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Introduction 

In a paper of 1935 Akizuki constructed an analytically ramified (Noetherian) local 

domain of Krull dimension one ([1], Section 3). We shall present another, similar construc- 

tion. I t  effects a transformation 
(R0, R1) {R, p} 

where on the left stands an arbitrary equidimensional flat couple of local rings and on the 

right a local ring together with a prime ideal (of coheight one) whose analytic ramification 

reflects the structure of the couple to the left. More precisely, the completion _~ of R con- 

gains just one prime ideal p* contracting to p, and the couple (Rp,/~p,) mirrors the structure 

of (R0, Ri) inasmuch as there exists a commutative diagram 

R0 , Rp 

I I 
with unramified flat ring injections as horizontal maps. (See below for definitions.) 

Two conclusions can be drawn from this construction (cf. further [11]). One is simply 

that  there are plenty of analytic ramifications. The prime information in this respect is 

obtained already by taking for R 0 a field K and for R 1 a ring A of the form K[Z 1 ..... Zn]/I 

with I primary for (Z 1 ..... Zn). Then p must be equal to (0) so tha t  R becomes a one-dimen- 

sional local domain with the property that  ~p,,  the formal fiber of its zero ideal, is an 

unramified flat extension of A. Actually/~p, ~ A  | (where K((x))=K[[x]] Ix- - l ] ) ,  a s  

is easily derived from the explicit formulas/~=~a[[x]] ,  p*=ml/~  (d. below). 
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The other conclusion depends on the fact that  p* has a rather special position in/~,  

which entails that  the I-Iilbert and Poincar6 invariants of/~p* are essentially the same as 

those of/~,  the differences being referable entirely to the change in Krull dimension. As 

a consequence the mapping (R 0, R1)-~ (Rp, R), of couples of local rings, preserves the Hflbert 

functions and Poincar6 series of the respective components except for a dimension shift 

in the second. In  the light of known results this implies an equivalence between certain 

general, possibly valid inequalities for couples of local rings (namely the inequalities (A) 

and (B) below, where the symbol F represents both Hflbert and Poincar6 invariants). 

The crude outcome of our construction is expressed by the theorem stated below. A 

few explanations, mainly of a terminological nature, precede. 

All rings are commutative, equipped with identity elements, and, unless otherwise 

stated or else apparent, l~oetherian. 

A couple (R0, Rx) of local rings, with maximal ideals (trio, rrtl), is called fiat if there 

is given a ring injection Ro-~R 1 that  makes R 1 into a flat Ro-module and maps Irto into Irtl. 

Such a couple (R0,/~l), or injection Ro-+R1, is called equidimensional if the Krull dimen- 

sions of R 0 and R i are equal or, equivalently, if rrt0 R1 is primary for ml. I t  is called un- 

rami/ied if Irt0R1 is actually equal to m~. The components of an unramified flat couple 

exhibit great similarities. In particular they have identical ttflbert functions and Poinear6 

series. 

If R is a local ring, and p a prime ideal of R, then/~  will denote the completion of R 

and Rp the localization of R at  p. The prime ideal ]3 is said to be analytically rami/ied if 

the extension ~ is not an intersection of prime ideals, in particular if there exists a 

minimal prime ideal p* of 9/~ such that  the equidimensional flat couple (Ro,/~O*) is rami- 

fied. That couple can be thought of as describing "the ramification of O at  p*". 

THeOReM. Let (Ro, R1) be an equidimensional fiat couple o] local rings with maximal 

ideals (~o, 11tl). Then there exist a local ring R and fiat ring injections R o a r  and RI~_~ 

such that 

(i) the diagram 
R o ~ R 

I 1 
is commutative; 

(ii) p =moR is a prime ideal o / R ;  

(iii) the map Rl ~ l~ has the [orm R 1 nat',/~i[[x]] where x is a variable. 
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The proof of this theorem will be our main occupation. But  we shall first develop its 

consequences so as to complete our previous description. 

The transformation (R0,/~I)-+{R, O) is obtained, in a non-unique manner, directly 

from the theorem by keeping the symbols as they stand. (For our present purpose it is 

unessential to enforce uniqueness.) 

