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1. Introduction

Consider functions f in the Sobolev space WE(R%), 1 <g< oo, i.e. functions such that
2o<ll<m Jra| Dof|%da=||f||% < cc. For any set E in R? one can define the trace on E
of f and of its partial derivatives D%, |o| <m —1, in a natural way. (See Section 2.) We

denote these traces by f| and D% |z. Our main result is the following theorem.

THEOREM 1.1. Let f € Wi(R?) for some q>2 —1/d, and some positive integer m. Let K <R?
0
be closed, and suppose that D*f| x =0 for all o, 0< || <m —1. Then f€ Wi(K®), i.e. there exist

functions @, € CF such that each @, vanishes on a neighborhood of K, andlim e ||f —@u||m,¢=0-

By analogy with the classical spectral synthesis of Beurling (see e.g. [20]) we say that
sets K with the approximation property in the theorem admit (m, q)-synthesis. Thus, in
contrast to the situation in harmonic analysis, the conclusion here is that all closed sets in
R? admit (m, g)-synthesis, at least if ¢>2—1/d.

~ Among the consequences we mention the following uniqueness theorem for the
Dirichlet problem. This is in fact an equivalent formulation of the result in the case g =2.
By way of illustration we only formulate the theorem in the simplest case. Generalizations
to more general elliptic equations are immediate. See T. Kolsrud [21] for an extension to

situations where u is defined only in G.

TaEOREM 1.2. Let G< R be a bounded open set. Let u€ WE(R?) satisfy A™u=0 in G,
and D*uly6=0, 0<|a| <m-1. Then u=0 in G.

That this is a consequence of Theorem 1.1 is obvious, because it is well known that if
0
A™i=01in @ and u € WE(H), then u=0.

(1) Supported by the Swedish Natural Science Research Council.
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Consequences for L*-approximation by solutions, and stability are given below in
Section 6.

In the case m=1, ¢=2, Theorem 1.1 is due to J. Deny [9; Theorem II: 2, p. 143].
(This reference was unfortunately overlooked in the survey [18].) This result was extended
to abstract Dirichlet spaces by A. Beurling and J. Deny {7], [10; p. 168, p. 172]. For m=1,
1< g < oo, the theorem is due to V. P. Havin [13], and T. Bagby [6]. See also [14; Lemma 4].
All these proofs depend on the fact that W1 is closed under truncation.

Theorem 1.2 was proved by S. L. Sobolev [33], [33a; Theorem 3, §§ 14, 15] in the case
when @ is bounded by a finite union of smooth manifolds (of arbitrary dimension). In the
above generality the uniqueness problem was formulated, and its equivalence with the
(m, 2)-spectral synthesis problem was pointed out by B. Fuglede. (See B.-W. Schulze and
G. Wildenhain [31; IX, § 5].) See also [18a].

The (m, q)-synthesis problem was also approached by J. Polking [29] and the author
[16], [17], who were motivated by an LP-approximation problem for harmonic and poly-
harmonic functions. See also [18].

The present paper is a continuation of [17], and the same technique is used. However,
an effort has been made to make the paper readable independently of [17].

The proofs depend on a detailed study of the behavior of functions in W% close to
their zeroes. This study depends on the properties of (m, ¢)-capacities and the corresponding
(non-linear for g=4=2) potentials, the theory of which is due mainly to B. Fuglede, Ju. G.
Retetnjak, N. G. Meyers, D. R. Adams, V. G. Maz’ja, and V. P. Havin. See e.g. [12], [30],
[27], [3], [25], {26], [14]. See Section 2 below.

1 am grateful to V. G. Maz’ja for an enlightening conversation in connection with the
crucial Theorem 4.2, and to B. Fuglede for drawing my attention to the equivalence of
(m, 2)-synthesis and uniqueness for the Dirichlet problem.

I am also indebted to these mathematicians, and to D. R. Adams, T. Baghy, V. P.
Havin, and P. W. Jones for pointing out a number of obscurities and inaccuracies in the
manuscript, and for many other useful comments.

Our notational conventions are the following: If F is a set, its interior, closure, and
complement are denoted respectively B°, E, and E°. If @ is an open set, CF(G) denotes
the infinitely differentiable functions with support in G. ﬁ",’,,(G) is the closure in Wi(G)
of CF(G). V™f is the mth gradient of a function, i.e. V™f={D%f; || =m}, where « denotes
multiindices, and | V™| =3 -m | D*|. The ball {y €R% |y —=| <d} will be denoted By()
or B;. If § =2-" we write B,(x). The letter 4 will denote various positive constants, whose

value can change from one line to the next.

Added in proof, Dec. 30, 1981. T. Wolff has recently proved that Theorem 3.2 below (the Kellogg property)
remains true for ¢> 1. It follows that Theorem 3.1 and its corollaries, including Theorem 1.1, hold for ¢> 1.
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2. Preliminaries about capacities and potentials

In this section we give a quick review of some necessary facts. We always assume
1<g<co,and set 1/p=1—1/q.

If mq>d the elements in WZ(R?) can be redefined on sets of measure zero to be con-
tinuous functions, but for mg <d this is no longer the case. Then the natural way of meas-
uring the deviation from continuity is by means of (m, g)-capacity, denoted Cy, ,.

For compact sets K <R? the (m, g)-capacity is defined by

Cp. oK) =1inf {|lg|l5.s 9€CF, ¢ >1 on K}.
The definition is extended to open sets G by
Cpn, (&) =sup {C,, (K); K < G, K compact},
and to arbitrary sets E by
C,, By =inf {C,, (G); @> E, G open}.

Thus C,, ,is an outer capacity.

If a statement is true for all x except for a set £ with C,, (Z)=0, we say that the
statement is true (m, q)-quasi everywhere ((m, ¢)-q.e.).

We will denote by G,, the Bessel kernel, defined as the inverse Fourier transform of
Go(&) =1+ |£]2)~™2. Then it is well known (Calderén [8], see also Stein [34]) that a func-
tion f is in WE(R), 1 <g< oo, if and only if it can be represented as a convolution f =G, *g,
geLs, and that A gll;<lln.c<4]gll

It is then not hard to show that (m, g)-capacity can be defined equivalently by

Cp. o B) = int {||g][&; 9 >0, G,x¢g>1o0n B} (2.1)

for arbitrary sets K.
For technical reasons it is sometimes more convenient to use the Riesz kernel R, (x)=
|2|™9, 0 <m<d. Then A=1G,(x) < R,(x) <AG,(z) for |2| <1, and

A0, J[EB)<int {||g||¢;9 >0, R,%xg>1o0n E} < AC, (E)

for B<{|z| <1}.

