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In  this paper we prove tha t  B(74), the space of all bounded linear operators on a 

Hilbert space, does not have the approximation property (abbreviated throughout AP). 

The first example of a Banach space which does not have AP, was given by P. Enflo 

[2]. Following the work of Enflo, several other eounterexamples to the AP have been 

constructed. 

B(74) is the fh'st Banaeh space appearing naturally in analysis which is proved to 

fail AP. B(~/) is also the first known example of a C*-algebra without AP. Our result 

implies, of course, the existence of a separable C*-algebra without AP (of. Corollary on 

p. 92). Approximation problems in the context of C*-algebra theory have been considered 

by several authors (ef. [1], [4], [5], [8], [9]). Let us mention two of these results: 

In  [4], U. Haagerup proved tha t  the C*-~lgebra generated by the left regular re- 

presentation of the free group on two generators, does have the AP. For some time this 

C*-a]gebra was a candidate for a "natural  counterexample" to the AP. 

In  [9], S. Wasserman proved tha t  B(74) is not nuclear, thus failing the "completely 

positive approximation property" .  The latter property,  much stronger than AP, is a 

C*-algebra analogue of the AP. 

Let  us now briefly describe the contents of the present paper. I t  is divided into 5 

sections. 

In  Section 1 we present a criterion for a Banaeh space not to have the AP. This criterion 

is a modified version of Enflo's original one. We show how it is related to the ideas of 

Grothendieck [3], using the tensor product notation, which was originally used in [3] for 

the purpose of AP but  has been neglected since. I t  seems to the author tha t  the use of this 

notation makes an essential simplification in several computations. 

(1) Supported in part by the Danish Natural Sciences Research Council. 
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The proof of our main result requires a rather  complicated construction which is 

gradually presented in Sections 2, 3, 4, 5. In  our presentation we apply a "gliding hump"  

approach of repeated reduction of the main problem at  hand to a number  of "technical 

lemmas" which are proved later on. The whole construction is geared specifically to B(74). 

A preliminary exposition of our result appeared in [7]. The presentation of [7] is 

perhaps more heuristic than  the present one. 

Acknowledgement. During the initial phase of work on this paper the author benefited 

greatly from the cooperation of Joram Lindenstrauss. I am indebted to him for numerous 

stimulating discussions. 

I would also like to thank J.  S. Szarek and G. Pisier for their critical comments on 

the earlier versions of this paper. 

Notation. Given a set A, 1A denotes the indicator function of A, I A I denotes the 

number  of elements of A (if A is finite); [z I denotes also the absolute value of a complex 

number z. 

A partition of A is a family of pairwise disjoint sets, which cover A. 

]f ~ is a Hflbert space, then B ( ~ )  denotes the space of (bounded, linear) operators 

from ~ / to  :~; otherwise, the space of bounded linear operators from a Banach space X to 

a Banach space Y will be denoted by L(X, Y). 

Given a sequence Xi, X~ ....  of Banach spaces, (XI| denotes their /~-sum 

(for the notation on Banach spaces, cf. [6]). 

We shall also use the following tensor production notation: 

Let  X, Y be Banach spaces, X |  Y denotes the algebraic tensor product of X and Y; 

XC) Y denotes the projective tensor product of X and Y, i.e., the completion of X |  Y 

in the norm 

[[~H^ def inf {~ IIxnll ]]Vnll: ~ = ~ xn| 

For a bilincar form ~ on X | Y we denote 

II lIv = sup y) l: xeX, ye r, II H 11 IlylL 1} 

To every ~ E Y* (~ X we assign a functional ~, on L(X, Y) defined by 

~.(T) = ~ y*(TXn) for TEL(X, Y) (0.1) 
where ~ = ~. y* | x n. 
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Section 1 

A Banach space X is said to have the approximation property (abbreviated AP) if 

the identity operator on X, denoted Ix, can be approximated uniformly on every compact 

subset of X by finite rank operators. 

Let  us recall briefly the approach of Grothendieck [3] to the AP. We find it convenient 

to use the tensor product notation, as used in [3]; otherwise our presentation follows 

closely tha t  of Lindenstrauss and Tzafriri ([6], Chapter 1.e). 

Let  X, Y be Banach spaces. Let  us denote L =L(X, Y). In  L we have the locally 

convex topology r, generated by  the seminorms 

IITII  = sup {ll  ll: xEK}, 

where K ranges over all compact subsets of X. Grothendieck discovered tha t  the 

dual space (L,T)' can be identified with Y*(~X by the natural  isomorphism 

~E Y*~X--->~,E (L, "r)' where ~. is defined by  (0.1) (for the proof, see [6], p. 31). 

Now, let X = Y; for fl EX* ~ X let us denote 

t r  ~ = ~$(~x) ( = ~ ffa(Xa) if fl = ~ ffa(~Xa)- 

By the Hahn-Banach  theorem, X does not have AP if and only if there exists 

fl E (L, r) '  = X* ~) X such tha t  

f l , (  T )  = 0 

t r f l = l ,  (1.1) 

if rk T = 1. (1.2) 

Since every one dimensional operator on X is of the form x*| with x*EX*, xEX, 

(1.2) is clearly equivalent to 

sup {fl.Ix*| IIx*ll ~< 1, IIxII ~< 1} = o. 

