - ~. c~jO'ei = - -  e t -  c~j~j~ek e W. 
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Therefore, 0s 1 =0zr also lies in W; bu t  we have seen already t h a t  0~ cannot  be expressed 

in terms of the  st. So ct 1 =0 .  Le t  W t denote the span of e~ . . . . .  sn-t; then we have shown 

tha t  0 and 0' preserve W t. Since 0 is the ident i ty  on W1, 0 and O' commute  on W z. Let  0" 

denote the involution of V which is + 1 on Wt and O' on W~. Then  

P"(z) = �89 0"z>-<x, 0z>] 

is a funct ion of <e~, x>; or if we choose 0#61f i  W~ 13 W, and let 6~, .... 6,-1 be a basis of W1, 

we can write 

P ' ( z )  = Y c.<~. z> <~, z>. 

Jus t  as in the proof of L e m m a  6.13, we consider 

P"(x, y) = �89 O" y> -<x, Oy> ] 

= ~  c,j(O~, x> <~j, y>. 

If  yE W1, O"y =Oy =y, so P"(x, y) ,=O. I t  follows immediately  tha t  c~j = 0  unless (i, ?') = (1, 1), 

i.e., t ha t  

P"(z) = c~<~l, z> ~. 

If  Cl l#0  , Lemma 6.13 implies t ha t  0~l = _ 51, so tha t  W = span {~t} is in fact  0-invariant.  

Again this contradicts O~r so we conclude tha t  P"(x)=O, and hence tha t  0=0" .  So 

0 = 0 '  on W~. Let  ~tw, denote projection on W r Since 0 is the  ident i ty  on W1, we have 

P(x) = ~[(x, O'x> -<x, Ox> ] 

= �89 x, O'nw x> - <Zlw z, Ztw x>]. 

But  this is obviously nonposit ive for all x, contradict ing P@~)>0 .  So the desired shift 

of 7 exists, completing the extension of Lemma 6.12. 

We now verify Observation 6.14. Suppose first t ha t  g is of type  Es. We can identify 

the real dual of ~ with R s, which is given the s tandard  basis e I . . . . .  e 8. The roots are • e~ _ ej 

( i # / ) ,  and �89 • el +_ ... -t- es), with an even number  of plus signs. As a system of simple 

roots, we can take el = -�89 ~ e~, e~=e 7 +es, es=ee-eT, e4=es-ee, e6=e4-eB, e6 =%-e4, 

87=e2--e3, and es=eT-es .  Then e~ is adjacent  to e~-x for i < 7 ,  and  es is adjacent  to %. 

I n  accordance with earlier remarks,  we now list the possible 6 to  which Lemma 6.11 does 

no t  apply, together  with the simple roots of m. Verification of Observat ion 6.14 is left to  the 

reader; in all cases it is obvious by  inspection. (This choice of simple roots makes the funda- 

mental  weights for s 1 and e7 quite simple, so the  computa t ion  of possible 6 is no t  difficult.) 
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Simple Roots  of m. 

(-�89 �89 �89 �89 �89 �89 �89 -�89 82, 83, 84, 8~, 8., 87, 81+82+83+8~  

(-- �89 �89 ~', �89 �89 �89 --�89 �89 82, 84, 85, 86, 87, 81-~-82-t-83, 83-t-83 

(-- �89 �89 �89 �89 �89 --�89 --�89 --�89 81 , 83, e 5, 86, 87, 88 , 82 Jc- 83 -1- 84 

(-- �89 �89 �89 �89 - -~ ,  --�89 - -~ ,  �89 81, 82, 85, 84, 86, 87, 83 ~-84-~-85-~-88 

- - e l  -]-e 2 81~ 82, 83~ 84~ 85, 86, 88 

- -e  I -t-e 3 81~ 82, 83~ 84, 85~ 88~ 86 ~-87 

- -e  I ~ e  4 81~ 82~ 83~ 84, 87, 88, 85 ~-E 6 

- - e l  ~s 81~ 82~ 83~ 86~ 87, 88~ 84-I-85 

- -e  I ~ e  6 81, 82, 85, 86, 87, 88, 83 @84 

--el +e8 81, 83, 84, 85~ 86, 87, 82 -t- 83 -~- 88. 

The root  systems of type  E 7 and E e are entirely similar and less complicated; verification 

of 6.14 in these cases is left to  the  reader. 

We are left with the possibility t ha t  g is of type  F 4. I n  this case the real dual of 

may  be identified with R 4, with roots _ el, _ et _ ej, and �89 • e I _ . . .  • 84). As simple roots 

we m a y  take 81=�89189189189 82=84, 83=8a-84,  and 84=82--e 3. Then 8~ is adjacent  

to 8t+1. The possible d to  which L e m m a  6.11 does not  apply,  together  with the  simple 

roots of m, are 

Simple Roots  of 11! 

