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1. Introduction 

Consider functions ] in the Sobolev space W~(Ra), 1 <q  < ~ ,  i.e. functions such tha t  

>~0<l~l<m ~Ra]D~/]adx=l]/Hcm, q <cr  For any set E in R a one can define the trace on E 

of / and of its partial derivatives D:/ ,  ]~[ ~<m-1,  in a natural  way. (See Section 2.) We 

denote these traces b y / ] E  and D~]]E. Our main result is the following theorem. 

T H ]~ o ~ E M 1.1. Let / E Wq~(R a)/or some q > 2 - 1/d, and some positive integer m. Let K ~ R a 
o 

be closed, and suppose that D~][ K = 0 / o r  all or, 0 ~ ] zr I <~ m - 1. Then / E Wq,~(KC), i.e. there exist 

/unctions Vn E C~ such that each q~n vanishes on a neighborhood o / K ,  and l imn~o H / -  q~ H m. a = O. 

By analogy with the classical spectral synthesis of Beurling (see e.g. [20]) we say tha t  

sets K with the approximation property in the theorem admit  (m, q)-synthesis. Thus, in 

contrast to the situation in harmonic analysis, the conclusion here is tha t  all closed sets in  

R ~ admit  (m~ q)-synthesis, at least i / q  > 2 - 1 / d .  

Among the consequences we mention the following uniqueness theorem for the 

Dirichlet problem. This is in fact an equivalent formulation of the result in the case q = 2. 

By way of illustration we only formulate the theorem in the simplest case. Generalizations 

to more general elliptic equations are immediate. See T. Kolsrud [21] for an extension to 

situations where u is defined only in G. 

THeOReM 1.2. Let G ~ R  a be a bounded open set. Let u~ W,~(R a) satis/y Ainu=0 in  G, 

and n~ul~o=O, O< Izr ~<m-1.  Then  u=--O in  G. 

That  this is a consequence of Theorem 1.1 is obvious, because it is well known tha t  if 
0 

A~u=O in G and uE W2,~(G), then u=O. 

(1) Supported by the Swedish Natural Science Research Council. 
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Consequences fo r / / - approx ima t ion  by solutions, and stability are given below in 

Section 6. 

In the case m = l ,  q=2, Theorem 1.1 is due to J.  Deny [9; Theorem II: 2, p. 143]. 

(This reference was unfortunately overlooked in the survey [18].) This result was extended 

to abstract Dirichlet spaces by A. Beurling and J. Deny [7], [10; p. 168, p. 172]. For  m = 1, 

1 <q < cr the theorem is due to V. P. Havin [13], and T. Bagby [6]. See also [14; Lemma 4]. 

All these proofs depend on the fact tha t  W~ is closed under truncation. 

Theorem 1.2 was proved by S. L. Sobolev [33], [33a; Theorem 3, w167 14, 15] in the case 

when G is bounded by a finite union of smooth manifolds (of arbitrary dimension). In the 

above generality the uniqueness problem was formulated, and its equivalence with the 

(m, 2)-spectral synthesis problem was pointed out by B. Fuglede. (See B.-W. Schulze and 

G. Wildenhain [31; IX, w 5].) See also [18a]. 

The (m, q)-synthesis problem was also approached by J. Polking [29] and the author 

[16], [17], who were motivated by an / / - approx imat ion  problem for harmonic and poly- 

harmonic functions. See also [18]. 

The present paper is a continuation of [17], and the same technique is used. However, 

an effort has been made to make the paper readable independently of [17]. 

The proofs depend on a detailed study of the behavior of functions in W,qn close to 

their zeroes. This study depends on the properties of (m, q)-eapacities and the corresponding 

(non-linear for q#2)  potentials, the theory of which is due mainly to B. Fuglede, Ju. G. 

Re~etnjak, N. G. Meyers, D. R. Adams, V. G. Maz'ja, and V. P. Havin. See e.g. [12], [30], 

[27], [3], [25], [26], [14]. See Section 2 below. 

I am grateful to V. G. Maz'ja for an enlightening conversation in connection with the 

crucial Theorem 4.2, and to B. Fuglede for drawing my attention to the equivalence of 

(m, 2)-synthesis and uniqueness for the Dirichlet problem. 

I am also indebted to these mathematicians, and to D. R. Adams, T. Bagby, V. P. 

