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O. Introduct ion  

Much progress has been made in recent years in describing t h e  structure of 

Lp =L~[O, 1], and, in particular, the Cv spaces (complemented subspaces of Lp which are 

not Hilbert  space) have been studied extensively. The obvious or natural  C~ spaces are 

lp, l~,Q12, (1201~(~ ...)~ and Lp itself. These were the only known examples until H. P. Rosen- 

thal [18] discovered the space Xp (see below). This space perhaps seemed pathological 

when first introduced; however, it now appears tha t  X~ plays a fundamental  role in the 

s tudy of L v and s spaces. 

The discovery of X ,  permitted the list of separable Ev spaces to be increased to 9 in 

number  [18]. Then G. Schechtman [20], again using Xp, showed tha t  there are an infinite 

number of mutual ly non-isomorphic separable s spaces, and recently Bourgain, Rosenthal 

and Schechtman [2] succeeded in constructing uncountably many  such spaces. I t  now 

appears improbable tha t  a complete classification of the separable E~ spaces will be ob- 

tained. However, it might be possible to classify the "smaller" C, spaces. For example it 

was proved in [11] tha t  the only l~p subspace of I v (1 < p  < o~) is lv. Also all complemented 

subspaces of l~| and (12| are known (see [4], [21] and [17]). (Xv is, for p > 2 ,  a 

Cv space which embeds into l~,Q12 and thus into (l~G12| "")v, but does not embed into these 

spaces as a complemented subspace.) 

One question with which we are concerned in this paper  is "Wha t  are the s subspaces 

X of lp| 2 (1 <p~=2 < ~ ) ? "  We answer this in Section 2 for those X with an unconditional 

basis (although every separable l:, space is known to have a basis [10], it is a major un- 
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solved problem as to whether each one has an unconditional basis). More precisely, we 

prove in Theorem 2.1 tha t  if 1 < p  <2  then X is isomorphic to either l, or l~,| In  proving 

this result we obtain a representation of unconditional basic sequences in lp~l~ which might 

prove useful elsewhere (Lemma 2.3). 

In  Theorem 2.12 we show if 2 < p < ~  and X is a s subspace of lp~l~ with an un- 

conditional basis, then X is isomorphic to l~, l~| 2 or X~. The fact  tha t  Xp enters into the 

p > 2  case necessitates our proving several preliminary results which are of interest in 

their own right. In  Proposition 2.5 we show if X is a subspace of l~Ql~ ( 2 < p < ~ )  and 

T: Lp->X is a bounded linear operator, then T factors through X,. A consequence of this, 

Corollary 2.6, is tha t  the class of s subspaces of l~Ql 2 (2 < p  < ~ )  is the same as the class 

of complemented subspaces of X~. In  Theorem 2.9 we prove tha t  if X is isomorphic to a 

complemented subspace of X~ and X~ is isomorphic to a complemented subspace of X, 

then X is isomorphic to X~. Theorem 2.10 shows tha t  X~ is primary.  This means if X~ is 

isomorphic to Y@Z then either Y or Z is isomorphic to X~. 

Finally, in Section 3 we are concerned with a specific case of the following general 

question: if Y is a given ~ space, give necessary and sufficient conditions to insure tha t  if 

X is a subspace of L~ which satisfies these conditions, then X is isomorphic to a subspace 

of Y (i.e. X embeds into Y). For  example it was shown in [9] (respectively, [5]) tha t  a 

subspace X of Lp, 2 < p  < oo (respectively, 1 < p  <2) embeds into lp if and only if X does 

not contain an isomorph of 12 (respectively, there exists ~ < c~ so tha t  every normalized 

basic sequence in X has a subsequence which is ~-equivalent to the unit vector basis for l~). 

In  Theorem 3.1 we give a sufficient condition (which is trivially necessary) for the 

space l~| 2 (2 < p  < oo). Namely, if X is a subspace of Lp which is isomorphic to a quotient 

of a subspace of l~| then X embeds into l~@l 2. Theorem 3.1 of course implies tha t  if X 

is a ~q subspace of lq| 2 (1 < q < 2 ;  1 / p + l / q = l )  then X* is a E~ subspace of l~| 2, so tha t  

Theorem 2.1 can be derived from Theorem 2.12. However, Theorem 2.1 is simpler to prove 

than  Theorem 2.12 and the proof of Theorem 3.1 is terribly complicated, so we prefer to 

give a direct proof for Theorem 2.1. Moreover, this presentation allows Sections 2 and 3 

to be read independently of each other. 

1. Preliminary material 

In  this section we present some background material and also set certain notation. 

Our terminology is standard Banach space te rminology--any terms not defined below 

may  be found in the books of Lindenstrauss and Tzafriri ([14] and [15]}. 

A subspace of a Banaeh space shall be understood to be closed and infinite dimensional 

unless otherwise noted. I f  S is a subset of a Banach space, then [S] is the closed linear 
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span of S. We write X ~ Y if X and Y are isomorphic. All operators are bounded  and linear. 

I f  (X~) is a sequence of Banaeh spaces, (~  Xn) ~ is the space {(xn): x=eX= for all n and 

II(x )ll Ilxnllv)-v< }. is the closed uni t  ball of the Banach  space X.  I f  basic 

sequences (xi) and (y~) are equivalent  we write (x~)~ (Yi). 

We denote the  norm in Lv by  I1" Ib- 

The H a a r  system is an  uncondit ional  basis for Lv (1 < p  < ~ )  and we let its uncondi-  

t ional basis constant  be A T. I f  (x~) is an uncondit ional  basic sequence with uncondit ional  

constant  K in L v (1 < p  < co) then liZ a,x,lb m a y  be calculated by  means of the "square  

funct ion".  Thus 

llY a,x, llv  (1.1) 

where K v is a constant  arising from the Khinchine inequality, (at) are scalars and ,,M,, 

means t h a t  each side is no greater t han  M times the other side. Thus  A M B means A <<. M B  

and B<~MA. Note  by  (1.1) if (y,) is an uncondit ional  basic sequence in L v and lye(s)[ = 

I x~(s) ] for all s ~ [0, 1], then  (y~) is equivalent  to (xi). This observation was used in a clever 

way  by  Schechtman [19] and we employ it in the sequel. We shall also require the fol- 

lowing well known inequalities. 

Let  (x~) be a normalized uncondit ional  basic sequence in Lp with uncondit ional  constant  

K. Then 

(KKv) - I  (~  la, lV) 1/~ < a,x,ll  < KKv (~ a~) ~/2 if 2 < p  < oo and (a,) are scalars 

(1.2) 
and 

(KK~)-l(y~,)'~<llZa,x,llv<KK.(Zla, lV)'v if l < p < 2 .  (1.3) 

We use the basic results of Kadec  and Pelczynski [13] which we now recall. Let  

= m { t :  I/(t) l  ll/Ib} 

where m is a finite measure. I f  (x~) is a normalized uncondit ional  basic sequence in Lp 

(2 < p  < ~ )  with x~ EMv(e ) for all i and some s >0 ,  then (xi) is equivalent  to  the uni t  vector  

basis of l 2. I f  (x~)~:Mv(s) for any  s > 0  then  for every 5 > 0 ,  some subsequence of (x~) is 

(1 § 5)-equivalent to the unit  vector  basis of l v. Of course (x~)_ Mp(s) implies I[ x~][2 >~ p/z for 

all i and (x~)~=Mv(s) for any  s > 0  means inf~ IIx,ll  =0. 
Much of our interest centers a round Iv| 2 and X v. We shall write Ix]v for the /v -pa r t  

of the norm of a vector  x Elv| 2 and similarly Ix[2 for the/2-par t .  

Let  w = (w,) (a weight sequence) be a sequence of positive scalars. Xv, ~ is defined to be 
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the completion of the space of all sequences of scalars (a~) with only finitely many  a n # 0  

under the norm 

II(a,)llo.  = max  ((Z la l ) (Y 

gosenthal  [18] showed tha t  for all weight sequences w, X, ,~ is complemented in L,  

and if w~10 with ~ w~ ~/('-2)= oo then X~.~ is not isomorphic to a complemented sub- 

space of l~| 2. He also showed, if the weight sequence v=(v , )  also satisfies for all e>0 ,  
v 2 P / ( p  - 2) <~:~<~> ~, = 0% then X~.w and Xp.v are isomorphic. This is the space we call X~. 

For any weight sequence w, Xp.w is isomorphic to one of the spaces l~, le, l ~ ) l  2 or X~. 

(e~)~~ will often be used to denote the natural  basis for some X~.~ space which is 

isomorphic to X~, and we write for x = ~ = 1  a~en E XD.w, 

and 

The most  important  tool we need for this paper is the "blocking technique" introduced 

in [11] in its simplest form and then developed in later papers (e.g. see [12], [6], [5]). Briefly, 

if (En) is a shrinking finite dimensional decomposition (shrinking f.d.d.) for X and T is an 

operator from X into Y where Y has an f.d.d. (F~), then there exist bloekings (E'~) (E'~ :: 
[ ~  lk (n+  1) ~j~k(~)+l for certain integers k(1)<k(2)<. . . )  of (E~) and (F~) of (F~) so tha t  TE'~ is 

essentially contained in Iv~+F:,+I for each n. The overlap between TE'~ and TE~+I in 

F~+I causes some problems which can sometimes be overcome (e.g. see [5]). We use these 

tricks below where we describe them in more detail. The technical difficulties are parti- 

cularly troublesome in Section 3, in par t  because the operator T is defined only on a sub- 

space of X. 