If 2m <d, (m, 2)-capacity is equivalent to the classical Riesz capacity with respect to
the kernel R,,. Thus (1, 2)-capacity is equivalent to Newtonian capacity if d>3 (and
locally to logarithmic capacity in the plane).
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The (m, q)-capacity has many nice properties. It is subadditive, i.e.
O, By U Ep) < Cp (E1) + Cp, { Ey),

and one can show that it is left continuous, i.e. for any increasing sequence of sets {E,}
=)
Cp, Q(U Ei) =lim O, (E)).
1 i—»00

(See Fuglede [12], N. G. Meyers [27], Ju. G. Refetnjak [30], V. G. Maz’ja~V. P. Havin
[25].) Thus, Choquet’s capacitability theorem applies, so that if F is a Borel or Suslin set,

C,, (EY =sup {C,, (K); K< E, K compact}.
The same authors proved that for Suslin sets (m, ¢)-capacity has a dual definition:
Cp, BV = sup {u(E); u>0, supp u < E, |G ujl, <1}. (2.2)

It follows that the extremal function g in (2.1) has the form g=(G, % u)*, where
supp u< E, u(B) =C,, (E), and G, (G, % u)P-1>1 (m, q)-quasi everywhere on Z.
The metric properties of C,, , are very well known, and the most exhaustive results

are found in Maz’ja and Havin [25]. Here we content ourselves with the following:

If mg>d then C, ({a})>0.
Tt mg<d then A-10“"™<(, (By) <A™, 0<s<L.

1-¢

1-¢
If mg=d then A"l(logg) <Cm,q(B,;)<A(log§) , 0<d<l.

If K<R®is a locally Lipschitz manifold of dimension d —k, then
CpndK)=0 if mg<Ek,
Cn.fEK)>0 i mg>Ek.

This last statement is what is needed in order to see that the theorem of Soholev
quoted in the introduction is a consequence of Theorem 1.2. See [18a].

The definition (2.1) immediately gives the inequality
COn.ol{ms Gmo¢ [g] > 2}) <2~g]lC.

In particular G, % g is defined (m, ¢)-q.e.
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One can extend this inequality to the Hardy-Littlewood maximal function Mf,
defined by

1
M f(z) =sup Bo@)] oo )| dy.

In other words, if f€ WZ(R%), then
Ol 2 > 1) < 41

See D. R. Adams [1]. Then, as Adams observed, if {y,} is an approximate identity, i.e.
Yal@) =0 (nx), ¥=0, supp y<By(l), [ydx=1, one can show in a standard way that
lim,, o, 7, % f(x) =f(x) exists (m, ¢)-q.e., and that f(x)=f(z) a.e. Moreover, for any &>0
there is an open G such that C,, ,(G)<e, and | is continuous on G°. Functions with this
property are called (m, q)-quasicontinuous. Thus, every f € Wi, has an (m, ¢)-quasicontinuous
representative. In particular, integrals G, % g, g €LY, are (m, q)-quasicontinuous. Cf. J. Deny
and J.-L. Lions [11], Maz’ja and Havin [25].

It is an important fact that an element f in W2 has a quasicontinuous representative
which is essentiolly unigque, in the sense that if ¢ and y are (m, ¢)-quasicontinuous, and
if p(x)=yp(x) a.e., then p(x)=yp(z)(m, ¢)-q.e. This result, stated in [11, p. 353], was first
proved by H. Wallin [35, Lemma 6] in the classical case m=1, ¢=2, and was extended to
the general situation by Maz’ja and Havin [25], and T. Sjodin [32]. See also Deny [9a].

We now define the trace f|; of a function f in W as the restriction to E of any (m, q)-
quasicontinuous representative of f. Thus f| is defined (m, ¢)-q.e. on E.

Since D% belongs to W,_,, the trace D?f|; is defined (m — ||, g)-q.e. on E.

3. Results and outline of proof

We shall prove the following stronger variant of Theorem 1.1.

Tarorem 3.1. Let fEWL(R?) for some q>2—1/d. Let K be closed, and suppose that
D*f| =0 for all &, 0< || <m—1. Then for any >0 there is a function w, 0<w<1, such
that w(@)=1 on a neighborhood of K U {0}, and ||wf||n,,<e. Morover, w can either be chosen
in O or so that (1 —w)fEL®,

This immediately implies Theorem 1.1. In fact, (1 —w)f has its support away from K,

and approximates f. A suitable convolution gives a C*® approximating function.

Remark. The existence of the multiplier e seems to be new even if f is already known
0 [
to belong to WE(K°®). This implies for example the following: Let & be open, let f€ Wi(G),

g>2—1/d, and suppose f >0 a.e. on G. Then there exist non-negative functions f, in (&)
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such that lim, .« [|f —f.||m,=0. Another interesting application has recently been given by
H. Brézis and F. E. Browder [7a].
Following N. G. Meyers [28] we say that a set E is (k, ¢)-thin, 1 <g< oo, at a point z,

if mg <d, and
f {Ok_,,(E n B,;(x))}p_ldé

§a-Fe 5 < %0,

8

0
or equivalently,

ngo {ore-ko gy BN By(a)} < oo a1)

If a set i3 not thin it is thick. For k=1, ¢=2 this agrees with the classical definition. (k, ¢)-
thinness for g==2 was first defined by Adams and Meyers [3], and the author [14].
Our proof of Theorem 3.1 depends crucially on the following fact.

TeEorEM 3.2. (The Kellogg property.) Let E<R®. The set of points belonging to E
where E is (k, q)-thin has zero (k, q)-capacity, provided ¢>2 —k/d.

For ¢=2,k=1 this is classical. For ¢=2, k<=1 it is due to Fuglede [12a]. For ¢=2
it is Corollary 2 to Theorem 6 in [14]. The proof depends on upper estimates of potentials,
due (for ¢g==2) to Adams-Meyers [3] and Maz’ja—Havin [25]. These estimates break down
for ¢<2—k/d, but whether the Kellogg property holds for 1 <¢<2—Fk/d is unknown, This
is the only obstacle to proving Theorem 3.1 for all g, 1 <¢<oo. (On the other hand, an
extension to ‘“fractional spaces’” seems to require different methods.)

Theorem 3.1 will be deduced from the Kellogg property and the following chain of

results.

TuroreM 3.3. Let K<R? The set of functions f in WEL(R?) such that D*f|x=0,
0< || <m—1,is a module over C™. More generally, if f, ¢, and fo belong to W, and D*| =0,
0< || <m—1, then D*(fp)| =0, 0< || <m—1.

This is an easy consequence of the uniqueness of quasicontinuous representatives. In
fact, let p € WY, and let D*| =0, 0< || <m—1. Suppose fp€ W%. Then D*({fp) belongs
to Wi |s, and is therefore (m — |a|, g)-quasicontinuous. But D*(fp) equals the pointwise
derivative of fp almost everywhere, so by Leibniz’ formula

Dfp)= 3 ﬁ!—D”fDW

Bry=cx ﬁ ! V'
But |B|<|«| and |y|<|«|, so D4f and D7¢p belong to W%_,,, and they are therefore
(m—|a|, g)-quasicontinuous. But then the expressions on the left and on the right are
both (m — ||, g)-quasicontinuous, and thus equal (m — |«|, g)-q.e. The theorem follows.
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We can now always assume that K is bounded, and that f has compact support. In
fact, by Theorem 3.3 we can multiply f by a cut-off function y €CF which is 1 on a ball
that is large enough for ||xf—f|[., to be small. It is thus enough to approximate yf for
any such y, and to replace K by K N supp y.