(�89 �89 �89 - t )  81, 84, 282 +83 

(~, �89 �89 �89 8z, 84, 81+82 

(1, 0, 0, 0) 82, 83, 84 

(1, 0, 1, 0) 81, 82, 83+84 

(1, 0, 0, 1) 81, 84, 82-~83 

(1, 1, 0, 0) 81, 82, 83. 

By the remarks already made, a slight modification of Lemma 6.I2 always applies when 

nl is noneompact .  So we m a y  assume m is compact ,  and therefore tha t  go is the rank one 

form of F4, with ~0~= ~0(9). Since [o has no outer  automorphisms,  neither does go; so we 

m a y  assume G is connected. The real root  of [1 is known to be short,  so we are in one of 

the first three cases listed above. Furthermore,  M is connected, and hence T+ is also; so 

we m a y  identify pseudocharacters  with their differentials. Since y is integral with respect 

to the imaginary roots and the complex root  ~, it is easy to check tha t  in each of the three 

cases ~ mus t  be integral. (We note t ha t  a is either ca, 82, or 81, respectively, according to  

which case is under  consideration.) After a shift, we may  assume ~ = ~ ;  one calculates 
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easily that  Q=( l l /2 ,  5/2, 3/2, 1/2). By Lemma 6.8, what must be shown is that  ~(y) is 

a-singular in each case. We write 7 ~, 7 ~, and ~m to distinguish the cases. I t  is easy to see 

that  ~(~m) is one-dimensional, so as usual ~@m) is el-singular. Now yI//=s~,(~,m). If we 

change our identification of 9" with It 4 so that  s~l@ m) is dominant, ~ becomes s~(1, O, O, O) = 

(�89 �89 �89 �89 Therefore, ?iii is conjugate under G to 7 II, i.e., ~(?ii) occurs in z~(?m). Now in 

case II, ~ =e2. But s 2 is a compact imaginary root for ?I~i, so by Lemma 6.4, every con- 

stituent of ~t@m)--in particular ~(7~)--is s~-singular. Similarly, 7i/~ is conjugate to ?~, so 

~(7 I) occurs in z(7 II) and is therefore sa-singular. 

Except for the split groups of real rank two (to be treated in Section 7), this com- 

pletes the proof of Theorem 6.9. Q.E.D. 

THE OREM 6.15. Let G be a reductive linear group with abelian Cartan subgroups, and 

let H = T+A be a O-invariant Caftan subgroup. F ix  y = (~, v)E121 ' such that the corresponding 

weight ~ e ~* is nonsingular; write A = A~. Then 7~(~) is reducible i / a n d  only i] there is a 

+ 0 + root ~EA r such that ~ $ A r ,  with 2<~, ~}/<a, ~> =nCZ,  and either 

(a) ~ is complex; or 

(b) a is real, and (with notation as in Proposition 6.1) 

( - 1 )"  = s ~ . , l ( m ~ ) .  

Proo[. By Proposition 6.1, the condition is necessary for reducibility. So suppose that  

it holds. The condition is consistent with the reduction technique given by Theorem 3.14, 

so we may assume dim A = 1. Just  as for Theorem 6.1, we proceed by induction on the num- 

ber r(y) of complex roots flEA~ with Ofl~A~. If r(y) =0,  then we saw in the first part  of the 

proof of Theorem 6.1 that  zt(~) is reducible. (In this case its composition factors are ~(?) and 

the discrete series described by Proposition 5.22. This result, which follows from our argu- 

ment, is due to Schmid.) So suppose r(7 ) =n  >0, and the result is known when r@) < n  - 1. 

Clearly, there must be a simple root ~ with 0~ ~A~. If ~ is real, then A~ - {~} is 0-invariant, 

contradicting r@)>0.  So ct is complex. If 2<a, ~>/<g, ~> =nf iZ,  then ~(y) is reducible by 

Theorem 6.9. Otherwise, after shifting ~, we can choose a positive integer r so that  ~ -  r~ 

is strictly dominant for sa(A~). Then r ( ~ - r a )  = n - 1 .  By Theorem 5.20, ~t(~) and ~t(~ - r g )  

have the same number of composition factors. But  any root fl fi/k~ satisfying the condition 

of the theorem does so for y -rzc as well; so ~ t (y - ra )  is reducible by induction. So zr(y) is 

reducible. Q.E.D. 

I t  is clear from this argument that  a more complete understanding of composition 

series is virtually equivalent to a more complete understanding of coherent continuation 

across walls. Therefore, we summarize our results on that  subject. 
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THE ORE~ 6.16. Let ~(y ) be a generalized principal series representation o/G, with y e 3" 

nonsingular. Suppose at E A~ is simple, with 2(at, Y}/(at, oO --- n e Z. 

(a) I] cr is real and 7 ( m ~ ) = - ( - 1 ) n . e ~  (with notation as in Proposition 6.1), then 

&.~(O(7)) = 0(7) + 00. 
(b) I[ at is real and 7(ma)=(-1)n 'ca ,  then 0(7) is at-singular. 