Havin, and P. W. Jones for pointing out a number of obscurities and inaccuracies in the 

manuscript, and for many other useful comments. 

Our notational conventions are the following: If E is a set, its interior, closure, and 

complement are denoted respectively E ~ E, and E ~ If G is an open set, C~(G) denotes 
0 

the infinitely differentiable functions with support in G. W~(G) is the closure in W~(G) 
of C~ V m/is the ruth gradient of a function, i.e. Vm]={Dy; ]~] =m), where ~ denotes 

multiindices, and ]Vm]] =51~t=m IDYll �9 The ball {yeRa; ]y-x] <~} will be denoted B~(x) 
or B~. If ~ =2  -n we write Bn(x ). The letter A will denote various positive constants, whose 

value can change from one line to the next. 

Added ~n preol, Dee. 30, ][981. T. Wolff has recently proved that Theorem 3.2 below (the Kellogg property) 
remains true for q>  1. I t  follows that Theorem 3.1 and its corollaries, including Theorem 1.1, hold for q>  1. 
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2. Preliminaries about capacities and potentials 

In  this section we give a quick review of some necessary facts. We always assume 

1 <q  < ~ ,  and set l ip  = 1 - 1/q. 

I f  mq > d the elements in Wq(R ~) can be redefined on sets of measure zero to be con- 

tinuous functions, but for mq <~d this is no longer the case. Then the natural  way of meas- 

uring the deviation from continuity is by means of (m, q)-capacity, denoted C~. q. 

For compact sets K c R ~ the (m, q)-capacity is defined by 

The definition is extended to open sets G by  

Cm,Q(G) = sup {Cm,q(K); K ~ G, K compact}, 

and to arbi trary sets E by  

C,~.q(E) = inf (C,~.q(G); G ~  E, G open}. 

Thus C~, q is an outer capacity. 

I f  a s tatement  is true for all x except for a set E with C,n.q(E)=O, we say tha t  the 

s ta tement  is true (m, q)-quasi everywhere ( (m, q)-q.e.). 

We will denote by  Gm the Bessel kernel, defined as the inverse Fourier transform of 

~m(~) =(1 + ]~1~) -m/2. Then it is well known (Calder6n [8], see also Stein [34]) tha t  a func- 

tion / is in W~(Rd), 1 <q  < ~ ,  if and only if it can be represented as a convolution / = Gm~eg, 

g EL q, and tha t  A-111gllo < ll/il ~ < A Ibll o. 
I t  is then not  hard to show tha t  (m, q)-capacity can be defined equivalently by 

O,.,q(E) = inf {ligHt; g ~ o, a ~ - g  >/1 on E} (2.1) 

for arbi trary sets E. 

For technical reasons it is sometimes more convenient to use the Riesz kernel .R,~(x) = 

Ixl m-a, 0 < m < d .  Then A-iG,~(x)4Rm(x)<AG,n(X)for Ixl 41,  and 

A-1Cm.q(E) <~ inf {llgll~; g >~ o, R ~ g  >i 1 on E} 4 AO,~,q(E) 

for Ec{Ix  I ~<1}. 
I f  2m <d,  (m, 2)-capacity is equivalent to the classical Riesz capacity with respect to 

the kernel Ram. Thus (1, 2)-capacity is equivalent to Newtonian capacity if d>~3 (and 

locally to logarithmic capacity in the plane). 
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The (m, q)-capacity has many nice properties. I t  is subadditive, i.e. 

C~. q(E 1 U E~) ~< Cm. q(E1) + Cm. q(E2), 

and one can show that  it  is left continuous, i.e. for any increasing sequence of sets {E~} 

Cm, q 1 ~--:,.oo 

(See Fuglede [12], N. G. Meyers [27], Ju. G. Re~etnjak [30], V. G. Maz' ja-V. P. Havin 

[25].) Thus, Choquet's capacitability theorem applies, so that  if E is a Borel or Suslin set, 

(~m,q(E) = sup {(~m.q(K); K c E, K compact}. 

The same authors proved tha t  for Suslin sets (m, q)-capacity has a dual definition: 

(~m,q(E) 1/q = sup {~(H); ~ ~> 0, supp ~t = H, IlGm~ll, <l}. (2.2) 

I t  follows that  the extremal function g in (2.1) has the form g =  (Gz~-tt) v-l, where 

supp t t c  E, re(E) = C m q ( E ) :  and Gm-)e(Gm-'/ett)v-x>~ 1 (m, q)-quasi everywhere on E. 