I t  is easy to see tha t  the last supremum is equal to I[flll v. Therefore, (1.2) is equivalent to 

II llv =0. (1.3) 

In  other words, X has the AP if and only if the formal identity map from X* ~ X into 

X* ~ X is one-to-one. 

Remark 1. A u: X ~  Y is called approximable if it can be approximated uniformly on 

every compact subset of X by finite dimensional operators. The above argument shows 

tha t  u is not approximable if and only if there exists a fl E Y* ~ X such tha t  

f l ( u ) = l  and 11811r (1.4) 
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Remark 2. Suppose t h a t  f l E X * @ X  satisfies (1.1) and (1.3) and let f l=~ .  ~n|  be a 

"good"  representa t ion of fl, i.e., ~ H~0n[[ [[xnll < o~. Then every  subspace of X which contains 

all xn's fails (obviously) the  AP. 

COROLLAaY (of our ma in  result).  There exists a separable C*-algebra without AP: 

take the C*-algebra generated by the corresponding xn's /rom our construction/or X = B(~) .  

Let  us now present  Enflo 's  idea leading to his construct ion of a space wi thout  AP.  

I t  can be seen as a deve lopment  of Grothendieck 's  idea (although, as is appa ren t  f rom [2], 

Enflo discovered his new approach  to the  AP  independent ly  of [3]). 

The En/lo' s criterion. Suppose that there exist fin E X* ~ X / o r  n = 1, 2 .. . .  such that 

(i) t r f i n = l  /or n = l, 2 .... 

o o  

Then X does not have the AP. 

The proof is immediate:  let us define 

fl = fl~ + ~ (fl~+l -- fin) = lira fl,~. 
n = I n - + ~  

Then f lEX*@X,  by the  first  equal i ty  and  by  (iii) and it  satisfies (1.1) and  (1.3), by  the  

second equal i ty  and  b y  (i), (ii), respectively.  

I n  spite of formal  similarity,  conditions (ii), (iii) are much  easier to handle  t han  the  

condition (1.3): condition (1.3) is, in a way, an extrinsic condition, depending on the  

whole space X ra ther  t han  on fl alone. Consequently,  it is ve ry  difficult to control. The  

corresponding condition (ii) is usual ly  quite easy to control. To i l lustrate this let us look 

a t  a typ ica l  s i tuat ion where 

N 

fin = N--1 ~ Y~'@Y) with Ily?li = liy, II = y?(y,) = i for ] = 1 . . . . .  N 
j= l  

(for some N which depends on n and goes to oo with  n). 

Using a very  simple es t imate  (4.5), p. 103, we see t h a t  

J;~ JYJl 
I~1 =I 
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Thus,  unless []~N_ 1 ejyjH ,~N for some choice of signs sj, t hen  lift,]Iv is small. In  concrete 

applicat ions we usual ly  obta in  [I ~1 N--1 elY.ill = O(N) quite automat ica l ly .  

Therefore,  the  whole diif iculty is usual ly concent ra ted  in the  condit ion (iii). Here  the  

prob lem is intrinsic, i.e., i t  is enough to  exhibi t  a single representa t ion  f t , - f l , + l  = ~ Cfa| 
which is "good" .  

The rest  of the  paper  is devoted  to the  construct ion of a sequence fin E B(~ / )*~  B(~4), 

satisfying the  conditions (i), (if), (iii). 

Section 2 

In  this section we shall define a Hi lber t  space ~ / a n d  fl~ E B(~/)*(~ B(~/). 

Notation. Let  A be a finite set. We define the  measure  #A on A by  

/~A({a})= IA] -1 for  every  a e A .  

Le t  us denote  L2(A ) =L2(ttA). For  B c A  we denote by  PB the  project ion in L2(A ) 
defined by  PB/=/" lB. 

B y  M(A) we denote the  set of all A • A matrices.  For  a, fl EA we denote e~,p = 1 ~ |  1 ~  

(i.e., it is the  ma t r ix  which has 1 on (a, fl)-th place and  zeroes elsewhere). We denote also 

M(q) =M({1  . . . . .  q}). We  ident i fy M(A) with the  algebraic tensor  p roduc t  L~(A)QL2(A), 
in the  usual way.  For  xEM(A) let 

We  shall denote M(A)=Le(A)~)L2(A), M(A)=L2(A)~L2(A); let us recall t h a t  

L2(A)~L~(A ) is na tura l ly  isometric  to B(L2(A)) and t h a t  L2(A)~L2(A) is na tu ra l ly  

isometric  to B(L~(A))*. 
For  an xEM(A) we shall denote  by  _x and  x the corresponding elements  of B(L~(A)) 

and B(Le(A))* respectively.  

We shall use the  following ad hoc definition. 

De/inition. Let  x E M(A) and y E M(B). We shall say t h a t  x and y are strictly equivalent 
if one can be obta ined  f rom another  by  apply ing  the  following four  operations: 

(1) pe rmuta t ions  of rows and  columns, 

(2) mult ipl icat ion of rows and  columns by  numbers  of absolute value one, 

(3) deleting some rows and columns consisting ent irely of zeroes, 

(4) t ransposi t ion.  

l~eedless to say, if x and y are s tr ict ly equivalent ,  then  II II = IiyiI~ for p = 1, o~. 
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Now we pass to  our construction. 

