THE STRUCTURE OF FINITE DIMENSIONAL BANACH SPACES WITH THE 3.2. INTERSECTION PROPERTY

BY

ALLAN B. HANSEN(${ }^{\mathbf{1}}$) and ÅSVALD LIMA(${ }^{2}$)
POB 237
Joshua Tree
California, U.S.A.
Agricultural University of Norway

1. Introduction

Let X be a Banach space over the real numbers. Let n and k be integers with $2 \leqslant k<n$. We say that X has the $n . k$. intersection property ($n . k . I . P$.) if the following holds:

Any n balls in X intersect provided any k of them intersect.
In [2], O. Hanner characterized finite dimensional spaces with the 3.2.I.P. by the facial structure of their unit hall. He also proved that this property is preserved under l_{1} and l_{∞}-summands, i.e. direct sums $X \oplus Y$ with the l_{1}-norm $\|x\|+\|y\|$ or the l_{∞}-norm $\max (\|x\|,\|y\|)$. We shall prove the converse of this result. Any finite dimensional Banach space X with the 3.2.I.P. is obtained from the real line by repeated l_{1} - and l_{∞}-summands. Hanner proved this for dimension at most 5.

In sections 2 to 4 we gradually introduce the concepts and theorems that we need. To become familiar with the techniques involved, we have included the proof of some of the results. In sections 5 and 6 we prove some technical lemmas and characterize the parallel-faces and split-faces among the faces of the unit balls of Banach spaces with the 3.2.I.P. These results are used in the proof of the main result in section 7.

Banach spaces are denoted X, Y, and Z. The closed ball in X with center x and radius r is denoted $B(x, r)$, but for the unit ball we write $X_{1}=B(0,1)$. The dual space of X is written X^{*}. The convex hull of a set S is written conv (S) and the set of extreme points

[^0]

Fig. 2.1
of a convex set $!F$ is written $\partial_{e} F .(X \oplus Y)_{l_{1}}$ and $(X \oplus Y)_{l_{\infty}}$ denotes the direct sum of X and Y with the norms $\|(x, y)\|=\|x\|+\|y\|$ and $\|(x, y)\|=\max (\|x\|,\|y\|)$ respectively.

All spaces are assumed to be real.

2. Faces of the unit ball

If M is a subset of the unit ball X_{1} of X, we denote by face (M) the smallest face of X_{1} containing M. Recall the following fact:

Lemma 2.1. Let $M \subseteq X_{1}$ and let $y \in X_{1}$. Then the following two statements are equivalent:
(1) $y \in$ face (M)
(2) There exist $x \in \operatorname{conv}(M), z \in X_{1}$ and $\alpha \in(0,1]$ such that

$$
x=\alpha y+(1-\alpha) z .
$$

The notion of parallel-faces will play a central role throughout this paper.
Definition 2.2. Let F and H be faces of X_{1} with $F \subseteq H . F$ is called a parallel-face of H if there exists another face G of H such that the following conditions are satisfied:
(1) $F \cap G=\varnothing$
(2) $H=\operatorname{conv}(F \cup G)$
(3) Whenever $x_{1}, x_{2} \in F, y_{1}, y_{2} \in G$ and $\lambda_{1}, \lambda_{2} \in[0,1]$ are such that

$$
\lambda_{1} x_{1}+\left(1-\lambda_{1}\right) y_{1}=\lambda_{2} x_{2}+\left(1-\lambda_{2}\right) y_{2}
$$

then $\lambda_{1}=\lambda_{2}$.
Example 2.3. Assume H is the face in Fig. 2.1. Clearly F_{1} is a parallel-face of H. The face F_{2} satisfies (1) and (2) but not (3) in definition 2.2.

Fig. 2.2
It follows from Theorem 3.6 that if X has the 3.2.I.P., then (3) is a consequence of (1) and (2) in definition 2.2.

We denote by $P(H)$ the set of all proper parallel-faces of H when H is a face of X_{1}. $P_{M}(H)$ is the set of all maximal (with respect to inclusion) proper parallel-faces of H.

Definition 2.4. Let F and H be faces of X_{1} such that $F \subseteq H . F$ is called a split-face of H, if there exists another face G of H, such that the following conditions are satisfied:
(1) $F \cap G=\varnothing$
(2) $H=\operatorname{conv}(F \cup G)$
(3) Whenever $x_{1}, x_{2} \in F, y_{1}, y_{2} \in G$ and $\lambda_{1}, \lambda_{2} \in[0,1]$ are such that

$$
\lambda_{1} x_{1}+\left(1-\lambda_{1}\right) y_{1}=\lambda_{2} x_{2}+\left(1-\lambda_{2}\right) y_{2}
$$

then $\lambda_{1}=\lambda_{2}$ and if $\lambda_{1} \neq 0,1$ then also $x_{1}=x_{2}$ and $y_{1}=y_{2}$.
Obviously every split-face is also a parallel-face. The opposite is not true.
Example 2.5. Let $X=\left(l_{\infty}^{3} \oplus \mathbf{R}\right)_{l_{1}}$, and let H be the following maximal proper face of $X_{1}: H=\operatorname{conv}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ where $x_{1}=(1,1,1,0), x_{2}=(1,-1,1,0), x_{3}=(1,-1,-1,0)$, $x_{4}=(1,1,-1,0)$ and $x_{5}=(0,0,0,1)$.

The vertex $\left\{x_{5}\right\}$ is a split-face of H, conv $\left(x_{1}, x_{2}\right)$ is a parallel-face but not a split-face of H, and conv $\left(x_{1}, x_{5}\right)$ is neither. See Fig. 2.2.

When F and H are faces of X_{1} with $F \subseteq H$, we denote by F_{H}^{\prime} the set

$$
F_{H}^{\prime}=\{x \in H: \text { face }(x) \cap F=\varnothing\} .
$$

Note that if F is norm-complete, then $H=\operatorname{conv}\left(F \cup F_{H}^{\prime}\right)$ [1]. If F is a parallel-face of H, then necessarily $H=\operatorname{conv}\left(F \cup F_{H}^{\prime}\right)$ and F_{H}^{\prime} is convex. In fact, $F_{H}^{\prime}=G$ in definition 2.2. Example 2.3 shows that F_{H}^{\prime} can be convex even though F is not a parallel-face. Usually F_{H}^{\prime} is non-convex. F_{H}^{\prime} is convex if and only if it is a face.

Theorem 2.6, [3]. Let H be a face of X_{1}. Let F be a split-face of H and assume M is a face of F and N is a face of F_{H}^{\prime}. Then conv $(M \cup N)$ is a face of H.

Proof. Show this or look at [3].
Definition 2.7. Let F be a proper face of $X_{1} . F$ is called an M-face if there exists a $G \in P_{M}(F)$ such that $G_{F}^{\prime} \in P_{M}(F)$.

If H is a proper face of X_{1}, we denote by $m(H)$ the following number (if it exists)

$$
m(H)=\sup \{\operatorname{dim} \operatorname{span} F: F \text { is an } M \text {-face of } H\} .
$$

$m(X)$ denotes the number (if it exists)

$$
m(X)=\sup \left\{m(H): H \text { a proper face of } X_{\mathbf{1}}\right\}
$$

Example 2.8. (a) Let H be as in example 2.5. The largest M-face of H is $F=$ $\operatorname{conv}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, so $m(H)=\operatorname{dim} \operatorname{span} F=3<4=\operatorname{dim} X$.
(b) Let $X=\left(l_{1}^{3} \oplus \mathbf{R}\right)_{l_{\infty}}$. Let $F=\operatorname{conv}\left(x_{1}, \ldots, x_{6}\right)$ where $x_{1}=(1,0,0,1), x_{2}=(0,1,0,1)$, $x_{3}=(0,0,1,1), x_{4}=(1,0,0,-1), x_{5}=(0,1,0,-1), x_{6}=(0,0,1,-1)$. Then F is a maximal proper face of X_{1}. Both $G=\operatorname{conv}\left(x_{1}, x_{2}, x_{3}\right) \in P_{M}(F)$ and $G_{F}^{\prime}=\operatorname{conv}\left(x_{4}, x_{5}, x_{6}\right) \in P_{M}(F)$. Hence F is an M-face. We have

$$
m(F)=\operatorname{dim} \operatorname{span} F=4=\operatorname{dim} X
$$

(a) and (b) should be compared with the main result Theorem 7.3.

Definition 2.10. X is called a CL-space if $X_{1}=\operatorname{conv}(F \cup-F)$ whenever F is a maximal proper face of X_{1}.

Proposition 2.11, [7]. Let X be a finite dimensional space. Then the following statements are equivalent:
(1) X is a CL-space.
(2) For all $x \in \partial_{e} X_{1}$ and $f \in \partial_{e} X_{1}^{*}, f(x)= \pm 1$.
(3) X^{*} is a CL-space.

Example 2.12. (a) If $X=l_{\infty}^{n}$ or $X=l_{1}^{n}$, then X is a CL-space.
(b) Assume X is a finite dimensional CL-space and let $\left\{f_{1}, \ldots, f_{n}\right\} \subseteq \partial_{e} X_{1}^{*}$ be a basis for X^{*}. Then the mapping $T: X \rightarrow l_{\infty}^{n}$ defined by

$$
T(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right)
$$

is a linear isomorphism that maps every extreme point of X_{1} to a corner of the n-cube $\left(l_{\infty}^{n}\right)_{1}$. Hence the unit ball X_{1} can be obtained as a convex hull of some subset of $\partial_{e}\left(l_{\infty}^{n}\right)_{1}$, where $n=\operatorname{dim} X$. This was observed in [7].

3. Intersection properties

Definition 3.1. Let n and k be integers with $2 \leqslant k<n . X$ is said to have the $n . k$. intersection property ($n . k . I . P$.) if the following condition is satisfied:

Any n balls in X intersect provided any k of them intersect.
Example 3.2. (a) Let $\left\{\left[x_{i}, y_{i}\right]\right\}_{i=1}^{n}$ be a set of n balls in \mathbf{R} with $x_{i} \leqslant y_{i}$ for all i. If they intersect mutually, then $x_{i} \leqslant y_{j}$ for all i and j, such that there exists an $x \in \mathbf{R}$ with $x_{i} \leqslant x \leqslant y_{j}$ for all i and j. Thus $x \in \bigcap_{i=1}^{n}\left[x_{i}, y_{i}\right]$. Hence the real line has the $n .2 . I . P$. for every $n \geqslant 2$. It follows that \mathbf{R} has the $n . k . I . P$. for all $n>k \geqslant 2$.
(b) It follows from Helly's theorem that every Banach space X with $n=\operatorname{dim} X<\infty$ has the $(n+2) .(n+1)$ I. P.