The metric properties of Cm.q are very well known, and the most exhaustive results 

are found in Naz' ja and Havin [25]. Here we content ourselves with the following: 

If  mq >d  then Crn.q({a}) > O. 

If mq < d then A - I ~  '~-mq ~ Cm.q(B,~ ) <~ A(~ tt-mq, 0 < ~ ~ 1. 

If  m q = d  then A -1 log <~Cm,q(Be)~A log~] , 0<c~<1 .  

If  K ~ R a is a locally Lipschitz manifold of dimension d -  k, then 

C,,.q(K) = 0 if mq <~ k, 

Cm,q(/~)>0 if m q > k .  

This last statement is what is needed in order to see that  the theorem of Sobolev 

quoted in the introduction is a consequence of Theorem 1.2. See [18 a]. 

The definition (2.1) immediately gives the inequality 

cm.o({x; Igl 

In  particular Gm~9 is defined (m, q)-q.e. 
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One can extend this inequality to the t ta rdy-Li t t lewood maximal function M/, 

defined by  

M/(x) = s u p  I B m ,  fB '/(y)' dy. 
> 0 ~(x) 

In  other words, if / E Wq~(Rd), then 

See D. R. Adams [1]. Then, as Adams observed, if {gn} is an approximate identity, i.e. 

Z~(x)=nag(nx), g>~0, suppx~B0(1  ), f zdx=l ,  one can show in a standard way tha t  

limnoooZn~e/(X)=f(X) exists (m, q)-q.e., and tha t  [(x)=/(x) a.e. Moreover, for any s > 0  

there is an open G such tha t  Cm. ~(G)<e, and ][ G* is continuous on G c. Functions with this 

property are called (m, q)-quasicontinuous. Thus, every / E W~ has an (m, q)-quasicontinuous 

representative. In  particular, integrals Gm~g, g EL ~, are (m, q)-quasieontinuous. Cf. J .  Deny 

and J.-L. Lions [11], Maz' ja and Havin  [25]. 

I t  is an important  fact tha t  an element / in Wq,, has a quasicontinuous representative 

which is essentially unique, in the sense tha t  if ~0 and ~p are (m, q)-quasicontinuous, and 

if ~(x)=~p(x) a.e., then q~(x)=yJ(x)(m, q)-q.e. This result, s tated in [11, p. 353], was first 

proved by H. Wallin [35, Lemma 6] in the classical case m = 1, q = 2, and was extended to 

the general situation by  Maz'ja and Havin  [25], and T. Sjbdin [32]. See also Deny [9 a]. 

We now define the trace/[~ of a function / in W~ as the restriction to E o/any (m, q)- 

quasicontinuous representative o//. Thus /]E is defined (m, q)-q.e, on E. 

Since D~/belongs to W7~_ I~i, the trace D~/[~ is defined ( m -  ]a ], q)-q.e, on E. 

3. Results and outline of proof 

We shall prove the following stronger var iant  of Theorem 1.1. 

THEOEEM 3.1. Let/EWqm(R d) /or some q> 2-1/d.  Let K be closed, and suppose that 

D~/I~:=O /or all ~, O~ [~l <~m-1. Then/or any ~ > 0  there is a/unction co, 0~<co~l, such 

that co(x) = 1 on a neighborhood o / K  U {oo}, and Ilco/llm, q <~- Morover, co can either be chosen 

in C ~ or so that (1 -co)/eLoo. 

This immediately implies Theorem 1.1. In  fact, (1 - c o ) / h a s  its support  away from K,  

and approximates / .  A suitable convolution gives a C ~ approximating function. 

Remark. The existence of the multiplier co seems to be new even if / is already known 
0 0 

to belong to W~(K~ This implies for example the following: Let G be open, let /E Wq,~(G), 

q > 2-1/d,  and suppose />~ 0 a.e. on G. Then there exist non-negative functions/n in C~(G) 
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such that  lim~_~o II/-/~ll re.t= 0. Another interesting application has recently been given by 

H. Brdzis and F. E. Browder [7a]. 

Following N. G. Meyers [28] we say that  a set E is (k, q)-thin, 1 < q < ~ ,  at a point x, 

if mq<~d, and 

fo ~ fC~.~(E n B~(x))) "-~ d~ l , 

or equivalently, 

{2~(d-kq)Ck.q(E N B,~(x))} p-1 < ~ .  (3.1) 

If a set is not thin it is thick. For k = l ,  q=2 this agrees with the classical definition. (k, q)- 

thinness for q#2  was first defined by Adams and Meyers [3], and the author [14]. 