Pu t  p*=ml/~=ml/~l[[x]] .  Then p* is a prime ideal of coheight one, i.e. Krull 

dim (/~/p*)=l. Moreover, the inclusions p/~___p*~rad(p/~) show that  p* is the only 

minimal prime ideal of p~,  and that  therefore p is also of coheight one. The stated square- 

diagram relation between the couples (R0, R1) and (Rp,/~p.) is evident. 

Consider the following numerical invariants of a local ring: the values of the Hilbert 

function (for the maximal ideal) and the so-called deviations (connected with the Poincar6 

series). Let  us agree to arrange these invariants in some infinite array and to denote the 

result for a given local ring S by .F(S). Define 2,(1)(S) = F(S[Z]~r~.z)) where 1t is the maximal 

ideal of S and Z a variable. To be sure, F(S) and 2,(~)(S) mutually determine each other 

in a simple and well-known manner, independent of S. As in effect we have already men- 

tioned, 2' takes equal values on the two components of an unramified flat couple. Using 

this and the special relation between our /~  and/~p., we get the formulas 

2 , ( R 0 )  = 2 , (Ro)  , 2 , ( /~)  = 2,(1)(R1) , 

which express the preservation of invariants under the mapping (R 0, R1)-+ (R0, R). 

~ow on the basis of partial results one may conjecture that  whenever R is a local 

l~ng and ~ a prime ideal of coheight one in R, then 

F(X)(Ro) ~< F(R) (A) 

in the sense of inequality for each entry (the "total-order" sense). In view of the above 

formulas regarding the mapping (R0, R1)-+(RO, R), this would imply that  for any equi- 

dimensional flat couple (R0, R1) of local rings 

F(1) (R0)  ~< F(1) (R1) .  (B )  

Since the reverse implication is already known, we conclude that  the general assertions 

expressed by (A) and (B) are in fact equivalent.--As references for the subject here touched 

upon, see [9], [3] (especially Theorem 2), [7], [12] in what concerns Hflbert functions and 

[6] (Chapter 3), [2] in what concerns deviations. Let  us also mention [10] which contains 

an independent, comparatively direct proof of Theorem 2 of [3], unsusceptible, however, 

to the improvement in [12]. 
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Description of a ring R that will satisfy the requirements of the theorem 

With assumptions and notations as in the theorem, put  /~2=/~l[[X]] (x a variable), 

lu2=(m1, x)R~, K~=R,/mt ( i=0 ,  1, 2). We shall assume tha t  K 1 (--K2) is algebraic over 

K 0 as we can always reduce our proof to this ease by  an extension of R 0 within R1; see 

Lemma A below. 

Let  u = {u~[i e I}  be a set of generators for the ring extension R1/Ro. We can assume 

tha t  the cardinality of the index set I is not larger than the transcendence degree of the 

extension Ko[[x]]/Ko[x], for tha t  degree is not smaller than  the cardinality of the entire 

set R1; see Lemma B. Choose a map  ~: I~Ro[[X]] which, composed with the natural  

map  Ro[[x]J~Ko[[XJ] , gives an injection of I into a transcendence basis for Ko[[x]]/Ko[x ]. 

Pu t  u*={u ,+~( i ) l i e I  }. Finally define 

A = Ro[u*, x, x -1] within R2[x-1], 

B = A  NR2, 

C = BBnm~ within R2, 
R = the n~oC-adic completion of C within R 2. 

We wish R to have the completion R 2 in the topology defined by its one maximal 

ideal R N ms. We can then form the diagram of the theorem in a natural  way. To establish 

the asserted properties, we get the list below of items to check. Within parenthesis we 

have added pertinent features of the construction. 

R dense in R 2 

R and R 2 topologically concordant 

mo-R a prime ideal 

R Noetherian 

R flat as an R0-module. 

(choice of u), 

(presence of x -1 in A), 

(independence imposed on u*), 

(passage from C to R), 

Let  us verify the first point at  once. Observe tha t  

the map R0[u* , x] nat. RI[[X]]/(Xn) is surjective (n = 1, 2, 3 .... ), (*) 

for clearly R0[u* , x] has the same image in Rl[[X]]/(x ~) as R0[u, x] =Rl[x ]. Attaching 

the map  Nl[[x]]/(x~)--,R2/m~, which is visibly surjective, we conclude tha t  already the 

subring Ro[u* , x] of R is dense in R2. 