Let  K1, K s . . . .  be some finite sets (to be specified later on). L e t / ,  denote the produc t  
oo Qo measure # = |  o n  I ~ n ~ l  Kn. 

Let  us denote  
B = B(L2(#)). 

We define ~ as the Hilbert  sum of countably  m a n y  copies of the space L2(/~), i.e., 

74 = (L2(/*) | |  

The/m-sum (B (DB | ...)m is embedded in a natural  way  in B(~ ) .  Formally,  given a sequence 

z ~, x 2, ... 6B such tha t  sup I I . . l l .  < ~ ,  ~e  define (~=a  x n e B ( ~ )  by  

(s x ~ ( / . / ~  . . . .  ) = ( * V .  xV~ . . . .  ) .  

Obviously we have 

z-  = sup 1 1 4 . .  (2.0) 
B(W) 

Moreover, (BOB|  is complemented in B(~4) by  the natura l  projection R, the restric- 

tion. 

Let  N denote the set of natural  numbers,  let U be a fixed free ultrafilter in N. Given 

define L i m ~ n E B ( ~ )  * in the following way: let a sequence ~a,~2 ... .  6B*, we 

~o E [(B G B | be defined by  

~o x n = lira ~=(xn); 
~ E U  

we set then 

Lira= ~= = R*~s. 
Obviously, 

]]Lim n ~n]]B(m, ~< lim supl[~snlIB,. (2.0)* 
n 

Now we proceed to define fin 6 B( ~/)* | B ( ~ )  for n = 1, 2 . . . . .  Let  us denote Dn = K1 • x Kn. 

For  aeD,~ let us define the projection xa in L2(/z ) (or in L~(Dk) for k>~n) by  

for  n <~ k <~ co. 
m = l K m :  (it ;  ..., i n) ~a} 

Given a E Din, b E D,~ let us define 

Qa.t,x =ZaX~b for xEB, 
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and given x 1, x ~ ... EB and ~1, 92, ... EB* we set 

oo 

Xa.b = 0 qa, b~ ,  q ~ . b = L i m ~ * . b ~ ,  
k = l  k 

and  

a, bED n 
We shall also denote 

k ~ a . b X  k,  k * x~,b  = ~ , b  =~,~. 

95 

I t  still remains to  define the x k, ~0 k, which will be used in our construction. 

We shall first formulate  a lemma which is the main combinatorial  ingredient of our 

construction. 

Le t  q be the square of a na tura l  number,  say q = m  2. A part i t ion V of the set {1 .. . . .  q} 

will be called regular if ]V I = m  and if every member  of V has m elements. Let  tq be a 

fixed regular part i t ion of {1 .. . . .  q}. 

LEI~MA 1. Let q be a number o / t h e / o r m  216~ where p is a natural number.(1) For ]= 

1, 2, ..., qa there exist regular partitions V~ o/ {1 . . . . .  q} and Hadamard matrices v~EM(q) so 

that /or  every S E tq, 
[ [ p z V ~ p A I I  1 = ql/2 /or every A eV~, (2.1) 

Ilpsv~pAl[oo <~ qlS/a~ /or every A EVI with i:4:i. (2.2) 
Moreover, 

q 

v~(a, b) = ql/2 = ~ v~(b, a) /or every a. (2.3) 
b=l  b=l  

(by an Hadamard matrix  we mean a square matrix whose all entries have absolute value one. 

and whose columns are mutually orthogonal). 

We postpone the proof of this lemma to Section 5. 

Le t  now qn be a sequence of natural  numbers  such that :  

qn are of the form 216p where p is a natural  number ,  (2.4) 

q~ goes to ~ faster t han  any  power of n, (2.5) 

qn+l <q~ for every n. (2.6) 

We set K ~ = ( 1  . . . . .  qn}•  . . . . .  q~}. B y  (2.6), [K~I <q~, therefore we can find IK~I + 1  

H a d a m a r d  matrices v~" and v~- for i e Kn such tha t  they  satisfy the conditions of Lemma 1 

for q: = q~. 

(1) Clearly, this p is unrelated to the p of (2.1). 
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F o r  i E K~ we denote  i ts coordinates  b y  i ~ and  i 1, respect ively .  

From now on i n and in will always denote elements o/ K~. 

Let  us set 
Wn(in, i~+1; 7~, 2"~+1) -1 qn .1 .0 q,, .1 .0 �9 =qn %~(~,,~n)vi~+~(~,~,d, 

y~(i,, ],) ="-i~ .o q~ .1 

Notice  t h a t  
I ly~ l l~  = 1 f o r  e v e r y  n .  

F o r  n ~ m le t  us define un. m E M(Km) b y  

n - 1  m 

un,,n(i, ]) = ~-[ wk(ik, ik+l; 2"k, jk+l) I ]  Yk(ik, ]k)" 
k ~ l  k=n 

B y  #m let  US denote  the  p roduc t  measure  #m= | #K, on l~~176 K n. 