Our proof of Theorem 3.1 depends crucially on the following fact. 

T ~ E O R ~  3.2. (The Kellogg property.) Let E ~  R ~. The set o /po in t s  belonging to E 

where E is (k, q).thin has zero (k, q)-eapacity, provided q > 2 -  kid. 

For q=2 ,  k =  1 this is classical. For q=2 ,  k # l  it is due to Fuglede [12a]. For q#2  

it is Corollary 2 to Theorem 6 in [14]. The proof depends on upper estimates of potentials, 

due (for q#2)  to Adams-Meyers [3] and Maz'ja-Havin [25]. These estimates break down 

for q ~ 2 -k /d ,  but whether the Kellogg property holds for 1 < q ~< 2 - k i d  is unknown. This 

is the only obstacle to proving Theorem 3.1 for all q, 1 < q <  ~ .  (On the other hand, an 

extension to "fractional spaces" seems to require different methods.) 

Theorem 3.1 will be deduced from the Kellogg property and the following chain of 

results. 

THEOREM 3.3. Let K ~ R  d. The set o/ /unctions / in Wq~(R d) such that D~/IK=0, 

0 <<. l ~ I <~ m -- 1, is a module over C m. More generally, i / / ,  of, and/q) belong to Wq~, and Da] ] K = O, 

0<  1or I < m - l ,  then D~(f~)l K=0, 0-<< I~l ~<m-1. 

This is an easy consequence of the uniqueness of quasicontinuous representatives. In 

fact, let ~ win, and let D~/I K=0, 0 <1~1 ~<m-1. Suppose 1~ ~ Wm T h e n  D~(/q~) belongs 

to Wq~_,~,, and is therefore ( m - [ g  I, q)-quasicontinuous. But D~(/cf) equals the pointwise 

derivative o f /q  almost everywhere, so by Leibniz' formula 

D~(/~) = 5 ~ D : / D ~ ' q  ~. 
~+~=~ P. ~- 

But 181 < I~1 and I~1 ~< I~1, so DP/and  D ~  belong to Wq~_I~I, and they are therefore 

(m-I : r  q)-quasicontinuous. But  then the expressions on the left and on the right are 

both (m - ]:r I, q)-quasicontinuous, and thus equal (m - ] a ], q)-q.e. The theorem follows. 
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We can now always assume tha t  K is bounded, and tha t  / has compact support. In  

fact, by  Theorem 3.3 we can multiply / by  a cut-off function z E C ~  which is 1 on a ball 

tha t  is large enough for I[g/--/[[m,q to be small. I t  is thus enough to approximate  Z / f o r  

any such Z, and to replace K by  K N supp Z. 

THE ORE~ 3.4. Let K ~  R a be compact, and suppose that K is (1, q)-thick at all its points. 

Let / e Wq~(Ra), 1 < q < co, and suppose that D~/ I K = 0 / o r  all ~ with 0 <~ I a I <~ m - 1. Let V 

be an arbitrary neighborhood o/ K,  and let ~ > O. Then there is a C ~ ~o with support 

in V such that 0~<eo~<l, ~o=1 on a neighborhood o / K ,  and H/eO]]m.a <e. 

This is Theorem 3.1 in [17]. We shall sketch the proof in Section 5 below. 

THEOREM 3.5. Let K c R  d be compact, and suppose either that Cm.q(K)=0, or that 

C ,~_~ . q( K ) = 0 / o r  some k, 1 < k ~ m - 1, and that K is ( m - k + 1, q ) -t h ic k at all its points. Let 

/eWq,~(Ra), l < q < c %  and suppose (i/ k~>l) that D~/IK=O /or all ~, 0<~ [~1 < k - 1 .  (Note 

that D~/ ]~: =0  trivially/or k < ]a I < m - 1 . )  Then the conclusion o /Theorem 3.4 remains true. 

This theorem improves on Theorem 4.1 in [17]. This improvement  is the main new 

contribution of the present paper. 