Main lines of the proof 

For proof purposes we shall apply our construction not  only to the given couple 

(R o, R1) but  also to the couple (/~o, R1)=(Ro/mo, Rl[moR1) �9 Distinguishing objects be- 

longing to the latter application by the superscript ~ and using for ~* the set natural ly 
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induced by u*, we get natural ring homomorphisms A - ~ ,  B-~J~, G-+C, R-~/~. These 

homomorphisms all contain 1~ 0 in their kernels. 

Taking one further lemma for granted (Lemma C), we shall show that  it suffices to 

prove the following four statements. 

R N m2 is a finitely generated ideal in R; (1; R) 

R f/m~ = (R N m2) n (n = 1, 2, 3 . . . .  ); (2; R) 

R n mlR2[x -1] = m 0 R ;  (3; R)  

the homomorphism R/moR =st. _~ is bijective. (4; R) 

We have seen t h a t / ~  is dense in/~2. By  (2; ~)  the two rings are topologically con- 

cordant. Thus R is a possibly non-Noetherian local ring with the completion R 2. Applying 

the analogous result for /~, we see tha t  this possibly non-Noetherian local ring has the 

following properties: its maximal ideal is finitely generated according to (1; k),  its comple- 

tion is Noetherian and one-dimensional, and the single minimal prime ideal of its comple- 

tion contracts to the zero ideal of the ring itself ((3; -~)) (so that,  in particular, _~ is a domain). 

These properties allow us to conclude by Lemma C tha t /~  is Noetherian. Then, in view of 

(4; R), the graded ring associated with the m0R-adic filtration of R is Noetherian. Hence R 

itself is Noetherian, as it is complete in the m0/~-adic topology. I t  follows that  the couple 

(R, R2) = (R, l~) is fiat. Considering that  also (.Ro, Its) is fiat, we infer the same for (R 0, R). 

Finally we deduce from (3; R) that  m0 R is a prime ideal, the only remaining point. 

I t  is a routine matter  to see that  the statements (I; R)-(4; R) can be derived from 

the analogous statements (1; B)-(4; B). We shall content ourselves with proving the latter 

together with Lemmas A-C. 

Completion of the proof 

Let  us start  by  proving (1; B) and (2; B). Any element ] of B can be expanded in a 

power ser ies /=ao+alx+asx+. . .E .Ra[[x] ] .  Clearly/Eros if and only if a0Em 1. By (*), ap- 

plied with n= 1, we can find finitely many elements/x ..... ]r in R0[u*, x]__ B whose coef- 

ficients of index 0 generate llh in Rx. Then, by  (*) again, for an arbitrary element / E B fl llts, 

there exist elements gl, -.., gr E B such that  the d i f f e rence / -  (gl/1 + -.. +gr/~) has a vanishing 

constant term, hence is divisible by x in B. This shows that  B t3 ms = 0ix . . . .  , t,, x), which 

proves (1; B). Similarly we get (2; B) by  observing that  the element t above belongs 

to m~ ( n = 2 , 3 , 4  . . . .  ) if and only if its coefficients satisfy the conditions atEm~ -t 

( i=0,  1 ..... n - l ) .  

Next,  consider (3; A) and (4;A). The natural image of R in Kx[[x]][x-1]" 

.Rs[x-X]/mlRs[x -x] evidently has the form of a free polynomial extension of K0[x, x -x] 
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in [I] variables corresponding to the elements of u*. Hence we get (3; A) and, afortiori,  

the injectivity part of (4; A). The surjectivity part of (4; A) is obvious. 

To pass from (3; A) to (3; B) and from (4; A) to (4; B) we note that  A/B ~ (A + R~)/R~ 

has a natural representation on the form 

A/B,,, f i  R lx  -n, 
nffil 

el. (*). Thus A/B is Rl-free , hence R0-flat. I t  follows that  the exactness of the sequence 

O~B-+A is preserved under tensoring with any /?o-module. Tensoring with K0, we first 

derive that  B N mo A =moB, which, in combination with (3; A), gives (3; B). Secondly we 

conclude that  the commutative diagram below has exact rows. 

