SIMPLICES OF MAXIMAL VOLUME IN HYPERBOLIC n-SPACE

BY
\section*{UFFE HAAGERUP and HANS J. MUNKHOLM Odense University, Odense, Denmark}

1. Introduction

Consider hyperbolic n-space H^{n} represented as the Poincaré disk model

$$
H^{n} \sim D^{n}=\left\{\mathbf{x} \in \mathbf{R}^{n} \mid\|\mathbf{x}\|<\mathbf{1}\right\}
$$

with the Riemannian metric

$$
d s^{2}=\frac{4}{\left(1-r^{2}\right)^{2}} \sum_{i=1}^{n}\left(d x_{i}\right)^{2} \quad \text { where } \quad r^{2}=\sum_{i=1}^{n} x_{i}^{2} .
$$

The geodesics in H^{n} are the circles orthogonal to the "sphere at infinity"

$$
\partial H^{n}=\left\{\mathbf{x} \in \mathbf{R}^{n} \mid\|\mathbf{x}\|=\mathbf{1}\right\}=S^{n-1}
$$

An n-simplex in H^{n} with vertices $\mathbf{v}_{0}, \ldots, \mathbf{v}_{n} \in H^{n} \cup \partial H^{n}$ is the closed subset of H^{n} bounded by the $n+1$ spheres which contain all the vertices except one and which are orthogonal to S^{n-1}. A simplex is called ideal if all the vertices are on the sphere at infinity. It is easy to see that the volume of a hyperbolic n-simplex is finite also if some of the vertices are on the sphere at infinity. A simplex is called regular if any permutation of its vertices can be induced by an isometry of H^{n}. This makes sense also for ideal simplices since any isometry of H^{n} can be extended continuously to $H^{n} \cup \partial H^{n}$. There is, up to isometry, only one ideal regular n-simplex in H^{n}.

The main result of the present paper is the following theorem which was conjectured by Thurston ([6], section 6.1).

Theorem 1. In hyperbolic n-space, for $n \geqslant 2$, a simplex is of maximal volume if and only if it is ideal and regular.

Since any hyperbolic n-simplex is contained in an ideal one it suffices, when proving Theorem 1, to consider ideal simplices. We shall use the notation $\tau[n]$ for an arbitrary ideal n-simplex in H^{n}, while $\tau_{0}[n]$ always denotes a regular $\tau[n]$.

For $n=2$ any $\tau[2]$ is regular and has area equal to π, so in this case the theorem is trivially true.

For $n=3$ one has Lobatcheffsky's volume formula, [1]. For the form of it given below see e.g. Milnor [3]. In any $\tau[3]$ opposite dihedral angles are equal, and if α, β, γ are the three dihedral angles at one vertex then $\alpha+\beta+\gamma=\pi$, and the volume is given by

$$
V(\tau[3])=\Lambda(\alpha)+\Lambda(\beta)+\Lambda(\gamma)
$$

where

$$
\Lambda(\sigma)=-\int_{0}^{\sigma} \log (2 \sin u) d u
$$

As shown in [3] this formula implies Theorem 1 for $n=3$.
The motivation for the present study is a very elegant proof, due to Gromov, of Mostow's rigidity theorem, [5], for oriented closed hyperbolic 3-manifolds. The theorem states that for $n \geqslant 3$ two oriented, closed, hyperbolic n-manifolds which are homotopy equivalent are automatically isometric. It is clear that Gromov's proof (as presented in Thurston's lecture notes [6], section 6.3) works also for $n>3$ once one knows that ideal simplices of maximal volume in H^{n} are automatically regular.

For the convenience of the reader we give here a very brief outline of Gromov's argument.

Let $f: M \rightarrow N$ be a homotopy equivalence between closed, oriented hyperbolic n-manifolds with $n \geqslant 3$. To prove that M and N are isometric one notes that they are orbit spaces $\Gamma \backslash H^{n}$ and $\Theta \backslash H^{n}$, respectively, for discrete isometry groups Γ and Θ on hyperbolic n-space H^{n}. Also, f induces an isomorphism $f_{*}: \Gamma \rightarrow \Theta$ and it lifts to a map $\tilde{f}: H^{n} \rightarrow H^{n}$ which is equivariant with respect to $f_{*}: \Gamma \rightarrow \Theta$. The first step now consists in showing that \tilde{f} "induces" a continuous map $f^{\infty}: S^{n-1} \rightarrow S^{n-1}$ on the sphere at infinity; f^{∞} is also equivariant with respect to f_{*}. In the second step one utilizes Gromov's norm to prove that f^{∞} has the following property:
(1.1) Whenever $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in S^{n-1}$ span an ideal hyperbolic simplex of maximal volume then so do $f^{\infty}\left(\mathbf{v}_{0}\right), f^{\infty}\left(\mathbf{v}_{1}\right), \ldots, f^{\infty}\left(\mathbf{v}_{n}\right)$.