(c) I[ at is complex and Oot E A~, then S_.a(O(7)) = 0(7) + O(7~) + 6)0. 

(d) I /ot  is complex and Oat (~ A~, then D r is at-singular. 

(e) I[ at is compact imaginary, then 6)(7) is ~-singular. 

(f) I[ at is noncompact imaginary, and s~ E W(M/T+), then (with notation as in Proposi- 

tion 5.14) 
&=(g)(7)) = 0(7) + O(Tt ) + 0(7 ~-) + 6)0. 

(g) I1 at is noncompact imaginary, and s~ r W (M / T+), then (with notation as in Proposi- 

tion 5.14) 

s_=(0(7))  = 0(7) + 0(7 ~) + 6)0. 

In each case, 6)0 denotes the character o/some representation (possibly zero). 

Proo/. Assertions (c), (d), and (e) have already been proved (cf. Lemmas 6.4, 6.8 

and Theorem 6.9). (It should be pointed out that  (e) and (d) are essentially equivalent by 

Lemma 6.8.) Consider (g). Put  7a =Y-nat .  By Propositions 5.14 and 5.22, 

S-.~(6)(Y)) = 0(7 ~) - 6)(7~), 

and the right side is a character of a representation, containing 0(7) and ~)(7~). Write 

O(Y ~) -6)(7=) =g3(y) +~)(7 ~) +6)', and 6)(7) =~D(7) + 0 1 +  ... +Or; here 6)t is an irreducible 

character, and 6)' is a character of a representation. Then 

S -~(0(7)) = 0(7) + 0(7~) + 0 ' =  ~ S_,~(6),). 
| - 1  

We claim first that  ~D(7 ~) appears with positive multiplicity. Suppose not; then ~)(7 ~) must 

occur in some S-na(6)~) with positive multiplicity. Say 0~=@(7'); let g'EAr+ correspond 

to at. Arguing as in the proof of Lemma 6.5, we see that  a' is complex, 0~' is positive, and 

0(7 =) occurs in g)(Y'='). By Proposition 2.10, ]~:, [ < ]2~ [. On the other hand, 0(7'~') occurs in 

8_,a(~3(7')) by Lemma 6.5. Since [~'~. I < i ~(~ [ < [i([, (~(7'=')4 =6), for any i, and 0(7'=') does not 

occur in 6)'. Theorem 5.20 now implies that  O(7:') has multiplicity ~< - 1 in S-n=(O(7)), which 

contradicts Theorem 5.20. This shows that  ~)(7 =) does in fact occur in S ha(O(7)); and (g) 

can be deduced just as Le,nma 6.8 (a) is deduced from Lemma 6.5. Assertion (f) is proved 
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in precisely the same way.  I n  case (b), an  easy a rgument  shows tha t  7 is of the form (~)~: 

for some :~ as in cases (f) or (g). By  the  remarks  after Theorem 5.20, S ~a(O(~)) has only 

one :c-nonsingular constituent,  which is of course O(~); so O((2)~=)=O(7) is :c-singular. 

This proves (b). 

For  (a), we claim t h a t  S_~( |174  i.e., t ha t  ~ - n : c  is conjugate  to ~ under  

W(G/H). Let  ~a: SL(2, R)-~G be the three-dimensional subgroup th rough  the real root  :r 

Define 

( Olo) o'~ = ~o~ � 9  1 " 

Then ~a normalizes H, and 5a =sa~ W(G/H). We want  to  show t h a t  s ~ . 7 =  ~ -n :c .  This is 

obvious on the Lie algebra level; the only problem is the value of ~ on other  connected 

components  of H. Now 

= = 

so we need to consider only H/ZH o. Each  component  of this factor  group has a repre- 

sentative m e  T+_~ K, with m ~ -  - 1. For  such m, we mus t  show tha t  

~'(qa m~,-  ~) = ~ ( m ) .  :c(m) -n.  (*) 

Let  XaEg  e be a root  vector  for :c; then a ~ = e x p  (cXa+dX_a). Since m2=l, : c ( m ) = _  1. 

If  : c (m)=l ,  then Ad (m).X~=Xr so m and aa commute,  and both sides of (*) are equal 

to y(m). I f  :c(m)=-l, Ad (m).Xa=-Xa, so m-lac, m=(7~ 1. I t  follows t h a t  a, zm(~l= 
ma;2=mm~,, so the left side of (*) is 2(m)y(ma). So we mus t  show tha t  2 ( m ~ ) = ( - 1 ) " ;  by  

hypothesis  this amounts  to e~ = - 1 .  Recall the definition of E~ after Proposit ion 5.14; if 

H a is the Cartan subgroup obtained from H by  a Cayley t ransform through  ~, and G ~ =  