We now sketch the deduction of Theorem 3.1 from Theorems 3.2-3.5. Let  K be the 

given set. As observed above we can assume tha t  K is compact. We assume tha t  q > 2 -1 /d ,  

so tha t  the Kellogg property is true for (k, q)-capacity for all k >~ 1. 

Then, by  Theorem 3.2, K can be split into m + 1 disjoint sets, K = E 0 U E 1 0 ... U E~, 

with the following properties: 

(i) K is (1, q)-thiek everywhere on E0; 

(fi) Ck.q(E~)=O, and E k (and K) is ( k + l ,  q)-thick everywhere on Ek, k = l ,  ..., m - 1 ;  

(iii) Cm.q(E~) =0.  

Suppose the sets Ek are compact. Then, using Theorems 3.4, 3.5, and 3.3, we can 

successively approximate the given function / by  functions/k,  k = 0 ,  1 ..... m, where ]0 = 

(1-oJo)/ , /k=(1--eok)/k_l ,  0<.wk<---1, w ~ E C ~ ( V ) , o ~ = l  on a neighborhood of E~, and 

II/  -1 - 11 = 
follows that  II1-1 11 .o< , and where 

co E C~~ eo = 1 on a neighborhood of K. 

However, in general the sets E k are not compact, and the argument  has to be modified. 

We postpone the details to Section 5. 

The last s tatement  of Theorem 3.1 is a consequence of the following result. 
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T H~, OR E~ 3.6. Let /~ Wq~(Rd), 1 < q < 0% and let E be an arbitrary set with Cm. q(E)= O. 

Then,/or any ~ > 0 there is a/unction eo in W~ such that 0 <~ o~ ~ 1, o = 1 on a neighborhood o/ 

E, 1(1-to) eL~176 W~, and ll/oll=,o< . 
This is Lemma 5.2 in [17]. Since the proof is short and relatively self-contained, it 

will be repeated below in Section 5. J. R. L. Webb [36] has given an interesting applica- 

tion of this theorem to non-linear PDE.  See also H. Brdzis and F. E. Browder [7a]. 

4. Tools  

Let K ~  R d be closed. For any positive integer/r and any q >/1 we define the "condenser 

capacity" 

Ck.q(K N B~(x), B2~(x))=inf { f  'vkqJ'qdy; q~  C~(B2~(x)), qD>~ l on K N B~(x)}. 

We define a "relative capacity" by 

ck.q(K, Be(x)) = ~kq-'~Ck.q(K f3 Be(x), B2a(x)). 

Then it is easily seen that  %. q is homogeneous of degree zero, in the sense that  

Ck.q((~K , B$(0)) = ck.q(K, BI(0)) , 

Moreover, it is easily seen that  

and that  

if kq<d. 

8 > 0 .  

ck.q(K, B e ) ~ > A > 0  if k q > d ,  unless K f 3 B ~ = ~ ,  

A-lck.q(K, Be) <~ 6kq-dCk.q(K N Be) <. Ack.q(K, B~), 

The proof of Theorem 3.4 depends on the following estimate, which was proved in 

[17]. (Lemma 2.1, the case k = l . )  

THEOREM 4.1. Let K c R  ~ be closed, let /E Wq~(B~), 1 < q < o o ,  /or some ball Be that 

intersects K, and suppose that Da/IKnBo=O /or all ~, 0<~ I:r <~m--1. Then 

This estimate cannot be used to prove Theorem 3.5, because in that  situation 

cl.q(K N Be)=0.  Theorem 4.1 has to be replaced by the following. 
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THEOREM 4.2. Let K and / be as in Theorem 4.1, except that D~/l~rnB8 is supposed to 

vanish only /or 0 <~ I o~ I <~ k -  1 /or some k, 1 <~ k <~ m -  1. Then there is a polynomial P o/ 

degree <~ m -  1 such that 

and 

f .  l/_Pl~d~< A ~  Cm_k+l, q(K, B$)fB a I V~/lqdx' 

m l [ 
IP(y)]<A ~ ~'-~ IV'/ldx, /orallyeB$. 

t=tc J B(~ 

What  we will actually need is the following consequence. 