We refer to [7] for an extensive study of the intersection properties. Let us mention here without proof the following results.

Theorem 3.3, [7]. X has the 4.2.I.P. if and only if X^{*} is isometric to the space $L_{1}(\mu)$ for some measure μ.

Corollary 3.4, [7]. Assume X is finite dimensional. X has the 4.2.I.P. if and only if $X=l_{\infty}^{n}$ where $n=\operatorname{dim} X$.

Theorem 3.5, [6]. Assume X is finite dimensional. X has the 4.3.I.P. if and only if $X=\left(E_{1} \oplus \ldots \oplus E_{p}\right)_{l_{\infty}}$ where $\operatorname{dim} E_{i} \in\{1,2\}$.

In the following we shall be concerned only with the 3.2.I.P. Hanner characterized the finite dimensional spaces with the 3.2.I.P. by their facial properties [2]. The following theorem which extends Hanner's results was proved by Lima.

Theorem 3.6, [5]. If X is a real Banach space, then the following statements are equivalent:
(1) X has the 3.2.I.P.
(2) If $x, y \in X$ with $\|x\|=\|y\|=1$ and face $(x) \cap$ face $(y)=\varnothing$, then $\|x-y\|=2$.
(3) If F_{1} and F_{2} are disjoint faces of X_{1}, then there exists a proper face F of X_{1}, such that $F_{1} \subseteq F, F_{2} \subseteq-F$ and $X_{1}=\operatorname{conv}(F \cup-F)$.
(4) If $x, y \in X$, then there exist $z, u, v \in X$ such that

$$
\begin{array}{rlrl}
x=z+u, & \|x\| & =\|z\|+\|u\| \\
y=z+v, & \|y\| & =\|z\|+\|v\| \\
\|x-y\| & =\|u\|+\|v\|
\end{array}
$$

(5) X^{*} has the 3.2.I.P.

Corollary 3.7, [4]. If X has the 3.2.I.P., then X is a CL-space.
Example 3.8. (a) Since l_{∞}^{n} has the 3.2.I.P., we get from (5) of Theorem 3.6 that l_{1}^{n} has the 3.2.I.P.
(b) Assume Y and Z have the 3.2.I.P. Then $(Y \oplus Z)_{l_{1}}$ has the 3.2.I.P. by (4) of Theorem 3.6 and $(Y \oplus Z)_{l_{\infty}}$ has the 3.2.I.P. by (1) of Theorem 3.6.

Proposition 3.9. Assume X is a finite dimensional CL-space and that F and H are proper faces of X_{1} such that $F \subseteq H$. If F is a maximal proper face of H, then F is a parallelface of H.

Proof. Since F is a proper face of H, there exists an $x \in \partial_{e} H \backslash F$. By Proposition 2.11 and [5; Proposition 3.2], there exists an $f \in \partial_{e} X_{1}^{*}$ such that $f(x)=-1$ and $f=1$ on F. Let $G=\{y \in H: f(y)=1\}$ and $M=\{y \in H: f(y)=-1\}$. By Proposition 2.11, we get $H=$ conv ($G \cup M$). Hence G is a parallel-face of H. Since $F \subseteq G$ and F is a maximal proper face of H, we get $F=G$, such that F is a parallel-face of H.

Proposion 3.10. Assume X is a finite dimensional space with the 3.2.I.P. and that F and H are proper faces of X_{1} such that $F_{\ddagger} \ddagger H$. Then the following statements are equivalent:
(1) F is a parallel-face of H.
(2) F_{H}^{\prime} is convex.
(3) There exists $f \in \partial_{e} X_{1}^{*}$ such that $F=\{x \in H: f(x)=1\}$.

Proof. Note that F_{H}^{\prime} is convex if and only if it is a face. Since $\operatorname{dim} X<\infty$, we always have $H=\operatorname{conv}\left(F \cup F_{H}^{\prime}\right)$. It follows from Theorem 3.6 that if (1) and (2) in definition 2.2 is satisfied, then (3) is also satisfied. Now the equivalence of (1), (2), and (3) is obvious.

Proposition 3.11. Let X be a finite dimensional space with the 3.2.I.P. and let F be a proper face of X_{1}. Then $Y=\operatorname{span} F$ is a CL-space.

Proof. Let $x \in Y$ with $\|x\|=1$. Then we can write $x=y-z$ where $y, z \in \operatorname{cone}(F)=\mathrm{U}_{\lambda \geqslant 0} \lambda F$. By (4) of Theorem 3.6 we may assume $\|x\|=\|y\|+\|z\|$. Hence $Y_{1}=\operatorname{conv}(F \cup-F)$, and $\partial_{e} Y_{1}=\partial_{e} F \cup-\partial_{e} F \subseteq \partial_{e} X_{1}$.

Let $x \in \partial_{e} Y_{1}$ and let $f \in \partial_{e} Y_{1}^{*}$. By the Hahn-Banach theorem, there exists a $g \in \partial_{e} X_{1}^{*}$ such that $\left.g\right|_{Y}=f$. Hence, we get $f(x)= \pm 1$. Thus Y is a CL-space.

That most CL-spaces do not have the 3.2.I.P. was known by Hanner [2]. Here is an example which shows that Y in Proposition 3.11 need not have the 3.2.I.P.

Example 3.12. Let $X=\left(l_{\mathbf{1}}^{3} \oplus l_{1}^{3}\right)_{l_{\infty}}$. Let $f=(1,1,1,0,0,0)$ and $g=(0,0,0,1,1,1) \in \partial_{e} X_{\mathbf{1}}^{*}$, and define a face G of X_{1} by

$$
G=\left\{x \in X_{1}: f(x)=1=g(x)\right\} .
$$

Then

$$
G=\left\{\left(t_{1}, \ldots, t_{6}\right) \in X_{1}: t_{1}+t_{2}+t_{3}=t_{4}+t_{5}+t_{6}=1\right\} .
$$

$Y=\operatorname{span} G$ is a CL-space by Proposition 3.11. Consider the following extreme points of $G: x_{1}=(1,0,0,1,0,0), x_{2}=(0,1,0,0,1,0), y_{1}=(0,0,1,0,1,0), y_{2}=(1,0,0,0,0,1), z_{1}=$ $(0,0,1,1,0,0)$, and $z_{2}=(0,1,0,0,0,1)$. Then we have

$$
x_{1}+\left(y_{1}-y_{2}\right)=x_{2}+\left(z_{1}-z_{2}\right)
$$

and it is easy to see that (in Y)

$$
\text { face }\left(\frac{y_{1}-y_{2}}{2}\right) \cap \text { face }\left(\frac{z_{1}-z_{2}}{2}\right)=\varnothing .
$$

By (2) of Theorem 3.6, we get that Y does not have the 3.2.I.P.

4. L- and M-summands

Definition 4.1. Let P be a projection in X.
(1) P is called an L-projection if for all $x \in X$,

$$
\|x\|=\|P x\|+\|x-P x\| .
$$

(2) P is called an M-projection if for all $x \in X$,

$$
\|x\|=\max (\|P x\|,\|x-P x\|)
$$

(3) The range of an L-projection is called an L-summand of X.
(4) The range of an M-projection is called an M-summand of X.

Observe that if P is an L-projection in X, then $X=(Y \oplus Z)_{l_{1}}$ where $Y=P(X)$ and $Z=(I-P)(X)$. Similarly, if P is an M-projection in X, then $X=(Y \oplus Z)_{l_{\infty}}$ where $Y=P(X)$ and $Z=(I-P)(X)$. The following proposition was proved by Alfsen and Effros in [1]:

Proposition 4.2, [l]. Let P be a projection in X. Then P is an L-projection in X if and only if P^{*} is an M-projection in X^{*}.

The same paper of Alfsen and Effros contains the following result.
Proposition 4.3, [I]. Assume X_{1} contains a maximal proper face K such that $X_{1}=$ conv ($K \cup-K$). Then the map $F \rightarrow \operatorname{span} F$ is a one-to-one correspondence between the proper split-faces of K and the proper L-summands of X.

Since we will use one half of this result in section 7 , we will indicate the proof of this part here.

So assume F is a proper split face of K. It follows from the definition of a split-face that $K=\operatorname{conv}\left(F \cup F_{K}^{\prime}\right)$. (In fact, $F_{K}^{\prime}=G$ in definition 2.4). Define $Y=\operatorname{span} F$ and $Z=$ span F_{K}^{\prime}. Then $X=Y+Z$. Assume $x \in Y \cap Z$. Then $x=y_{1}-y_{2}=z_{1}-z_{2}$ where $y_{1}, y_{2} \in$ cone $\left(F^{\prime}\right)$ and $z_{1}, z_{2} \in$ cone $\left(F_{K}^{\prime}\right)$. Hence $y_{1}+z_{2}=y_{2}+z_{1}$. Using that the norm is additive on cone (K) and (3) in definition 2.4 we get $y_{1}=y_{2}$. Hence $x=0$ and $Y \cap Z=(0)$. Thus $X=Y \oplus Z$.