2. Subspaces of Ip ~ I z and Xp 

The first par t  of this section is devoted to a proof of 

THEOREM 2.1. Let X be a subspace o/L~ (2 <p < c~) which has an unconditional basis 

and which is isomorphic to a quotient o / IpGl  2. Then there is a subspaee U o/ l~ (possibly 

U={0}) so that X is isomorphic to U or U(~l e. 

COgOLLA~u 2.2. I] X is a s subspaee o/lqQle (1 < q < 2 )  with an unconditional basis, 

then X is isomorphic to either lq or lq 0 lz. 

Proo/oJ Theorem 2.1. Let  (x~) be a normalized unconditional basis for X and let Q be 

a quotient mapping of Ip | t~ onto X. There are two plausible cases. 
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Case 1. There exist sn~O and a sequence (Nn) of disjoint infinite subsets of N such tha t  

x~M~(en)~M~(en_l) for i ~ N  n. (2.1) 

Case 2. There exists e > 0 such tha t  for all 0 < ~ < e, 

{xi: x~EMp((~)~M~(e)} is finite. (2.2) 

Our first objective is to show tha t  Case 1 is impossible. Let  (/,) be the uncondit ional  

basis for X* which is biorthogonal to (x,) and assume Case 1 holds. Then for each n, (X,)i~N~ 

is an uncondit ional  basic sequence in X which is equivalent  to the uni t  vector  basis of 12. 

Thus (/,),~A;, is also equivalent  to the uni t  vector  basis of 1 e. Since Q is a quotient  map,  

Q* is an embedding of X* into lq@l e ( 1 / q + l / p = l )  and thus since 1 < q < 2  we have (see 

e.g. [18]) 

lim I Q*I, I~ = O. 
t--'>(~ 

In  part icular  there exist integers m~ E N~, so tha t  (/,,~) is equivalent  to the uni t  vector  basis 

of l 2. However,  by  (2.1) a subsequence of (xm,) is equivalent  to the unit  vector  basis of Ip 

[13], and this is impossible. 

Our discussion of Case 2 requires the following lemma, the proof of which uses an idea 

due to Schechtman [19]. 

LEMMA 2.3. Let (z~) be an unconditional basic sequence in lpO12 (1 < p  < ~ ) .  Then there 

is a monotonely unconditional basic sequence (x~) in lp and an orthogonal sequence (y~) in 12 

such that i / w  e-x~|174 then (w~) is equivalent to (zi). 

Proo/. Let  (en) be the unit  vector  basis for l~ and let ((~n) be the uni t  vector  basis for 12. 

By  a s tandard  per turbat ion a rgument  we can assume tha t  for each n only finitely m a n y  
' 0 oo of the z~ s have non-zero n th  coordinates with respect to the basis {(enO0), ( O~)}~=1 

for lpGl 2. Embed  l~| 2 into LD[--1 , 1] in such a way  t h a t  (e~G0)~_l is a sequence of L~- 

normalized indicator functions of disjoint subsets of [ 1, 0) and (0@dn)n~1 are the Rade- 
0 o0 macher  functions on [0, 1]. Let  zi = x~ + y~ where x~ E [(e~ G0)~_I] and y~ E [( | 

The sequence (z~) is then equivalent  to (r~|174 in L~([0, 1] • [ - 1 ,  1]), where 

(ri) are the Rademacher  functions on [0, 1]. Now the terms of the  monotone]y  uncondi- 

tional sequence (r~Gx~) are measurable with respect to a purely atomic sub-sigma field of 

[0, 1] •  0] so tha t  [(r~| embeds isometrically into lp. Fur thermore  (r~Gy~) is 

equivalent  to an orthogonal  sequence in l 2. Q.E.D. 
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Let  us re turn  to  the  proof of Theorem 2.1. Assume Case 2 holds and  let e > 0 be as in 

(2.2). Since [(x~: x~fiMv(8))] is ei ther finite dimensional  or isomorphic to 12 ([13]) we m a y  

assume t h a t  for all ~ > 0 

{x~: x~ eM~(~)} is finite. (2:3) 

As before let (/~) be the  basis for X* which is bior thogonal  to (x~). We shall show [(/4)] 

embeds  into lq, which by  [11] yields t h a t  [(/~)] is isomorphic to (~=1  r~ 1~o+1)-1~ for some kl~J~=n(D ]q 

1 = n ( 1 ) < n ( 2 ) <  ..., and  thus  X is isomorphic to ( ~ 1  L~jt=~(j)r~ 3n(j+l)-l~jv, whence X embeds  into 

lv. B y  L e m m a  2.3 we m a y  assume/~ =g,@h~ where (g~) is a K-uncondi t ional  basic sequence 

in lq and h i =  ]h~12~ ~ (((~) is the  uni t  vector  basis of 4). 

B y  (2.3), no subsequenee of (x~) is equivalent  to (6~) and  so the  same is t rue  of (]~). 
oo -->l Thus  there  exists ~ > 0  and an integer n such t h a t  Ig,[q>~(~ for i>~n. Define T: [(/~)~=~] q 

to be the  na tura l  projection; 

a~ g~. 
"= 

Then  T is an isomorphism, for if w = ~  a~(g~@h~) then  by  (1.3), 

and so HTwH <~ HwH <~KK,~-~HTwI[. Q.E.D.  

Proo/o] Corollary 2.2. B y  Theorem 2.1, X * ~  U or X * ~  U@4 for some infinite dimen- 

sional subspace U of lv. Since X* is complemented  in Lv, U is also complemented,  and  

hence by  [11], U~lv. Q.E.D.  

We  tu rn  now to the  case 2 < p  < ~ .  Our first  result  (Proposit ion 2.5) says t h a t  every  

opera tor  f rom L~ into a subspace of l~| 2 factors th rough  Xv. We begin with a simple 

blocking lemma.  

LEMMA 2.4. Let X be a Banach space with a shrinking f.d.d. (E~), let Y have f.d.d. 

(F~) and let 1 ~ p <  ~ .  I f  T: X---> Y is a bounded linear operator, then there exist integers 

0=k(1 )  < k ( 2 ) < . . .  so that i / ~  ~ '  = [~j~=k(=)+lr~ lk(.+l) and 1, ~'~ = [~r~ij~=k(=)+13~(n+l) then T: (~ E'~),~(~ F'~)p 

is bounded. 

[F~]~=I, P ~ = I - P ~  and for k<l,  Proo/. Let  Pk be the  na tu ra l  project ion of Y onto 

P~ = P I - P k .  The  conclusion of the l emma  means  there exists C < ~ so t h a t  if x~ E E'n and  

x = ~ x n then  
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We may assume both (En) and (F~) are bimonotone f.d.d.'s. By the blocking technique 

there exist 0 =k(1) <k(2) < ... such that  

~ r ~  ]k(~+l) ~_ i (a) X=L~jjj=k(i)+l--E~ and i < n  implies IIP~(n+l)Txl[ ~<2-n-~llxII, and 

(b) x E E~ for i > n implies IIPk(~)Txll <~ 2 '~-~llxll. 

Let x,~EE'n so that  ~ 1  IIx~ll~= 1. Then 

C~ p lip ]]p~ l/p 
iok(n+l)fp~. H | 

]~\ ]/P II oo l iP\ ]/p 

~,~2-~+~-'11~,11)) +(~IITII~(II~-lll I1~11 IIx~§ "~ 

~<(~ (2-"+~)") +aflTII(~Ilix"II") + n=l~" (2-n-1)P <311TII+a" Q.E.D. 

P~OPOSITION 2.5. Let X be a subspace o/ lp@l~ ( 2 < p < c ~ )  and let T :Lp-~X be a 

bounded linear operator. Then T/actors through Xp. 

Proo/. We wish to find operators R: L ~ X ~  and S: X p ~ X  so that  T = S R .  For x E X ,  

Ilxll =max  (Ixl, ,  lxl~). By a theorem of Maurey [16] we may assume T is I1"11~-I" I~ 

bounded; i.e. there exists K < ~ so that  ]Tx)2 <Kllxll~ [indeed by Maurey's theorem there 

exists a change of density ~ making the operator induced by T on Le(cfd#) bounded]. 

By Lemma 2.4 there exists a blocking (E~) of the Haar basis for L~ so that  

T: (2  (En, II" ]1,)),-~( X, ] "  I,) is bounded. To see this embed (X, l "  Ip) into lp and Mock 

the unit vector basis there. Thus if we define for x = 2 x~, xr~ E En, 

lllx1~l = m a x  ((2 IIx~ll,~) " ,  (~ IIx~ll~) 1'~) 

we have T: (2  En, Ill" lll)-~( X, II II) is bounded. Since p > 2  by (1.2) the natural injection 

i: L ~ ( 2  E~, IIl" IlI) is bounded. Thus we will be done once we check that  the completion 

of (~ E~, [[[. I[[) is complemented in X~.w for some w. 