Clearly, y~ is an  i somet ry  of Le(K~) onto itself. Moreover,  b y  (2.3), y~(1)= 1 (here 1 

denotes  the  funct ion  cons tan t  1), consequent ly ,  the  infini te  t ensor  p roduc t  |176 Yk is 

well def ined and  thus  defines an  e lement  of B(L2(#m)): 

def oo 
y m =  | Yk" 

k=m+l  

W e  have,  obviously,  
I ]y~ l l , (L~( ,~ ,  = 1. ( 2 . v )  

Le t  us p ick  for m = 1, 2 . . . .  a ~m E B(L~(#m)) * which is a H a h n - B a n a c h  func t iona l  of ym, i.e., 

~m(ym) = 1, ] ]~II'(L~(,~ = 1. 

Now we define the  desired x 1, x 2 . . . .  and  ~1, ~2 . . . .  b y  

x m=u_m,m~y m, V m = [ D m [ - l u m . m ~  m, 

where we make  the  n a t u r a l  ident i f ica t ions  

B = M ( D ~ )  (~ B(L2(#m)), 

B* =_____M(D~) (~ B(L2(#m)) *. 

Let  us not ice  t h a t  we have,  for every  n ~ m ,  

x m = ~ m , n @ y  n. 

As follows f rom the  propos i t ion  on p. 102, 
oo X m �9 m=l and  Lira m ~m will be well defined.  

(2.s) 

(2.9) 

[[um.n][oo=l, I]Um,nl]X= [Dk[ and  therefore  
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Section 3 

I n  th is  sect ion we shall  concent ra te  on the  crucial  condi t ion  (iii). W e  w a n t  to  p rove  

tha t ,  for  eve ry  n, 

II~.-~.+~ll  ~ < 2 - - ~ ' ~  , (a.0) 

which, in view of (2.5), c lear ly  implies  (iii). 

F r o m  now on n is fixed. 

I n  proving  (3.0), i t  will be convenient  to  in t roduce  an  in t e rmed ia t e  step.  Le t  

W e  shall  p rove  t h a t  

7 = ~ ~a,r174 
aeK,~.c~IQ+l 

IIB.-rll~ ~ q2  '~ and I1~-~-+~11~ ~ q2  '~" (3,1) 

Le t  us f irst  not ice  t ha t ,  for a, b 6 D~, c 6 D~+I, 

hEK, a+l heK,~+l 

(here and  everywhere  else b, h denotes  the  e lement  of Dn+ 1 whose coordinates  are  b 1 . . . . .  bn, h. 

The same a b o u t  a, h etc.).  

Therefore,  if we denote  for  a, b E Dn, c E D~+I, g 6 K,~+I , 

we ob ta in  

Ya;b,a= ~ Xa;b,h~ Ya, a;c= ~. 9C'a,h;c~ 
h~g, heKn+ 1 h~g, heKn+ 1 

f l ~ - y  = ~ cf.;~| . . . .  
a~Dn, c~Dn+l 

Y -  fl~+l = ~ ~ ;c  | 
a, ceDn+l 

Now we shall  make  an app rop r i a t e  grouping  in these sums. I n  the  sequel let:  

and  let  us denote  

geK,+l , l<~e , /<~qn ,  A ,  S c { 1  . . . . .  q,~), ~ , ~ 6 D n _  1 

(~=(~g. eJ, A,S.~,#= Y ~a,b| b, 
(a,b)eH 

- g.e.r.A,s.~,p- ~. ~c~.b| 
(a,b)eH" 

7 -  812901 Acta mathematica 147. lmprim6 le 11 Decembr6 1981 
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where 

H = Hg.~.r.a.s.a" ~ def {(a, b)ED~ x Dn+l: (al . . . . .  a,~_l) = ~, (b 1 . . . . .  b,-1) =/3, 

aOn = 1 I 0 e, b~ = / ,  a~ E S, bn E A ,  b~+l = g}, 

H '  ' def 
= Ha, e.s.a,s.~.B = ((a, b) EDn+I • Dn+l: (bl . . . .  , bn-1) = ~, (al . . . . .  an-l) = fl, 

b ~ = e, a~. = 1, b~ e s ,  a ~ e A ,  a . + l  = g} .  

The proof of (3.1) will be based on the following two lemmas. 

L]SMMA 2. We have 

(a, b)eH (a, o)eH 

Let  us denote 

I1r < II E ~=:OlIB,~>*II E Y~:~IIB(~,. 
(a,b)~.H" (a,b)eH 

(ct, b)~iH (a,b)eH" 

= m , Y a ,  b �9 

(a,b)eH (a,b)~H" 

LEMM.~ 3. We have 

- 3  - 2  qn ][(IDmllB* = 1[(I)'1113 * ~ (q i  " "  tin) q.+I]ipsVo ~OA]]I i f  On > 9'b, (3.2) 

(ql ... qn) - 1 m a x  IIp~vZ~p~ll~o # m > n ,  

[1 Y~II~ = ]l v i i .  = ~.o 
(ql ... q.)-'llp~v~-pA[[~ i / m < ~ .  