Let now $y \in Y$ and $z \in Z$ and $x=y+z$. We can write $x=x_{1}-x_{2}$ where $x_{1}, x_{2} \in$ cone (K) and $\|x\|=\left\|x_{1}\right\|+\left\|x_{2}\right\|$. Then use that $K=\operatorname{conv}\left(F \cup F_{K}^{\prime}\right)$ and write $x_{i}=y_{i}+z_{i}$ where $y_{i} \in \operatorname{cone}(F)$ and $z_{i} \in$ cone $\left(F_{K}^{\prime}\right) ; i=1,2$. Then $x=y+z=\left(y_{1}-y_{2}\right)+\left(z_{1}-z_{2}\right)$. Since $X=Y \oplus Z$, we get $y=y_{1}-y_{2}$ and $z=z_{1}-z_{2}$. Using that the norm is additive on cone (K) now gives

$$
\begin{aligned}
\|x\|=\left\|x_{1}\right\|+\left\|x_{2}\right\| & =\left\|y_{1}+z_{1}\right\|+\left\|y_{2}+z_{2}\right\| \\
& =\left\|y_{1}\right\|+\left\|z_{1}\right\|+\left\|y_{2}\right\|+\left\|z_{2}\right\| \\
& \geqslant\|y\|+\|z\|=\|x\| .
\end{aligned}
$$

Thus $X=(Y \oplus Z)_{l_{1}}$ and Y is the range of an L-projection in X.
Proposition 4.4. If X has the 3.2.I.P. and Y is an L - or M-summand of X, then Y also has the 3.2.I.P.

Proof. Use that Y is the range of a norm-one projection in X.

5. The spaces $H^{\boldsymbol{n}}(X)$

Definition 5.1. Let $n>2$ be an integer. We denote by $H^{n}(X)$ the space

$$
H^{n}(X)=\left\{\mathrm{x}=\left(x_{1}, \ldots, x_{n}\right) \in X^{n}: \sum_{i=1}^{n} x_{i}=0\right\}
$$

equipped with the norm

$$
\|\mathbf{x}\|=\sum_{i=1}^{n}\left\|x_{i}\right\| \text { for } \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in H^{n}(X)
$$

Clearly $H^{n}(X)$ is a closed subspace of $(X \oplus \ldots \oplus X)_{n_{1}^{n}}$. In dealing with the intersection properties mentioned in section 3 the spaces $H^{n}(X)$ have shown to be very useful. This stems from Theorem 5.2 below which was proved in [4]. This theorem translates the intersection properties of balls in X into properties of the set of extreme points of the unit balls of the spaces $H^{n}\left(X^{*}\right)$. We shall refer to the following subsets of $H^{n}(X)$: For i, j integers with $1 \leqslant i<j \leqslant n$, let $S_{i, j}^{n}$ be defined by

$$
S_{i, j}^{n}=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in H^{n}(X):\|\mathbf{x}\|=1 \quad \text { and } \quad x_{k}=0 \quad \text { when } k \neq i, j\right\} .
$$

For a proof of the following theorem we refer to [4].

Theorem 5.2, [4]. Let $n>2$ be an integer. The following statements are equivalent:
(1) X has the n.2.I.P.
(2) $\partial_{e} H^{n}\left(X^{*}\right)_{1} \subseteq \bigcup\left\{S_{i, j}^{n}: 1 \leqslant i<j \leqslant n\right\}$.

Example 5.3. Let $X=\mathbf{R}$. Then $H^{3}(X)$ is a subspace of l_{1}^{3} of co-dimension 1. $H^{3}(X)_{1}$ is the convex hull of $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{6}\right\}$ where $\mathrm{x}_{1}=\left(2^{-1}, 0,-2^{-1}\right), \mathrm{x}_{2}=\left(2^{-1},-2^{-1}, 0\right), \mathrm{x}_{3}=$ $\left(0,-2^{-1}, 2^{-1}\right), x_{4}=-\mathbf{x}_{1}, x_{5}=-x_{2}$ and $\mathbf{x}_{6}=-\mathbf{x}_{3}$. Hence $H^{3}(X)_{1}$ is a regular hexagon. Since $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{6}\right\} \subseteq S_{1,2}^{3} \cup S_{1,3}^{3} \cup S_{2,3}^{3}, X^{*}$ has the 3.2.I.P. by Theorem 5.2. This agrees with our earlier observations. In the same way, we can show that \mathbf{R} has the n.2.I.P. for all $n \geqslant 3$.

Here we shall be concerned only with the 3.2.I.P. Let us include a proof of the following result.

Lemma 5.4, [4]. Assume X has the 3.2.I.P. and that $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \partial_{e} H^{4}(X)_{1}$ with $\mathbf{x} \ddagger\left(\mathrm{U}_{1 \leqslant \lll<4} S_{i, j}^{4}\right)$. Then the following statements hold:
(1) $\left\|x_{i}\right\|=4^{-1}$ for $i=1,2,3,4$.
(2) $\left\|x_{i}+x_{j}\right\|=2^{-1}$ for $1 \leqslant i \leqslant j \leqslant 4$.
(3) face $\left(4 x_{i}\right) \cap$ face $\left(-4 x_{j}\right)=\varnothing$ in X_{1} for $1 \leqslant i<j \leqslant 4$.

Proof. By Theorem 3.6 there exist $z, u, v \in X$ such that

$$
\begin{array}{rlrl}
x_{1}=z+u, & \left\|x_{1}\right\| & =\|u\|+\|z\| \\
-x_{2}=z+v, & \left\|x_{2}\right\| & =\|v\|+\|z\| \\
\left\|x_{1}+x_{2}\right\| & =\|u\|+\|v\| .
\end{array}
$$

Thus

$$
\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(u,-v, x_{3}, x_{4}\right)+(z,-z, 0,0)
$$

and

$$
\begin{aligned}
\|\mathbf{x}\| & =\sum_{i=1}^{4}\left\|x_{i}\right\| \\
& =\|u\|+\|v\|+\left\|x_{3}\right\|+\left\|x_{4}\right\|+2\|z\| \\
& =\left\|\left(u,-v, x_{3}, x_{4}\right)\right\|+\|(z,-z, 0,0)\|
\end{aligned}
$$

Since $\mathrm{x} \ddagger S_{1,2}^{4}$, we get $z=0$. Hence $\left\|x_{1}+x_{2}\right\|=\|u\|+\|v\|=\left\|x_{1}\right\|+\left\|x_{2}\right\|$. By symmetry $\left\|x_{i}+x_{j}\right\|=\left\|x_{i}\right\|+\left\|x_{j}\right\|$ for all $i, j=1,2,3,4$. This now gives
and

$$
\left\|x_{1}\right\|+\left\|x_{2}\right\|=\left\|x_{1}+x_{2}\right\|=\left\|x_{3}+x_{4}\right\|=\left\|x_{3}\right\|+\left\|x_{4}\right\|
$$

$$
\left\|x_{1}\right\|+\left\|x_{3}\right\|=\left\|x_{1}+x_{3}\right\|=\left\|x_{2}+x_{4}\right\|=\left\|x_{2}\right\|+\left\|x_{4}\right\| .
$$

Adding these equations gives $\left\|x_{1}\right\|=\left\|x_{4}\right\|$. By symmetry and the fact that $\|\mathbf{x}\|=1$, (1) and (2) follows. (3) follows from

$$
\left\|x_{i}+x_{j}\right\|=\left\|x_{i}\right\|+\left\|x_{j}\right\| .
$$

The next result will be used several times in sections 6 and 7 .

Theorem 5.5. Assume X is finite dimensional with the 3.2.I.P. Assume $\mathbf{x}=$ $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \partial_{e} H^{4}(X)_{4}$ with all $x_{i} \neq 0$. Then there exists $a \mathbf{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \in \partial_{e} H^{4}(X)_{4}$ such that all $y_{i} \in \partial_{e} X_{1}$ and $y_{i} \in$ face $\left(x_{i}\right)$ for $i=1,2,3$.

Proof. $\left\|x_{i}\right\|=1$ for all i by Lemma 5.4. Choose $y_{1} \in \partial_{e}$ face $\left(x_{1}\right) \subseteq \partial_{e} X_{1}$. Then by Lemma 2.1 there exist $\alpha_{1} \in(0,1]$ and $z_{1} \in X_{1}$ such that

$$
x_{1}=\alpha_{1} y_{1}+\left(1-\alpha_{1}\right) z_{1}
$$

Define

$$
\mathrm{z}=\left(\alpha_{1} y_{1}, x_{2}, x_{3},\left(1-\alpha_{1}\right) z_{1}+x_{4}\right)
$$

By (2) of Lemma 5.4 we get $\left\|\left(1-\alpha_{1}\right) z_{1}+x_{4}\right\|=\left(1-\alpha_{1}\right)+1$. Hence $\|z\|=4$, such that $\mathrm{z} \in H^{4}(X)_{4}$. If $4^{-1} \mathbf{z} \in \operatorname{conv}\left(\left\{S_{1, j}^{4}: 1 \leqslant i<j \leqslant 4\right\}\right)$, then we can write \mathbf{z} as follows

$$
\begin{aligned}
\mathbf{z}= & \left(\alpha_{1} y_{1}, x_{2}, x_{3},\left(1-\alpha_{1}\right) z_{1}+x_{4}\right) \\
= & \left(b_{1},-b_{1}, 0,0\right)+\left(b_{2}, 0,-b_{2}, 0\right)+\left(b_{3}, 0,0,-b_{3}\right) \\
& \quad+\left(0, b_{4},-b_{4}, 0\right)+\left(0, b_{5}, 0,-b_{5}\right)+\left(0,0, b_{6},-b_{6}\right)
\end{aligned}
$$

where $\alpha_{1}=\left\|\alpha_{1} y_{1}\right\|=\left\|b_{1}\right\|+\left\|b_{2}\right\|+\left\|b_{3}\right\|,\left\|x_{2}\right\|=\left\|b_{1}\right\|+\left\|b_{4}\right\|+\left\|b_{5}\right\|$ and so on. By Lemma 5.4 face $\left(x_{i}\right) \cap$ face $\left(-x_{j}\right)=\varnothing$. Hence we must have $b_{1}=b_{2}=b_{4}=0$. But then

$$
\begin{aligned}
2-\alpha_{1} & =\left\|\left(1-\alpha_{1}\right) z_{1}+x_{4}\right\| \\
& =\left\|b_{3}\right\|+\left\|b_{5}\right\|+\left\|b_{6}\right\| \\
& =\left\|\alpha_{1} y_{1}\right\|+\left\|x_{2}\right\|+\left\|x_{3}\right\| \\
& =2+\alpha_{1}
\end{aligned}
$$

which is a contradiction since $\alpha_{1}>0$. Hence there exists a $\mathbf{y}^{1}=\left(y_{1}^{1}, y_{2}^{1}, y_{3}^{1}, y_{4}^{1}\right) \in$ face (z) \cap $\partial_{e} H^{4}(X)_{4}$ with $\left\|y_{i}^{1}\right\|=1$ for all i. Clearly $y_{1}^{1}=y_{1}$ and $y_{1}^{1} \in$ face $\left(x_{i}\right)$ for $i=2$, 3 . We repeat the procedure on the second coordinate of $\mathbf{y}^{\mathbf{1}}$, and then one more time on the third coordinate and find $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \in \partial_{e} H^{4}(X)_{4}$ with $\left\|y_{i}\right\|=1$ for all i and $y_{i} \in \partial_{e}$ face (x_{i}) for $i=1,2,3$. Then clearly $y_{4}=-y_{1}-y_{2}-y_{3} \in \partial_{e} X_{1}$ since X is a CL-space.