TEEOREM 3.4. Let K <R? be compact, and suppose that K is (1, q)-thick ot all its points.
Let f€eWE(RY), 1<q<co, and suppose that D*f| =0 for all o with 0<|a|<m—1. Let V
be an arbitrary neighborhood of K, and let £ >0. Then there is a O function o with support
in V such that 0<w <1, w =1 on a neighborhood of K, and ||fw||, ,<e.

This is Theorem 3.1 in [17]. We shall sketch the proof in Section 5 below.

TurorREM 3.5. Let K<R? be compact, and suppose either that C,, (K)=0, or that
Crie, o K)=0 for some k, 1 <k <m—1, and that K is (m—k+1, q)-thick at all its points. Let
FEWLRY), 1<q<co, and suppose (if k>1) that D*f| =0 for all a, 0<|oa| <k—1. (Note

that D°f| x =0 trivially for k<|o| <m—1.) Then the conclusion of Theorem 3.4 remains true.

This theorem improves on Theorem 4.1 in [17]. This improvement is the main new
contribution of the present paper.

We now sketch the deduction of Theorem 3.1 from Theorems 3.2-3.5. Let K be the
given set. As observed above we can assume that K is compact. We assume that ¢>2—1/d,
so that the Kellogg property is true for (k, ¢)-capacity for all k=>1.

Then, by Theorem 3.2, K can be split into m 41 disjoint sets, K=E,U B;U ..U E,,
with the following properties:

(i) K is (1, g)-thick everywhere on E;
(ii) O, (Ey)=0, and K\, (and K) is (k+1, g)-thick everywhere on B, k=1, ..., m —1;
(i) Clp, o H) =0,

Suppose the sets E, are compact. Then, using Theorems 3.4, 3.5, and 3.3, we can
successively approximate the given function f by functions f,, k=0, 1, ..., m, where f,=
(I —wo)f, fu=(1 —wp) 1, 0w, <1, 0, €ECP(V),w,=1 on a neighborhood of E,, and
e —foallm.o= leorefie1llm, o <27%72.

It follows that ||f—fuln.o<e and f,=f(1-w), where w=1—(1—wy) ... (1 —w,),
w€CP(V), w=1 on a neighborhood of K.

However, in general the sets B, are not compact, and the argument has to be modified.
We postpone the details to Section 5.

The last statement of Theorem 3.1 is a consequence of the following result.
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TurorEM 3.6. Let fEWH(R?), 1 <g <o, and let E be an arbitrary set with C,, (E)=0.
Then, for any &> 0 there is a function o in W, such that 0 < w <1, w =1 on a neighborhood of
E, {(1—w)EL> N W, and ||fo]|m <&

This is Lemma 5.2 in [17]. Since the proof is short and relatively self-eontained, it
will be repeated below in Section 5. J. R. L. Webb [36] has given an interesting applica-
tion of this theorem to non-linear PDE. See also H. Brézis and F. E. Browder [7a].

40 TOO]S

Let K<R? be closed. For any positive integer k and any ¢ >1 we define the “condenser
capacity”

Cr. (K N Bs(x), Bes(x)) = int {f|V"tp|“dy; @€ OP(Bzs(x)), p=1 on K N Bg(.’l?)}.

We define a “relative capacity” by
S, o K, Bs(@)) = 8~9C; (K N By(x), Bys(x)).
Then it is easily seen that ¢, , is homogeneous of degree zero, in the sense that
¢, (0K, By(0)) = ¢, (K, By(0)), 6>0.
Moreover, it is easily seen that

oK, Bs)yZA>0 if kg>d, unless KN B;=,
and that
A-te, (K, Bs) <80y (K N By) < Ay, (K, By),
if kg<d.
The proof of Theorem 3.4 depends on the following estimate, which was proved in
[17}. (Lemma 2.1, the case k=1.)

TarEorEM 4.1. Let K<R? be closed, let f€E Wi(By), 1<q<co, for some ball By that
intersects K, and suppose that D*f| gnp, =0 for all &, 0< |a| <m—1. Then

J‘Iﬂadxg__AﬁLf |Vmfleda.
By ¢1,o(K, Bs) By

This estimate cannot be used to prove Theorem 3.5, because in that situation
¢1,¢(K N B;s)=0. Theorem 4.1 has to be replaced by the following.
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TuEorEM 4.2. Let K and f be as in Theorem 4.1, except that D*f|gnx, is supposed to
vanish only for 0<|a| <k—1 for some k, 1<k<m—1. Then there is a polynomial P of
degree <m —1 such that

f If—P|°dx<—ﬂ~f |V"flede,
Bg cm-k-r-l.q(]{’ Ba) Bs
and
m—1
|Py)|<4 > (3"'1] |Vfldx, for all y€ B;.
j=k Bs

What we will actually need is the following consequence.

CorROLLARY 4.3. Let K and f be as in Theorem 4.2. Then

Adm™

e Vrflide.
cm—lc+1,q(‘K’ BB) B‘5| f,

f \fleda < A8 f |VEfledes +
Bs Bs
The corollary follows from the theorem by Minkowski’s and Hélder’s inequalities,

and the well-known inequality

5 f VEgledo< A f |p[ode+ Aom f |Vmg|ed. 1)
Bs By Bs

See e.g. [24; 1.1.8, p. 23].

Proof of Theorem 4.2. By homogeneity we can assume that 6 =1, and that Bj is the
unit ball, which we denote by B. By Hestenes’ theorem [19] we can assume that f € Wi (R7),
and that [,5|V/f|¢de<4 [z|V'f|?dx. Thus, it suffices to construct a polynomial P of
degree m —1 such that

[ 1= Plras< V" ffeds,
B

Cm—k+l q 1{7 ‘B f
. ( ) 2B
a/nd

m-1
|Py)[<4 > |Vif|dx, yEB.
i=k 2B

Let D*f|gnpy =0, 0<|a| <k—1. Then there is a sequence {f,} of C* functions such
that lim, ., D*,(x)=0, (m— ||, g)-q.e. on K, 0<|«| <k—1, uniformly outside a set of
arbitrarily small (m - |«|, g)-capacity.

We will first consider an arbitrary f in €, then apply the result to f,, and pass to the

limit.