To see this let H~ = [h~]~ e(~) where (hi) are the Haar  functions in L~, and ]c(n) is chosen 

so that  H n ~_ E n. Then (~ H~, I1[" 11 I) is isomorphic to X, .  w for some w, where as above 

1112 x~1it = m a x  ((2 IIx~ll;) ij~, (~ IIx~ll~)'~)- 
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/~n\2 k(n) Indeed  ts~ j~=l is a basis for H~ where 

Suppose 

: N o t e  I11/7Ill = V'II..  T h e n  

while 

fn ~ ~[(i_ l)2_k(n),12_k(n)]" 

2k(n) 

~.= 2 ~<7/~/111/;'111. 
i : l  

(~ liz~li~) " =  (v 5 i ~l')  ''', 
n r~ t 

(5 ilx~il~) ~'~= (~: 5 l~;w;i~) "~ 
n i 

where w~ = ]lf~l12" 

Clearly (~  E~, Ill" 0t]) is no rm 1 complemented  in (~  H~, HII" liJ) by  means  of the  ortho- 

gonal projection. This proves  the  proposit ion.  Q.E.D.  

COROZLARY 2.6. Every l~p subspaee X o/ l;Ol 2 ( 2 < p < ~ )  is isomorphic to a com- 

plemented subspace o /X ; .  

Proof. Let  T: L~-->X be a projection.  B y  Proposi t ion 2.5 there  exist  R: L D ~X ~ and 

S: Xp-->X so t h a t  T = S R .  Then RS  is a project ion of Xp onto R X  which is isomorphic 

to X. Q.E.D.  

COROLLARY 2.7. A quotient o/Lp which embeds into Ip ~) l~ (2 < p  < ~ )  is isomorphic to a 

quotient o/Xp.  

L]~MMA 2.8. There exists Mv < ~ so that i/ T is a bounded linear operator on Xv. w/or 

some weight sequence w = (wn), then there exists a weight sequence v = (vn) so that [T[2,~ 

M~IITII and ][[xl] [ = m a x  (Ixip, Ixl2.v) is M,-equivalent to Hxll. 

I n  other  words we can renorm Xp.w by  it[" ][I, ano ther  X~-norm, so t h a t  T is bounded  

with  respect  to the  ] �9 i2., pa r t  of the  norm. 

Proof. We shall use M~ below to denote  constants  depending solely on p.  Le t  (%) be 

the  na tura l  basis for Xp,w so t h a t  

HY anenll = m a x  ( ( ~  [anIP)I/P , (5  lanwnl 2)1/2) 

and define 

~ = w~r,~ +g~ eL,(O, 1) 

where (r~) are the R a d e m a c h e r  functions suppor ted  on [0, �89 and (g=) are disjointly sup- 



S U B S P A C E S  AlqD QUOTI]] I~TS O F  l ~ ( ~ l  2 A N D  X p  1 2 5  

ported functions on [�89 1] with 119~[[~=1, and IIgnll~<~Wn. Then (en)MP(~)and 

I~: a. ~.1~.~ ~ II ~: a. e.ll=. 

Let T be the operator on [(~)]___L~ induced by  T. Then T is bounded and so by [7], there 

exists a change of density % ~ > �89 on [0, 1], with ~ ~0(t) dt = 1 which makes T L~-bounded. 

By this we mean if e'~ =g~/cf 1/~ and T '  is the operator on [(e'~)]~Lp(cfdm) induced by T, then 

IIT'IIL~(~) <M,IITII .  We claim for all scalars (a,); 

Indeed " ~ "  is clear since (e'~) are disjointly supported norm 1 vectors in L~(cfdm) ~nd 

2 <p .  To see ">~" observe tha t  

Hence 

Mp 
IIZ ~.~.ll~ ~ max ((~ [a.lp)l/v, I1~: a.  ~.ll~)< max ((~ la .p) "~, 2 (~ ~)'~11 Z: a~ e=ll~(~,~)) 

which proves the claim. 

Let  

To finish the proof we need only check tha t  

2 2 1/2 Mp t 

But  

2 - l i p  2 

since the g~'s ~re disjointly supported, and 

M~(~ a~w~)l/2>~ H~.a~ w~r~H~ = I]~ anWnrnV-1/PHLp(r ~ [[ ~ gnWn rnV-1/'HL2(~dm) 

We are finally ready to prove 
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THEOREM 2.9. I / X  is isomorphic to a complemented subspace of Xp (1 < p  < o~) and X 

contains a complemented subspace isomorphic to X~, then X is isomorphic to Xp. 

Pro@ B y  dual i ty  we m a y  assume 2 < p  < ~ .  As above,  let (e~) be the  na tu ra l  basis of 

x~ =x~.~; 
]l~.. anen] I = m a x  ((~ t a = l V ) ' h  ( Z  l a .w~ l  ~)-~). 

B y  L e m m a  2.8, we m a y  assume the project ion P:  Xv-~X satisfies 

IP[2,~ = K  < c~. 

B y  L e m m a  2.4 there exists  a blocking E= = te~jk(~)+Ir ~k(~+l) of (e~) such t ha t  

P: (y (E., I1" II))~ ~ (~ (E=, I1" II))~ 
is bounded.  

For  x = y  xn, xnfiE,, define I x ] , = ( ~  IIx,~iiv) x/v. Then  we see Ilxll ~ m a x  (Ix]v, ]x]2.w ). 

Define 

2~ = ( x ~ o x ~ o  ...)~,~. 

B y  this we mean  if x~ E Xp then  

I[ (x~)[[~. = m a x  ((~ [x.[~) a/p, (~  [x.l~,~)~/2). 

Claim: X~ i8 isomorphic to Xv. 

Let  us assume the  claim and finish the proof. As usual we write X ~ Y if X and Y 

are isomorphic.  Since Xp is complemented  in X, there exists W so t h a t  

x ~ x ,  o w ~ x ~ e x ~ e w ~ x ~ o x .  

Thus  we need only show Xv,.~XpOX. Let X ~ ) Z = X ,  where Z = k e r P .  Then  since P is 

bounded  bo th  in l" Ip and  ]. 12.w we have  for  (y . )~X  and (z,~)cZ, 

m a x  ((~ ]Y. + z-I~) ~'", (~  lU,~ + z.]~,~) ~/z) ~ m a x  ((~ ]Yo~I~ + Iz.]~) alp, (X ]Y~l~.w + IZnl2 ,w) l /2)  �9 

Thus  

x ,  ~ s = ( ( x  o z ) o ( x  o z ) o  ...)~.~ 

~ x ~  ( z o  ( x o z )  o ( x |  o...)~. 

~ X |  ...)p.~ 

~ X | 1 7 4 1 7 4 1 7 4 1 7 4  ...)~.~ ~ X |  ~ X |  

I t  remains  only to prove  the  claim t h a t  Xp ~ ~ .  Le t  e~ ~ be the i th  basis vector  in the  

n th  copy of X v in ~,~. I t  is enough to show 
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(2.4) 

since the expression on the r ight  is an X~-norm. Now 

i=l /n=IHX p L\n=lj=I ]Ii=k(i)+l 

which dominates the r ight side of (2.4). On the other  hand, 

(n~l ~ k(~l) (k(~+ 1)Io~nwII2)P/2)I/P) j=l iffik(i)+l ~nen p)l/p ~2 max ((/,~n I~ lip' (~n,)\i~k~)+l 

~2 max ((~,~n '~nlP) lip' (~n~ J~nw"2) )'l/2' 

since p >2 .  This proves (2.4) and the theorem. Q.E.D.  

T ~ O R E M  2.10. X~ (1 < p <  ~ )  is primary.  

Proof. Let  X p = X O Z .  In  [1] an a rgument  of Casazza and Lin [3] was used to show 

tha t  either Y or Z contains a complemented isomorph of Xp. B y  Theorem 2.9 this space 

is isomorphic to X~. Q.E.D. 

Recall t ha t  one of our objectives in this section is to characterize the s subspaces of 

lv| 2 (2 < p  < ~ )  with an uncondit ional  basis. The main  tools we shall need are Theorem 

2.9, L e m m a  2.3, Corollary 2.6 and the following proposition. 

PROPOSIT IO~  2.11. Let X be a subspace of l, Ql  2 ( 2 < p <  ~ )  with a normalized basis 

x~ = yn Q z~ where (y, ) is a basic sequence in l~ and ( zn) is a basic sequence in 12. Assume I z~ 12---> 0 

as n ~ co. Then either X embeds into lp or X~ is isomorphic to a complemented subspace o / X .  

Proof. If  12 does no t  embed into X, then X embeds into lp [9]. Thus we m a y  assume X 

contains a copy of 4. 

Since I z ~ l ~ O ,  we can assume wi thout  loss of generali ty tha t  [z~l~<l  for each n. 