M~A~, we choose a certain positive root  system ~F 1 for (t+) ~ in m: ;  and set 

n~ = 2(~,  ~(~F1)-2~(~F1 N A(m ~ n l)))/(:c, a) ,  

$a = ( -- 1)"~. :Now clearly the element m defined above normalizes Ha; and  ~ = s ;  E W(G/H~). 
Now ~ is a noncompac t  simple root  in ~1.  Any  element of W(G/H ~) preserves A(m a N [); 

so s~ preserves A(m ~ N ~) N ~F 1. Thus (~, 20(~ 1 N A(m ~ N ~))) =0 ;  so n~ =2 (~ ,  ~(~F1))/(:c , :c) = 

1, and e:,= - 1 .  This proves t h a t  S_nr174 To prove (a), we now apply  the usual 

argument;  we need only show tha t  if (~(~')~(~(7) occurs in 0(~), thvn S n~,(O(~,')) does no t  

contain 0(~). Let  :c' EAr +. correspond to :c. Using arguments  which have been given several 

times, one sees t ha t  this can only happen if :c' is imaginary and noncompact ,  in this case 

we would have to have ~(~) occurring in | and, investigating the  occurrence of 
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0(@')~) in S n~(O(?)) , we would find that  @(@')~) occurs in @(7). By Proposition 2.10, 

this forces ? = @')~; but by the construction of @')~, this contradicts ?(m~) = - ( - 1)ne~. 

Q.E.D. 

COROLLARY 6.17. Let | be an irreducible character with nonsingular in]initesima[ 

character 7. Let ~EA +, and suppose 2(~, ?>/(~, cr =n EZ .  Then either 

(a) S_~(O)=  - 0 ,  or 

(b) S_,~(0)= 0 + (~0, with @o the character o/a  representation. 

With this corollary, it is a simple matter  to discuss singular infinitesimal characters. 

Thus let ~t(tI r, 70) be a representation in the limits of the generalized principal series. Choose 

a positive root system A+ for ~ in g so that  ?0 is dominant and tF___ A+, and a dominant 

weight/z of a finite-dimensional representation. Suppose ?0 + #  = ?  is strictly dominant; 

this can always be arranged by proper choice of/z. Then by Corollary 5.12, y~0(~(~, 7)) = 

zt( tF, ?0). By Theorem 5.15, the functor ~0rr ~ maps irreducible representations to irreducible 

representations or zero. Once we know how to compute ~v~0, information about the com- 

position series of z ( ~ ,  ?) immediately provides information about the composition series 

of ~r(tF, 7o). The computation of v/~0 is given by 

THE OR E M 6.18. With notation as above, every irreducible representation with in/inite- 

simal character 70 has a unique irreducible preimage under ~~ v/~~ 7))= 0 i]] there is a 

simple root ~EA~ such that <or, 70> =0 and either 

(a) ~t is compact imaginary, 

(b) ~ is complex and Oo~Af, or 

(c) a is real and (with notation as in Proposition 6.1) 

2(m~) = e~( - 1) z<~'r>~<~'~>. 

I[ ~~ ?) #0 ,  then it is the unique Langlands subquotient o{ n (~ ,  7o). 

Proof. Suppose ? satisfies (a), (b), or (c) with respect to some root ~. Choose 71 so that  

? - 7 1  and 71-70 are dominant weights of finite-dimensional representations, and ?i is 

singular with respect to only ~. By Theorem 6.16, ~,(~(~F, 7))=0.  Hence v/~0(~(~F, 7) )=  

v/~0v/v,( (~F, 7))=0.  (The composition law for Zuckerman's v/-functor is an easy exercise.) 

Conversely, suppose no such root ~ exists. Set A0={~tEA [(~, ?0)=0},  A~ =A0 f3 A+, 

Wo=W(Ao)~_W($/~ ). For ~t a weight of a finite-dimensional representation, define 

0 (?  +/x) =S~(0(~(~, 7))). If w~ Wo, ? - w ?  is a sum of roots, which is a weight of some ten- 

sor product of copies of the adjoint representation; accordingly we can write @(w?) for 

| + (w~/-y)). We claim that  for every w e  W o, O(w?)=0(7  ) + | and every irreducible 
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constituent O~ of O~ is x-singular for some simple root ,r This is clear when w = l .  

Suppose then that it is true for some w, and that ~ A ~  is simple with 2(~, y) / (x ,  x ) = n .  

I t  is clear from the definitions that  S ~ ( @ ( w y ) )  = | so by Corollary 6.17, 

O(ws=~,) = O(y) + S_n~(Ow) + | 

with O0 ~-singular. So Ow8 =O0+S_n~(Ow). If O' is a constituent of @0, then @' is ~- 

singular. If O' is a constituent of S_n=(Ow), then by Corollary 6.17 again, either O' is a 

constituent of Ow, or @' is x-singular. Since the simple reflections generate Wo, this proves 

the claim. Using Lemma 5.4, one finds that  

~~ Z O(~a'); 
WE Wo 

by what we have just proved, this is [W0[. O(y)+ 00, with @0 a combination of characters 

of representations which are singular with respect to some simple root 0r A~. Theorem 

6.16 implies that  O(y) is not a constituent of @0, so ~rr*(~0(@(y)))4:0, and in particular 

~v~0(@(y)) 4=0. This proves the vanishing criterion for ~0(~0F, y)). For the unique preimage 

statement, Zuckerman has shown that every irreducible preimage of IJ~0(~(~F, y)) under 

~prv, is a constituent of ~0~~ r, y))) ([21], Theorem 1.3). But  by our computation of the 

character of this last representation, the only constituent satisfying ~p~0(zc)4~0 is ~(~ ,  y) 

itself. 