COROLLARY 4.3. Let K and / be as in Theorem 4.2. Then 

f~al/l~dx<A~, y~ lV~/l~dx + AO'~ Cm_k+l, q(K, B~) fB~ [Vm/lqdx" 

The corollary follows from the theorem by Minkowski's and I-Ihlder's inequalities, 

and the well-known inequality 

~'~ f [VkqJl~dx~A y~ lqJl~dx+A~m~ f Ivmq)l~dx. (4,1) 
J B~ d B~ 

See e.g. [24; 1.1.8, p. 23]. 

Proo/o/  Theorem 4.2. By homogeneity we can assume that  ~ = 1, and that  B~ is the 

unit hall, which we denote by B. By ttestenes' theorem [19] we can assume t h a t / 6  W~(Ra), 

and that  S2B IVTl~dx<A S,  IVTI ~dx. Thus, it suffices to construct a polynomial P of 

degree m -  1 such that  

A 
f ~ l / -  P]qdX~ cm_k+l.q(K, B) f J vm/ [qdx '  

and 

m_,f  IP(y)I<A ~ IV'/Idx, y e B .  
j = k  B 

Let D~/I~nB~=0, 0 <  I~I ~<k-1. Then there is a sequence {/n} of C oo functions such 

that  lim~._)ooD~/n(x)=O, (m-]:r q)-q.e, on K, 0~< 1~1 < k - l ,  uniformly outside a set of 

arbitrarily small ( m -  [a I, q)-capaeity. 

We will first consider an arbitrary / in Coo, then apply the result to/~, and pass to the 

limit. 

16 - 812903 Ac ta  mathemat ica 147. Imprirn6 le 12 Fhvrier  1982 
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We write the Taylor expansion of / about a point y as 

l(x) = ~.. 1 ( x -  yFD~l (y )  + R'~-ll(x) = P'~-~l(x) + R'~-~l(x). 
]~l<m-1 ~ "  

Here 

l f[-,i R~-i/(x) ( m -  1)! ([x-Y]-T)"-x(a'V)m/(Y+lra)dT 

1 ~2 x-yl 
= (m--  1)! um-l(a'V)m/(x-ua)dus 

where (~ = (x-y)~ I x--yl. 

L~MMA 4.4. With the above notation 

~lY_zl~l I R~-l/(:c)] ~y~< A I~_wl~llVm/(~)I I~- xlm-~g~. 

Proof. Clearly 

~iz-yt fLz-yi 

Now set ua=~,  and integrate over the unit sphere. 

Finally 

fl~_~l<llR~-l/(x)' dy= A f j  fl~,=l'R~-l/(x)'/-ldadr 

<A I~<~ I~p-flVml(~-~)l d~, q.e.d. 

Now let xEB and zE2B be arbitrary, and let yeB N K. In the end P~-l/(x) is going 

t}o be small. We will expand/(x) -P~-l/(x) as function of x in Taylor series about z. We find 

/(x)= ~ i ~.. (x - zP  D~l(z) + R~-~ l(x); 
[~l~<m-I - 

D~l(y ) = ~ 1 (y _ z)pD~+Pl(z ) + R~_I~I_I(Dal) (y); 
I,~l~<m-lal-1 p'. 
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P~,-~t(x) = 

In fact, 

Thus 

I 
~(x -y )~D~/ (Y)  

lal~<~-~ 

1 
~ a!fl!(x-Y)~(Y-z)~D~+~/(z) 

I:r I~l.<.<m- I,zl- 1 

1 + ~ ~(x-y)aR2-1~l-i(D~/)(y) 
]al 4 k - 1  

1~+,81<~k-1 1~14k-1 
,~<l,z+,814~- 1 

= Z ~ ~,1~-~ Y ~'(x-z)vDv/(z)+ ~ ~ ~!fi I(x-y)a(y-z)zDa+~/(z)+'R" 
k~<l~+tIK<m-1 

1 1 
/(x) - P~-~l(x) = ~, ~ ix - z)aD ~ l(z) - ~ ~ ~!~! (x - y)a (y - z)BDa+~](z) 

~{a+flK<m-1 

+ R'~-I/(x) - ~ -~.(x-y):CR~-I~I-I(Da/)(y). 