For  a subspace Y of X, let ($(Y)=sup {lYle: IIyll = l } .  Note  t h a t  since Z contains a copy 

of 12, if dim X / Y  < ~ ,  then  (~(Y) = 1. B y  the blocking technique [11] there exists 0 = k(1) < 

k(2) <. . .  such tha t  if E n = r/~, ~(~+1)1 and . . . .  k(~+1)1 L~..~i]k(n)+lJ /~'n = L(Zdk(,~)+lj, then (E~) is an/~-f.d.d,  for [(Yn)] 

and (F~) is an 4-f.d.d. for [(z~)]. Thus if u~eEn,  then 15 u n ] , ~ ( 5  lu~l~) 1/" and a similar 

s ta tement  holds for (Fn). Also by  our above remark we can insure tha t  v~LXi]k(~)+lj~r ~(~+l)~ ~>�89 for 

each n. Since I Zn 1.2-~ 0, we can find ]~(n) < q(n) < Ic(n § 1) such t h a t  if H n = rlx ~lq(n) L~ tlJk(n)+l then 
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l>~(Hn)>O for e a c h n ,  

• ~(H~) 2p/(p z)= ~ and lim ~ (H~)=0 .  
~2=1 ?t--~CG 

Let  e~eH~ so t ha t  Ite~H = 1  and le~I:=(~(H,).  Clearly [(en) ] is isomorphic to  X, .  We 

mus t  show it is also complemented  in X.  Thus we wish to find [veX*  so t ha t  ([~) is bi- 

or thogonal  to (e~) and P(x)=~ [~(x)e~ is a bounded operator ,  and hence a project ion 

onto [(e~)]. 
L e t / n  be the  functional  on H~ defined by/~(h)  = (h, e~ l e~ 1~2}. Then  

I/,~l~, = max  (h, enlenl~e)<~ m a x l h l ~ l e n l ~ ' = l ,  
Ihl~=l  Ihl~=l 
h e l l  n h e l l  n 

since ]e~I~=~(H~) and il "ll = ]" [p on H , .  Thus  ] ,  is a norm 1 funct ional  on H~ in the  lp 

norm. E x t e n d  [ ,  to a functional  [~ on X by  let t ing [~(xi)~0 if i<k(n) or i>q(n). Since 

(Yi) and (zi) are basic, we have  

]/~[p~<K and [[,~[2~K[/n]2=K[en[~ 1 

where K is twice the  larger basis constant  of (yi) and (zi). Moreover,  since (E,)  and  (F, )  

are p-  and 2-f.d.d. 's  respectively,  and ]e, In ~ 1, we see t h a t  P(x)= ~ h(x)e~ is bounded.  

Q.E.D.  

T ~ E O R ~ M  2.12. I / X  is a s subspace o/ l~G12 (2 < p  < ~ )  with an unconditional basis 

then X is isomorphic to l~, lpQl~ or X~. 

Proo/. B y  Corollary 2.6, X is isomorphic to a complemented  subspace of Xv. B y  L e m m a  

2.3 we m a y  assume X is embedded  into lpQ12 in such a way  t h a t  it has a normalized un- 

conditional basis (x~), x~=y~(~z, where (y~) is an uncondit ional  basic sequence in l~ and 

(zt) is an uncondit ional  basic sequence in 12. There are two possibilities: 

(1) there  exists e > 0  so t h a t  if M = { i :  Iz~12<e} then  

l im I z~ 12 = 0, 
i-->oO 
i e M  

(2) there exists e~ 40 so t h a t  for all n, M~ = {i: e~_ 1 > l z ,  12 ~> e~} is infinite. 

Suppose (1) holds. I f  12 does not  embed  into [(X~)]~M, then  by  [9] X is isomorphic to 

l~ or l~(~l 2 depending upon whether  N ~ M  is finite or infinite. I f  12 embeds  into [(X~)]~M 

then b y  Proposi t ion 2.11 and  Theorem 2.10 [(x~)]~ M and hence X is isomorphic to  X~. 
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I f  (2) holds then by  a diagonal a rgument  we can find infinite M~ c M~ so tha t  (x~)i ~ M ~ ' .  n e N 

is a small pel~urbation of a block basis of the natural  basis for X~. I t  follows t h a t  X ' =  

[Xi]~M,..~eN is isomorphic to  X~ and of course X '  is complemented in X,  so again by  Theo- 

rem 2.10, X is isomorphic to X~. Q.E.D.  

We do not  know how to extend the above results to an arbi t rary  F~ subspace, X,  of 

Ip| 2. Of course one approach would be to  show every F_ v space has an  uncondit ional  

basis, or perhaps just  an uncondit ional  f.d.d. Unfor tunate ly  we do no t  even know how to  

handle the lat ter  case. We illustrate the difficulties encountered in t ry ing to  show X has an  

uncondit ional  f.d.d, with the following. 

Example 2.13. There exists an f .d .d . /o r  lp| 2 which cannot be blocked to be an uncondi- 

tional f.d.d. (This is ]alse in lp [11].) 

Indeed  let (5i) be the uni t  vector  basis of l~ and (ei) the uni t  vector  basis of l~. Le t  

E I = [ 0 |  and for n>~2, En=[en_l~)(~n_l, 0(~On]. I t  is easily checked tha t  E~ is an  f.d.d. 

for l~| Also if F~ = L~iJ~=k(~)+lr~ ~k(~+l) is any  blocking of (E~), let 

Then /~  E F~ for all n and 

while 

/1 = 0| 

/~ = ek(~)| (Sk(~) +~k(~+l)) for 

m ll i n  ~ m 11~ 

I : ~  ( - 1):],, .., m ~/'. 

n > l .  

Q.E.D. 

3. Quotients oI subspaces ot Ip 0/2 (2 < p < ~ )  

I n  this section we prove 

TI~EOREM 3.1. Let X be a subspace of Lp ( 2 < p <  oo) which is isomorphic to a quotient 

o /a  subspace Y o/l~O12. Then X embeds into lpG12. 

COI~OLLARY 3.2. Let Z be a s subspace o] lq| 2 (1 < q < 2 ) .  Then Z* is isomorphic to 

a s subspace o] l ~ l ~  (lip + 1/q = 1) and hence to a complemented subspace o/X~. 

COI~OLLAI~Y 3.3. Let X be a subspace o/L~ ( 2 < p < c o ) .  Then X is isomorphic to a 

quotient o/X~ i/  and only i] X is isomorphic both to a quotient o]I@ and to a subspace o] l~Ol 2. 

9-812901 Acta mathematica 147. Imprim~ lc II DScembre 1981 
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Precis o/ the corollaries. The first corollary follows directly f rom Theorem 3.1 and 

Corollary 2.6 while the second follows from Theorem 3.1 and Proposit ion 2.5. Q.E.D.  

The remainder of this section is devoted to  the proof of Theorem 3.1. Since lp| 4 

embeds into Xv, we can regard Y as a subspace of X~ and let (en) be the natural  basis for 

X~. So for  y = ~  a~e~eXp, 

Ilyll = m a ~ / l y l ~ ,  lyl~) 
where 

IYI~ = (~ I"~l') " and ]Yl2 = (~ la~w~l~) "~ 

for a suitable sequence 1 >w.+O. Let  Q be a mapping  from Y onto X so t h a t  IIQII =1  and 

KQBr ~- Bx 
for a certain constant  K. 

Notice tha t  to  prove Theorem 3.1 it is sufficient to define a blocking (Hn) of the Haa r  

system (h~) for L~ so t h a t  for some fl > 0  and every x EX with x = ~ x~ (x~EH~), we have: 

max r (~  IIx~ll~) 1'~) >~ ~llxll~. (3.1) 

Indeed,  if x = ~  x,~ (x,~EHn), then by  (1.2) we have 

(~  IIx~ll~) "~ ~,g~K~llxll~ 

so (3.1) implies t h a t  the operator  

defined by  

ix  = ((xD, x) 

where x=X x~ (x,,EHn), is an isomorphism from X into a space which is isometric to  a 

subspace of l~| 4. 

We would like to construct  the blocking (H,~) of the Haa r  system (h~) so tha t  if x = 

x n e Z  (xneHn) , then we can find yne Y so tha t  Qy~=xn, lyl2<~gllx~ll2, Ily~ll <~K]Ix~Hp, 
and the terms of (y~) have pairwise disjoint supports  relative to  the basis (e~) of Xp. Set 

Y = X  Y.; since Qy=x, we have if IlYll = [Y12 t h a t  

IIxll~ ~ Ilyll = (~  lynl~) 1'~ ~ K (~  IIxnll~)- 2 

while if IlY[[ = [Yl~, then 
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Ilxll  llyll = < I ly . l l ' )"  < K Ilx ll ) 

Consequently, (3.1) would be satisfied. 

Of course, we cannot do all of this, but we carry out the spirit of this approach. The 

main technical problem is that  we need to check that  Q is essentially a quotient mapping 

from (Y, ]-12) onto (X, II" t]2); this is the content of Lemma 3.4. A second problem is that  

for any blocking (H~) of (h~), there may be vectors x E X with x = ~ Xn (xn E H~) so that  some 

of the x~'s are not in X. A third difficulty is that  Q is not defined on all of X~, so it is 

technically troublesome to do blocking arguments relative to the basis (%) of X,. 

In  order to state Lemma 3.4, we need a definition. For K ~ L  and x E X ,  set 

Wz(x) = in f  {lYI~: r ,  Ilyll <Lllxll~, Qy =x}.  

I t  is easy to check that  the inf in the definition is really a minimum. 

h ~ Let P~ denote the natural norm one projection from Lp onto [ ~]~=1. Of course, Pn is 

the restriction to L~ of the orthogonal projection from L 2 onto [h~]~_l. 