(3.3) 

With  these estimates we easily obtain (3.1) and hence (3.0): by  (2.1) and (2.2), if A CVo q- 

and S E $q,,, then 
t ~ \ - 3 _ - 2  _ 1 / 2  I lOmi[ . .= l lod l . . -< (q~ . . . . . ,  ~.+1~. f o r m > .  

Since 

P - 1  1 5 / g 2  I I Y ~ l l . = l l r ~ l l . <  (ql . . .q . )  q,~ for all m. 

~v~, b = Limm Ore, ~ ~V~, b = Limm 0~,  
(a,b)eH (a,b)eH" 

oo 

Ya.o= Q Ym, ~ Ya.~= @ Yrm, 
(a,O)cH m=l  (a,b)~.H' m=l  

L e m m a  2 end (2.0), (2.0)* imply  t h a t  for every tuple (g, e, / ,  A, S, ~, fl) such t h a t  

gEKn+l, l ~ e , / < ~ q ~ ,  AEVqg ., SE$a,,  a, f lED~_ 1, (3.4) 
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iid;.~,r,a.s.~, A]~ ~< (ql...q.)-4"u. "~.+1. 

Let us now observe that  

99 

(3.5) 

Therefore our sum in (3.8) equals 

(3.8) 

IEl IFI 5 Vo, o~0| 
H" 

which gives (3.7). The proof of (3.6) is completely analoguous. 

Notice now that  

5 ~ [ 0 if ag:c, n~F [ 0 if b~d. 

where the summations range over all tuples satisfying (3.4). The number of such tuples is 

obviously equal to 

IK~+II" q:" un" u ~ :  _1+2. q~1:lD~_ll. ID~-~I =q$+1 �9 q~-(q~ ... q~-~):. 

A glance at (3.5) convinces us that  (3.1) holds. 

Proo[ o/Lemma 2. Let  E denote the set of all functions from D~ into { - 1, 1} and let 

F denote the set of all functions from Dn+ 1 into { - 1, 1}. We have the following identities: 

(~= [E[-I[EI -~ ~ ~ [(~ e(a)~(b)~:b.g) |  e(a)~7(b)y~:o.g)] (3.6) 
e e E  ~ e E  H H 

(~'---[Et-I]F] -~ ~ ~ [(~ e(a)v(b)~.g:b)| e(a)~(b)y,,.g;~)] (3.7) 
e e E  ~ e F  H" H" 

(we adopt here the following notational convention: we write 

5 instead of 5 ; 5 instead of 5 ). 
H { ( a , b ) : ( a ; b , g ) e H }  H" { ( a , b ) : ( a , g , b ) E H ' }  

These formulas are simple applications of the invarianee of trace. For example 

5 [(~ 8(a)u(b)~.~:b)|  e(c)u(d)yr ~ ~ (~ e(a)e(c)~(b)~(d))cfa.g:~| 
e e E  ~ e F  H" H" H" H" e, rl 
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To complete the proof we shall show that,  for all ~ E E, ~ E F, 

[ l~  l?(~) T](b ) qga, g :bllB(~), = I ]~  Cfla, g;oIl~<~* 
H" H" 

I I~  ~(a)~(b)Ya, g; b]]B(~t) = 1]~ Ya, g; bHB(~O 
H" I-1" 

(3.9) 

and tha t  analoguous formulas hold in the case of H. 

This is true because of "strict  equivalence". More precisely, let us define operators 

T~: B ~ B ,  T~: ( B ~ B ~ . . . ) o o - ~ ( B | 1 7 4  ...)oo and T: B(~)- ->B(?I- t )  by 

a~D n bv;Dn+ 1 

T 2 ( x  1, x ~ . . . .  ) = ( T l x  1, T 1 x ~ . . . .  ), T = T 2 o R .  

Obviously H TH = 1 and we have 

T(Y~ y~.o:~) = E ~(~)~(b)y..~:~ 
H" H" 

and vice versa, 

T*(~  ~ .o :b)=  ~ e(a)~(b)~v~,~:b and vice versa. 
H" H' 

This gives (3.9). The case of H is completely analoguous. 

Section 4 

P r o o / o ]  L e m m a  3. Throughout this section let 

= m a x  (m, n + l ) .  

For h EKe+ 1 let us define sets E, F c  D.. by 

E = { a e D , ~ :  (a~ . . . .  , an_l) = ~, a~ = e, a l e s } ,  

F h  = {b e D~: (b 1 . . . . .  bn_~) =fl,  b I = / ,  b ~  A ,  bn+~ = h  ),  
and let us put  

O)U = p E I t m , z  pFh, Oh = pFh ltm,~. ~E  

(recall tha t  u,~.,~ = w l  . ... "w in - l "  Ym" . . . .  y~ - -  coordinatewise multiplication of matrices). 

I t  should be clear that  

Om=lDml-lo)~ |  m, r174 ~, form>n, 

Y m = ( ~  O')h)|  , Y m = ( ~  w h ) |  , for a l lm.  
h::i:g h@-g 

The following sublemma will be proved in the end of this section. 
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h~g h~g h:C:g h . g  

(actually, equalities hold). 