16 — 812903 Acta mathematica 147. Imprimé le 12 Février 1982
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We write the Taylor expansion of f about a point ¢ as

flod= 3 @D )+ B ) =P ) + R ).

le]<m-1

Here

lz—yl
B o) =t [ (la=ul =0 0 Y+ o) ds

1 lz—vl
f WMo - V)" f(x — uo) du,

Tm—1)1J,

where o =(x~y)/|x—y|.
LemwMa 4.4, With the above notation
f IR;"‘lf(x)ldy<Af |V f(E)] | & — =" dE.
ly—2zl<1 1&-2l<1

Proof. Clearly

lz—
0

! lz—yl
| By f(=)| <Af u" YV f(x — uo)| du=Af w4 VP f(x — uo) |u? du.
0
Now set uo=¢£, and integrate over the unit sphere.

flal_l‘lRZ’_lf(x)lda<Af |E |4 V™ fw — £)] dE.

El<le—ul

Finally
1
f | Ry (=) | dy = 4 f f | R f(a) |+~ do dr
ly—2z|<1 0 Jlol=1

<Af |E]™¢|Vmfa — &)| dE, qee.d.
1§11

Now let € B and 2€2B be arbitrary, and let y€ BN K. In the end P:'f(x) is going
to be small. We will expand f(z) —P%~f(x) as function of # in Taylor series about z. We find

1
fwy= 3 ~5@=2)*D*(z)+ B f(x);

lalsm~1

1

oy BT A D)+ REHTD) )

D*f(y) =
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1
Pi@)y= 3 —(e—y)*D*(y)

fa]<k~1

- @ (4 — 2\8 Dot
|°¢‘§Z’C—l )m<,gm 1ol ﬁ! ((L‘ y) (ZI Z) D* f(z)

+ 3 ey RO )

j <1 0!

1
= 23 4 23 —mE-yry—2 DM+ R
fatBi<k-1 ek~ O ﬁ
kjatBlm~1

— 3 Le-arDr@+ 33— e—yf - D)+ R
pi<ie-1 P! wicim1 !l
k<la+flsm—1
In fact,

(@2 =22

¢+ﬂ=v°"(3’ “),(x Yy—2)7 "

Thus
[@-PSMe)= 3 e D= 33 iy - D)

k<lejm~1 & fay<k~1
ket Blm~1

1
TR @) - 3 ey RN DA) ().
fol<k~-1 %

Now integrate over {z; |2] <2}. By Lemma 4.4

1

eletem—1 Waoct

fley— Py fl) —

f (x—2)" D"z} dz
l2}<2

1
- 2 ey — \B patp
|r§<;fi1 w ! Bl e~y J;le {y—2)" D*"F f(z)dz

ket gi<m—-1

<, orells- et s [ uells—yieas

lal<k—1 J ig1<2

<4 f [VmHE)| | &~ 2|mddE+ A4 f [V™1(&)] |& ~ g 1-dag.
1<z L)

Now apply (2.2) and let 4 be a unit measure with support in K, such that

i/p
{fwl@ (J‘ £~ ylmykﬂvddmy))p%} < At ., K, By,
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and integrate with respect to y. We find

)~ f Pi (@) duly) - Pla)|< 4 f. LG

S A G IES T )

Here P(x) is a polynomial of degree <m —1 which satisfies

|P)|<4 3 f | D*f(z)| dz2, x€B.
l2}<2

k< |al<m—1

We apply this to f, where f,—f, and choose u so that D*,(y) tends to zero uniformly on
the support of u, 0<|x| <k—1. Clearly the corresponding polynomials P, converge to a
polynomial P, such that

@)~ P)| < 4 f. |Vl —alag+ 4 f. el as [ie=sir=r=rauw

1
< [ Tl aprsa s al [ IV} e i B

1&l<2

Integrating over z we finally obtain the desired inequality

J‘I I<1lf(m) - P(x) lqu< A ﬁ <2 lvmf(x) ‘qu : cm—k+1.q(I{= B)—l'

z

Remark 1. By using the inequality ([15; (3)])
q

a/
fl i 2IV”‘f(E)| |& — z|mtdE < AM(V™f) (x)l“’-{ J IV'"fI"d&} ,

0 =mq/d, and the Hardy-Littlewood maximal inequality, we obtain the “Sobolev ex-

ponent”:

Le* /g
{fl I<1|f(x) “r@l dx} <4 {flzlqlvmﬂx) |de} “Cmps, o K, B) MY,
(4.2)

Remark 2. Let K belong to the unit ball B, let f€ Wi(B), and let D*f| =0, 0<]a| <
k—1, for some k <m. It follows from the closed graph theorem that there exists a constant
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Ok, independent of f, and a polynomial P of degree <m —1 such that D*P|g=0 for 0<
|a| <k—1, and [5|f—P|de<Cx [|V"f|?de. In particular {z|f|%da<Cx [5|V"f|%du if
there are no such polynomials. See Maz’ja [22; § 5], where these questions are studied in
detail. ‘

However, it is difficult to say anything about C that is useful for our purposes, be-
cause Cx depends on algebraic properties of K. For example (as pointed out by V. G.
Maz’ja in conversation), if m=g=d =2, there is a constant C'x < co such that [|f|2dz<
Ck [5|V?f|*dz, if K consists of three non collinear points, but not if K consists of two
points. The idea of Theorem 4.2 comes from this observation. It is by allowing a polynomial

which does not vanish on K, that we can obtain an estimate in terms of capacity.

Remark 3. Estimates related to Theorem 4.1 were proved independently by N. G.
Meyers [28a]. D. R. Adams has pointed out to the author that Meyers’ arguments can be
modified so that they give alternative proofs of Theorems 4.1 and 4.2.

The following simple lemma will be needed in the proof of Theorem 3.5.

Lremma 4.5. Let f€ W{(B;). Then for any ball By, By,

l 1 1/q 1 1lig
S odpl 4 o
{|B3| Balfl x} {(Bd,2| BleI }

Proof. As before we can assume that f€ W{(R%), and that §=1. Then the left hand
side in the inequality equals

l 1/q 1 1/q
HWIBIFFBI,A (f 'f‘x"“d”)dy} ‘{*‘*—mnm , (f ”‘y)“’dy)d’”}

1 1/q
<{I—ETI”ETI @) =)l de dy} ,

Bug

6 1 1/q
< A0 —— VHe .
{IBaI ! 0

Now, as in Lemma 4.4, for any y € By,

[ t@-twpaes [ V- iwleds<a |er-eiviw-orae,
By lz—yl<2 1£1<2
whence

L s |f(x)— fly) | dedy < A f | VF(&)|edé,

181<5/2

which proves the lemma.
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Repeating the argument we obtain the following lemma, which is a special case of a
theorem of Sobolev. (See e.g. [24; 1.1.11, p. 26).)

LeMwMA 4.6. Let € WE(B;), and let By, Bs. Then

f|f|«dx<A(f |f]adx+am«f IV”‘fladx).
B Bsi2 By

Finally, the following interpolation inequality from [15] will have an important part
to play.

LeMMA 4.7. Let f=R,, % g, g ELYR?), and let 1 <j<m. Then, (§, q)-q-e.
|V | < ARy |g| < A(Mg)-—7/'™(R,,% Igl yim,

{Mg denotes the Hardy—Littlewood maximal funetion.)