LE~) IA 3.4. There are M>~K and ~ < ~ so that/or every s>O there exists an nEh" so 

that i / x E X  and P ~ x - O  then 

W (x) m a x  ( llxll ,) llxll ). 

The proof of Lemma 3.4 will be postponed for a while. To fix the main ideas in the 

derivation of Theorem 3.1 from Lemma 3.4, we first sketch the proof in a special case 

which avoids the second and third technical difficulties mentioned above. We assume that  

X has a basis (Wn) which is a block basis of the Haar system, say 

,-rt ]~(~+l)-x (1 =s(1) <s(2) <. . . ) .  W n ~. Uvtji=s(n) 

Letting P~ =Ps(~§ we have that  P'~X~ X for all n. The P'~'s are the partial sum operators 
iE/"/ - -  r~ ] s ( n + l ) - I  associated with the blocking - - n -  k.~J~=S(~) of the Haar basis. 

We will also assume that  Q can be extended to an operator (also denoted by Q) from 

X~ into L~, and that  the extended operator also has norm one. 

We can get a blocking (E'n) of the natural basis (%) for X~ and a blocking of (H'~) 

(which we continue to denote by (H'~)) so that  QE'~ is essentially contained in Hn +H'~+I 

for n = l ,  2 .... ; let us assume that  QE'~ is actually a subset of H'~+H'~+I. Therefore, for 

any L >~K, 
t rn if x E X  N [H~]~=n+l then there is yE[Ed~= n so that  

(3.2) 
(P~-P '~)Qy=x,  lly{l<~LIIxll., IY lz=WL(x)  
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(since if z = ~  z~ (z~eE;) and Qz=x~ then setting y=~,~nz~ we have (P~-P'~)Qy=x, 

]lull < I1~11 and lule< l~l~)" 
Let  ~n$0 so tha t  z 1 =K, ~ = 2  n < 1 and use Lemma 3.4 to get constants  M >~K and 2 

so tha t  we can choose 0 = k ( 1 ) < k ( 2 ) < . . .  to satisfy 

WM(X) < m a x  (~nll~ll~,.~ll~ll~) ~ z e x  and 

We claim tha t  the blocking 

H~ = H~(~)§ + ... + H~(~§ 

Pk(n)-lX ~- O. (3.3) 

of (h.) satisfies (3.1). Indeed, let x = ~  xnEX with xnEHn. Since each xn is also in X, we 

can by (3.2) and (3.3) choose 
t 

Yn E E,~(n) + ... + Ek(n+l) 
SO tha t  

(P'~(~+~)-P'k(~))Qy,~ = x,, HY,~II <" M]]xnHp and ]Y~l~ < max (~=ll~=ll~, ~llx=lle)- 

Now (Yen) and (Ye.-1) are both disjointly supported relative to the basis (e,) for Xp, so 

if we assume, for definiteness, that t [[~ [[~ < [I Z ~ I  x~_,[[~ we get hy Tong's diagonal principle 

(cf. Proposition 1.c.8 in [14]) tha t  the linear extension, S, of the operator which for n ~  

E ' ... E '  ' P '  1, 2, 3 . . . .  takes y Ek(en-1)+ + k(e~) to (Pk(en)--k(2~-l))Qy and vanishes on 

[(E~: i~ [J~_~ {k (2n-  1), k ( 2 n -  1)§ 1 ... . .  k(2n)})] has norm at  most IIQll times the uncondi- 

tional constant of (Hn). Consequently, we have 

X 2 1/2 < ~ p m a x  [(M+ l)(~]ixnil~) lip, ~.(~ll nil2) ]; 

tha t  is, (3.1) is satisfied for fl = (2~) -1 rain ((M + 1) -1, ~-1). 

Remark 3.5. Schechtman observed in [19] tha t  every unconditional basic sequence in 

L,  is equivalent to a block basis of the Haar  system, which puts one of the simplifying 

assumptions above iu perspective. The other simplifying assumption can be replaced by  

the assumption tha t  the operator Q, considered as an operator from Y into L~, factors 

through X~. I t  may  be tha t  every operator from a subspace of l~@l 2 into L~ factors through 

X~; if so, the derivation of Theorem 3.1 from Lemma 3.4 given below can be simplified 

somewhat. 
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I n  der iv ing Theorem 3.3 f rom L e m m a  3.4 in the  genera l  ease, we use several  lemmas.  

Given A ~ V*, we use t he  symbol  A T to  denote  the  ann ih i la to r  of A in V. 

LElVIMA 3.6. Suppose T is an operator/rom the reflexive space (Z, [I. [I) onto V, K T B z ~  

By,  S is a / in i te  rank operator/rom Z, and "v *~~176 _ = V*. �9 �9 ( nJn=l C W * w i t h [ ( v * n ) ]  Supposethat  I I<.<.ll I] 

is another norm on Z. For M >~ K and x E V, set 

W~(x) = inf {1~1: ~ z ,  INI ~ MIIxll, T~ = x}. 

Then given any e>O,  there exists m E N  so that if * "~ 7- xE[(v~)n=l] , then there is z E Z  so that 

I1~11 <2MII~II, I~1 ~ (2§ (ellxll, WM(X)), IIS~ll ~llxll  and Tz ~-x. 

Proo/. Suppose  the  l e m m a  is false for a given M >~ K and  a given s > 0. Then we can  

f ind for n = 1, 2, uni t  vectors  x n in * n T ... [(V, )~=1] SO t h a t  if for  some n there  is z E Z  so t h a t  

I1~11 ~2M, I~1 ~(2 +~)~a~ (~, W~(x.)) and  T z = x , ,  t hen  IlSzll >e. 

F o r  each nEN,  p i ck  z~EZ with  linch ~<M, [z~[ =WM(x~), and  Tz~=x~.  This can be 

done since the  "inf"  in the  def ini t ion of WM(" ) is easi ly seen to  be a min imum.  Since S has  

f in i te  rank ,  there  exis t  integers  n(1) <n(2)  < ... so t h a t  ItSzn(,)-Sz~o)ll < e  for  all  i and  j. 

B y  passing to  a subsequence  of (n(]))~l, we can also assume t h a t  

sup WM(x~(j)) < m a x  (e, (3 + e) WM(x~(~))). 
J 

Now x~-+0 weakly ,  so we can f ind for  all N = 3 ,  2 . . . .  a vec to r  

wi th  

and IIY~II-~ o. Lett~g 

w e  h a v e  

co 

=N i~N 

WN ~ ~ N a~ Zn(~) ~ 

and  

IIz~a)-wNll ~< 2M,  

]]T(zn(1)--wN)--xn(1)ll-*O as N - - ~ .  

Thus  if we define the  convex set  C b y  
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= II ll  2M, IIs ll (2+ )max (e, 

then x~(1) is in the closure of TC. But C is closed, since [. I is continuous, and hence TC 

is closed, because Z is reflextive, whence x,a ) ETC. Q.E.D. 

Remark 3.7. The proof shows that  the reflexivity assumption in Lemma 3.6 can be 

dropped if we replace the " T z = x "  conclusion by "[I Tz -x l [  <e".  In fact, an open mapping 

argument shows that  the reflexivity assumption can be dropped if we merely replace the 

"11~11 <~2Mllxll" conclusion by "INI < (2 + )MIIxlI". 
If A is a subset of the normed space Z, and zEZ, d(z, A) denotes the distance from z 

to A, and A ~ is the almihilator of A in Z*. 

L~MMA 3.8. Suppose that V is a subspace o/ Z, V1 is a/inite codimensional subspace o/ 

V, and ~1~  F~ c ... are/inite dimensional subspaces o[ Z* with [3~1 Fj dense in Z*. Then/or 

all e > 0 there is m E N so that i / z  E F~ then 

d(z, V1) <~ (2+s)d(z, V). 

~Proo/. Let T: Z*-+Z*/V ~ be the quotient mapping; of course, under the usual iden- 

tification of V* with Z*/V • Tz* is just the restriction of z* to V. Since dim V~/V ~= 

dim V / V I < ~  and (J~=l F~ is dense in Z*, given e > 0  we can pick meI~ to satisfy 

(1 +e) TBF,, ~- TBv~. 

Let z 6 F ~  and pick /6Bv~ so that  d(z, V1)=/(z). Select g6(l+e)BF,,  so that  T g = T / .  

T h e n / -  g e (2 +z) By1 and hence 

d(z, V1) = /(z) = ( / - g )  (z) ~ (2+s)d(z, V). Q.E.D. 

LEMMA 3.9. Suppose V is a subspace o/ Z, F is a/inite dimensional subspace o /Z  so that 

n V _  ~ .~Xl__~ F 2 _ q  ... ~__ V 

where dim F j < o o  and [J~~ Fj is dense in V. Then/or  each e > 0  there is mEN so that/or 

each z EZ, 
d(z, Fro) < (1 +~)d(z, V) + (2 +~)d(z, F). 

Proo/. We need to show that  there is mEN so that  for every zEF,  

d(z, Fro) <~ (1 +s)d(z, V). (3.4) 

This is sufficient, because if zeZ,  we carl pick x e F  so that  d(z, F )= l l z , x l [ .  Then (3.4) 

yields 
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d(z, Fro) <~ {Iz-xll +d(x, F,n) <~ {{z--x{{ +( l  +e)d(x, V) 

~< (2 +e)[[z--xl{ + (1 +e)d(z, V) = (2 +e)d(z, F) + (1 +e)d(z, V). 