It is a consequence of the main result Theorem 7.3, that if \mathbf{x} is as in Theorem 5.5, then already $x_{i} \in \partial_{e} X_{1}$ for all i.

6. Characterizations of parallel- and split-faces

In this section X is a finite dimensional Banach space with the 3.2.I.P. and K is a proper face of X_{1}. With the tools of the previous chapters in hand, we are now able to characterize the parallel-faces and the split-faces among the faces of K

THEOREM 6.1. Let F be a proper face of K. Then the following statements are equivalent:
(1) F is not a parallel-face of K.
(2) There exist $x_{1} \in \partial_{e} F$ and $x_{2}, y_{1}, y_{2} \in \partial_{e} K \cap F_{K}^{\prime}$ such that

$$
x_{1}+x_{2}=y_{1}+y_{2} .
$$

Proof. (2) \Rightarrow (1) follows by using Proposition 3.10.
Assume (1) holds. By Proposition 3.10 again there exist $a_{1}, a_{2} \in F_{K}^{\prime}$ such that $2^{-1}\left(a_{1}+a_{2}\right) \notin F_{K}^{\prime}$, i.e.

$$
F \cap \text { face }\left(2^{-1}\left(a_{1}+a_{2}\right)\right) \neq \varnothing
$$

Hence there exist $x_{1} \in \partial_{e} F, \alpha \in(0,1]$ and $a_{4} \in K$ such that

$$
2^{-1}\left(a_{1}+a_{2}\right)=\alpha x_{1}+(1-\alpha) a_{4}
$$

Then

$$
\mathrm{a}=\left(a_{1}, a_{2},-2 \alpha x_{1},-2(1-\alpha) a_{4}\right) \in H^{4}(X)_{4}
$$

If $4^{\mathbf{- 1}} \mathbf{a} \in \operatorname{conv}\left(\left\{S_{i, j}^{4} ; l \leqslant i<j \leqslant 4\right\}\right)$, then we can write

$$
\begin{aligned}
\mathbf{a}= & \left(a_{1}, a_{2},-2 \alpha x_{1},-2(1-\alpha) a_{4}\right) \\
= & \left(b_{1},-b_{1}, 0,0\right)+\left(b_{2}, 0,-b_{2}, 0\right)+\left(b_{3}, 0,0,-b_{3}\right) \\
& \quad+\left(0, b_{4},-b_{4}, 0\right)+\left(0, b_{5}, 0,-b_{5}\right)+\left(0,0, b_{6},-b_{6}\right)
\end{aligned}
$$

where $\left\|a_{1}\right\|=\left\|b_{1}\right\|+\left\|b_{2}\right\|+\left\|b_{3}\right\|,\left\|a_{2}\right\|=\left\|b_{1}\right\|+\left\|b_{4}\right\|+\left\|b_{5}\right\|$ and so on. Since $a_{1}, a_{2} \in K$, we get $b_{1}=0$, and since $a_{1}, a_{2} \in F_{K}^{\prime}$ and $x_{1} \in F$, we get $b_{2}=b_{4}=0$. Hence

$$
\begin{aligned}
2(1-\alpha) & =\left\|2(1-\alpha) a_{4}\right\| \\
& =\left\|b_{3}\right\|+\left\|b_{5}\right\|+\left\|b_{6}\right\| \\
& =\left\|a_{1}\right\|+\left\|a_{2}\right\|+\left\|2 \alpha x_{1}\right\| \\
& =2(1+\alpha)
\end{aligned}
$$

which is a contradiction since $\alpha>0$. Thus there exists $\mathrm{z}=\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \in \partial_{e}$ face (a) $\cap \partial_{e} H^{4}(X)_{4}$ with $\left\|z_{i}\right\|=1$ for all i by Lemma 5.4. Clearly $z_{3}=-x_{1}$ and $z_{i} \in$ face $\left(a_{i}\right)$ for $i=1,2$. Using Theorem 5.5 we find $y_{i} \in \partial_{e}$ face $\left(a_{i}\right)$ for $i=1,2$ and $x_{2} \in \partial_{e} X_{1}$ such that

$$
y_{1}+y_{2}=x_{1}+x_{2} .
$$

Clearly $x_{2} \in K$ and since F is a face, we get $x_{2} \in F_{K}^{\prime} . y_{i} \in$ face $\left(a_{i}\right) \subseteq F_{K}^{\prime}$ for $i=1,2$.
Theorem 6.2. Assume F is a proper parallel-face of K. Then the following statements are equivalent:
(1) F is not a split-face of K.
(2) There exist $y_{1}, y_{3} \in \partial_{e} F$ and $y_{2}, y_{4} \in \partial_{e} F_{z}^{\prime}$ such that $y_{1} \neq y_{3}$ and

$$
y_{1}+y_{2}=y_{3}+y_{4} .
$$

Proof. Note that we assume that F_{K}^{\prime} is a face. (2) $\Rightarrow(1)$ is trivial, so assume (1). Since F is a parallel-face but not a split face of K, there exist $x_{1}, x_{3} \in F$ and $x_{2}, x_{4} \in F_{K}^{\prime}$ such that $x_{1} \neq x_{3}$ and

$$
x_{1}+x_{2}=x_{3}+x_{4} .
$$

From Theorem 3.6. (4), it follows that there exist $z, u_{1}, u_{3} \in X$ such that

$$
\begin{gathered}
x_{1}=z+u_{1}, \quad 1=\left\|x_{1}\right\|=\|z\|+\left\|u_{1}\right\| \\
x_{3}=z+u_{3}, \quad \mathbf{l}=\left\|x_{3}\right\|=\|z\|+\left\|u_{3}\right\| \\
\left\|x_{1}-x_{3}\right\|=\left\|u_{1}\right\|+\left\|u_{3}\right\|>0 .
\end{gathered}
$$

Similarly, there exist $v, u_{2}, u_{4} \in X$ such that

$$
\begin{gathered}
x_{2}=v+u_{2}, \quad 1=\left\|x_{2}\right\|=\|v\|+\left\|u_{2}\right\| \\
x_{4}=v+u_{4}, \quad 1=\left\|x_{4}\right\|=\|v\|+\left\|u_{4}\right\| \\
\left\|x_{2}-x_{4}\right\|=\left\|u_{2}\right\|+\left\|u_{4}\right\| .
\end{gathered}
$$

Thus we get $\alpha=\left\|u_{1}\right\|=\left\|u_{3}\right\|=\left\|u_{2}\right\|=\left\|u_{4}\right\|$ and $u_{1}+u_{2}=u_{3}+u_{4}$. Clearly

$$
\mathbf{u}=\alpha^{-1}\left(u_{1}, u_{2},-u_{3},-u_{4}\right) \in H^{4}(X)_{4}
$$

Now choose any $\mathbf{v} \in \partial_{e}$ face $(\mathbf{u}) \subseteq H^{4}(X)_{4}$. By the above reduction, we get that $\mathbf{v} \notin$ $\left(\cup_{1 \leqslant i<j \leqslant 4} S_{i, j}^{4}\right)$. In fact, $\mathrm{v} \in S_{1,2}^{4}$ implies $\left\|x_{1}+x_{2}\right\|<2, \mathrm{v} \in S_{1,3}^{4}$ implies $\left\|u_{1}-u_{3}\right\|<\left\|u_{1}\right\|+\left\|u_{3}\right\|$ and so on.

From Lemma 5.4. and Theorem 5.5. it follows that there exists $\mathbf{y}=\left(y_{1}, y_{2},-y_{3},-y_{4}\right) \in$ $\partial_{e} H^{4}(X)_{4}$ such that all $y_{i} \in \partial_{e} X_{1}$ and for $i=1,2,3, y_{i} \in$ face $\left(\alpha^{-1} u_{i}\right) \subseteq$ face $\left(x_{i}\right)$. Hence $y_{1}, y_{3} \in \partial_{e} F$ with $y_{1} \neq y_{3}$ and $y_{2} \in \partial_{e} F_{K}^{\prime}$. Clearly also $y_{4} \in \partial_{e} F_{K}^{\prime}$.

Example 6.3. Let $K=H$ in example 2.5. Let $F=\operatorname{conv}\left(x_{4}, x_{5}\right)$. Since $x_{1}, x_{2}, x_{3} \in F_{K}^{\prime}$ and $x_{1}+x_{4}=x_{2}+x_{3}$, it follows that F is not a parallel-face.

Let $G=\operatorname{conv}\left(x_{3}, x_{4}\right)$. Since $x_{1}, x_{2} \in G_{K}^{\prime}$ and $x_{1}+x_{4}=x_{2}+x_{3}$, it follows that G is not a split-face.

Corollary 6.4. Let F be a proper face of K. Then the following statements are equivalent:
(1) F is a split-face of K.
(2) For all $x \in \partial_{e} F$ and all $y \in \partial_{e} F_{K}^{\prime}, \operatorname{conv}(x, y)$ is a face of K.

Corollary 6.5. Let $x_{1} \in \partial_{e} K$. Then the following statements are equivalent:
(1) $\left\{x_{1}\right\}$ is a split-face of K.
(2) For all $y \in \partial_{e} K, \operatorname{conv}\left(x_{1}, y\right)$ is a face of K.