At this point Theorem 1 enters. It is used simply to translate (1.1) into
(1.2) Whenever $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{S}^{n-1}$ span a regular, ideal, hyperbolic simplex, then so do $f^{\infty}\left(\mathbf{v}_{0}\right), f^{\infty}\left(\mathbf{v}_{1}\right), \ldots, f^{\infty}\left(\mathbf{v}_{n}\right)$.

The fourth step then consists in proving that any continuous map $f^{\infty}: S^{n-1} \rightarrow S^{n-1}$ satisfying (1.2) is the "restriction" to S^{n-1} of a unique isometry g of H^{n} (when $n \geqslant 3$). Since this g is still equivariant with respect to $f_{*}: \Gamma \rightarrow \Theta$ it induces the desired isometry $M \rightarrow N$.

The proof of Theorem 1 avoids explicit computation of the volumes $V\left(\tau_{0}[n]\right)$. Nevertheless the methods involved can be used to give an asymptotic estimate of $V\left(\tau_{0}[n]\right)$ for $n \rightarrow \infty$. We found that

$$
\lim _{n \rightarrow \infty} \frac{V\left(\tau_{0}[n]\right)}{V\left(\sigma_{0}[n]\right)}=\sqrt{e}
$$

where $\sigma_{0}[n]$ is a regular euclidean n-simplex with vertices on the unit sphere. This asymptotic formula has been known to Milnor for some time [4], but since his proof is less direct than ours, we find it worthwhile to present our proof here (cf. section 4).

2. Recollections about hyperbolic \boldsymbol{n}-space

Besides the Poincaré disk model of H^{n} we shall use two other models, namely the projective model and the half space model. The projective model can be obtained from the Poincaré disk model by use of the map

$$
p: \mathbf{x} \rightarrow \frac{2}{1+\|\mathbf{x}\|^{2}} \mathbf{x}, \quad\|\mathbf{x}\|<1
$$

Note that $p\left(H^{n}\right)=D^{n}$ and that p can be extended continuously to $H^{n} \cup \partial H^{n}$ by putting $p(\mathbf{x})=\mathbf{x}$ for all $\mathbf{x} \in S^{n-1}$. The induced metric on $p\left(H^{n}\right)$ is

$$
d s^{2}=\left(1-r^{2}\right)^{-1} \sum_{i}\left(d x_{i}\right)^{2}+\left(1-r^{2}\right)^{-2} \sum_{i, j} x_{i} x_{j} d x_{i} d x_{j}
$$

and the associated volume form is

$$
d V=\left(1-r^{2}\right)^{-(n+1) / 2} d x_{1} \ldots d x_{n}
$$

The advantage of the projective model is that geodesics become straight lines in the euclidean geometry on D^{n}. Hence, if $\tau[n]$ is an ideal hyperbolic n-simplex with vertices $\mathbf{v}_{0}, \ldots, \mathbf{v}_{n}$ on S^{n-1} then $p(\tau[n])$ is simply the euclidean n-simplex with the same vertices. Therefore, the volume of $\tau[n]$ is given by the formula

$$
\begin{equation*}
V(\tau[n])=\int_{p(\tau[n])}\left(1-r^{2}\right)^{-(n+1) / 2} d \mathbf{r} \tag{2.1}
\end{equation*}
$$

Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ be the standard basis in \mathbf{R}^{n}. The half space model of H^{n} can be obtained from the Poincaré disk model by use of the map

$$
h: \mathbf{x} \mapsto \frac{1}{\left\|\mathbf{x}-\mathbf{e}_{n}\right\|^{2}}\left(2 x_{1}, 2 x_{2}, \ldots, 2 x_{n-1}, 1-\|\mathbf{x}\|^{2}\right),\|\mathbf{x}\|<1 .
$$