5. Proofs of the main results

In this section we will use the following abbreviated notation for the average over

a set B: Y
5 ={rgq [ ita]

Here B will be either a ball B,(2) =B;-x»(x) or a cube @, and ¢ is fixed, 1 <g<<oo.
Let K and f satisfy the assumptions of Theorem 3.4. Then, by Theorem 4.1 and the
definition of thinness (3.1), for every €K and B, = B,(z)

o 2—ntn(Vm/)}p - 1
{ B, ' e

n=1

Thus Theorem 3.4 is contained in the following result, which was essentially proved in
[17; Theorem 3.1].

THEOREM 5.1. Let K be compact, and let f be a function in WE(R?), 1 <q<co, which
satisfies (5.1) for all x€ K. Then, given any & >0, and any sufficiently small neighborhood V
of K, there is a function w in CF(V) such that 0<w <1, w=1 on a neighborhood of K, and
follmo<A4 fv|V7f|%dz<e.

Remark 1. 1t is c]éarly enough to assume that f€ WE(K°), and extend f and its deriva-
tives to R? by setting them equal to zero on K. The conclusion is that the extended func-
0
tion belongs to Wi (R%) and to Wi(K®).
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Remark 2. Tt is easily seen that if f€ WL(RY) and satisfies (5.1) (m, ¢)-q.e. on K, then
D?f|g=0, 0< || <m—1. In fact, by a theorem of N. G. Meyers [28; Theorem 2.1]

3B < e

for B, = B,(z), (m, 9)-q.e. x in K. Thus, by (5.1), lim inf, ., B,(f) =0 for (m, g)-q.e. xin K.
But we know that

tim o | i)y = o
exists for (m, ¢)-q.e. « (Section 2 above), and thus f(z) =0, (m, g)-g.e. on K. That D% |,=0
for 1< |a| <m—1 follows in the same way using (4.1) and (5.1).

To prove Theorem 5.1 we decompose R? in the standard way into meshes M, of
closed dyadic cubes. The cubes in M, will usually be denoted {@,,}>: with some arbitrary
enumeration. The side of @,; has length 1(Q,;)=2"". By rQ, r>0, we denote the cube
concentric to Q with side 1(rQ) =r1(Q). We denote 7Q,;~=0,,.

For any Q,; we set 5
2—nm (ym D
Zni - min {1’ (O-Q—Qfl%.—)V]‘)) }' (5-2)

Now fix a point 2,€ K and let {@,0}-0, @no€ My, be a sequence of nested cubes that
contain a,.

Let 7, =max {Aas; @ni=3Quo}, and 4, =min {4,; @,,;=3Q,,}. Since QnoD B (), it fol-
Iows from (5.1) that

Let Q1. 3@n11.00 a0d Q,;< 3@, Then a moment of thought shows that 0, ,<
0. (In [17] this was stated erroneously with 5 instead of 7.) Moreover by Lemma 4.6,

Qni(f) < AQpq s(f) + A2~ Qn+1.i(vmf)-
Thus by (5.2)

Quf) S AR, + 1) 27D, (V™ < AR 3, 270 G, (V7 )
A ip - nm Qni(vmf) < A ig,; 2-rbm Qni(vm f)',
Ai= M2, 5,

and thus
A, > M-Y,,,, forsome M =M(d,m,p)>0.
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Once these observations have been made, the following lemma is the same as Lemma 3.2
in [17].

Lemma 5.2. Under the above assumptions there exists a C® function w with the following
properties:

(a) w{x)=0 outside an arbitrarily prescribed neighborhood V of K;
(b) w(x)=1 on a neighborkood of K;
(c) O0sw<1;

(d) Every x is contained in some @Q,; such that
| Viw(z)| < 42,27, k=1,2,.., 4 =A(k);

(e} There is a constant A, only depending on d, such that for all x

[> o]

Zo Z Znix(x; QM) < A,

n= 1
where the sum is extended over only those indices i for which Ve is not identically zero on @,;.
(x(-, E) denotes the characteristic function of E.)

Since the deduction of Theorem 5.1 from Lemma 5.2 is short we repeat it here.

Let V be a neighborhood of K, and choose w in Lemma 5.2 so that §,;< V whenever
@, intersects supp w.

It is enough to estimate [pe|VFew|?|V™ *f|%dz, 0<k<m. By Lemma 5.2 (d) we can
decompose R? in a disjoint union of sets @, (n, 1) €I, such that @;<@Q,,;, and | V¥ (x)| <
A2,;2™ on Q.

We observe that by (5.2) and (4.1)

f |V"‘_"f]"dx<Al}u-_"2‘"’“’f~ |V fldas.

é ni

Thus, for 1 <k<m,

f |VE@ ||V *flida< 4 5! 1§i2"’“’f | VmEflede<d 3 Ay, | V™ flede.

Ré (n.)ET [ (el Qi

Here 3’ indicates that we sum over only those @,; where Vo is not identically zero. Thus,

the sum is finite, although each point in K belongs to infinitely many §,, with (», 3) € L.
It follows from (e) in Lemma 5.2 that

S | 1Vtlede= [ 57 dtte, G|V 4 [ |97ba
14

(n,iyel Qs V (mi)el
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For k=0 we have

f |wV”’f|"dx<f | V7 fleda.
R4 v

We know that V™ 1f(x) =0 a.e. on K. Since V™71f is absolutely continuous on almost all
lines, and distribution derivatives are a.e. equal to ordinary derivatives, it follows from
Fubini’s theorem that V™f(z) =0 a.e. on K. Thus [ |V™f|?dx<e if V is small enough. This

proves Theorem 5.1.

If O) (K)=0, (5.1) is no longer true in general. Its place is taken by the following

result.

THEOREM 5.3. Let fEWLRY), and suppose that f|g=...=V* f|g=0 for some k,
1<k<m—1. Suppose that K ts (m—k-+1, q)-thick at a point x. Then, for B, = B,(x), either

& 2~"'"Bn(v'"f>}p=w
z{ B.(f) ’

n=1

t.e. (5.1) holds, or

| Ba()
B P S B R % [V ¢3)

Here A is independent of f, K, and x.
Proof. By Corollary 4.3
B,(f) < A27™B(V¥f) + A27" 0y g4y, (K, By) V4B (V™).
Thus, either
Bo(f) < A27"cp_ei1, o K, Ba) ™V B, (V") (5.4)
for all sufficiently large %, or else

B,(f) < A2 B, (V") (5.5)

for a sequence of integers » tending to + co. In the former case (5.1) follows from the
definition of (m —k+1, q)-thickness.
Now assume that (5.1) does not hold, so that lim, 2" ""B,(V™f)/B,(f) =0. We observe

that this implies that
lim 27" B, (V™f)|B, ., (f)=0
71->0

for any fixed positive integer r.
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In fact, by Lemma 4.6, B,(f) <A B,_{f)+ A2 " B,(V™), and thus
B2 By (V™) 2 A7 B,(f)[27"" B, (V"f) — 47,

which tends to -+ o, ag n—co,
Let n, be so large that
27" B, (V") < sB,(f) (5.6)

for all n>>n,y. Here ¢>0 and >0 will be chosen later.
Let n,>n, be an integer such that (5.5) holds for »=n,. By assumption », can be

chosen arbitrarily large, so the theorem follows if we can prove that

B,(f) < A27"B(B,_* | V"f]) (6.7)
for ny<v <n,.
We shall prove (5.7) by induction on v. We know (5.7) is true for »=n,. We assume
it has been proven for n,<n<v<n,;, and we want to prove (5.7) for v=n—1.
We write | V™| =g. By (4.1), (5.7) implies
B,(V¥f) < A2 B, (R, 4% g). (5.8)
We claim that (5.7) implies
Bv(Rm—k*g) <%Bv—1(8m-k*g)’ (59)

if r and ¢ have been chosen suitably.