Corollary 6.6. Let $x_{1} \in \partial_{e} K$. Then the following statements are equivalent:
(1) $\left\{x_{1}\right\}$ is not a split-face of K.
(2) There exist $x_{2}, x_{3}, x_{4} \in \partial_{e} K \backslash\left\{x_{1}\right\}$ such that

$$
x_{1}+x_{2}=x_{3}+x_{4} .
$$

7. Finite dimensional Banach spaces with the 3.2.I.P

Throughout this section, let X be a finite dimensional Banach space with the 3.2.I.P. The first proposition is essential for the proof of our main theorem, which appears after the proposition. The rest of the section then consists of a series of lemmas which constitute the proof of the main theorem.

Proposition 7.1. Assume H is a proper face of X_{1} and that F is a proper parallel-face of H. Then the following statements are equivalent:
(1) F is a maximal proper face of H.
(2) For all $x \in \partial_{e} F_{H}^{\prime}, H=$ face (x, F).
(3) There exists an $x \in \partial_{e} F_{H}^{\prime}$ such that $H=$ face (x, F).
(4) For all $x, y \in \partial_{e} F_{H}^{\prime}$, there exist $u, v \in \partial_{e} F$ such that $x+u=y+v$.
(5) $\operatorname{dim} \operatorname{span} H=1+\operatorname{dim} \operatorname{span} F$.

Note that face (x, F) means face $(\{x\} \cup F)$ and is described in Lemma 2.1.
Proof. (1) $\Rightarrow(2) \Rightarrow(3)$ is trivial. To prove $(3) \Rightarrow(5)$ we can use the same arguments as those of $(2) \Rightarrow(4)$ and $(4) \Rightarrow(5)$ below.
(2) \Rightarrow (4). Let $x, y \in \partial_{e} F_{H}^{\prime}$. If $x=y$, then we can pick any $u=v \in \partial_{e} F$ and we are done. So assume $x \neq y$. By (2), $H=$ face (x, F) such that $y \in$ face (x, F). Since X is finite-dimensional we have $F=$ face (z) for some $z \in F$. Thus $y \in$ face $\left(2^{-1}(x+z)\right)$, such that for some $w \in X_{1}$ and some $\alpha>0$

$$
2^{-1}(x+z)=\alpha y+(1-\alpha) w
$$

Just as in the proof of Theorem 6.1 we can find $u \in \partial_{e}$ face $(z)=\partial_{e} F$ and $v \in \partial_{e} X_{1}$ such that

$$
x+u=y+v .
$$

Then clearly $v \in H$ and since F is a parallel-face of H, we get $v \in \partial_{e} F$.
$(4) \Rightarrow(5)$. Let $x \in \partial_{e} F_{H}^{\prime}$. For all $y \in \partial_{e} F_{H}^{\prime} \backslash\{x\}$, there exist by (4), $u, v \in \partial_{e} F$ such that

$$
x+u=y+v .
$$

Hence $y \in \operatorname{span}(x, F)$. Since $H=\operatorname{conv}\left(F \cup F_{H}^{\prime}\right)$ this gives that $H \subseteq \operatorname{span}(x, F)$ such that $\operatorname{dim} \operatorname{span} H=1+\operatorname{dim} \operatorname{span} F$.
$(5) \Rightarrow(1)$. Suppose that F is not a maximal proper face of H. Then there exists a face G such that $F_{\ddagger}^{\subset} G \ddagger H$. Thus

$$
1+\operatorname{dim} \operatorname{span} F \leqslant \operatorname{dim} \operatorname{span} G<\operatorname{dim} \operatorname{span} H
$$

(Note that if K is a maximal proper face of X_{1} with $H \subseteq K$, then (span H) $\cap K=H$ and similarly for F and G.)

The proof is complete.
Corollary 7.2. Assume G and H are proper faces of X_{1} such that $G \subseteq H$ and that there exists $x \in \partial_{e} H \backslash G$. If F is a maximal face of H such that $G \subseteq F$ and $x \ddagger F$, then F is a parallel-face of H and $\operatorname{dim} \operatorname{span} F+1=\operatorname{dim} \operatorname{span} H$.

Proof. By the proof of Proposition 3.9, we get that F is a parallel-face of H. For each $y \in \partial_{e} H \backslash F$, we get $x \in$ face (y, F). Now the proof of (4) $\Rightarrow(5)$ in Proposition 7.1 gives that $\operatorname{dim} \operatorname{span} F+1=\operatorname{dim} \operatorname{span} H$.

If $x, y \in \partial_{e} X_{1}$ are such that conv (x, y) is an edge of X_{1}, then clearly conv (x, y) is an M-face. More generally, it easily follows from Proposition 7.1 that if $x, y \in \partial_{e} X$ with $x+y \neq 0$, then face $\left(2^{-1}(x+y)\right)$ is an M-face. Thus $m(X)$ is welldefined $\mathrm{if}^{\mathbf{7}} \operatorname{dim} X \geqslant 2$ and

$$
2 \leqslant m(X) \leqslant \operatorname{dim} X
$$

Recall that $m(X)$ is the dimension of the largest subspace of X which is spanned by a proper M-face of X_{1}. Our main theorem follows:

Theorem 7.3. Assume X is a finte dimensional Banach space with $\operatorname{dim} X>2$. If X has the 3.2.I.P. then the following statements are equivalent:
(1) X contains a proper L-summand.
(2) X^{*} contains a proper M-summand.
(3) $m\left(X^{*}\right)=\operatorname{dim} X^{*}$.
(4) $m(X)<\operatorname{dim} X$.
(5) There exists a maximal proper face of X_{1} which contains a proper split face.

Since either $m(X)<\operatorname{dim} X$, in which case X contains a proper L-summand by Theorem 7.3, or $m(X)=\operatorname{dim} X$, in which case X contains a proper M-summand by Theorem 7.3, the following corollary easily follows using Proposition 4.4 and induction.

Corollary 7.4. Every finite dimensional Banach space with the 3.2.I.P. can be obtained by forming $l_{1^{-}}$and l_{∞}-sums of the real line.

Proof of Theorem 7.3. (1) $\Leftrightarrow(2)$ is Proposition 4.2. (5) $\Leftrightarrow(1)$ is Proposition 4.3. (2) $\Rightarrow(3)$ is Lemma 7.5 below. $(3) \Rightarrow(4)$ is Lemma 7.6 below. $(4) \Rightarrow(5)$ follows from the Lemmas 7.8, 7.9 , and 7.10 below.

Lemma 7.5 is a generalization of example 2.8. Recall that we assume that X is a finite dimensional Banach space with the 3.2.I.P.

Lemma 7.5. If X contains a proper M-summand, then $m(X)=\operatorname{dim} X$.
Proof. By assumption X contains an M-projection P with $P \neq 0, I$. By Proposition 4.3 P^{*} is an L-projection in X^{*}. Then clearly $P^{*} f=f$ or 0 for all $f \in \partial_{e} X_{1}^{*}$. Choose $f_{0} \in \partial_{e} X_{1}^{*}$. By replacing P by $I-P$ if necessary, we may assume $P^{*} f_{0}=f_{0}$. Let $K=\left\{x \in X_{1}: f_{0}(x)=1\right\}$. Since X is a CL-space we get $X_{1}=\operatorname{conv}(K U-K)$. Define $U=2 P-I$. Then U is an isometry and $U^{2}=I$. If $x \in K$, then

$$
f_{0}(U x)=U^{*} f_{0}(x)=f_{0}(x)=1
$$

Hence $U(K)=K$.
Since $P \neq I$, there exists an $f \in \partial_{e} X_{1}^{*}$ with $P^{*} f=0$, i.e. $U^{*} f=-f$. Define $F=\{x \in K$: $f(x)=\mathbf{l}\}$. Then F is a parallel-face of K and $F_{K}^{\prime}=\{x \in K: f(x)=-1\}$. Since $U^{*} f=-f$, we get

$$
U(F)=F_{K}^{\prime} \quad \text { and } \quad U\left(F_{K}^{\prime}\right)=F
$$

Let G be a maximal proper face of K containing F. By Proposition 3.9, G is a parallelface of K. Hence there exists a $g \in \partial_{e} X_{1}^{*}$ such that $G=\{x \in K: g(x)=1\}$. If $P^{*} g=g$, then $U(G)=G$ such that $F_{K}^{\prime}=U(F) \subseteq U(G)=G$ and thus $G=K$. This contradicts that G is a proper face of K. Hence $P^{*} g=0$. But then $U(G)=G_{K}^{\prime}$ and $F_{K}^{\prime}=U(F) \subseteq U(G)=G_{K}^{\prime}$ such that $G \subseteq F$. Hence $F=G$ and F is a maximal proper face of K. Similarly we show that F_{K}^{\prime} is a maximal proper face of K.

We have shown that every maximal proper face of X_{1} is an M-face and the proof is complete.

Lemma 7.6. If $\operatorname{dim} X>2$ and $m(X)=\operatorname{dim} X$, then $m\left(X^{*}\right)<\operatorname{dim} X^{*}$.
Proof. Since $m(X)=\operatorname{dim} X$, there exists a maximal proper face K of X_{1} which is an M-face. Assume for contradiction that $m\left(X^{*}\right)=\operatorname{dim} X^{*}$. Then there exists a maximal proper face K^{*} of X_{1}^{*} such that K^{*} is an M-face. By replacing K^{*} by $-K^{*}$ if necessary, we may assume that there exist $x_{0} \in \partial_{e} K$ such that $K^{*}=\left\{f \in X_{1}^{*}: f\left(x_{0}\right)=1\right\}$.