Note that $h\left(H^{n}\right)$ is the half space $\left\{\mathbf{x} \in \mathbf{R}^{n} \mid x_{n}>0\right\}$. Moreover, h can be extended to the sphere at infinity by using the same formula except for $\mathbf{x}=\mathbf{e}_{n}$ where one puts $h\left(\mathbf{e}_{n}\right)=\infty$. Then $h\left(\partial H^{n}\right)=\mathbf{R}^{n-1} \cup\{\infty\}$ with $\mathbf{R}^{n-1}=\left\{\mathbf{x} \in \mathbf{R}^{n} \mid x_{n}=0\right\}$. The induced metric on $h\left(H^{n}\right)$ is

$$
d s^{2}=x_{n}^{-2} \sum_{i}\left(d x_{i}\right)^{2},
$$

and the associated volume form is

$$
d V=x_{n}^{-n} d x_{1} \ldots d x_{n}
$$

The geodesics in $h\left(H^{n}\right)$ are half circles and half lines orthogonal to \mathbf{R}^{n-1}.
Let $\tau[n]$ be an ideal simplex with vertices $\mathbf{v}_{0}, \ldots, \mathbf{v}_{n}$. It is no loss of generality to assume that $\mathbf{v}_{0}=\mathbf{e}_{n}$, and hence $h\left(\mathbf{v}_{0}\right)=\infty$. The isometries of $h\left(H^{n}\right)$ fixing ∞ on the boundary form the group generated by (a) translations parallel to \mathbf{R}^{n-1}, (b) rotations leaving the x_{n}-axis pointwise fixed, and (c) multiplications by positive scalars. Hence, by replacing $\tau[n]$ by an isometric n-simplex one can achieve that $h\left(\mathbf{v}_{0}\right)=\infty$ and $h\left(\mathbf{v}_{i}\right) \in S^{n-2} \subseteq \mathbf{R}^{n-1}(i=1,2, \ldots, n)$. Let $\varepsilon(\tau[n])$ be the euclidean $(n-1)$-simplex in \mathbf{R}^{n-1} spanned by $h\left(\mathbf{v}_{1}\right), \ldots, h\left(\mathbf{v}_{n}\right)$. Then $h(\tau[n])-\{\infty\}$ consists of those points of $\varepsilon(\tau[n]) \times[0, \infty[$ which are outside the unit disk in \mathbf{R}^{n}. Thus, putting $\varrho=\left(x_{1}^{2}+\ldots+x_{n-1}^{2}\right)^{\frac{1}{2}}$ and $d \rho=d x_{1} \ldots d x_{n-1}$, one gets

$$
\begin{align*}
V(\tau[n]) & =\int_{\varepsilon(\tau[n])}\left(\int_{\left(1-\varrho^{2}\right)^{1 / 2}}^{\infty} x^{-n} d x\right) d \rho \tag{2.2}\\
& =\frac{1}{n-1} \int_{\varepsilon(\tau[n])}\left(1-\varrho^{2}\right)^{-(n-1) / 2} d \rho
\end{align*}
$$

Let us finally note, that $\tau[n]$ is regular if and only if $\varepsilon(\tau[n])$ is euclidean regular.

3. Proof of Theorem 1

The proof of Theorem 1 relies on an interplay between the formulas (2.1) and (2.2). The fact that (2.1) expresses $V(\tau[n])$ as an integral over an n-dimensional euclidean simplex while (2.2) expresses $V(\tau[n])$ as an integral over an ($n-1$)-dimensional euclidean simplex makes it possible to compare volumes of ideal simplices in H^{n+1} with volumes of ideal simplices in H^{n}, and finally to prove the main theorem by induction on n.

We start by giving an estimate for the growth of $V\left(\tau_{0}[n]\right)$ which will be used in the proof but which is also of interest in itself. Recall that $\tau_{0}[n]$ denotes a regular ideal n-simplex in H^{n}.

Proposition 2. For all $n \geqslant 2$ one has

$$
\begin{equation*}
\frac{n-1}{n^{2}} \leqslant \frac{V\left(\tau_{0}[n+1]\right)}{V\left(\tau_{0}[n]\right)} \leqslant \frac{1}{n} . \tag{3.1}
\end{equation*}
$$

Remark. The upper bound was noted by Thurston ([6], section 6.1).
Proof. Let $\sigma_{0}[n]$ be any regular euclidean n-simplex with vertices on S^{n-1}. We shall prove the following three formulas

$$
\begin{gather*}
\int_{\sigma_{0}[n]}\left(1-r^{2}\right)^{-(n+1) / 2} d \mathbf{r}=V\left(\tau_{0}[n]\right) \tag{3.2}\\
\int_{\sigma_{0}[n]}\left(1-r^{2}\right)^{-n / 2} d \mathbf{r}=n V\left(\tau_{0}[n+1]\right) \tag{3.3}\\
\int_{\sigma_{0}[n]}\left(1-r^{2}\right)^{-(n-1) / 2} d \mathbf{r}=\frac{n-1}{n} V\left(\tau_{0}[n]\right) . \tag{3.4}
\end{gather*}
$$