! 
Le t  us notice t h a t  e%=(mh) t 

Ily~ll.(~(,~,,~ 1. Thus we get 
(transposed).  We also have  I1~11~(~(,~,),=~ and 

II Y~II= = II ~LII~ = m a x  II~ll~.  
h~g 

Now we proceed to  compute  the  norms  of e%'s. I t  will be convenient  to consider three  cases: 

Case 1 ~ m > n .  Let  us denote  for l<~m 

m-1 
o?( i ,  . . . . .  i,~; j, . . . . .  ira) -~ YI  w~(i~, i~+,; i~, s  ],0. (4.1) 

k=t 

Le t  us now define xh E M ( K , +  1 • • K , J ,  sh e M ( K , )  and a constant  C by  

I V~n+l(f' e) Onm+l(in+l . . . . .  ira; ] n + l  . . . . .  ira) i f  j n + l  = h 
Xh(in+l  i,n; [ 0 otherwise 

{ Wn-l(an-1, in; f i n - l ,  " % "1. In) v~ (~n, jO) if in ~ = "1 e ' l n = / ' i ~ e S ' ] ~  (4.2) 
8h(in, in) = 0 otherwise 

n~*2 

I t  is easy  to see t h a t  

~% = C~, .Z |174  h. (4.3) 

Therefore  Ilwhll~= I CI Ilsa]]~ }lxhll~ for p ~ - l ,  co. The  inequalities (3 .2 )and  (3.3)fol low now 

immedia te ly  f rom the following two sublemmas,  proved  a t  the  end of this section. 

S . ~ E ~ M A  2. IIX~[I~=', II<ll~<(qn+~ ... q~):. 

SVBLW~MA 3. S h is strictly equivalent (in the sense o/ the de/ini t ion on 1). 93) to the 

matrix:  

def _1 v q,,o. 
th = q n - l ' P S  ~ 1"a. 
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Case 2 ~ m = n .  This t ime  we define ~nGM(Kn+I) and a constant  D b y  

{ yn+:(i~+:,]~+:) if ]~+:= h, 

~(i~+1, ?'n+l) = 0 otherwise 

n = 1-~ Wk(gk, g k + l ;  i l k ,  i l k + i )  " Vgn(/, e ) .  q-n 1 
k = l  

We have  now (here s o is defined by  (4.2) with h = 0 )  

oJ~ = Dr174174 h. (4.4) 

Now we see immedia te ly  t h a t  II  ll =l and (3.3) follows immedia te ly  b y  Sub lemma 3 

(in the  case h =0) .  

Case 3 ~ m < n .  Here  everyth ing is simpler. Le t  us define a EM(K~) and a cons tant  E b y  

q, .1 .0 i o v0(~,}~) if , = e , j ~ = l , i ~ e S , ] ~  

(r(in;)n) = 0 otherwise 

m - 1  n - 1  

kffil k=rn 

We have  c% = Ee~.~ |174 and  (3.3) obviously holds. 

To complete  the  proof  of L e m m a  3, we should prove  Sub lemmas  1, 2, 3. We shall 

need the  following 

P R o P o  S:T:ON. The matrices 0~, defined by (4.1), are orthogonal /or every l < m. 

Proo/. For  l ~<n < m  let us define F~ E M ( K ,  • ... • K,,) by  

{--1/2vq,~ 4-: i o) if .1 �9 ~/n ~,,+l~Jn, ~ = ? ' o  and 
F~(i, . . . . .  ira; h . . . . .  ]~) = 0 

ik=j~: for  ] c # n  

otherwise.  

We also define T E M ( K  z • ... • Kin) by  

T( iz  . . . .  , i,n; ]~ . . . . .  ira) = I 
Y,n( im, ira) 

t 0 

i f  "0 "1 -0 "1 Zk=)k and  f o r l ~ < k <  }k ~ ~k m ~  

otherwise.  

We  see t h a t  Fn is a direct  sum of or thogonal  matr ices  ~-tlZvq, therefore Fn is orthogonal .  ~n in+ 1 , 

For  similar reasons,  T is orthogonal .  On the  other  hand,  we have  the  ident i ty  

o r  = r ,  o p , + , o  ... OrmO T o r ~  or~_~  o ... o r ,  ~, 

therefore 0~ is also or thogonal .  
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Proo/o/Sublemma 1. We shall use the following general fact which is very easy to prove: 

Let X, Y be Banach spaces, let x I .... , xk E X, 91 ..... y~ E Y. Then 

115: ~,| l l ~ , <  max 112 *Y, II m a x  I1~11. (4.5) 
I~jl =1  j 

A glance at  the formulas (4.3) and (4.4) convinces us tha t  it suffices to show tha t  

II Y: ~,,~,dl~ =m,~x I1~,,11~ for every I~,,I = 1. (4.6) 
h=~g h~-g 

To prove this, let us notice tha t  x ~ ~h.g eaxa is strictly equivalent to the matr ix  

0 def m o 
= On+l P(~e~:n+l . . . . .  K~:i.+l*g}" 

Indeed, x is obtained from 0 by  multiplying its i th row by v~"+~([, e) and its j th column by 

ej~+~. Similarly, 
def 

xh is strictly equivalent to Oh = O~+lop(j~c~+~ .. . . .  K,~:J~+l=h~. (4.7) 

Now, since 0~+1 is an orthogonal matr ix  (by the proposition), 

11o~§ = IlO~ll~ = 1,  ( 4 .8 )  
which implies (4.6). 