Let F be a maximal proper face of K such that F_{K}^{\prime} is a maximal proper face of K. By interchanging F and F_{K}^{\prime} if necessary we can find $f_{0}, f \in \partial_{e} K^{*}$ such that

$$
K=\left\{x \in X_{1}: f_{0}(x)=1\right\} \quad \text { and } \quad F=\{x \in K: f(x)=1\}
$$

Since $\operatorname{dim} X>2$, there exists a $g \in \partial_{e} K^{*} \backslash\left\{f_{0}, f\right\}$. Let $G=\{x \in K: g(x)=1\} . G$ is a parallel-face of K and $G \neq F, F_{K}^{\prime}, K, \varnothing$. This implies that $G \cap F \neq \varnothing, G \cap F_{K}^{\prime} \neq \varnothing, G_{K}^{\prime} \cap F \neq \varnothing$, and
$G_{K}^{\prime} \cap F_{K}^{\prime} \neq \varnothing$. (Indeed, if $G \cap F=\varnothing$, then $F \subseteq G_{K}^{\prime}$ such that $F=G_{K}^{\prime}$ and $f=-g$ since F is a maximal proper face of K.) Thus for all choices of signs

$$
\left\|f_{0} \pm f \pm g\right\|=3
$$

Note that this holds for all $g \in \partial_{e} K^{*} \backslash\left\{f_{0}, f\right\}$. We shall show that this implies that K^{*} cannot be an M-face.

We assume for contradiction that K^{*} is an M-face, and let H be a maximal proper face of K^{*} such that also $H^{\prime}=H_{K^{*}}^{\prime}$ is a maximal proper face of K^{*}. We look at three cases.
(i) Assume $f_{0}, f \in H$ (or both are in H^{\prime}). Then by Proposition 7.1 there exist $g, h \in \partial_{e} H^{\prime}$ (or $\partial_{e} H$) with $f_{0}+g=f+h$. But then

$$
\mathbf{1}=\|h\|=\left\|f_{0}-f+g\right\|=\mathbf{3}
$$

which is a contradiction.
(ii) There exists a $g \in \partial_{e}$ face $\left(2^{-1}\left(f_{0}+f\right)\right) \backslash\left\{f_{0}, f\right\}$. Then there exist $\alpha>0$ and an $h \in X_{1}^{*}$ such that

$$
\alpha g+(1-\alpha) h=2^{-1}\left(f_{0}+f\right)
$$

By chosing α as large as possible in (0,1], we can assume $g \not \ddagger$ face (h). By Theorem 3.6 there exists an $x \in \partial_{e} X_{1}$ such that $g(x)=1$ and $h(x)=-1$. Since X is a CL-space, we get

$$
2 \alpha-1=\alpha g(x)+(1-\alpha) h(x)=2^{-1}\left(f_{0}(x)+f(x)\right) \in\{1,0,-1\}
$$

Hence $\alpha=2^{-1}$, and $f_{0}+f=g+h$. But then

$$
\mathbf{l}=\|h\|=\left\|f_{0}+f-g\right\|=\mathbf{3}
$$

which is a contradiction.
Thus it only remains to consider case (iii).
(iii) $f_{0} \in H, f \in H^{\prime}$ and face $\left(2^{-1}\left(f_{0}+f\right)\right)=\operatorname{conv}\left(f_{0}, f\right)$. Let N be maximal proper face of H such that $f_{0} \notin N$. (Here we use $\operatorname{dim} X>2$ to ensure that $N \neq \varnothing$.) But then $N \cap$ face $\left(2^{-1}\left(f_{0}+f\right)\right)=\varnothing$. By Theorem 3.6 there exists a parallel-face M of K^{*} such that $N \subseteq M$ and $f_{0}, f \in M^{\prime}=M_{K^{*}}^{\prime}$. If $M \cap H^{\prime}=\varnothing$, then $H^{\prime} \subseteq M^{\prime}$, so $H^{\prime}=M^{\prime}$ and ${ }_{-}^{*} H=M$. This is a contradiction. Hence $M \cap H^{\prime} \neq \varnothing$. Thus we get by Proposition 7.1

$$
\begin{aligned}
\operatorname{dim} X^{*} & >\operatorname{dim} \operatorname{span} M \\
& \geqslant \operatorname{dim} \operatorname{span} N+1 \\
& =\operatorname{dim} \operatorname{span} H \\
& =\operatorname{dim} X^{*}-1
\end{aligned}
$$

Hence $\operatorname{dim} \operatorname{span} M=\operatorname{dim} X^{*}-1$, such that M is a maximal proper face of K by Proposition 7.1. Again by Proposition 7.1 there exist $g, h \in \partial_{e} M$ such that

$$
f_{0}+g=f+h
$$

Hence

$$
\mathbf{1}=\|\hbar\|=\left\|f_{0}-f+g\right\|=\mathbf{3}
$$

which is a contradiction. The proof is complete.
We shall now give a short proof of $(1) \Rightarrow(4)$ in Theorem 7.3

Lemma 7.7. Assume $\operatorname{dim} X>2$ and that X contains a proper L-summand. Then $m(X)<\operatorname{dim} X$.

Proof. Assume for contradiction that $m(X)=\operatorname{dim} X$. Then some maximal proper face K of X_{1} is an M-face. Let F and $F^{\prime}=F_{K}^{\prime}$ be maximal proper faces of K.

Since X contains a proper L-summand, K contains a proper split-face G by Proposition 4.3. Also $G^{\prime}=G_{K}^{\prime}$ is a split face and

$$
m(X)=\operatorname{dim} X=\operatorname{dim} \operatorname{span} G+\operatorname{dim} \operatorname{span} G^{\prime}
$$

We can assume $G^{\prime} \cap F^{\prime} \neq \varnothing$. By Theorem 2.6, $H=\operatorname{conv}\left(G \cup\left(F \cap G^{\prime}\right)\right)$ is a proper face of K. Since $F \subseteq H$, we get $F=H$. Thus $F^{\prime} \subseteq G^{\prime}$ and hence $F^{\prime}=G^{\prime}$ such that $F=G$. By Proposition 7.1 we get

$$
\begin{aligned}
\operatorname{dim} X & =\operatorname{dim} \operatorname{span} G+\operatorname{dim} \operatorname{span} G^{\prime} \\
& =\operatorname{dim} \operatorname{span} F+\operatorname{dim} \operatorname{span} F^{\prime} \\
& =2(\operatorname{dim} X-1)
\end{aligned}
$$

such that $\operatorname{dim} X=2$. A contradiction. The proof is complete.
It remains to prove $(4) \Rightarrow(5)$ in Theorem 7.3. This follows from the following three lemmas. Note that once we have shown that one maximal proper face of X_{1} contains a proper split-face, then it follows that all maximal proper faces of X_{1} have this property.

Lemma 7.8. Let M be a proper face of X_{1} and let F be a proper parallel-face of M. Assume F is a maximal M-face in M and that G and H are disjoint maximal proper faces of F. Then G and H are parallel-faces of M.

Proof. Let $x \in \partial_{e} H$. Choose a maximal proper face S of M such that $G \subseteq S$ and $x \in S^{\prime}=S_{M}^{\prime}$. Then S is a parallel-face of M by Proposition 3.9. Since G is a maximal proper face of F,
we get $S \cap F=G$. Let $F^{\prime}=F_{M}^{\prime}$ and assume there exists a $z \in \partial_{e} F^{\prime} \cap S^{\prime}$. Then $x \in$ face (z, S) such that by Proposition 7.1 there exist $a, b \in \partial_{e} S$ such that

$$
x+a=z+b
$$

Define $F_{z}=$ face (z, F). Since F is a parallel-face of M, we get by Proposition 7.1 that F is a maximal proper face of $F_{z} . F$ is a parallel-face and $x \in F$ and $z \in F^{\prime}$. Hence $a \in F^{\prime}$ and $b \in F \cap S=G$. But then $G \cup\{a\} \subseteq S \cap F_{z}$ and $H \cup\{z\} \subseteq S^{\prime} \cap F_{z}$. Hence $S \cap F_{z}$ and $S^{\prime} \cap F_{z}$ are maximal proper faces of F_{z}. Thus F_{z} is an M-face of M containing F. This is a contradiction such that we have $F^{\prime} \subseteq S$. But then $S^{\prime}=H$ is a parallel-face of M. Similarly we show that G is a parallel-face of M.

Lemma 7.9. Assume $m(X)<\operatorname{dim} X$ and let F be a proper M-face of X_{1} with $m(X)=$ $\operatorname{dim} \operatorname{span} F$. Let K be a maximal proper face of X_{1} with $F \subseteq K$. Then F is a parallel-face of K.

Proof. Assume for contradiction that F is not a parallel-face of K. Then, by Proposition 3.10, F_{K}^{\prime} is non-convex. There exists a face M such that $F \subseteq M \subseteq K$ and M is minimal with the following properties: F_{M}^{\prime} is non-empty and non-convex. ($F_{M}^{\prime} \neq \varnothing$ simply means that F is a proper subface of M.) Then by Theorem 6.1 there exist $x \in \partial_{e} F$ and $y, y_{1}, y_{2} \in$ $\partial_{e} M \cap F_{M}^{\prime}$ such that

$$
x+y=y_{1}+y_{2}
$$

Clearly $M=$ face (y, F) since M is minimal with $F_{M}^{\prime} \neq \varnothing$ and non-convex.
Since F is an M-face, there exist a pair of disjoint maximal proper faces G and H of F. We can assume $x \in H$ since $F=\operatorname{conv}(G \cup H)$.

We want to show that $T=$ face (y, H) is an M-face with $\operatorname{dim} \operatorname{span} T>\operatorname{dim} \operatorname{span} F$. This will be our final contradiction.

Let N_{1} and N_{2} be maximal proper faces of M such that $F \subseteq N_{1} \cap N_{2}$ and $y_{2} \ddagger N_{1}$ and $y_{1} \ddagger N_{2}$. Then, by Corollary 7.2, N_{1} and N_{2} are parallel-faces of M. We have $x, y_{1} \in N_{1}$ and $y, y_{2} \in\left(N_{1}\right)_{M}^{\prime}$, and $x, y_{2} \in N_{2}$ and $y, y_{1} \in\left(N_{2}\right)_{M}^{\prime}$.

Since N_{1} is a proper face of M containing F, we have that F is a parallel-face in N_{1}. Then, by Lemma 7.8, H is a parallel-face of N_{1} such that $S=H_{N_{1}}^{\prime}=\operatorname{conv}\left(F_{N_{1}}^{\prime} \cup G\right)$ is a parallel-face of N_{1}. We can thus choose a maximal proper face F_{1} of M such that $S \subseteq F_{1}$ and $x \notin S$. Then clearly $F_{1} \cap N_{1}=S$ and $\left(F_{1}\right)_{M}^{\prime} \cap N_{1}=H$.