Clearly these three formulas imply that

$$
\frac{n-1}{n} V\left(\tau_{0}[n]\right) \leqslant n V\left(\tau_{0}[n+1]\right) \leqslant V\left(\tau_{0}[n]\right)
$$

which is equivalent to (3.1).
Since all ideal, regular n-simplices in H^{n} are isometric we can assume that $p\left(\tau_{0}[n]\right)$ is euclidean regular. Hence (2.1) implies (3.2). Next (2.2) implies (3.3) because regularity of $\tau_{0}[n+1]$ assures regularity of the euclidean n-simplex $\varepsilon\left(\tau_{0}[n+1]\right)$. It remains to prove (3.4).

We shall apply Gauss' divergence formula

$$
\begin{equation*}
\int_{\sigma_{\sigma}[n]} \operatorname{div} \mathbf{V}(\mathbf{r}) d \mathbf{r}=\int_{\partial \sigma_{u}[n]} \mathbf{V} \cdot \mathbf{n} d S \tag{3.5}
\end{equation*}
$$

to the vector field

$$
\mathbf{V}(\mathbf{r})=\left(1-r^{2}\right)^{-(n-1) / 2} \mathbf{r}, \quad\|\mathbf{r}\|<1
$$

Here, of course, \mathbf{n} is the outward pointing normal to the boundary $\partial \sigma_{0}[n]$. An easy computation shows that

$$
\operatorname{div} \mathbf{V}(\mathbf{r})=\left(1-r^{2}\right)^{-(n-1) / 2}+(n-1)\left(1-r^{2}\right)^{-(n+1) / 2}
$$

For simplicity put

$$
\begin{equation*}
\varphi_{n}(\alpha)=\int_{\sigma_{0}[n]}\left(1-r^{2}\right)^{-\alpha} d \mathbf{r} \tag{3.6}
\end{equation*}
$$

Then the left hand side of (3.5) becomes

$$
\varphi_{n}\left(\frac{n-1}{2}\right)+(n-1) \varphi_{n}\left(\frac{n+1}{2}\right)
$$

To compute the right hand side of (3.5) we note that $\partial \sigma_{0}[n]$ consists of $(n+1)$ regular $(n-1)$-simplices $\partial_{i} \sigma_{0}[n], i=0,1, \ldots, n$. On $\partial_{i} \sigma_{0}[n]$ one has

$$
\begin{gathered}
1-r^{2}=\varrho_{n}^{2}-\varrho^{2}, \quad \mathbf{r} \in \partial_{i} \sigma_{0}[n] \\
\mathbf{r} \cdot \mathbf{n}=1 / n
\end{gathered}
$$

where $\varrho_{n}=\left(1-n^{-2}\right)^{\frac{1}{2}}$ is the radius of the circumscribed $(n-2)$-sphere for $\partial_{i} \sigma_{0}[n]$, and ϱ denotes the distance from the center of $\partial_{i} \sigma_{0}[n]$ to the point $\mathbf{r} \in \partial_{i} \sigma_{0}[n]$. Therefore the right hand side of (3.5) becomes

$$
\frac{n+1}{n} \int_{\partial_{0} \sigma_{u}[n]}\left(\varrho_{n}^{2}-\varrho^{2}\right)^{-(n-1) / 2} d S
$$

Since $\partial_{0} \sigma_{0}[n]$ is isometric to $\varrho_{n} \cdot \sigma_{0}[n-1]$ this integral transforms into

$$
\frac{n+1}{n} \int_{\sigma_{0}[n-1]}\left(\varrho_{n}^{2}-\varrho_{n}^{2} r^{2}\right)^{-(n-1) / 2} \varrho_{n}^{n-1} d \mathbf{r}=\frac{n+1}{n} \int_{\sigma_{0}[n-1]}\left(1-r^{2}\right)^{-(n-1) / 2} d \mathbf{r}=\frac{n+1}{n} \varphi_{n-1}\left(\frac{n-1}{2}\right) .
$$