0 , Ko@R,B , KO@RoA , Ko@Ro(A/B ) ,0  

L J 
0 , B  , A , A / B  ,0.  

The right hand column represents a bijection, as A/B is /~l-free and Ko| 1 ---/~1, like- 

wise the middle column by (4; A), hence also the left hand column by the Five Lemma. 

Thus (4; B) holds true, and the proof is complete. 

The lemmas 

L]~MMA A. Any equidimensional fiat couple o/local rings can be obtained as'the com- 

position o/two such couples o/which the [irst is unramilied and the second residually algebraic. 

Proo/. Let (.Ro, R1) be a given equidimensional flat couple of local rings with maximal 

ideals (too, ml). Choose a system {z} of representatives in R 1 for a transcendence basis of 

R1/m 1 over _R0/mo, and define -Ro as the localization of R0[z ] at  R0[z ] N 11tl. We shall show 

that  the decomposition of (R 0, R1) into (/~0, R0) and (R0, R1) has the desired properties. 

Let us first prove that  {z} is algebraically independent over R0, i.e., if {Z} denotes a 

system of variables corresponding to {z}, that  the natural map Ro[Z]~R 1 is injective. I t  

suffices to prove injectivity for the induced map of associated graded rings under the 

(mo)-adic filtration. Due to flatness, this map is obtained by tensoring the original one 

with L[ m~/nt~ +I over R o. But tensoring with a free (R0/mo)-module reduces, when one 

looks to injectivity alone, to tensoring with just R0/m 0. Thus we arrive at the map that  

forms the first part of the composition 

-Ro[Z]/mo -Ro[Z] -+ R 1 / ~ o  -~l + -R1/]~l. 
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As the composed map is injective by  our choice of {z}, our assertion follows, i.e. {z} is 

algebraically independent over R 0. 

The injectivity of the composed map also shows tha t  Ro[Z ] fl ml = m0 R0[z]. Hence R0 

has the structure Ro[Z]lm0 ). To see tha t  this ring is Noetherian, consider all the subrings 

obtained by  exchanging {Z} for some finite subset. These subrings are Noetherian local 

rings with the same Krull dimension as R 0. Now, for every prime ideal in the full ring, we 

can find a subring at  which the restriction of the prime ideal has maximal height. Clearly 

tha t  restriction must  generate the prime ideal. Thus Ro[Z](m0) has all its prime ideals 

finitely generated, hence is Noetherian. 

I t  is evident tha t  (Ro, R0) is flat  and unramified, and tha t  the residue field extension 

associated with (Ro, R1) is algebraic. All tha t  remains to prove, is tha t  (Ro/R1) is flat. 

Remembering tha t  the maximal ideal of Ro is moRo, we derive this last point from the 

(Ro/mo R0) and lengthR, (R1/m~R1) as n varies, which is proportionality between lengthR0 ' n , 

implied by  the flatness of (R0, R0) and (R0, R1) (eft [4], Chapter I I I ,  w 5). 

L ] ~ A  B. With the notation o/the main text, the cardinality of R 1 (qua set)~does not 

exceed the transcendence degree of Ko[[X]]/Ko[x ]. (Recall that R 1 is a local ring whose residue 

class field K 1 is algebraic over Ko. ) 

Proof. The cardinality of R 1 is majorized by  tha t  of Kl[[x 1 ..... x~]] for a suitable n, 

hence also by the cardinality of K0[[x]]. (K 0 and K 1 have the same cardinality, or K 0 is 

finite and K 1 denumerable.) Thus it suffices to show for every field K tha t  the transcend- 

ence degree of K[[x]]/K equals the cardinality of K[[x]]. As K[[x]] is non-denumerable, 

its cardinality coincides with its transcendence degree over the prime field P of K. There- 

fore it suffices to show for the two successive field extensions P ~ K ~ K [ [ x ] ]  tha t  the 

latter does not have a smaller transcendence degree than the former. Let  J be an index 

set for a transcendence basis of KIP. We may  assume tha t  the eardinality I J ]  is infinite. 