Since $y_{1} \in T \cap N_{1}$ and $y \in T$, we get $H_{\ddagger}^{\subset} T \cap N_{1} \mp T$. Hence

$$
\begin{aligned}
\operatorname{dim} \operatorname{span} F & =\operatorname{dim} \operatorname{span} H+1 \\
& \leqslant \operatorname{dim} \operatorname{span}\left(T \cap N_{1}\right) \\
& <\operatorname{dim} \operatorname{span} T
\end{aligned}
$$

${ }^{[F}$ Since $\left(F_{1}\right)_{M}^{\prime} \cap T$ is a parallel-face of T containing H, we get $T=$ face $\left(y, T^{\prime} \cap\left(F_{1}\right)_{M}^{\prime}\right)$. Hence, by Proposition 7.1, $T \cap\left(F_{1}\right)_{M}^{\prime}$ is a maximal proper face of T.

Thus it remains to show that $F_{1} \cap T$ is a maximal proper face of T.
Let us draw a picture. We look upon M from above G.

Fig. 3.1
Assume for contradiction that there exists

$$
z \in \partial_{e} M \cap \text { face }\left(F, F_{1} \cap N_{2} \cap F_{M}^{\prime}\right) \cap\left(\left(F_{1}\right)_{M}^{\prime} \cap N_{2} \cap F_{M}^{\prime}\right)
$$

Then there exist $z_{1} \in F, z_{2} \in F_{1} \cap N_{2} \cap F_{M}^{\prime}, u \in M$ and $\alpha \in(0,1]$ such that

$$
2^{-1}\left(z_{1}+z_{2}\right)=\alpha z+(1-\alpha) u
$$

The argument used to prove Theorem 6.1 shows that we may assume z_{1}, z_{2} and u are extreme points and $\alpha=2^{-1}$. Hence

$$
z_{1}+z_{2}=z+u
$$

$F \subseteq N_{2}$ such that $z_{1}, z_{2}, u \in N_{2}$. We have $z_{1} \in F$ and $z \in F_{M}^{\prime}$. Hence $u \in F$ since F is a parallelface of N_{2}. Furthermore $z_{2} \in F_{1}$ and $z \in\left(F_{1}\right)_{M}^{\prime}$. Hence $u \in F_{1}$, and then $u \in F \cap F_{1}=G$. Also $z_{1} \in\left(F_{1}\right)_{M}^{\prime} \cap F=H$. Using that G and H are parallel-faces of N_{2} which follows from Lemma 7.8, we get a contradiction. Hence ($\left.F_{1}\right)_{M}^{\prime} \cap N_{2} \cap F_{M}^{\prime}$ and face ($F, F_{1} \cap N_{2} \cap F_{M}^{\prime}$) are disjoint. By Theorem 3.6 there exists a parallel-face N_{3} of M such that
and

$$
x \in F \cup\left(F_{1} \cap N_{2} \cap F_{M}^{\prime}\right) \subseteq N_{3}
$$

$$
y_{2} \in\left(F_{1}\right)_{M}^{\prime} \cap N_{2} \cap F_{M}^{\prime} \subseteq\left(N_{3}\right)_{M}^{\prime}
$$

(If $F_{1} \cap N_{2} \cap F_{M}^{\prime}=\varnothing$, we can take $N_{3}=N_{1}$.)

Define $S_{1}=N_{1} \cap\left(N_{2}\right)_{M}^{\prime} \cap N_{3}$ and $S_{2}=\left(N_{1}\right)_{M}^{\prime} \cap N_{2} \cap\left(N_{3}\right)_{M}^{\prime}$. Clearly $y_{1} \in S_{1}$ and $y_{2} \in S_{2}$. We want to show that $T=$ face (S_{1}, S_{2}).

Since

$$
\begin{aligned}
S_{2} \cap F_{1} & =F_{1} \cap\left(N_{1}\right)_{M}^{\prime} \cap N_{2} \cap\left(N_{3}\right)_{M}^{\prime} \\
& \subseteq\left(F_{1} \cap F_{M}^{\prime} \cap N_{2}\right) \cap\left(N_{3}\right)_{M}^{\prime} \\
& =N_{3} \cap\left(N_{3}\right)_{M}^{\prime}=\varnothing
\end{aligned}
$$

we get $S_{2} \subseteq\left(F_{1}\right)_{M}^{\prime}$ and $F_{1} \cap\left(N_{1}\right)_{M}^{\prime} \cap\left(N_{3}\right)_{M}^{\prime} \subseteq\left(N_{2}\right)_{M}^{\prime}$. Let $u \in \partial_{e} H$. Then $u \in$ face $\left(y_{2}, F_{1}\right)$, such that by Proposition 7.1 there exist $s, t \in \partial_{e} F_{1}$ such that

$$
u+s=y_{2}+t
$$

We have $u \in N_{1} \cap N_{2} \cap N_{3}$ and $y_{2} \in\left(N_{1}\right)_{M}^{\prime} \cap N_{2} \cap\left(N_{3}\right)_{M}^{\prime}=S_{2}$. Hence $s \in F_{1} \cap\left(N_{1}\right)_{M}^{\prime} \cap\left(N_{3}\right)_{M}^{\prime} \subseteq$ $\left(N_{2}\right)_{M}^{\prime}$. But then $t \in N_{1} \cap\left(N_{2}\right)_{M}^{\prime} \cap N_{3}=S_{1}$. Hence $T \subseteq$ face $\left(S_{1}, S_{2}\right)$. Let next $t \in \partial_{e} S_{1}$. Then $t \in$ face (y, N_{2}), such that, by Proposition 7.1, there exist $a, b \in \partial_{e} N_{2}$ such that

$$
t+a=y+b
$$

$y \in F_{1} \cap\left(N_{1}\right)_{M}^{\prime} \cap\left(N_{2}\right)_{M}^{\prime} \cap\left(N_{3}\right)_{M}^{\prime}$ and $t \in N_{1} \cap\left(N_{2}\right)_{M}^{\prime} \cap N_{3}$ implies that $a \in\left(N_{1}\right)_{M}^{\prime} \cap N_{2} \cap\left(N_{3}\right)_{M}^{\prime} \subseteq$ $\left(F_{1}\right)_{M}^{\prime}$ such that $b \in N_{1} \cap\left(F_{1}\right)_{M}^{\prime}=H$. Hence $S_{1} \subseteq T$, and it follows from the computation that $S_{1} \subseteq F_{1} \cap T$. Thus in order to show that $T=$ face $\left(S_{1}, S_{2}\right)$ and that $F_{1} \cap T$ is a maximal proper face of T, it suffices to show that $S_{2} \subseteq$ face $\left(x, F_{1} \cap T\right)$.

Thus let $u \in \partial_{e} S_{2} \subseteq\left(F_{1}\right)_{M}^{\prime}$. Then $u \in f a c e\left(y, N_{1}\right)$. By Proposition 7.1 there exist $a, b \in \partial_{e} N_{1}$ such that

$$
u+a=y+b
$$

Now $u \in S_{2} \subseteq\left(F_{1}\right)_{M}^{\prime}$ and $y \in F_{1}$. Hence $b \in\left(F_{1}\right)_{M}^{\prime} \cap N_{1}=H$. Thus $S_{2} \subseteq$ face $(y, H)=T$. Also $u \in$ face (x, F_{1}), so, by Proposition 7.1, there exist $a, b \in \partial_{e} F_{1}$ such that

$$
u+a=x+b
$$

Here $u \in\left(N_{1}\right)_{M}^{\prime} \cap N_{2} \cap\left(N_{3}\right)_{M}^{\prime} \subseteq\left(F_{1}\right)_{M}^{\prime}$ and $x \in N_{1} \cap N_{2} \cap N_{3}$. Hence $b \in F_{1} \cap\left(N_{1}\right)_{M}^{\prime} \cap\left(N_{3}\right)_{M}^{\prime} \subseteq$ $\left(N_{2}\right)_{M}^{\prime}$. Thus $a \in F_{1} \cap N_{1} \cap\left(N_{2}\right)_{M}^{\prime} \cap N_{3}=F_{1} \cap S_{1} \subseteq F_{1} \cap T$. Hence $b \in T=$ face (\mathcal{S}_{1}, S_{2}) such that $b \in T \cap F_{1}$, and we have proved that $S_{2} \subseteq$ face ($x, F_{1} \cap T$).

The proof is complete.

Lemma 7.10. Assume $m(X)<\operatorname{dim} X$. Let F be a proper M-face of X_{1} with $m(X)=$ $\operatorname{dim} \operatorname{span} F$. Then there exists a maximal proper face K of X_{1} such that F is a split-face of K.

Proof. Choose a maximal proper face K of X_{1} such that $F \subseteq K$. Assume for contradiction that F is not a split-face of K. By Lemma $7.9 F$ is a parallel-face of K, such that, by Theorem 6.2, there exist $x_{1}, x_{2} \in \partial_{e} F$ and $y_{1}, y_{2} \in \partial_{e} F_{K}^{\prime}$ such that

$$
x_{1}+y_{1}=x_{2}+y_{2}
$$

Choose F_{1} a maximal proper face of F such that $x_{2} \in F_{1}$ and $x_{1} \notin F_{1}$. Then choose a maximal proper face F_{2} of F such that $\left(F_{1}\right)_{F}^{\prime} \subseteq F_{2}$ and $x_{2} \notin F_{2}$. Then $\left(F_{1}\right)_{F}^{\prime} \cap\left(F_{2}\right)_{F}^{\prime}=\varnothing$. If $F_{1} \cap F_{2}=\varnothing$ then, by Lemma 7.8, F_{1} is a parallel-face of K. This is impossible since $x_{1}, y_{1} \notin F_{1}$ and $x_{2} \in F_{1}$. Hence $F_{1} \cap F_{2} \neq \varnothing$.