Thus we have proved

$$
\begin{equation*}
\varphi_{n}\left(\frac{n-1}{2}\right)+(n-1) \varphi_{n}\left(\frac{n+1}{2}\right)=\frac{n+1}{n} \varphi_{n-1}\left(\frac{n-1}{2}\right) \tag{3.7}
\end{equation*}
$$

By (3.2) and (3.3) $\varphi_{n}((n+1) / 2)=V\left(\tau_{0}[n]\right)$ and $\varphi_{n-1}((n-1) / 2)=(n-1) V\left(\tau_{0}[n]\right)$. Hence

$$
\varphi_{n}\left(\frac{n-1}{2}\right)=\frac{n-1}{n} V\left(\tau_{0}[n]\right)
$$

which proves (3.4).

Lemma 3. Let $f:] 0,1] \rightarrow \mathbf{R}$ be continuous and concave. Let \mathbf{c} be the center of mass of an arbitrary euclidean n-simplex $\sigma[n]$ with vertices on \mathbb{S}^{n-1}, and put $c=\|\mathbf{c}\|$. Then

$$
V(\sigma[n])^{-1} \int_{\sigma[n]} f\left(\mathbf{l}-r^{2}\right) d \mathbf{r} \leqslant V\left(\sigma_{0}[n]\right)^{-1} \int_{\sigma_{0}[n]} f\left(\left(1-c^{2}\right)\left(1-r^{2}\right)\right) d \mathbf{r}
$$

whenever both of these improper integrals converge. Moreover, if f is strictly concave then equality holds if and only if $\sigma[n]$ is regular.

Proof. Let the left and right hand side of the inequality be A and B respectively. Let $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be the vertices of $\sigma[n]$. We have the standard n-simplex

$$
\Delta[n]=\left\{\left(t_{0}, t_{1}, \ldots, t_{n}\right) \mid t_{i} \geqslant 0, \sum t_{i}=1\right\} \subseteq \mathbf{R}^{n+1}
$$

Under the homeomorphism $\left(t_{0}, t_{1}, \ldots, t_{n}\right) \rightarrow \sum t_{i} \mathbf{v}_{i}$ of $\Delta[n]$ with $\sigma[n]$ the measure $V\left(\sigma[n]^{-1}\right) d \mathbf{r}$ on $\sigma[n]$ transforms into a measure μ on $\Delta[n]$ which is just the "Lebesgue measure" normalized to have $\mu(\Delta[n])=1$. Hence

$$
A=\int_{\Delta[n]} f\left(1-\left\|\sum_{i} t_{i} \mathbf{v}_{i}\right\|^{2}\right) d \mu
$$

Since μ is invariant under the transformation $t_{i} \rightarrow t_{\pi(i)}$ for any permutation π of $0,1, \ldots, n$ we also have

$$
A=\int_{\Delta[n]} f\left(1-\left\|\sum_{i} t_{\pi(t)} \nabla_{i}\right\|^{2}\right) d \mu, \quad \text { for any } \pi
$$

If E denotes the formation of mean values over all such π, then

$$
A=E\left(\int_{\Delta[n]} f\left(1-\left\|\sum_{i} t_{\pi(t)} \mathbf{v}_{i}\right\|^{2}\right) d \mu\right)
$$

The concavity of f then implies that

$$
\begin{equation*}
A \leqslant \int_{\Delta[n]} f\left(E\left(1-\left\|\sum_{i} t_{\pi(i)} \mathbf{v}_{i}\right\|^{2}\right)\right) d \mu \tag{3.8}
\end{equation*}
$$

The mean value involved here can easily be computed from the following formulas

$$
\begin{aligned}
\left\|\sum_{i} t_{\pi(i)} \mathbf{v}_{i}\right\|^{2} & =\sum_{i \neq j} t_{\pi(i)} t_{\pi(j)}\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)+\sum_{i} t_{i}^{2} \\
E\left(t_{\pi(i)} t_{\pi(j)}\right) & =\frac{1}{n(n+1)} \sum_{k \neq l} t_{k} t_{i}=\frac{1}{n(n+1)}\left(l-\sum_{i} t_{i}^{2}\right), \quad i \neq j \\
\sum_{i \neq j}\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right) & =\left\|\sum_{i} \mathbf{v}_{i}\right\|^{2}-\sum_{i}\left\|\mathbf{v}_{i}\right\|^{2}=(n+1)^{2} c^{2}-(n+1)
\end{aligned}
$$