Assuming (5.9) for the moment, we find by (5.8) and Lemma 4.5,

N1—1

B, (V< ')=B, (V') + 3 B(V* )= Bua(V¥Y)
v=n—1
-1
< A2 "By (Ry*g)+A S 27 B, (V)
r=n-1

Ny - 3 »—n+l o
<aB(Buixg) 3 27(3) T a2 OB, Ry o).

ry=n~1

But then, in the same way,

-1
B, y(VF2f) = Bo (V2 )+ 3 By(V¥"2f) — B,y (V%)
1

V=N

m-1
<SB(VF*f)+4 3 27" B (V7))
1

<A Y 27"B(R, %9

v=n-1

na o 3 v-n+l o
<4 3 27* (‘) B, y(Ry % g)=A27%""VB, (R, . %g),

r=n—1 2
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and so on. Thus
Bn—l(.f) < Az—k(n_l)Bn—l(Rm—k*g)

for an absolute constant 4, which proves (5.7).
To prove (5.9) we observe that for any positive integer r

1 1/q
By(R,, ;% g) = {lB_l JB (Bopi g9)° dx}

1 lig
s {l—é—l fB (JB Bz —y)9(y) dy)qu}
1 a lig

Using the inequalities ||h*gll, <||2]|1[|g]le anQ fizico—n Br_g(®)dz <A27"""® on the first

term, we find

q 1/q
B,,(R,,,_k*g)<A2"”‘"’“k)Bv_r(9)+{|'B}‘“l L ( Lc Rm_k(x—y)g(y)dy) dx} .

Similarly

1 q l/q
B, (Buw*9)> {m L (L Ry iz —y)9(y) dy) dx) — 4270 B,_(g).
v-1 -1

V-7

But by (5.6
e eo B,_(9) < 2" B,(f).

Thus, if B,(f)<A2 **B/(R,_;*g), we have 2""®®B (5)<eB,(R,_,*g). Furthermore,

by choosing r large enough, we can make sure that
1~& < Ry y(y)/Bpiy—2) <1l-+e
for x€ B, y€ B;_,, independently of n>0. It follows easily that
By(Bp % 9) < (1+4e) B,y(Ry 3¢ g) <S§B,_y(Ry x%9),

if £<1/24. The theorem follows.
The following theorem is contained in Theorem 4.1 in [17], but we repeat the main

steps of the proof.

THEOREM 5.4. Let K be compact, and suppose that C,,_, (K)=0 for some k, 0<k<
m—1. Let f€ WL(RY), and suppose either that k=0, or that k > 1 and f satisfies (5.3) everywhere
on K.
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Then, for any neighborhood V of K, and any >0, there is an w €CF(V) such that 0 <

w <1, o =1 on a neighborhood of K, and ||fw]|,,,<e-

Remark. As in the first remark following Theorem 5.1 it is enough to assume that
FEWL(K®). See [18a], Lemma 2.

Proof. Let (if k>1) BEy={x€K; B, ()< N2"™B, (R, % |V™f|), Vo= N}. Then E, is
closed, since B,(f) and B,(R,, ;% |V"f|) are continuous in #. By assumption K = Uy Ey
for any M.

First let M be so large that V is a 27 *.neighborhood of K, and assume either that
K =E,, or that k=0,

Let {@} be a Whitney covering of K°, and let ( =AQ be suitably enlarged cubes so
that J contains a ball centered on K which contains Q. Denote the center of by .

Let 6>0 and let G5 be the union of all @ such that |@] " [z (B, | V"] )2da>d-2
By Lemma 4.2 (a) in [17] we have C,,_, (G5) <48 f||%.. Since Cp,_, (K) =0 we can there-
fore choose a neighborhood G5 of K such that G5< Gy, and

Crte.o(@5) < A8|f||5. o

We can also assume that Gy\ K is a union of Whitney cubes. Then, for all Whitney cubes
@ not in G5 we have

ﬁ f@ (R % | V] )0 672, (5.10)

As in [17], p. 72, we let v be a positive measure with support in Gy, such that V> =
Ry % (By % v)P~121 on Gy, and || R, 5% v|[5<AC, 4, (Gs).

We then let @(r), r >0, be an increasing C® function such that ®(r)=0 for r<§, and
@(r)=1 for r>3/4, and we set o =PoV?, so that w=1 on G4, and w €CF.

This can be done in such a way that supp w <V, and so that (by Lemma 4.5 in [17])
there is a function />0 such that

jm W< AC,,_, ((Gs) < A0Y IS, & (5.11)

(If mg=d the integral should be taken over a fixed ball containing X.)
h has the Harnack property, i.e. for any Whitney cube @

A-h(y) <hle) < Ah(y), »€Q, yEQ; (5.12)

| Vo (z)| < Ab(z); (56.13)
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| V-t (z) | < Ab(z)" P00,k < <m; (5.14)
|V”‘—fw(x)| < Ah(x)UQ)F, j<k, z€Q. (5.15)

Here Lemmas 4.4, and 4.6 in [17] have been used.
We can now estimate [gz| V™ ‘o |?| V/f|%dz, 0<j <m. Let @ be a Whitney cube where

Ve does not vanish identically.
First consider the case 0 <j<k. We know by (5.3), (4¢.1), and (5.10) that

f QIV" fleda < AUQ)*— f 5 (Bt |V f|yeda < AYQ)*7| Q| o<

Then, by the Harnack property (5.12), (5.15), and (5.11)

f |Vt oo W fledar < A UQ)UQ) 4| @|d-0< A f K.
@ Q

Thus
f |VmT o [2| V7 f|ede < A5-¢ f hada < A% e
Ré Ré

Now let k+1<j<m—1. Write |V™f| =g, and (m—j)/(m—k)=0. By Lemma 4.7 we
have |V/f| <A(Mg)'~%(R,_x*g9)°. By (5.14), (5.12), (5.10), and Holder’s inequality

L V"o Vif|ide< A f . WM )P Ry % 9)*

1-0 1 4
< Ah(xQ)eql Q!a {f (Mg)“dx} {WI f (Bpr¥9)° dx}
Q Q

) 1-9
<A{f h"dz} {f (Mg)“dx} 67,
Q Q

By Holder’s inequality for sums

0 1-0
f [V w|?|V! flede < A{f h"dx} {j (Mg)"dx} 6
Rd RE Ré
< Al MG 670 < Al o

Finally for j=m, fge|w]|?|V"f|?%d2< [re|V™f|%z. Thus, ||of,, is uniformly bounded,
independently of 8. On the other hand w(x)f(z)—0, as 6—0, for x€K°. Thus there is a
sequence {w,}, n—>°, such that w,f tends to zero weakly in Wf. By the Banach-Saks
theorem there is a sequence of averages tending strongly to zero in W#(R?), which finishes
the first part of the proof.