P r o o / o / S u b l e m m a  2. The first equality is contained in (4.8) and (4.7). For the norm 

IIz~lll = IIo~1ll w e  use  the  f o n o w i n g  obvious estimate: 

/o~ e w , y  ~ t , i ~  x, llxll~ < sum of the  norms of the  co lumns  of x. (4.9) 

In  our case, the last number  is (q=+2 ... q~)2. 

Proo!  o] S u b l e m m a  3. The matr ix  s fi M ( K ~ )  defined by  

.,qn/,;1 "1 ES,  ~~ E A ,  ~ ~~ i ~ i f  i ~ = ~, i~  = 1, ~,, 
s(in, in) = 0 otherwise, 

can be obtained from Q by  permutat ions of rows and columns and by  adding some zero 

rows and columns, whence sh is obtained from s by  multiplying its inth row by  the number  

v~2-~([11_1, or~ and its i~th column by  the number  q, ~ 1 o V~- (an-l, fin-l), all these numbers 
having absolute value 1. 
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Section 5 

Now we are going to prove the remaining conditions (i) and (ii) as well as Lemma 1. 

Cmutition (i). lq'irst let us notice that ,  for a, b E D~, 

~.b(x~.a) = 0  unless (a, b) = (c, d). (5.0) 

Indeed,  we have q~a.b(x~.a)=limkGv * k 9~, b ~ (~c, a x~) and 

�9 f ~(9.,~xk) if (a, b) = (c, d) 
9a. b q]*(gc, a x k) = ~ (~a  ~ xe~a ~b) = 0 otherwise. k 

This gives (5.0). Now we can write 

[~n = ~ q)a,b(Xa, b ) = (  ~ qga, b)(  ~ Xc.a)=limq~(xk). 
a, beD n a. beD n c, deD n keU 

B y  (2.7) and (2.8) we have 

q)k(Xk ) = I Dkl-~Uz.k(Uk,k).~k(yk) = 1, 
which proves (i). 

Condition (ii). We are going to prove tha t  

[[ ~ e(a,b)~a,d[B(n).<~ 1 for every  [ e ( a , b ) l = l ,  (5.1) 
a, beDn 

[[Xa.o[[B(~) = (qX "" qn) -1 for every  a, bED n, (5.2) 

By  (4.5), this yields [[fln[[~(u)*~B(n)4 (ql-.. qn) -1 and obviously implies (ii). 

g Proo/ o/ (5.1). B y  (2.0)*, it suffices to prove tha t  [[5 ~(a, b)~a.~[[B.-~ 1 for every  k ~>n. 

For  a, b E D n let us denote k Wa. b = ~  u~.k7~, thus 

Z 8(a, b)~a~.b = [ Dkl-a (Z e(a, b)W._Wka, b)@~ k, 

therefore 

Since all the  entries of the mat r ix  ~ e(a, b) k Wa.b have absolute value (ql ... qg)-l, each 
/c 

column of it  has norm 1. Consequently,  by  (4.9), ]15 e(a, b)W~.b]]~< [Ok[ and this yields 

(5.1). 

Proo/ o/ (5.2). We shall prove tha t  for every  m, 

[Ix 01l  = �9 ( 5 . 3 )  

which obviously implies (5.2), by  (2.0). We shall use the matrices 07' as defined by  (4.1). 
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If m ~ n, then Xa ~, b = Cea,o Q Y~ where 

m--1 n 

C = I-~ wk(ak, a~+1; bk, bk+t) 1~ y~(ak, 5k) 
k = l  k = m  

and (5.3) follows, because I c I  = (ql ... q,)-l ,  Ileo.011oo = Ily lloo = x. 

I f  r e > n ,  then x~.b = D" ea.o @Za,o @y m where Za.o E M(  Kn+ 1 x ... • Krn) and the constant  

D are defined by  

Za.b(in+l . . . . .  ira; jn+l . . . . .  Jm) = Wn(an, in+l; b~, in+l) Onm+l(/n+l . . . . .  ira; jn+l . . . . .  Jm), 

n - -1  

D = 1-[ wk(ak, ak+l; bk, bk+l). 
k=l 

The a rgument  of the proof of Sublemma 3 in Section 4 shows tha t  X~,b is str ict ly equivalent  
--1 m to  q,~ "0~+1, thus ]lZ~.bll~o=qn 1. Since [D I =(ql  ... q~-~)-l, we obtain (5.3). 

P r o o / o / L e m m a  1. The proof will be based on the following combinatorial  

SVBL]~=MMA 4. There exist regular partitions V], ]= 1 . . . . .  q4 o / {1  . . . . .  q} such that 

] A N B I ~ q7/16 /or every A E V~, B E V~ with i g= ~. (5.4) 

Proo/. Let  K be the (abelian) field of order 2", i.e., K=GF(2~) .  We identify {1 .. . . .  q}, 

as a set, with the vector  space K le. I t  is a s tandard  fact  that ,  given a 2P-dimensional  

vector  space V over a field of order r, there are at  least r P~ different P-dimensional  sub- 

spaces of V. (To see this, let us choose a basis for V, say el, e 2 . . . . .  %0 and to a tuple ?" = 

(J~.B: 1 ~ a ,  f l ~ P )  with j~.pEK let us assign the P-dimensional  subspace of V, 

P 

I t  should be clear t ha t  E~=Ej  only if i =~ and there are obviously r p' different j 's  like 

above.) 