Now iI, teg~ate o~.r  {~; I~1 ~<2}. :By Lemma 4.4 

I/(x) _~_i / (x )_  ~ 1 ]l (x-~)~D*/(z)g~ 
k~<[~i<~m-1 (-Dd 0C ! zk<2 

- ~ Z 1 y)~ ; ( y -  z)PD~+Z/(z) dz 

k<~[ce+fll<~m-1 

]Now apply (2.2) and let # be a unit measure with support in K, such that  
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and integrate with respect to y. We find 

/(X)-- ~P~-l/(x)d~(y)-- P(x)l~ A ~$i~<2 [~Tm/(~)[ [~k--x[m-dd~ 

Here P(x) is a polynomial of degree 4 m -  1 which satisfies 

]P(x)]<A ~ f ]D•/(z)]dz. xEB. 
k~<la]~m-1 JIzl~<2 

We apply this to /=  where ],;-+/, and choose g so tha t  D~/n(y) tends to zero uniformly on 

the support of/x, 0 ~< [ a ] ~< k - 1. Clearly the corresponding polynomials P~ converge to a 

polynomial P,  such tha t  

�9 cm-~+l.q( . ) �9 

Integrat ing over x we finally obtain the desired inequality 

~,~,~ LI(~)- ~(~) I~ ~ ~ f,~,~ t~~176 ~o-~+~ 0(~, ~) -' 

Remark 1. By using the inequahty ([15; (3)]) 

ft~,< [v'n/(~)' [ ~-x,m-ad~ ~ AM(V"/) (x)'-~ { f  'V'V'qd~} ~'q, 

0 =mq/d, and the Hardy-Li t t lewood maximal  inequahty, we obtain the "Sobolev ex- 

ponent":  

* ]l/q* Ilia 
{flxKi]/(x)--P(X)]q dx[ <.A{fxl<~l'~rn/(x)'qdx I "Cm_k+l,q(g,s) -llq, 

1 1 m 
q* q d" 

(4.2) 

Remark 2. Let  K belong to the unit ball B, let/6Wqm(B), and let Da/]K=0,  0~< ]a I ~< 

k - 1, for some k < m. I t  follows from the closed graph theorem tha t  there exists a constant 
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C a, independent of 1, and a polynomial P of degree < m - 1  such that  D ~ P I a = 0  for 0 <  

I~l ~</c-1, and SB ]/-Plqdx<CK S, IW/I  qgx. In  particular ]B ]/IqdX~CK .[B IW/ l~  

there are no such polynomials. See Maz'ja [22; w 5], where these questions are studied in 

detail. 

However, it  is difficult to say anything about CK that  is useful for our purposes, be. 

cause CK depends on algebraic properties of K. For example (as pointed out by V. G. 

Maz'ja in conversation), if m=q=d=2,  there is a constant Cg< ~ such that  ]B l/] ~dx<~ 

c~ ~ IWll~d~, if K consists of three non collinear points, but  not if K consists of two 

points. The idea of Theorem 4.2 comes from this observation. I t  is by allowing a polynomial 

which does not vanish on K, tha t  we can obtain an estimate in terms of capacity. 

Remark 3. Estimates related to Theorem 4.1 were proved independently by N. G. 

Meyers [28a]. D. It. Adams has pointed out to the author tha t  Meyers' arguments can be 

modified so that  they give alternative proofs of Theorems 4.1 and 4.2. 

The following simple lemma will be needed in the proof of Theorem 3.5. 

L]Z•MA 4.5. Let/E W~(B~). Then/or any ball B$/~c Ba, 

- ~ 1/q 1 ~l/q 1 q'~llq 

Proo/. As before we can assume that  IE W~(Ra), and that  ~= 1. Then the left hand 

side in the inequality equals 

1{I.11 i-B1/21L,~(L I,(x)l~ dy}llq_ {i.nll i.~1/21 fB 1 (/Bll2ll(y) lqdy) dx}llql 
1 ] l:q 

Now, as in Lemma 4.4, for any y E BI: ~, 

whence 

l(y)l d < A L,,< I I'- 1 V/(y- 

which proves the lemma. 
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Repeating the argument we obtain the following lemma, which is a special case of a 

theorem of Sobolev. (See e.g. [24; 1.1.11, p. 26].) 

L ~ M ~ x  4.6. Let/EW~(B~),  and let B~I~c B ~. Then 

Finally, the following interpolation inequality from [15] will have an important part  

to play. 

L~M~A 4.7. Let / = R,n ~eg, gELq(Ra), and let 1 ~ ] <~m. Then, (~, q)-q.e. 

Iw-'/I <~ A R p e  ]gl ~ A(ig)l-j/m(l~m-)~ ]gl) tim" 

(Mg denotes the Hardy-Lit t lewood maximal function.) 