Now let K be as in the theorem. We have K = U%-y By, where B, are compact. Let
0 <& <}[|f]ln. s @nd let w,, be the function just constructed, so that supp wy, <V, 0 <wy <1,
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@y =1 on aneighborhood Gy of By, and ||fewy||m, o <&/2. Set fyy=f(1 —wa),s0 that ||f — fallm,¢ <
/2. Then for each B,(x), €Ky 4, n=M +1, we have

B,(fa) < Bu(f) < (M +1)27"By(B, % |V7f]),
and thus, by (4.1), for 1 <j<k,

Bo(Vfy) < A2V B, (fu) + A27"*"P B, (V¥fy)
< AM + 127 X(B(Ryy % | V) + Ba( Bpse ¥ | V7 ar]))-

By a slight modification of the first part of the proof, using the fact that ||fyl/m.o<
2||f{lm, o> We now construct wy,; 8o that 0 <ewy,; <1, wpy, =1 on a neighborhood G, of
By, and ||fyouia||m,q <6272 Set farg=fu(l —w0riq), 80 that ||fu—farsillm,o<e27% and
fas1=0 on Gy U Gy, Proceeding inductively we construct fyso that ||f —fyl|m, o <e 51 Y277,
and fy=0 on Uy G,, G,> E,. But K is compact, so fy=0 on a neighborhood of K if N is
large enough. This proves the theorem, if we set w=1—(1 —awy,) ... (1 ~wy).

Theorem 3.5 is now an immediate consequence of Theorem 5.3 and the following

extension of Theorem 5.1.

TarorEM 5.5. Let K be compact, let f€ Wi(R?), and let 0<k<m—1. Suppose that f
satisfies (5.1) everywhere on K, except on a set E< K such that C,,_,(E)=0, and suppose
(¢if =>1) that f satisfies (5.3) everywhere on E. Then, for any neighborhood V of K, and any

£>0, there is an w €CP(V) such that 0<w <1, w=1 on a neighborhood of K, and ||fw||x,,<e.

Proof. Let V be given so that f,|V™f|?dz<e? and choose M so large that V is a
2" M.neighborhood of K. Let B, = B,(x) and set

N (2B (V)
nfeens 2 () =)
We can assume that B,(f)==0 for all » and all z€ K, since otherwise =0 on B,(x), and K
can be replaced by K\ B,(«). Thus the above sum is a continuous function of z, and Fy
is compact. Moreover, K\ E< U5 Fy.

By the proof of Lemma 5.2 there is a function wy€C¥(V) such that wy=1 on a 27%-
neighborhood of Fy, 0<wy<1, and |lwyf[|f. <4 v |V"f|¢dx. Moreover, it is easily seen
that wy can be constructed so that wy=1 on a 2-"neighborhood of F, for each n=M,
M+1,...,N. ({wy} is essentially an increasing sequence.) Thus there is an increasing
sequence of open sets Gy, Gy> Fy, such that wy=1 on Gy, and ||wxf||Z <4 [,|V"f|%de.

Set H= U3 Gy. By weak compactness there is a weakly convergent subsequence of

{(1 —wy)f} that converges to a function f,, which vanishes on H, and satisfies |[f —fq|lm.¢ <
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Ae. By the Banach—Saks theorem a sequence of averages of {(1 —wy)f} converges strongly
to f,. We can also assume that these averages are of the form (1 —d@,)f, where 0 <@, <1,
and @, =1 on some G; , with lim,_,, %, = ©°.

Nowlet By={x € K\ H; B,(f) SN2™™B,(R,,_,* |V"{|),Yn=>N}.Then K\ H = U% Ey
for any M, K\ H is compact, and C,_; (K~ H)=0 by assumption. As in the proof of
Theorem 5.4 we have for x€ Ey and all B,(z), n=> N, that

B.(fo) < By(f) < N2 By(Rp i % | V]),
and
B(V¥fy) < AN2™™* 2(By( Ry | Vf]) & Byl R % | V7o )

for 1<5<k.

Thus, as in Theorem 5.4, we can construct a function o’ €CP(V), 0<w' <1, w' =1 on
a neighborhood H’ of K™\ H so that [[foe’| .. ,<e. It follows that f =fy(1 —w’):o() on a
neighborhood HUH' of K, and ||f—f||lm¢<If —follm. o+ fo@ || m.o <Ae, so fEWL(KC).
Moreover, ||f' —{(1—@,) (1 —0")]|m.¢ <4 MaXgenm || DL =0 oo |fo—F1 = @) ||m, <€ if n is
large enough. Since K\ H' is compact and KN\ H'< U5, G,, it follows that f(1 —@,) X
(1—w’)=0 on a neighborheood of K if » is large enough. Set w =1—(1—@&,) (1 —w’). Then

o satisfies all the requirements of the theorem.

Proof of Theorem 3.1. To prove Theorem 3.1 we only need to modify the preceding
argument slightly.

Let K be an arbitrary compact set, and let f be the given function. Let V, M, Fy, vy,
@n, fo, Gy, and H be as in the preceding proof. Denote H by H,,.

By the Kellogg property and Theorem 4.1 we have C; (H\ K)=0. Now let E,y=
{x€ K\ Hy; B,(f)y<A27"™ VB (R,% |V™"]), Vo> N}.Then B, is compact, and C; (Fy) =
0. Moreover, by the Kellogg property and Theorem 5.3 (applied for k=m—1), we have
Oz,a(K\(Ho U(UR-n Ex)))=0.

As in the proof of Theorem 5.4 there are functions w,,€CF(V) such that 0 <w;y<1,
wy=1 on a neighborhood H,y of By, and functions f,y=fo(1 —w1u).... (1 —w,y), so that
fiv=0on U% Hy,, and ||fo—finllm, o <€/2. Set Hy = U% Hy,. As in the proof of Theorem 5.5
a sequence of averages of the functions f,, converges strongly to a function f,, such that
f1=0 on HyUH, and ||fo—fy||lm,¢<&/2. We write f;=lim, .« fo(1 —@y,), and assume that
Brn=1 on Hy; , limg e 4, = 2.