The elegant proof of (3.4) which follows is due to T. Figiel. First assume J~ A V = {O} 

and for n = l ,  2 . . . .  define real functions/n on the unit  sphere Sp={zEF:  ]{z]l =1} of F by  

f~(z) = d(z, Fn)/d(z, V). 

The fn's arc continuous functions which decrease pointwise to the constantly one function, 

hence the convergence is uniform on the compact set SF by  Dini's Theorem. Now just 

choose m so tha t  fro(z) ~< 1 +e  for all zESF. 

In  tile general case, let T: Z-+Z/(F n V) be the quotient mapping. Now for any zEZ, 

d(z, V)=d(Tz ,  TV)  and d(z, Fn)=d(Tz  , TFn) ( n = l ,  2 ... .  ) since V and all the Fn'S contain 

F A V. Consequently, the general case follows from the special case by  passing to the 

quotient space Z/ (F  A V). Q.E.D. 

LE~MA 3.10. Suppose Z is reflexive, V is a subspace o /Z ,  (G~) is an f .d .d . /or  Z, and 

Rn: Z-~G 1 + ... + Gn are the natural projections. Given ~ >0  and n E I~, there exists m E N so 

that/or each x E V, 
d(Rnx, V) <~ max (2{{(Rm- R~)x]l , ellx}}). 

Proof. This is Lemma 3.7 in [5] with the second parenthesis placed correctly. Q.E.D. 

We turn to the derivation of Theorem 3.1 from Lemma 3.4. By  perturbing the space 

O.=i [ ,]l=i fl X is dense X in L~ slightly, we can assume without loss of generality tha t  ~ h n 

in X. A formal consequence of this is tha t  for all N ~ 1, 2, ..., ~ O ==s [hi],=N N X is dense in 

[h,],~=~ t3 X. Let  M ~>K and 2 be constants which satisfy the conditions of Lemma 3.4, and 

recall tha t  Q denotes a norm one operator from the subspace Y of X~ onto X which satisfies 

KQBr ~-Bx. Eventual ly  we will verify tha t  (3.1) holds for fl = 16 -1 rain [(12M) -1, (322)-1]. 

Let  ~=r 0 so tha t  el <rain  (8-vfl 2, 2 -7) and 2r < s  ~ for n = l ,  2 . . . . .  

We define a blocking (t1'~) of the Haar  system and a blocking (E~) of the natural  

basis for Xv to satisfy conditions (3.5)-(3.10), where P'~ denotes the natural  projection 

from Lp onto H~ + ... +H~ and R~ denotes the natural  projection from X v onto E~ + ... + E=; 

P ~ = 0  and R0=0.  

(3.5) I f  x E X  and P'~x=O, then 

(3.6) I / x ~ X  and P~x =0,  then there is yE Y which satisfies 

[IRk-lY{{ <e~llxllv, IlY{I <~2M{Ix{{p, lyl~ --<3max (e~]]xllp, WM(x)), and Q y = x .  
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(3.7) I / x E X ,  1 <~i <k, and P'~x=O=(I-P~)x, then there is yE Y which satis/ies 

II  - yll <2 ,llxll , II(1-R )Yll IlYll <3MII II, 

lYI~ < 4 m a x  (e~]lxll,, , WM(X)) and Qy=x.  

(3.8) / ]  xEX, then 

X) < max 

(3.9) iT/zELp and P~z=O, then 

d(z, X A (I-P'~_~)L~) <~ 3d(z, X). 

(3.10) 1/1 <~i <Ic and zEL~ with P~_lz=0,  then 

�9 p '  p . . . . . . .  
d(z, X f~ ( ~ -  ~_~)~) ~< 2d(z, X ~ ( I -P~_I)L~)  +3d(z, (P~_~ -P~_I)L~). 

H t  P n e 8 Suppose tha t  l + . . . + H ~ _ l = [ h ~ ] ~ l  and El+.. .+Ek_l= [ ~]~=l have been defined. 

Now if m > n is large enough and we set 

, h m 

then (3.5), (3.6) and  (3.8) will be satisfied by,  respectively, L e m m a  3.4, L e m m a  3.6 and 

L e m m a  3.10. Tha t  (3.9) will be t rue  for large m follows f rom L e m m a  3.8. To see this, set 

Z=L,,  V=X,  VI=XN(I-P'k_~)L~, ~=1,  Fj=[h,]i~,~_Lq=L* (1/p+l/q=l),  and apply 

L e m m a  3.8. Similarly, (3.10) is satisfied if m is large enough by  Lemma 3.9. To see this, 

for each fixed 1 ~<i < k  apply  L e m m a  3.9 with Z=(I-P~_I)L~, V = X  A (I-P~_I)L~, F=  
' ' h J ' ' r~ ~p(~) ~ and ~ = 1. (Pk-l--P~-l)L~, F~ = [ r]~=~)+l A X, (where Hi +... + H~_l = L'~r~r=ll 

NOW fix m>n so tha t  (3.5), (3.6) and (3.8)-(3.10) sate satisfied. We need to  get  t > s  

so tha t  (3.7) will be t rue if we set 

E~ = [e,]i=s+l. 

Call s ta tement  (3.6) with " i "  subst i tuted for "k"  (3.6)i. For  l < i < k  and  a small 

> 0 we can apply  (3.6), to  a finite S-net (say, A i) of the unit  sphere of X f~ (H~ + ... + H~) 

to  get  a finite set (say, B,) in Y so tha t  for all x EAt there is y E B,  which satisfies the condi- 

tions in (3.6), with sk replaced by  (~. Now we choose t > s so that ,  sett ing E~ = [ej]~s+l, we 

have for yE O~s 1 B~, II(i-R )Yll <2-% I t  is easy to check tha t  if ~ > 0  is small enough 

relative to the str ict ly positive numbers  ek and inf [WM(X): xEH~+...+H'k, [[xll =1]  then  

(3.7) is satisfied. 
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Now we choose 0 ~n(1)<n(2)<  ... with n ( ] ) - n ( ] -  1)>~4 so that  if 

n(k+l) 
x =  ~ x~ with x~EH~ 

i -  n(k)+ l 

then 
min IIx,_lll, + Ilx, llp.~-IIXj+l II,.~ 1 Ilxll,, (3.m 

n(,~)+2<.i<n(k+ l ) -  2 

This is possible by (1.2). Finally, we define the blocking which satisfies (3.2): set 

Suppose that  x E X ,  I[x[I.= 2, x =  Z xi (x~6H~). :By (3.11) we can select for k = l ,  2 ..... 

n(k) +2 <](k) <n(k  + 1) - 2  so that  

and set, for notational convenience, ] (0 )+2=] (0)+1=] (0)=1;  ] (0)-1 =0. Since (ere) is 

decreasing and k + 2 4 ] ( k ) -  1, we have from (3.12) and (3.8) that  

l~(k)-~ X) 

h e n c e  

/ ](k)-2 ) 

whence by applying (3.10) and (3.9) to the vector 

/(k)-2 

Z = A. x~ 
i =](k - 1) + 2 

we can find 

so tha t  

Therefore, 

! 
% 6 X  n H~(~-1)+1+ ... +Hi(k)-1 (3.13) 

x-- zk ~ 13 e~ < �89 (3.15) 
p k=l 

By (3.13), (3.7) and (3.5), (and the fact that  ] ( k - l ) > k  for k > l )  we can get yk6 Y 
so that 

x~--zk ~< 12e~. (3.14) 
l=](k-1)+2 p 
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Ily~ll < 3MII~II~, Qy~=z~, 
ly~l~<4 max (~11~11~, Xll~ll.)- 

(3.16) 

Recalling t h a t  

fl = 16 -1 min [(12M) -1, (32~)-1], 

we have  f rom (3.18) and  (3.19) t h a t  

[ (k~l \ 1/p \ 1/2~ 
m a x  I1~11~) ] 16#. (3.20) 

In  particular," Yk is, essentially, in Ej<k 1> + ... + Ej<k)-l, so t h a t  the  te rms  of the sequence 

(Yk) are, essentially, disjointty suppor ted  relat ive to  the  basis (e~) of X v. 

Set 

Y = ~ Y k .  k~l 
Since Qy=~=I  zk, we have  f rom (3.15) t h a t  

~Now 

~=~ ( R,(~) 1-- Rj(k_ i)_ a) ykl : (k=~ , (.R,(k)_ l -- R,(~_ l)_ l) yk'~,) I'p 

and by  (3.16) 

y -  ~ (Rs(k)-i -- Rj(k-~)_i) Yk 
0o 

~< 
k=l k=l  

so if IlyH = [ y l , ,  we have  by  (3.17) and (3.16) t h a t  

\lip \lip co \ ]/p 
1~ (k~l ]yk[P) ~ (k=~ 1 HykHP) ~ 3M (k~_ 1 HZkHP) . ( 3 . 1 8 )  

Similarly, since ~V-1 ek<2  - '  we get that if IlylI = lyl2, then  

~4~(~]Yk[2) I/2~SI~(~HZkH2) ( 3 . 1 9 )  
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Using the fact that  the t taar  system is a monotone basis for L~ and for L 2, we have if 

r e {2, p} that  

k ~ l  t=n(k)+l k=l  \Hi=n(k)+l  i=1~)+2 r 

k ~ l  II ~--j(k-1)+2 

(2,,,,: Zi >~8 r zk - 1 2  r " (by 3.14) 

Thus from (3.20) it follows that 

which is (3.1). Q.E.D. 