Finally, we must show that if ~2~0(~(~i r, y))4=0, then it is the unique Langlands sub- 

quotient of a(qr, Y0). By Corollary 5.17, it is a Langlands subquotient. By the proof of 

Theorem 5.15, we can choose a parabolic P = M A N  associated to H =  T+A in such a way 

that  the Langlands subquotients of z~(P, ~F, y) and z~(P, qr, Yo) are precisely the irreducible 

subrepresentations. Let O0 be such a subrepresentation of z~(P, LF, Y0), and choose an ir- 

reducible representation ~ so that  ~0(~) =e0. T.hen by Lemma 4.1 of [21], 

C ~ Hom o (qo, a(P,  iF, 7o)) = Horn, (~p~~ IoW.(a(P, iF, 7)) 

Hom~ (9~~176 a(P, tF, 7))" 

Since a(P, tF, 7) has ~(uF, y) as its unique subrepresentation, ~(tF, 7) is a constituent of 

9~'i0~0(~); and of course ~0W~ 7))4=0 by assumption. Applying the theory just developed 

to e instead of ~(qr, 7), we deduce that  0 =~(qr, y), and hence that  Q0 =~r,(~( xY, Y)). Hence 

a(P, ~F, Y0) has a unique Langlands subquotient. Q.E.D. 

Thus, as promised, the computation of composition series is completely reduced to 

the case of nonsingular infinitesimal character. Our reducibility criterion does not extend 

so easily: A reducible representation frequently becomes irreducible after continuation to a 
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wall. Nevertheless, an irreducible representation remains irreducible; so we have the fol- 

lowing necessary condition for reducibility. 

THEOREM 6.19. Let G be a reductive linear group with abelian Cartan subgroups, and 

let H =  T+A be a O-stable Caftan subgroup. Fix a positive root system XFgA(llt, t +) (with 

M A  the centralizer o / A  in G) and a dominant uf'-pseudoeharacter 7 =(~, v)EI2I,r. Then the 

limit o/generalized principal series x (~ ,  7) is reducible only i/ 

(a) there is a complex integral root ~ such that <~, 7> is positive and <0g, 7> is negative; 

o r  

(b) there is a real integral root ~ such that i / n  =2<a, 7>/<~, ~>, then in the notation o/ 

Proposition 6.1, 
( -- 1)n = ~ .  $(ma). 

(Here n =0 is allowed.) 

(The conditions given are not sufficient for reducibility in general.) 

Proo/. Define a positive root system A+ for ~ in g as follows. First, set 

A0 = { .eA(~,  ~)1<~, 7> = <0., 7> = 0}. 

Choose a positive system A t containing A o N ~ ,  so that  if a e a t  and 0~ C A~, then a is 

real; this is possible. Define A + to consist of those roots a of ~ in g such that  either 

(a) Re <r162 7> >0; or 

(b) Re <a, 7> =0,  and Im <~, 7> >0; or 

(c) <~, 7> =0,  but  0~ satisfies (a) or (b); or 

(d) :r eA~. 

Then A+_W. 

Now let ~t be a regular dominant weight of a finite dimensional representation of G, 

and set 71=7+#~+  E/~'. By  Corollary 5.12, 

~(~F, 7) = uE~'(~(71))- 

Suppose now that  ~(tF, 7) is reducible. By Theorem 5.15, rr(71) is as well; so there is a root 

r162 satisfying the conditions in Theorem 6.15. By the choice of/x, A+,~ _ A+-, so ~EA+. 

Since 7 and 71 differ by a weight of a finite dimensional representation, a is integral for 7; 

and if it satisfies Theorem 6.15 (b) for 71, then it satisfies Theorem 6.19 (b) for 7. So suppose 

satisfies Theorem 6.15 (a) for 71; thus a is complex, and 

<71, ~> > 0, <7 ~, 0~> < 0. 
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In  particular, a E A+ and 0~ r A +. So ~ satisfies one of (a)-(d) above. We want  to show tha t  

<?, ,r > O, <?, Ooc> < O. 

Suppose (d) holds. Then, in particular, a and 0g are orthogonal to ~, so they both lie in 

A 0. By definition of A +, 

But  by the choice of At,  this forces a to be real, a contradiction. So suppose (c) holds. 