Now let E,y={z€K\(HUH,); B,(f)<A2 ™™ ?PB, (Ry* |V™f|),Yn=N}. Then
Cy, {Esy) =0 for each N, B, is compact, and Cy (K™ (Hy U H, U (U%-y Fpy))) =0. We con-
struct functions w,y, Wy =1 on neighborhoods H,y of By, foy=11(1 —@ay) ... (1 —wyy), and
a function f, =lim f,(1 — &,,), so that f,=0 on H,= U H,y as before, and ||f, —f, ||, <€27%
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We proceed inductively until we have constructed f,,_, =lim, o0 fn_o(1 — Dy, )80 that
Frcs = Fmallm, e <€27™"2, g =0 on U%Z§ Hy, Hy=UR-s Hyy, Hyy is a neighborhood of

k-1

Em={x€K\(U Hj); B,(f) < A2“"(m—k)Bn(Rk* lefl ), Y = N}
0

Then C,, (EN\(UF ! Hy))=0, and K\ (U7 H,) is compact. Thus there is an w,, €OF(V)
such that w, =1 on a neighborhood H,, of K\ (U§ ™" H,), and f,={(1 —,)f,_, satisfies
fn~Frallm,q<€2~™. Tt follows tl;at lfn—Hlm.c<e» and that f,,=0 on U§ Hy, which is a
neighborhood of K, and thus € WE(K°®).

Finally, if liMuse [[fnoy—(1=&pny.n)fmsllm (=0, it follows as before that

”fm_(l _wm) (]- "'J)m—l,n) fm—2"m.q = ”(1 —wm) (fm-l_(l _d’)m-l,n) fm—z)"m.a

< 4 maxyen|| D —on)|o lfm1— 1 —@ng.n) frucs|lm, o0 a8 n—>oo.

Moreover, by compactness (1 —w,)(1 —@,_;1,,)=0 on a neighborhood of K\ (Ug *H)
if n is large enough. Continuing backwards step by step we find that there are functions
@remp £=0,1, .., m—1, 50 that @=1—(1—@q.u)(L=@y.p) - (L —Ppog,mpe 1) (1 —0p) =1
on a neighborhood of K, and ||fw||,,<e. This proves Theorem 3.1, except for the last

statement. But this follows directly from Theorem 3.6, which we now prove.

Proof of Theorem 3.6. See also [36], where a somewhat simpler proof is given for the
case B =0.

Let f€ Wi(R?), and suppose that C,, (E)=0. As always we can assume that { has
compact support, and that E is bounded.

Wehave |f(z)] <4 [|z—y|™ ¢|V"f(y)|dy=AR,*g(x),g=|V"f|. We can assume that
lolo-1.

Let G, ={x; R,*g{x)>n}. Then G, is open and O, (Gr)<n=% We can choose open
G, so that BEU G, G, and O, (G,)<n"

By a now well-known result of V. G. Maz’ja [23; Theorem 3.3] (see also Adams-
Polking [4]) there is a function @ such that w(z)=1 on G,, 0<w <1, and |0, ,<4n".

As has been pointed out by D. R. Adams [2; Proposition 1], Maz’ja’s theorem can
now be proved rather easily by means of the interpolation inequality in Lemma 4.7.

Let in fact ¢ >0 be any function such that R,*@>1 on G, and ||p[|,<n"%, and let
again @(r), » >0, be an increasing C® function with ®(r)=0 for <} and @(r) =1 for r=>1.

Then set w=®o(R,%¢), and estimate the derivatives of v by means of the chain
rule and Lemma 4.7, keeping in mind that Viw=0 on &,. A computation which we omit

(see [2], [17; Lemma 4.5] or [36; p. 131]) gives
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|Viw| < A(Me)™, 1<j<m,
and
|VPw| < AMop+ A|V™(R,*¢)]|.

It follows from the last inequality that [|V™w|%dz<A4 [¢*de<Ant, ie. Maz’ja’s
theorem.

We now want to estimate |[fo||,, .. It is easily seen that [|w|¢|V"f|?dx is arbitrarily
small, so it is enough to estimate [|Viw|¢|V™ f|%dx for 1<j<m. Applying Lemma 4.7
again we find

| V™ If| < ARyxg < A(Mg)*~ ™ (R,, % g)''™
Moreover, R,,%g<n off G,, so we obtain
| Vi | |V f| < A(My™(Mgyt-mniim, 1<j<m-—1.
By Holder’s inequality, and the Maximal theorem,
Iatgymatg =1y < gl ol < e = o

For j=m we have |V"w||f| <|V"w|n, so for all j, 1 <j<m, we find
f|V’w|“|V'""f|"dx< A, independently of «.

But as n— oo, w(x)->0 a.e., so the theorem follows by weak compactness, and the Banach—
Saks theorem.

6. Applications

We give a few applications and equivalent formulations of Theorem 1.1, in addition
to the application to the Dirichlet problem given in Theorem 1.2. Proofs are found in [17].

See also the survey [18].
Let W2, (R% denote the dual to W3 (R?).

THEOREM 6.1. Let T be a distribution in W ,(R?). Suppose 1 <p<2+1/(d—1). Then
for any >0 there are measures iy, o muliiindices with 0< || <m—1, such that supp u,<
supp T, and ||T -3 D*Uq||—m,» <&

TueEorEM 6.2. Let G R? be bounded and open. Suppose 1<p<2+1/(d—1). Let
A™u=0 in G and suppose u €LP(G). Then for any >0 there are measures p,, 0< || <m—1,

supp p,< oG, such that

<e&.

w@- 3 f D“Em(x—wdm(y)‘
LP(R)

O<feism—1

Here E,, is the fundamental solution to A™, i.e. A"E, = E, A™=.

17 — 812903 Acta mathematica 147, Imprimé le 12 Février 1982
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We say that a compact set K<R? is (m, q)-stable if every f in Wi(R?%) such that f
vanishes on K° actually belongs to Pf’?,,(K °). See Babugka [5], Schulze-Wildenhain [31], and
[18].

It is well known that K is (2m, g)-stable if and only if every f in L?(X) which satisfies
A™f=0 in K° can be approximated in L?(K) by functions which satisfy the equation on
neighborhoods of K. See [5], [17] and [29].

TaEOREM 6.3. K is (m, q)-stable for ¢>2 —1/d ¢f and only if every | in W(R®) such that
f| ze=0 satisfies D*f| =0 for all &, 0< || <m—1.

Turorem 64. K is (m, g)-stable for ¢ >2~1/d if K°is (k, q)-thick (k, g)-q.e. on 8K for
k=1,2,.., m.

THEOREM 6.5. K is (m, q)-stable for g>2 —1/d if thereisann >0 suchthat Cy, (U\K) >
N0, JUNK®) for k=1,2, ..., m and all open sets U.

Remark. T. Bagby has recently given a necessary and sufficient condition for L*-

approximability by solutions of elliptic equations. See [6a].
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