Here, of course, (\cdot, \cdot) is the euclidean inner product. One gets

$$
\begin{equation*}
A \leqslant \int_{\Delta[n]} f\left(\frac{n+1}{n}\left(1-c^{2}\right)\left(1-\sum t_{i}^{2}\right)\right) d \mu \tag{3.9}
\end{equation*}
$$

If $\sigma[n]$ is regular then equality holds in (3.9). Therefore, if one applies (3.9) to $\sigma_{0}[n]$ and to $g(x)=f\left(\left(1-c^{2}\right) x\right)$ one gets

$$
\begin{equation*}
B=\int_{\Delta[n]} f\left(\frac{n+1}{n}\left(1-c^{2}\right)\left(1-\Sigma t_{i}^{2}\right)\right) d \mu \tag{3.10}
\end{equation*}
$$

Here we have used that the center of mass for $\sigma_{0}[n]$ is 0 . This finishes the proof of $A \leqslant B$.
If equality holds in Lemma 3 then we also have equality in (3.8). In case of strict concavity this is possible only when

$$
\left\|\sum t_{\pi(i)} \mathbf{v}_{i}\right\|^{2}=\left\|\sum t_{i} \mathbf{v}_{i}\right\|^{2}
$$

for all $\left(t_{0}, t_{1}, \ldots, t_{n}\right) \in \Delta[n]$ and all permutations π. Letting $t_{0}=t_{1}=\frac{1}{2}, t_{i}=0$ for $i>1$ it follows that

$$
\left\|\mathbf{v}_{1}+\mathbf{v}_{2}\right\|=\left\|\mathbf{v}_{i}+\mathbf{v}_{j}\right\| \quad \text { for all } i \neq j
$$

Since $\left\|\mathbf{v}_{i}-\mathbf{v}_{j}\right\|^{2}=4-\left\|\mathbf{v}_{i}+\mathbf{v}_{j}\right\|^{2}$ we see that

$$
\left\|\mathbf{v}_{1}-\mathbf{v}_{2}\right\|=\left\|\mathbf{v}_{i}-\mathbf{v}_{j}\right\| \quad \text { for all } i \neq i
$$

and that guarantees the euclidean regularity of $\sigma[n]$.

End of proof of Theorem 1. Assume inductively that the theorem holds for some $n \geqslant 3$, and consider an arbitrary $\tau[n+1]$. Put

$$
f(t)=t^{-n / 2}-K_{n} t^{-(n+1) / 2}, \quad 0<t \leqslant 1
$$

where $K_{n}=n V\left(\tau_{0}[n+1]\right) / V\left(\tau_{0}[n]\right)$. An elementary computation shows that f is strictly concave on $] 0,1]$ if and only if $K_{n} \geqslant n(n+2) /(n+1)(n+3)$. On the other hand Proposition 2 guarantees that $K_{n} \geqslant(n-1) / n$ which exceeds $n(n+2) /(n+1)(n+3)$ for $n \geqslant 3$. Lemma 3 can, therefore, be applied to f and the euclidean n-simplex $\sigma[n]=\varepsilon(\tau[n+1]$ (cf. section 2). Using also (2.2) (for $n+1$) and (2.1) and letting $\tau[n]=p^{-1}(\sigma[n])$ one gets

$$
\begin{align*}
n V(\tau[n+1])-K_{n} V(\tau[n]) & \leqslant \int_{\sigma_{0}[n]} f\left(\left(1-c^{2}\right)\left(1-r^{2}\right)\right) d \mathbf{r} \\
& =\left(1-c^{2}\right)^{-n / 2} n V\left(\tau_{0}[n+1]\right)-K_{n}\left(1-c^{2}\right)^{-(n+1) / 2} V\left(\tau_{0}[n]\right) \\
& \leqslant\left(1-c^{2}\right)^{-n / 2}\left(n V\left(\tau_{0}[n+1]\right)-K_{n} V\left(\tau_{0}[n]\right)\right) \tag{3.11}\\
& =0 .
\end{align*}
$$

By the inductive hypothesis $V(\tau[n]) \leqslant V\left(\tau_{0}[n]\right)$ so (3.11) implies

$$
\begin{equation*}
n V(\tau[n+1]) \leqslant K_{n} V\left(\tau_{0}[n]\right)=n V\left(\tau_{0}[n+1]\right) \tag{3.12}
\end{equation*}
$$

which shows that $V\left(\tau_{0}[n+1]\right)$ is maximal.
If equality holds in (3.12) then also in (3.11). By Lemma 3 this implies that $\varepsilon(\tau[n+1])$ is euclidean regular. But then $\tau[n+1]$ is hyperbolically regular.