In  order to prove Lemma 3.4, we need several lemmas which may not be as routine 

as Lemmas 3.6, 3.8, 3.9 and 3.10. The first lemma restates the notation set up at the 

beginning of this section, except that  X is not required to embed into L~ and it is con- 

venient to regard Y as a subspace of lp| z. 

LEMMA 3.11. Let Y be a subspace o/ l ~ l  2, 2 < p < o o  Q a norm one operator/rom Y 

onto X,  K Q B r ~ B x ,  and V a subspace o] X which is isomorphic to 4. Set/or x E X ,  

W~(x) =inf  {]YI~: ye  Y, HyH <~KHxI], Qy =x}  

wher~ /or y=y Oy mlo 4, lyl  llYdl. Then there exists 6=~(p, K ) > 0  and a /inite co- 

dimensional subspace V 1 ol V so that/or all x E V1, 

W (x)  d(V, 114. 

Proo/. Since X is 2K-isomorphic to a quotient of a subspace of L~, X has type 2 with 

constant ~2K~K,  so by Maurey's extension theorem [16] there is a projection P from X 

onto V so that 

IlPll ~<~(P) ~< 2K~Kd(V, 4). 

Again by Maurey's theorem, there is an operator 

~;: I~| ~ V 
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so t h a t  

Sy =PQy ( yeY) ,  IISII <~ 4K~Kd(V, l,). 

Since the restriction oI S to lp is compact  (as is any  operator  f rom Ip into 12; cf. Proposit ion 

2.e.3 in [14]), given ~>0 ,  there is N = N ( e )  so tha t  

IIZ~ll < ~K-~II~II 

if z E lp and the  first N coordinates of z are zero. 

~ o w  l~t V 1 be any  finite codimensional subspace of V such tha t  for all x E V1, 

d(~, S[(e,)5~]) ~> (1+~)-111xll 

where (ei) is the  un i t  vector  basis for l~. (For example, if 2' is a finite dimensional subspace 

of X* which is 1 + e-norming over S[(et)~=l], we can let V 1 = V N FT.) 

Snppose tha t  ~ e V .  II~II : 1, and ohoose y e Y wi th  Ilyll <<- K ,  Qv ~ ~, ~nd Iris: WK(x). 

Write  

Y =Yl§ YlE[(e~)~v-1], 

Then  x = Sy I + Sye + Sy3, bu t  

e oG Y2E[( i)i~N§ YaEl2. 

so tha t  

(1 +8)- -1__~. .~  IIX__~(yl +Y2)II = II~y311 

< 4KIKd(V,  l~)tty3II = 4KIKd(  V, 12)]yl2 

= 4K~Kd( V, 12) WK(x). 

This gives the desired conclusion for any  

< (4K~K) -1. Q.E.D. 

_Remarlc 3.12. Notice tha t  in Lemma 3.11, if (v~)___ V* and [(v~)] = V*, then V 1 can be 
rfV:~\n aT t aken  to  be of the form t~ ~ ]~=12 for some n. 

Remark 3.13. The definition of WK(') and  I" 12 given in L e m m a  3.11 is the  same as 

t h a t  given in the  beginning of this section if we regard Y as being contained in Xp.(w,) 

and Xp. (w,) ~- l, | 12 in the natura l  way; i.e., the n th  basis vector  for Xp. w is en | w~ ~n E lp | l~. 

LEMMA 3.14. Suppose that Z is reflexive and has an f.d.d. (En), W is a subspace o / Z  

such that Un~l W N ~ 1 7 6  [(Et)i=l] n is dense in W, and T is a norm one operator/rom W into some 
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space V. Given any L <  ~ ,  ek40, and a weakly null n o r ~ l i z e d  sequence (xn) in V, there is a 

subsequence (y~) o I (x~) so that i / Y = 5  anyn, ]IY]I =1,  and i] z e  W with II=11 <L, T , : y  with 
[-IK~ ~rn(k+1)-11 z = ~  z~ (z~EE,), then there are 1 ~<m(1) <m(2) < ... and wkE W (1L~/~=m(k) j SO that 

I I  ~m(~) 

Proo 1. We can consider V to be embedded in C[0, 1] in such a way tha t  the operator 

T has an extension to a norm one operator from Z into C[0, 1]. By  passing to a subsequence 

of (Xn), we can also assume tha t  (Xn) is a block basis of some basis for C[0, 1]. Therefore 

Lemma 3.14 is a simple consequence of the following blocking lemma: 

LEM~A 3.15. Suppose that Z is reflexive and has an f.d.d. (E~), W is a subspace o I Z 
m E n such that U~=I W f3 [( ~)l=l] is dense in W,  T i~ a norm one operator/tom Z into V, and V 

has an f.d.d. (F~). Given any L <  cr and ekiO, there is a blocking (Fn) o~ (F'n) so that i / 1  < 

n(1) <n(2) <.. .  and x6  V, 

x= xk with Ilxll=l 

and i / z e  W with Hzll <L,  T z = x ,  where z = ~  z, (z, eE,) ,  then there are 1 ~<~(1)<j(2)< ... so 

that /or  every k = 1, 2, 3 . . . .  

j(k+~)- 1 I-/K~ ~J(k+l)-ll  
d zt ~ W ~ t \~il l=j(k)  j ~ 8n(k) 

\ t~j(k) 

and 
](k+1)-1 I 

I x ~ -  T i=~k) z~ < en(k) �9 

Proo I. Since the concluding condition on (En) becomes more restrictive as we pass 

to blockings of (En), we can assume by passing to blockings of (E=) and (F ' )  tha t  TEn 

is essentially contained in F~ + F~+I for all n = 1, 2 . . . . .  The technical condition we use is: 

II(R,n-R~)TyH<~nHy]l for y L( 0j=l U( j)j~m+l] (3.21) 

t n where Rn is the natural  projection from V onto [F~]~=z and where ~n40 at  a rate which will 

be specified in (3.273) and (3.27b). Next,  by  passing to a further blocking of (En) (and 

the corresponding blocking of (F'~), to preserve (3.21)) we can by  Lemma 3.10 assume tha t  

if y E W, y = ~ yn with y~ E En, then 

C:: ) d y , W  <max(~kllYli, 211ykll) f o r k = l , 2  . . . . .  
i= 

(3.22) 
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Moreover, as in the verification of (3.10), we  have  from L e m m a  3.9 that  we can assume,  by  

passing to a further blocking of ( E n )  , that  for y E [ E ~ ] ~ ,  1 ~< n ~< m < ~ ,  

d(y, W N [(E~)7~1]) ~< 2d(y, W N [ ( E , ) ~ ] )  +3d(y ,  [(E~)~=n]). (3.23) 

Also,  by  L e m m a  3.8 we  can guarantee that  if y E [ E ~ ] ~ + I  for some  n = 1, 2 . . . . .  then 

d(y, W N [(E~)~n]) ~< 3d(y, W). (3.24) 

Putt ing  together (3.23) and (3.24), we have that  if y E [EiJ~n+a for some  n = 1, 2 . . . . .  and 

n ~< m, then 
d(y, W N [(E~)~'=+~]) ~< 6d(y, w)+ad(y, [(E~)~'=~]). (3.25) 

Finally,  by  Sublemma 3.16 (see below),  we define 1 = r e ( l )  < m ( 2 )  < ... so that  if y = ~ y~ E W, 

(y~ E E~), then ~or each k = 1, 2 ... 

min ]lyJ-all § Ilyr + Ily.lll < ~llyll. (3.26) 
m(k)+ l <j<m(k + l ) -  I 

Set for k = 1, 2, . . .  
__ r l  l ; ~ m ( k + l ) - l l  

~ k  - -  L( "t' ~ }i=m(k) J. 

Suppose 1 ~<n(1) < n ( 2 )  < ... and 

E r [ l v  ~n(k+l) 13 -- i - [F t~m(n(k+l ) ) -11  
X k  [(~" j H = n ( k ) + l J  - -  L( i ]i=m(n(k)+l) ] 

with I1~ x~ll =1 and ~eW with It'll < i ,  T z = x .  Write 

z=~z~ (z~eE~) 

and, using (3.26), choose ](k) for k = 1, 2 . . . .  so that  m(n(k)) + 1 <j (k)  <m(n(k) + 1) - 1 and 

I1=~(~-~11 § I1~11 + I1~,(~+111 <~(~)llzl l .  Then by (3.25) and (3.22) we  have  for k = l ,  2 . . . .  

/ j (k+l)-I  
gi ~ [ [ ~  ~3(k+1)-11 

i~J(&) 

/j(k+l) 2 1~1~7~ "~(k+l) 11~ 
i=j(k)+l  zi~ 

/ j ( k + l ) - 2  ) 

<~.<~, l l~ l l+~. (~+. l l~ l l+6d / y ~,. w 
\~=j(k) 1 

r /](h~+1)-2 Zi, W )  /j(k) 

+ max (~)+~l l~l l ,  2 II~(~).+-~ll)l 
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This gives the  first conclusion as long as 

~i < (26L)-ie~ for i = 1, 2 . . . . .  (3.273) 

Last ly ,  since for ]~ = 1, 2 . . . . .  