Then by definition of A+, 0a is positive; a contradiction. Since <~, yl )  is real, <~, ~) is 

also; so (b) is impossible. So a must  satisfy (a), proving tha t  (~, ~> >0.  Exact ly  the same 

argument shows tha t  (y, 0~> <0.  Q.E.D. 

The proof of Theorem 6.15 provides some explicitly computable composition factors 

of ~(~). Theorem 6.18 shows how to translate this to singular infinitesimal characters; so 

we could formulate a (rather complicated) sufficient condition for reducibility in the 

singular case. This condition is unfortunately not necessary, as can be seen in the group 

Sp(3, 1); so it  does not seem worthwhile to state it carefully. 

The following conjectures are true in groups of real rank one, Sp(3, R), SL(4, R), and 

the complex groups of rank less than or equal to three. 

Conjecture 6.20. If  y E/~', and H = T+A with dim A = 1, then the irreducible composi- 

tion factors of ~(~) occur with multiplicity one. 

Conjecture 6.21. Let O be an irreducible character with nonsingular infinitesimal char- 

acter ~ E ~)*, and suppose ~r is simple. I f  2(~, ~>/(:r a> = n E Z, then the irreducible 

constituents of S_n~(| ) occur with multiplicity one. 

The second conjecture is closely connected with applications of coherent continuation 

to computing extensions of Harish-Chandra modules, a problem which we hope to pursue 

in a later paper. 

We believe tha t  the techniques described in this paper are sufficient to construct an 

algorithm for computing composition series. The idea (which is illustrated in the proof of 

Theorem 6.9) is this: Using Theorem 2.9, one lists all the generalized principal series with a 

fixed infinitesimal character (which we may  as well assume to be nonsingular). Then one 

writes down a list of composition factors for each generalized principal series, with the 

multiplicities as unknowns. Proposition 2.10 says immediately tha t  many  of these are zero, 

and our various reduction techniques show how to compute some of these unknowns (in 

terms of composition series for smaller groups), or at  least show tha t  some must  be positive, 
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or equal to others, and so forth. Given these multiplicities (as unknowns), one can express 

the characters of the Langlands quotients in terms of the characters of generalized principal 

series and the unknown multiplicities. Thus whenever ~) is an irreducible character, we 

get a formula for the various S_n~(@) as a combination of irreducible characters, with 

coefficients involving the original unknown multiplicities. Corollary 6.17 now gives a new 

family of conditions on the multiplicities, since it says tha t  some constituents of S n~(@ ) 

occur with nonnegative multiplicities. Roughly speaking, this should provide enough con- 

ditions to solve for all the unknown multiplicities. Actually, one has to do a little more 

thinking than this, mainly by using the ideas of Section 3 more carefully; but these ideas 

have been extremely effective in examples which have not previously been treated. 

7.  T h e  sp l i t  g r o u p s  ot  r a n k  t w o  

In this section G denotes a connected linear split simple Lie group of rank two. 

Let H o =MA be a maximally split Cartan subgroup, Po = M A N  a parabolic associated 

to H 0, al and a2 the simple roots of A(a0, no), H~ = T~A~ (i = 1, 2) Cartan subgroups so tha t  

(a~)0=ker a~, and P~ =M~A~N~ a parabolic associated to Ht containing P0. Choose a set 

A~ of positive roots in ~ compatible with the choice of P~. Then A =H~ ~, the Cayley 

transform of H~ for a simple imaginary root fl~. 

For each ~ we can choose an injection q~: ~1(2, R)-~g 0, so tha t  

and 

~,(-~x)=o~o,(x), x e~l(2, R), 

lies in the :r root space of a0 in go. Write 

Zt = ~~ \ -- 1 

m~ = m~ = exp (~. Z~) 

Then m~=l and M is generated by m I and m~. I f  H , = T t A  ~ is connected, then 

I W(M,/T~)I =2; otherwise H,  has 2 connected components, I W(MJT,)I =1,  and H , =  
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T 1 • It+ • {mj, 1} (j~:i). Consider Q(~0), ~(A~) as pseudocharacters of H 0 and H~ respectively, 

extended to be trivial on the Z 2 factors given above. 

If H~ is connected the representation ~(~(A~)) is independent of the choice of A s. 

Otherwise write A~, A~ for the two choices of A~ and ~(~(A~)) and n(Q(A~)) for the corre- 

sponding non-equivalent representations. 

By induction by stages and Proposition 5.22 n(P~, ~(A~)) is a subrepresentation of 

re(P 0, ~(1l~)) if H t is connected; and otherwise re(P~, ~(A~))~(p~, ~(A~)) is a subrepresenta- 

tion of ~(~(n0)). Define 5~a0 so that  (5~, a~)=5 w Passing to a suitable covering group 

we may assume that  5~ is the highest weight of a finite dimensional representation of G. 