I n  our ease this means tha t  there are at  least 2 e4p =q4 different 8-dimensional sub- 

spaces of K TM, say E 1, E~ .. . . .  Eq,  Le t  V] be the  par t i t ion of K TM into 8-dimensional hyper-  

planes parallel to  Ej.  Then V] are, obviously, regular part i t ions of KI6={1  .. . . .  q}. I f  

A EV~ and BEV} ~, then either A (1 B = O  or A N B = E  i N E j + x  for some x. I n  either ease 

we have 
[ A N B [  <~[E, NEj[ .  

I f  i~=j, then E~:~Ej, and thus dim K (E~ N Ej) ~<7 and therefore I Ei N Es] ~ 2 ~ ' = q  T M .  This 

implies (5.4). 
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Now we are going to  construct  a H a d a m a r d  ma t r ix  w EM(q)  which has the following 

1 1 1 - 1 ]  

1 1 - 1  1 
U 1 = U r = U 1 ~ U1 ~ . . .  (~ U 1. 

1 - 1  1 l ' ~ , _ ~  

- 1 1 1 1 r t imes 

for every  S,  U E$~, the  ma t r ix  p z w p v  has r ank  1, i.e., there  exists 

a vector  ~s. v such t h a t  every  non-zero column of p s w p v  is of the  (5.5) 

form z. ~s. u where I z I ~ 1. Moreover,  

~s.v• if U : ~ T .  

q q 

w(a, b) = 1 = ~ w(b, a) for every  a. (5.6) 
b ~ l  b = l  

Let  us first  notice tha t ,  wi thout  loss of general i ty  we can t ake  as $q a n y  regular  par t i t ion  

of {1 . . . . .  q}. I t  will be convenient  to regard {1 . . . . .  q} as {1 . . . . .  m} • {1 . . . . .  m} (here m = ~ = 

2 sp) and to  let $q to be the  par t i t ion  of {1 . . . . .  m} • {1 . . . .  , m} into the  sets 

s~ ~ f  (j} • {~ . . . . .  ~ }  for  j = ~ . . . . .  ~ .  

To const ruct  w, let us s t a r t  b y  defining matr ices  U~ EM(4r): 

The ma t r ix  U ~  is an  m • m-matr ix .  We set now 

w(il, is; jl, J2) = v~(i~, j~) v4Ai~, j~). 

We see easily t h a t  w fulfills (5.5) and  (5.6). 

We  shall also need the  following, entirely trivial ,  remark:  

I f  ~ and E are a rb i t r a ry  regular  par t i t ions  of {1 . . . .  , q}, then  there exists 

a pe rmuta t ion  ~ of {1 . . . . .  q} which carries A onto E, (5.7) 

i.e., such t h a t  for every  A EA, p(A)EZ.  

Now we define v q. Le t  V~, j = 1 .. . . .  qa, be the  par t i t ions  of {1 ... . .  q} f rom the  sub lemma 

and, for j = 1 . . . . .  q4, let 9j be a pe rmuta t ion  of {1 . . . . .  q} which carries V~ onto $q. We define 

v~ by  
rife,/) = w(e, eft), 

properties:  
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i.e., v~ is obtained from w by applying Oj-1 to its columns. I t  is evident that  (2.3) holds. Let  

us check (2.1) and (2.2). We shall use the following standard facts: Let  x, yEM(Z), where 

Z is any finite set. We have: 

if rk x = 1, then IIx[[1 = Ilxll  = ( 5 Ix( a, b)12)1:~, (5.s) 
a.b~.Z 

if D(x)• D(y) and R(x)• R(y) (where D, R denote 

the domain and the range of an operator, respectively), then (5.9) 

IIx+yll  = m a x  (llxll , llYll ). 

Let SESq, let ] = 1  . . . . .  q4 be fixed. We see ~ha~, for every BEVT, psV~pB is obtained from 

pswpr by a permutation of columns. On the other hand, Q~(B)ESj. Therefore, by (5.5), 

rkpsv]P B = 1 for every ~EV ]  (5.10) 
and, moreover 

R(psv~pB)• if B, CEV], B ~C.  (5.11) 

Now, (2.1) follows from (5.10) and (5.8). 

Let  i = 1 ..... q4 be fixed, let A E V~. For every 1~ 6 V] let us denote 

uB = p~V]pAnB. 
We have, obviously, 

B~ V~ 

By (5.11), RuBLRu c if B:r Since, obviously, we also have Dus• if B:4:C, by (5.9) 

we obtain 
IIp  g = m a x  Ilu ll . 

B~v] 

Clearly, u s has ql/2. I A N B I non zero entries, all of them of absolute value 1. Therefore 

by (5.10), 
1l~11~ =ql:41A n B] 1'2. 

If now i#~,  then, by (5.4), I A n B I <q~:~" and this yields (2.2). 
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