4. An asymptotic formula for $\boldsymbol{V}\left(\tau_{0}[n]\right)$

From section 1 we have

$$
\begin{aligned}
& V\left(\tau_{0}[2]\right)=\pi=3.14159 \ldots \\
& V\left(\tau_{0}[3]\right)=3 \int_{0}^{\pi / 3}-\log (2 \sin \theta) d \theta=1.01494 \ldots
\end{aligned}
$$

We mention, without giving details, that it is possible to compute $V\left(\tau_{0}[4]\right)$ using the generalized Gauss formula (cf. Klein [1], p. 205). We found

$$
V\left(\tau_{0}[4]\right)=\frac{10 \pi}{3} \arcsin \frac{1}{3}-\frac{\pi^{2}}{3}=0.26889 \ldots .
$$

It seems to be very difficult to obtain simple expressions for $V\left(\tau_{0}[n]\right)$ when $n \geqslant 5$. However, we have the following asymptotic formula for $V\left(\tau_{0}[n]\right)$ (recall that $\sigma_{0}[n]$ is a regular euclidean n-simplex with vertices on S^{n-1}).

Theorem 4.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{V\left(\tau_{0}[n]\right)}{V\left(\sigma_{0}[n]\right)}=\sqrt{e} \tag{4.1}
\end{equation*}
$$

The proof of Theorem 4 relies on an investigation of the functions

$$
\varphi_{n}(\alpha)=\int_{\sigma_{0}[n]}\left(1-r^{2}\right)^{-\alpha} d \mathbf{r}, \quad n=1,2, \ldots
$$

When $n \geqslant 2 \varphi_{n}(\alpha)$ is defined for $\alpha \leqslant(n+1) / 2$ (in fact $\varphi_{n}(\alpha)<\infty$ if and only if $\alpha<n$ but we shall not need this). Moreover φ_{n} is monotonically increasing, and being an integral of a logarithmically convex function φ_{n} is itself logarithmically convex, i.e. $\alpha \rightarrow \log \varphi_{n}(\alpha)$ is a convex function.

Lemma 5.

$$
\begin{gather*}
\varphi_{n}(-1) / \varphi_{n}(0)=\frac{n+1}{n+2}, \quad n \geqslant 1 \tag{4.2}\\
\varphi_{n}\left(\frac{n-1}{2}\right) / \varphi_{n}\left(\frac{n+1}{2}\right)=\frac{n-1}{n}, \quad n \geqslant 2 . \tag{4.3}
\end{gather*}
$$

Proof. Formula (4.3) is an immediate consequence of (3.2) and (3.4). To prove (4.2) consider a regular euclidean simplex $\sigma_{0}[n]$ with vertices $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ on the unit sphere.

Regularity implies that the inner product $\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)$ equals $-1 / n$ for $i \neq j$. Let $d \mu$ be the normalized "Lebesgue measure" on $\Delta[n]=\left\{\left(t_{0}, t_{1}, \ldots, t_{n}\right) \mid t_{i} \geqslant 0, \sum t_{i}=1\right\} \subseteq \mathbf{R}^{n+1}$. Arguing as in the proof of Lemma 3 we get

$$
\begin{aligned}
\varphi_{n}(-1) / \varphi_{n}(0) & =V\left(\sigma_{0}[n]\right)^{-1} \int_{\sigma_{0}[n]}\left(1-r^{2}\right) d \mathbf{r} \\
& =\int_{\Delta[n]}\left(1-\left\|\sum_{i} t_{i} \mathbf{v}_{i}\right\|^{2}\right) d \mu \\
& =\int_{\Delta[n]}\left(1-\sum_{i} t_{i}^{2}\left\|\mathbf{v}_{i}\right\|^{2}-\sum_{i \neq j} t_{i} t_{j}\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)\right) d \mu \\
& =\int_{\Delta[n]}\left(1-\sum_{i} t_{i}^{2}+\frac{1}{n} \sum_{i \neq j} t_{i} t_{j}\right) d \mu \\
& =\frac{n+1}{n} \int_{\Delta[n]}\left(1-\sum_{i} t_{i}^{2}\right) d \mu
\end{aligned}
$$

Since $\mu(\Delta[n])=1$ and since $\int_{\Delta[n]} t_{i}^{2} d \mu$ is independent of $i=0,1, \ldots, n$ we get

$$
\int_{\Delta[n]}\left(1-\sum_{i} t_{i}^{2}\right) d \mu=1-(n+1) \int_{\Delta[n]} t_{n}^{2} d \mu
$$

The map $\left(t_{0}, \ldots, t_{n}\right) \rightarrow\left(t_{1}, \ldots, t_{n}\right)$ is an affine isomorphism of $\Delta[n]$ onto $\left\{\mathbf{t} \in \mathbf{R}^{n} \mid t_{i} \geqslant 0, \sum_{i=1}^{n} t_{i} \leqslant 1\right\}$ which transforms $d \mu$ into the measure $n!d t_{1} \ldots d t_{n}$.