X k  = ( R m ( n ( k  + l ) ) - I  - -  R m ( n u o + i ) - l )  T z  

and,  b y  (3.21) (which applies because j(k) <m(n(k)  + 1) and m(n(k + 1)) - 1 <j(/c + 1)), 

(Rm(,(~+l))-i - ( (k~ l  ) 
\ i--1 i--](k+l) 

where K is the  basis constant  for (E~). Consequently,  

lIxk_TP(k§ ~ \"  

so the  second conclusion follows as long as 

5~< (3KL)'lsi  for i = 1, 2 . . . . .  (3.27b) 

Q.E.D.  

I n  the  proof of L e m m a  3.15 we used the following simple sublemma:  

S V ~ L ~ M A  3.16. Suppose that (E,) is a boundedly complete f .d .d . /o r  a space Z. Given 

- ~ (ziE E~), then any n and e>O,  there is m > n  so that if zCZ, z-/_~=l z~ 

rain [I z~_l[[ + [[z,I [ + [Iz~ i I I <  s IIz[I. 

Proof. I f  the  sub lemma is fMse for a certain n and e>O,  then we can find zgEZ for 

k = 1, . . .  s o  t h a t  IIz ll = 1,  

z ~= ~ z~, (z:EE~), and min  []Z~n+)]]§247 
i=1 l < j < k  

B y  p~ssing to a subsequence of (zk), we can assume t h a t  for each i = 1, 2, 3 . . . . .  there  is 

z~ E E~ so t h a t  

Then  

l<j<ao 

and (]] ~ , ~  z~l ])y=x is bounded  by  the  basis constant  for (E~), which contradicts  the bound- 

edly completeness of (E~). Q.E.D.  
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A sequence (x~) in a Banach  space is said to be a symmetric Xv sequence with weight 

w >~ 0 provided 
[[ ~ anXn[ [ = m a x  ((~. [an ]v)~/v, w ( ~ [ a  n [2)1/2) 

for all sequences of scalars (a=). 

L~MMA 3.17. Suppose that Y is a subspace o/ Xp (p >2),  T is a norm one operator/rom 

Y onto X ,  and K T B r @  B x. There is a constant A so that i/ (xn) is a normalized symmetric 

Xp sequence in X with weight w >~ O, then 

where/or x E X and L >~ K, 

lira sup W AK(X~,) <~ A K w ,  
n ~  

WL(x) = i n f  {lYI+ Y~Y,  IlYll <~L, Ty  = x } .  

Proo/. For  w = 0  (i.e., if (x~) is isometrically equivalent  to the  uni t  vector  basis of lr), 

L e m m a  3.17 is a special case of L e m m a  I I I . 4  in [5], because Xp can be embedded  into  Lv 

in such a way  t h a t  [[" [[2 is equivalent  to [ ' ]2  on Lr. (The p - B a n a c h - S a k s  assumpt ion  in [5] 

is satisfied only by  the  space [(x,)] and  not  necessarily by  X, but  L e m m a  I I I . 4  can be 

applied to the  restr ict ion of T to T-l[(x,)] .)  So we assume w >0 .  However ,  we should men-  

t ion t h a t  the  proof be low--which  is much  simpler than  the  proof of L e m m a  I I I . 4  in [5 ] - -  

can be easily modified to take  care of the case w = 0. 

We  can also assume tha t  [.J +~=1 (Y f3 [e~]~:l)" is dense in Y, where (en) is the na tu ra l  

basis for Xp. 

Choose m so t h a t  
m 1/~ = w m  1/2 (3.28) 

and assume (by per turb ing  the norm on X and increasing K by  a cons tant  factor  a t  most)  

t h a t  m is an integer. 

Le t  0 < e  < 1. I f  the  conclusion is false for the  constant  A =5 ,  we can assume, by  passing 

to a subsequenee of (x=), t h a t  

5Kw < WsK(x~) (n = 1, 2, ...) 

and,  by  L e m m a  3.14, t h a t  if 

x =  x,,, Y ,  Ilyll <K}I II:Kml/p, 
n=l 

(3.29) 

and T y = x ,  then  there are (Y~)~=I in Y which are disjointly suppor ted  relat ive to the basis 

(e~) for X~ so t ha t  
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I l Y - ~ Y ' I I  and l<~.<mmaXl'x~-TY~ll<e' 

i f  such a y is chosen so tha t  also [ y [ 2 = Ws:(x), then 

Moreover, s ince  
I m / ,n \ l / p  . I 

we have, if e > 0 is small enough, t ha t  

Ilv,l[ < 4K for at least ~ /2  values of 

which we assume, for definiteness, to  be 1 <~ i <~ m/2. 

Note  tha t  by  (3.30) and (3.32) we have 

W~K(x,) < [ y , l = + K e  for 

Put t ing  everything together,  we get  

5Kin 1/~ = 5Kwm 1'~ (by 3.28) 

w.<x,).) j 
{(7 +i. <V~ ly, l:) +Ke(m/2)  1'' 
LV=I 

i, 1 ~ i ~ m ,  

1 4 i < m / 2 .  

(by 3.29) 

(by 3.33) 

~< V2 [WK(x) + ~(1 + Kml/2)] 

< V~ [K I}~11 + ~(1 + Kml'~)] 

= V2 [Km 1/~' + e(l § Kmll2)] 

which is a contradict ion if ~ > 0 is sufficiently small. 

(by 3.31) 

(by 3.28) 
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(3.30) 

( 3 . 3 1 )  

( 3 . 3 2 )  

( 3 . 3 3 )  

We now tu rn  to the  proof of Lemma 3.4. We can assume, wi thout  loss of generality, 

tha t  ~o e n (.Jn=l (Y (I [(~)~=1]) is dense in :Y and U~%1 (X r) [(h~)~=l]) is dense in X, where (ei) is 

the  usual basis for X v and (h,) is the t t aa r  basis for Lv. 

Suppose tha t  the conclusion is false for  a value of M which will be specified momen-  

tarily. Then for each fixed k = 1, 2 .. . . .  we can find a sequence k (x~)~=l of uni t  vectors in 

X which is a block basis of the H a a r  system so tha t  

w~(.~)  > ~llx~ll~ (n = l, 2 . . . .  ) (3.34) 

9t-812901 Acta mathematica 147. Imprim6 l c  l l  Decembr6 1981 

Q.E.D.  
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inf WM(x~) > 0. (3.35) 

B y  passing to  a subsequence of each ~ ~o (x~)n=i, we can in view of Theorem 1.14 of [8] 

assume t h a t  each k (x~)n= x sequence is M f e q u i v a l e n t  to  a symmet r i c  Xv sequence wi th  

weight  w k. I n  view of (3.35), we have  f rom L e m m a  3.17 (or L e m m a  I I I . 4  in [5]) t h a t  w k > 0  

for all  k = 1, 2, ..., as long as M is suff icient ly large.  

Now for each k = 1, 2 . . . . .  define m k b y  

m~/p = wk m~ ~2 (3.36) 

a n d  assume (by ad jus t ing  M~, if necessary)  t h a t  each m k is an  integer.  As was a l r eady  

a l luded  to,  if M is large enough we have  from L e m m a  3.17 t h a t  if (x~) is a n y  sequence in 

X which is M f e q u i v a l e n t  to  a symmet r i c  Xp sequence with,  say, weight  w > 0 ,  then  

lira sup~ WM(Xn)<Mw. (This specifies our  choice of M, as was promised  above.)  Con- 

sequent ly ,  we can assume t h a t  for all  n and  k 

WM(X~) <~ M w  k. (3.37) 

Not ice  t h a t  for each k = 1, 2 . . . . .  t he  sequence (Y~).~--1 def ined b y  

(n+l )m k 1 
m~l/~ yn= 7. x~ 

j = nm k 

is M f e q u i v a l e n t  to  the  uni t  vec tor  basis for l~, so if n = n ( k )  is suff icient ly large,  we have  

W k f rom L e m m a  3.11 t h a t  M(Yn) >~ 6, where ~ = 6(p, M~, K) > 0 does no t  depend  on k. Assume 

wi thou t  loss of genera l i ty  t h a t  n(k) = 1 for all  k; i.e., 

mk 

\1=1 / 

iXk  \oo Recal l ing  t h a t  ~ nj~ffil is a block basis of (h~) and  thus  or thogonal ,  we have  for ]c = 1, 2 . . . .  : 

~ k -~ w~(g) ~) (by 3.34) 

: <<- ]c - I  m~12Mw~ (by  3.37) 

mk 

<~ I c - I M M ~  j~--1 zk n ( b y  3.36) ,  
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T h a t  is, if we set 
II '~k I1-1 ,nk Xk ;~k 

Z~ ~ j=~l ' p 1=~1 1' 

t h e n  there  is a cons tan t  B so t h a t  for k = 1, 2, ..., 

and  hence b y  [13], (zk) has  a subsequence which is equ iva len t  to  the  uni t  vec tor  basis of 

l~. However ,  by  (3.38) and  (3.36), 

w~(zk) >18M; 1, 
a n d  this  is a contradic t ion .  Q.E.D.  
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