LEMMA 7.1. Let r~ be an irreducible representation o~ G, and (~ its character. Assume 

there exists a parabolic P~ associated to a connected Cartan subgroup H~, and that ~ is a com- 

position/actor o/ z(~(n0))/~(P~, ~(A~)); or there exists a parabolic P~ associated to a discon- 

nected Cartan subgroup H~, and that ~ is a composition /actor o/ r~(~(n0))/r~(P~, ~(A~))| 

g(p~, o(A~)). Then S_o~@ =0. 

Proo/. Assume for definiteness that  H~ is connected and i = l ;  put ~F=AI~  A(ml). 

Then 

S_ ~,(O(Q(A1))) = S_,,[Inde a, OM,(I~ 2, e(lt2)) (~ (0 ] (QDo) (~ 1] 

= Ind,,  (S-t, OM,(Ul r, ~(UE))) | (5, I(a,) ,) | 1 

= Indp G, OM,(tF, 0) | (53 [ (a,).) | 1. 

If we recall that  s~,EW(M1/T1), and apply formula (7b) of [12], we see that  ~)M,(Ut z, O) 

is the character of a principal series representation of M r Hence S_~,(| is the 

character of a principal series representation of G. Since S_~,(O(O(n0))) is the character 

of a principal series representation containing S_oI(O(Q(A1))) , it follows that  S-~,(O(Q(n0))) - 

O(o(A1) ) =0. By Theorem 5.15 (compare the proof of Lemma 6.4) each irreducible con- 

stituent of O(Q(n0))- O(o(A1)) is al-singular. Q.E.D. 

LEMMA 7.2. ~(P~, ~(A~)) satis/ies the assumptions o/Lemma 7.1 with respect to Pj, j ~ i .  

Proo/. For definiteness assume again H 1 and H 2 connected, and i = 1. We must show 

that  ~(P1, ~(A1)) is not a constituent of g(P2, ~(A2)). Write 

e(AO = (~. ~'1) 

~(As) = (~ts, ~,~) 
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I f  (A1, AI~ ~< (;/2, A2~, then Proposition 2.10 implies the lemma. Otherwise we may  shift the 

parameter  @ to y, with (7, al~ small and (7, a2~ large. I f  we use primes to denote the 

parameters of the shifted representations, then we will have 

(a2, y) s_  4' ' 
, , (al, r )  s<_ - r  

(41, ~D = (~1, al) (as, a~) 

Now Proposition 2.10 applied to the shifted representations gives the desired result. Q.E.D. 

LEMMA 7.3. Let H = T A  be a O-invariant Cartan with dim a0 = 1, 7' E/~', al, ~2 the simple 

roots o /A~.  Assume that al is simple imaginary and 2r y) / (as ,  ocs~ = n is a positive integer. 

I / H  is connected, ~(y) is as-singular. I / H  is not connected, at least one representation a2tached 

to a pseudocharacter Yl with 21 = Y E ~* is as-singular. 

Proo/. After a shift we can assume tha t  2 =~(Aj). I f  H is connected, Lemmas 7.2 and 

7.1 imply L e m a n  7.3. I f  H is not connected, there is a pseudocharacter Yl trivial on the 

Z s factor, with ?~=e(Aj). In  this case Lemmas 7.2 and 7.1 imply Lemma 7.3 for the cor- 

responding representation. Q.E.D. 

Now we begin a case by  case analysis to prove Theorem 6.9. With notation as there, 

we need to show tha t  z~(y - n~) is a constituent of ~r(y), or tha t  ~(y) is a-singular (by L e m a n  

6.8). If  G = S L ( ~ ,  R), the fundamental  Cartan subgroup H = T A  is connected. If  yE121 ' 

satisfies the conditions of Theorem 6.9, then A~ has a simple imaginary root and hence 

Lemma 7.3 implies Theorem 6.9. 

If  G=Sp(2,  R) we write ~1, as for the long simple root and the short simple root 

respectively, and H 1, H., for the corresponding 0-invariant  Cartan subgroups. H 1 is dis- 

connected, H s connected. Let  y E / ~  satisfy the conditions of Theorem 6.9. Then A + has 

an imaginary simple root, and hence Lemma 7.3 implies Theorem 6.9. Let  y E / ~ .  Then 

A~ has a simple imaginary root. After a shift we may  assume tha t  the weight of y is ~(A~). 

I f  y is trivial on the Z 2 factor Theorem 6.9 follows from Lemma 7.2. 