Hence,

$$
\begin{aligned}
\int_{\Delta[n]} t_{n}^{2} d \mu & =n!\int_{t_{i} \geqslant 0, \sum_{i=1}^{n} t_{i} \leqslant 1} t_{n}^{2} d t_{1} \ldots d t_{n} \\
& =n!\int_{0}^{1}\left(\int_{t_{i} \geqslant 0 .}{ }_{i=1}^{n-1} t_{i \leqslant 1-t_{n}} d t_{1} \ldots d t_{n-1}\right) t_{n}^{2} d t_{n} \\
& =n!\int_{0}^{1} \frac{1}{(n-1)!}\left(1-t_{n}\right)^{n-1} t_{n}^{2} d t_{n} \\
& =\frac{2}{(n+1)(n+2)} .
\end{aligned}
$$

And thus

$$
\varphi_{n}(-1) / \varphi_{n}(0)=\frac{n+1}{n}\left(1-(n+1) \int_{\Delta[n]} t_{n}^{2} d \mu\right)=\frac{n+1}{n+2} .
$$

Proof of Theorem 4. Let $n \geqslant 2$. Using the logarithmic convexity of φ_{n} one gets

$$
\left(\frac{\varphi_{n}(0)}{\varphi_{n}(-1)}\right)^{(n-1) / 2} \leqslant\left(\frac{\varphi_{n}((n-1) / 2)}{\varphi_{n}(0)}\right) \leqslant\left(\frac{\varphi_{n}((n+1) / 2)}{\varphi_{n}((n-1) / 2)}\right)^{(n-1) / 2} .
$$

Since $\varphi_{n}(0)=V\left(\sigma_{0}[n]\right)$ and $\varphi_{n}((n-1) / 2)=((n-1) / n) V\left(\tau_{0}[n]\right)$ (by (3.4)) we get, by applying Lemma 5, that

$$
\left(\frac{n+2}{n+1}\right)^{(n-1) / 2} \leqslant \frac{n-1}{n} \frac{V\left(\tau_{0}[n]\right)}{V\left(\sigma_{0}[n]\right)} \leqslant\left(\frac{n}{n-1}\right)^{(n-1) / 2}
$$

Since

$$
\lim _{n \rightarrow \infty}\left(\frac{n+2}{n+1}\right)^{(n-1) / 2}=\lim _{n \rightarrow \infty}\left(\frac{n}{n-1}\right)^{(n-1) / 2}=\sqrt{e}
$$

this proves Theorem 4.
Remark. Using the fact that the edgelength of $\sigma_{0}[n]$ is $(2(1+1 / n))^{1 / 2}$ the volume of $\sigma_{0}[n]$ can easily be computed to be

$$
V\left(\sigma_{0}[n]\right)=\frac{\sqrt{n+1}}{n!}\left(1+\frac{1}{n}\right)^{n / 2}
$$

which is asymptotically equal to $\sqrt{n} / n!\sqrt{e}$ for $n \rightarrow \infty$. Hence, by Theorem 4

$$
V\left(\tau_{0}[n]\right) \sim \frac{V \bar{n}}{n!} e .
$$

References

[1] Klein, F., Vorlesungen über nicht-euklidische Geometrie. Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 26, Springer Verlag, Berlin 1928.
[2] Lobatcheffsky, N. J., Collection compléte des œuvres géométriques de N. J. Lobatcheffsky. Kazan 1886.
[3] Milnor, J. W., Computation of volume. Lecture at Princeton University. See section 7 of [6]. [4] —— Private communication.
[5] Mostow, G. D., Strong rigidity of locally symmetric spaces. Ann. of Math. Studies, vol. 78, Princeton University Press, Princeton 1973.
[6] Thurston, W. P., The Geometry and Topology of 3-manifolds. Lecture notes from Princeton University 1977/78.