Choose N_{1} and N_{2} maximal proper faces of K such that $x_{2} \in F_{1} \subseteq N_{1}$ and $x_{1} \ddagger N_{1}$ and $x_{1} \in F_{2} \subseteq N_{2}$ and $x_{2} \notin N_{2}$. Then clearly $N_{1} \cap F=F_{1}$ and $N_{2} \cap F=F_{2}$. Assume there exists a $y \in \partial_{e}\left(\left(N_{1}\right)_{K}^{\prime} \cap\left(N_{2}\right)_{K}^{\prime}\right) \cap$ face $\left(F, N_{1} \cap N_{2} \cap F_{K}^{\prime}\right)$. Then, as in the proof of Theorem 6.1, there exist $a \in \partial_{e} K, b \in \partial_{e} F$ and $c \in \partial_{e}\left(N_{1} \cap N_{2} \cap F_{K}^{\prime}\right)$ such that

$$
y+a=b+c
$$

We get $b \in F \cap\left(N_{1}\right)_{K}^{\prime} \cap\left(N_{2}\right)_{K}^{\prime}=F \cap\left(F_{1}\right)_{F}^{\prime} \cap\left(F_{2}\right)_{F}^{\prime}=\varnothing$. This shows that $\left(\left(N_{1}\right)_{K}^{\prime} \cap\left(N_{2}\right)_{K}^{\prime}\right)$ and face ($F, N_{1} \cap N_{2} \cap F_{K}^{\prime}$) are disjoint faces. By Theorem 3.6, there exists $\varphi \in \hat{\partial}_{e} X_{1}^{*}$ such that $\varphi=1$ on face $\left(F, N_{1} \cap N_{2} \cap F_{K}^{\prime}\right)$ and $\varphi=-1$ on $\left(N_{1}\right)_{K}^{\prime} \cap\left(N_{2}\right)_{K}^{\prime}$. Let $S=K \cap \varphi^{-1}(1)$ and let $K_{1}=\operatorname{conv}\left(S \cup-S_{K}^{\prime}\right)$. Then K_{1} is a maximal proper face of X_{1} and $F \subseteq K_{1} . F$ is also a parallel-face of K_{1} by Lemma 7.9. If $y_{1}, y_{2} \in S_{K}^{\prime}$, we replace them by $-y_{2}$ and $-y_{1}$.

Let $f_{i} \in \partial_{e} X_{1}^{*}$ such that $N_{i}=K \cap f_{i}^{-1}(1)$ for $i=1,2$. Then

$$
\begin{aligned}
& f_{1}^{-1}(-1) \cap f_{2}^{-1}(-1) \cap K_{1} \\
& \quad= \operatorname{conv}\left[\left(f_{1}^{-1}(-1) \cap f_{2}^{-1}(-1) \cap \partial_{e} S\right) \cup\left(f_{1}^{-1}(-1) \cap f_{2}^{-1}(-1) \cap\left(-\partial_{e} S_{K}^{\prime}\right)\right)\right] \\
& \quad=-f_{1}^{-1}(1) \cap f_{2}^{-1}(1) \cap S_{K}^{\prime}=\varnothing
\end{aligned}
$$

Let M_{i} be maximal proper faces of K_{1} such that $K_{1} \cap f_{i}^{-1}(1) \subseteq M_{i}$ for $i=1,2$ and $x_{1} \ddagger M_{1}$ and $x_{2} \ddagger M_{2}$. Then $\left(M_{1}\right)_{K_{1}}^{\prime} \cap\left(M_{2}\right)_{K_{1}}^{\prime}=\varnothing$. Denoting K_{1} by K and M_{i} by N_{i}, we have shown that we can assume $\left(N_{1}\right)_{K}^{\prime} \cap\left(N_{2}\right)_{K}^{\prime}=\varnothing$.

Let G and H be a pair of maximal proper faces of F. By Lemma 7.8, G and H are parallel-faces of K. Hence we have $x_{1}, x_{2} \in G$ or $x_{1}, x_{2} \in H$. Thus we can assume $x_{1}, x_{2} \in H$. Let $f_{1}, f_{2}, f_{3}, f_{4} \in \partial_{e} X_{1}^{*}$ such that $N_{1}=K \cap f_{1}^{-1}(1), N_{2}=K \cap f_{2}^{-1}(1), G=K \cap f_{3}^{-1}(1)$ and $H=$ $K \cap f_{4}^{-1}(1)$. Let $f=2^{-1}\left(f_{1}+f_{3}\right)$ and $g=2^{-1}\left(f_{2}+f_{4}\right) . g\left(x_{1}\right)=1$ gives $\|g\|=1$. If $G \cap N_{1}=\varnothing$, then $G \subseteq\left(F_{1}\right)_{F}^{\prime} \subseteq F_{2}^{\prime}$, such that $G=F_{2}$. Hence $x_{1} \in G$. This is a contradiction. Thus $G \cap N_{1} \neq \varnothing$ and $\|f\|=1$.

Assume now that face $(-f) \cap$ face $(g)=\varnothing$. Then there exists by Theorem 3.6 an $x_{0} \in \partial_{e} X_{1}$ with $f\left(x_{0}\right)=g\left(x_{0}\right)=1$. If $x_{0} \in K$, then $\left.x_{0} \in\left(N_{1} \cap G\right)\right) \cap\left(N_{2} \cap H\right) \subseteq G \cap H=\varnothing$. If $x_{0} \in-K$, then $-x_{0} \in\left(\left(N_{1}\right)_{K}^{\prime} \cap G_{K}^{\prime}\right) \cap\left(\left(N_{2}\right)_{K}^{\prime} \cap H_{K}^{\prime}\right) \subseteq\left(N_{1}\right)_{K}^{\prime} \cap\left(N_{2}\right)_{K}^{\prime}=\varnothing$. Hence face $(-f) \cap$ face $(g) \neq \varnothing$.

Choose $h \in \partial_{e}$ face $(-f) \cap$ face (g). Just as in the proof of (ii) in the proof of Lemma 7.6, we find $h_{1}, h_{2} \in \partial_{e} X_{1}^{*}$ such that

$$
-f_{1}-f_{3}=h+h_{1} \quad \text { and } \quad f_{2}+f_{4}=h+h_{2}
$$

Let now $T=K \cap h^{-1}(1)$. Then $\quad\left(N_{1} \cap G\right) \cup\left(\left(N_{2}\right)_{K}^{\prime} \cap H_{K}^{\prime}\right) \subseteq T_{K}^{\prime} \quad$ and $\quad\left(\left(N_{1}\right)_{K}^{\prime} \cap G_{K}^{\prime}\right) \cup$ $\left(N_{2} \cap H\right) \subseteq T$. We have $x_{1} \in N_{2} \cap H \subseteq T$. Furthermore $x_{1} \in\left(N_{1}\right)_{K}^{\prime}$ and $x_{2} \in N_{1}$ gives $y_{2} \in$ $\left(N_{1}\right)_{K}^{\prime} \cap G_{K}^{\prime} \subseteq T$. Similarly $x_{1} \in N_{2}$ and $x_{2} \in\left(N_{2}\right)_{K}^{\prime}$ gives $y_{1} \in\left(N_{2}\right)_{K}^{\prime} \cap H_{K}^{\prime} \subseteq T_{K}^{\prime}$. Hence $x_{2} \in T_{K}^{\prime}$.

We have shown that $F \cap N_{1} \cap N_{2} \neq \varnothing$. Assume now that $H \cap N_{1} \cap N_{2}=\varnothing$. Then there exists a $w \in \partial_{e} G \cap N_{1} \cap N_{2}$. Clearly $G \cap\left(N_{1}\right)_{R}^{\prime}=\varnothing$ implies $F_{1} \subseteq G$. This is impossible because $x_{2} \in F_{1} \cap H$. Hence we may choose a $v \in \partial_{e} G \cap\left(N_{1}\right)_{K}^{\prime} \subseteq N_{2} . H$ is a maximal proper face of F, so by Proposition 7.1, there exist $a, b \in \partial_{e} H$ such that

$$
a+v=b+w
$$

$v \notin N_{1}$ and $w \in N_{1}$ gives $a \in N_{1}$ and $b \notin N_{1} .\left(N_{1}\right)_{K}^{\prime} \cap\left(N_{2}\right)_{K}^{\prime}=\varnothing$ gives $b \in N_{2}$. Hence $a \in H \cap$ $N_{1} \cap N_{2}$, which is a contradiction.

Choose $y \in \partial_{e} H \cap N_{1} \cap N_{2} \subseteq T$. Then $y \in f a c e ~\left(x_{2}, G\right)=F$. Hence, by Proposition 7.1, there exist $c, d \in \partial_{e} G$ such that

$$
c+y=x_{2}+d
$$

Here $y \in N_{1} \cap N_{2}$ and $x_{2} \in N_{1} \cap\left(N_{2}\right)_{K}^{\prime}$ such that $c \in G \cap\left(N_{2}\right)_{K}^{\prime} \subseteq N_{1}$. Thus $d \in N_{1} \cap G \subseteq T_{K}^{\prime}$. But then $y \in T \cap T_{K}^{\prime}=\varnothing$. This is a contradiction. The lemma is proved.

References

[1] Alfsen, E. M. \& Effros, E. G., Structure in real Banach spaces. Ann. of Math., 96 (1972), 98-173.
[2] Hanner, O., Intersection of translates of convex bodies. Math. Scand., 4 (1956), 65-87.
[3] Lima, A., On simplicial and central measures, and split faces. Proc. London Math. Soc., 26 (1973), 707-728.
[4] - Intersection properties of balls and subspaces in Banach spaces. Trans. Amer. Math. Soc., 227 (1977), 1-62.
[5] - Intersection properties of balls in spaces of compact operators. Ann. Inst. Fourier, 28 (1978), 35-65.
[6] - Banach spaces with the 4.3 intersection property. Proc. Amer. Math. Soc., 80 (1980), 431-434.
[7] Lindenstrauss, J., Extensions of compact operators. Mem. Amer. Math. Soc. No. 48 (1964),
Received September 31, 1979

[^0]: ${ }^{(1)}$ The contribution of the first named author to this paper is a part of his Ph.D. thesis prepared at the Hebrew University of Jerusalem under supervision of Professors J. Lindenstrauss and M. Perles, and has been supported by a graduate fellowship from Odense University Denmark.
 $\left.{ }^{(2}\right)$ Supported in part by the Norwegian Research Council for Science and the Humanities, and by the Mittag-Leffler Institute.