Now assume y is non-trivial on m~. By Proposition 5.22 and induction by stages we 

can assume at(y) is a subrepresentation of rr(Q(no) ( + ,  - )). Here ~(no) ( + ,  - )  is a pseudo- 

character of the split Cartan with weight ~(n0) and 

O(no) ( + ,  --)(m~,) = 1 

q ( l l 0 )  ( §  - -  ) ( m , , )  = - -  1 

By Proposition 5.22 and induction by  stages, one computes easily tha t  ~ ( y -  as) is also a 

composition factor of a(~(rto)( + ,  - ) ) .  
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Assume now that  ~(7 -~z)  is not a composition factor of ~t(7 ). Then by Lemma 6.8, 

S_~ ~(7) = S_~, ~(~, - a2) #0 ,  and thus the composition factor S_o~ ~(7 - :r has multiplicity 

two in S_~ 0(~(110) ( +,  - )) = @(6). But  7 - 6z is singular with respect to the imaginary root 

~2, so g(7 -62) has the same restriction to K as a constituent of some tempered principal 

series representation. In particular the lowest K-type of ~(7-(~2) is fine, and hence has 

multiplicity one in the representation 7t(5). Thus ~(~,-~2) has at most multiplicity one ill 

~((~), and hence S ~ ( ~ , ) = 0 .  

Now assume G is of type G~. We write ~1, as for the long simple root and for the short 

simple root respectively. The corresponding 0-invariant Cartan subgroups are denoted by 

H1, H 2. Both Cartan subgroups are connected. 

If 7 E/I~ satisfies the conditions of Theorem 6.9, then either 7 is integral with respect 

to all roots, or 7 E/t~ and 7 is integral only with respect to the short roots. 

Assume first 7 is integral with respect to all roots. If there is a simple imaginary root 

in A +, Lemma 7.3 implies Theorem 6.9. For the remaining cases we only sketch a proof. 

Most of the details are left to the reader. After a shift we may assume that  re(~,) has in- 

finitesimal character ~(110). The Weyl groups for each Cartan have order 4, and the complex 

Weyl group has order 12. Thus there are 3 generalized principal series representations with 

infinitesimal character Q(n0) associated to each Cartan. Write a, b, c for those generalized 

principal series representations associated to Hi, ordered according to decreasing length of 

the a parameter. Write d, e, f, for those generalized principal series representations as- 

sociated to H2, also ordered according to decreasing lengths of the a parameter. Write 

capital letters for the corresponding Langlands subquotients. Write G, H, I for the dis- 

crete series representations with infinitesimal character Q; there is a short simple compact 

root in the root system associated to G, a long simple compact root for I, and no simple 

compact root for H. 

By Proposition 5.22 and the remark after its proof, 

/ = F + H + G  

c = C + H + I .  

I t  follows by Proposition 5.14 that  S_, ,H =H + F, etc. (All formulas here should be under- 

stood as character identities; the representations in question do not decompose as direct 

sums.) 

The positive root systems associated to c and ] contains no simple roots satisfying 

the conditions of Theorem 6.9. So the only remaining cases are b and e; since these are 

completely similar, we consider only b. In the set of positive roots associated to b the long 
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simple root ~1 is complex, and 0~ 1 is negative. I t  is easy to compute that  S_~lb =c; so we 

must show that  b contains C as a composition factor. Suppose not. By Lemma 6.8, 

S_~,C = B+Oo 

S_~,B = C - ~ - 0 1 ,  

with O 0 and 01 the characters of ~l-singular representations. We claim that  00=0;  the 

following proof was originally found by O. Zuckerman. (Compare the proof of Lemma 

6.8.) Let •t be the fundamental weight with 2(~t, d t ) [ (~ ,  ~ )  =8tl. Recalling the proof of 

Theorem 5.20, we must show that  

Write X for the left-hand-side. The argument of Theorem 5.20 produces maps 

B |  X,  X ~ B |  

If K is the kernel of the second map, then (since B and C have multiplicity one in X) 

X " ~ K | 1 7 4  If K ~ 0 ,  we have Hom (K, X)=t=0. A formal argument like that  given for 

Theorem 5.20 implies that  v2o~ X contains at least three copies of ~fo%~, B ~ ~pQ%~, C. But 

Zuckerman has shown ([21], Lemma 3.1) that  O(~0o~ This contradiction 

proves that K = 0. In particular S_~, C = B. 

By the remarks above, c = C + H + I; and 

S_~,H = F + H  

8_~,I = - I .  
Therefore 

b = S_~,c = B + F + H - I ,  

which is impossible since b is a representation. This contradiction proves that  b must in 

fact contain C as a composition factor. 

Now assume that  7 E/t~. and y is integral only with respect to the short roots. Let fll 

and f12 be the simple roots of the subsystem of short roots. After a shift we may assume 

that  2(fl~, 7)/(f i t , /~)  =i .  There are three inequivalent generalized principal series repre- 
p, sentations r~(71), n(7~), and n(Ta), 7~ 2, with infinitesimal character y; we assume they are 

ordered by decreasing length of the ~I parameter. Only the positive system defined by 7~ 

contains a root satisfying the hypotheses of Theorem 6.9; it is ill, and 

So we must show (by Lemma 6.8) tha t  ~(~2) is ill-singular. This is established exactly as 

in the case of SL (3, R), by showing that  ~(72) occurs in the representation induced from a 

certain finite dimensional representation. Details are left to the reader. This completes 

the proof of Theorem 6.9. 
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