Then, with ~ = { 0 ,  1, 2 ... .  }, we have I J •  which means tha t  we can find IJ I  

elements of K[[x]] all of whose coefficients are algebraically independent over P. I t  is not 

difficult to see tha t  such a system of elements of K[[x]] is algebraically independent over 

K. Hence the result. 

L~M~A C. A local domain is Noetherian (and 1-dimensional) i/ (i) its maximal ideal 

is finitely generated, (if) its completion is Noetherian and 1-dimensional, and (iii) the minimal 

prime ideals of the completion contract to the zero ideal o/the ring itself. 

Proof. Call the domain R and its maximal ideal m. Let  a be a non-zero ideal of R. 

As the ideal a/~ cannot be contained in any  of the minimal prime ideals of /~,  i t  must  be 
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p r i m a r y  for m/~. L e t  us choose k so t h a t  mk]~ ~ a/~. Then  I1t k___ a + m k+ 1 as R/ln ~+1 ~-2~/111 ~+ 1]~ 

and,  observing t h a t  m k is f in i te ly  genera ted ,  we infer b y  N a k a y a m a ' s  l emma  t h a t  ink___ a. 

I t  follows t h a t  a is f in i te ly  genera ted ,  which gives t he  resul t .  

F i n a l  r e m a r k s  

I n  the  ma in  the  resul t  of the  presen t  p a p e r  was ob ta ined  a l r eady  a round  1970. I t  was 

communica t ed  on a minor  scale t h rough  the  p repr in t  [8] and  th rough  lectures on var ious  

occasions.  A pa r t i a l  para l le l  is conta ined  in [5], app l ica t ions  toge the r  wi th  a proof  of a 

s implif ied vers ion in [11]. 

W e  t h a n k  L. A v r a m o v  and  D. E i senbud  for va luab le  comments  on the  p repr in t .  

The  former  m a d e  us aware,  among  o ther  things,  t h a t  the  s t a t e m e n t  of L e m m a  A is no t  

self-evident .  

R e f e r e n c e s  

[1] AxIZUKI, Y., Einige Bemerkungen iiber prim~re Integrit~tsbereiche mi t  Teilerkettensatz.  
Proc. Phys.-Math. Soe. Japan, 17 (1935), 327-336. 

[2] AVRAMOV, L., Homology of local flat  extensions and complete intersection defects. Math. 
Ann.,  228 (1977), 27-37. 

[3] BEI~NETT, S .  M., On the characteristic functions of a local ring. Ann. o] Math., 91 (1970), 
25-87. 

[4] BOURBAKI, 1~., ~,ldments de mathdmatique; Alg~bre commutative. Paris, 1961. 
[5] FERRAI~D, D. & I=~A.YNAUD, 1~., Fibres formelles d 'un  anneau local noeth~rien. Ann. Sci. 

l~eole Norm. Sup., ge sdrie, 3 (1970), 295-311. 
[6] GULLIKSE~, T. & LEVI~, G., Homology of local rings. Queen's papers in pure and applied 

math., 20 (1969). Queen's university, Kingston,  Ont. 
[7] HIROI~AKA, H.,  Certain numerical  characters of singularities. J. Math. Kyoto Univ., 10 

(1970), 151-187. 
[8] LARFELDT, W. & LECH, C., Fla t  couples, analytic ramifications and Hilber t  functions. 

Preprint series, Stockholm Univ., 8 (1973), 7 pp. 
[9] LECH, C., Inequalit ies related to certain couples of local rings. Acta Math., 112 (1964), 69-89. 

[10] Lzu~os~6M,  A., An inequali ty between the Hilber t  functions of certain prime ideals one 
of which is immediate ly  included in the other. Report, Stockholm Univ. (1970), 14 pp. 

[11] MARINARI, ~r G., Examples  of bad noctherian local rings. Nagoya Math. J., 70 (1978), 
105-110. 

[12] SI~r B., Effect of a permissible blowing up on the local Hi lber t  functions. Invent. Math., 
26 (1974), 201-112. 

Received October 20, 1980 