5. Proofs of the main results 

In  this section we will use the following abbreviated notation for the average over 

a set B: 

Here B will be either a ball Bn(x) =B2-,(x) or a cube Q, and q is fixed, 1 < q <  co. 

Let  K and / satisfy the assumptions of Theorem 3.4. Then, by Theorem 4.1 and the 

definition of thinness (3.1), for every x E K  and Bn= Bn(x) 

~o 2-nm B V m v 
o( / ) l  =oo (5.1) 

,~1[ Bn(/) J " 

Thus Theorem 3.4 is contained in the following result, which was essentially proved in 

[17; Theorem 3.1]. 

T~V.ORV, M 5.1. Let K be compact, and let / be a/unction in W,q,(Ra), 1 < q <  c~, which 

satis/ies (5.1)/or all x E K. Then, given any e > O, and any su//icientty small neighborhood V 

o / K ,  there is a/unction w in C~(V) such that 0~<eo~<l, eo= l  on a neighborhood o] K,  and 

II/ llm.o<  .I'," I 
Remark 1. I t  is clearly enough to assume that  l E Wq~(K~ and extend / and its deriva- 

tives to t t  ~ by setting them equal to zero on K. The conclusion is that  the extended func- 
0 

/ion belongs to W~(R ~) and to Wq~(Kr 
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Remark 2. I t  is easily seen that  i f / f i  W~(R a) and satisfies (5.1) (m, q)-q.e, on K, then 

D~/[K=O, 0<~ [~[ <~m-1. In fact, by a theorem of :N. G. Meyers [28; Theorem 2.1] 

o o  

E {2-'B,,(Vm/)} ~' < oo 
r~=l 

for B,=B,(x) ,  (m, q)-q.e, x in K. Thus, by (5.1), lira i n f . ~  B,(]) =0 for (m, q)-q.e, x in K. 

But  we know that  

lira - -  f(y) dy = fix) 

exists for (m, q)-q.e, x (Section 2 above), and thus fix)=0, (m, q)-q.e, on K, That D~]]K=0 

:[or 1 ~< lal ~<m-1 follows in the same way using (4.1) and (5.1). 

To prove Theorem 5.1 we decompose R a in the standard way into meshes ~ n  of 

closed dyadic cubes. The cubes in ~ n  will usually be denoted {Qnt}~l with some arbitrary 

enumeration. The side of Qni has length l(Qnt)=2 -n. By rQ, r>0 ,  we denote the cube 

concentric to Q with side l(rQ)=rl(Q). We denote 7Qn~ =~n~- 

For any Q,~ we set 
2_~ ~ V m ~, 

~n,=min 1, ~. ~Qn'(~ /)~ ~ (5.2) \ Q.,(/) ] J' 

E Now fix a point xoEK and let {Q,0}~=0, Q,o ~ , ,  be a sequence of nested cubes that  

contain x o. 

Let 2n-~max {),n~; Qni C aQ.0}, and 2, =min {2,fi Qn~c aQ.o}. Since 0.0= B.(Zo), it fol- 
lows from (5.1) that  

and thus 

Let Q~+I.jc3Q~+I.0, and Q,~3Q,~o. Then a moment of thought shows that  ~+1.~c 

0.n~. (In [17] this was stated erroneously with 5 instead of 7.) Moreover by Lemma 4.6, 

Q~(/) < AQ.+I.fl/) + A2-"mO~.+~.:(Vm/). 
Thus by (5.2) 

QA/) <~ A(;~;~+~J + 1 )  O - ( n + i ) m  t~ tw in  t ,  - 1 / p  - ( n + l ) m  - m . - u,,+x.j~v /) ~< As Q.~(V /), 

2.. > M-1 a,,+l,j, 

_~n ~> ~/-l~n+,, for some M = M(d, m, p) > O. 
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Once these observations have been made, the following lemma is the same as Lemma 3.2 

in [17J. 

L ~ M A  5.2. Under the above assumptions there exists a Cco function o~ with the following 

properties: 

(a) co(x)= 0 outside an arbitrarily prescribed neighborhood V o / K ;  

(b) ~o(x)= 1 on a neighborhood o / K ;  

(e) 0~<co~<l; 

(d) Every x is contained in some Q~ such that 

[ v % ( x ) [  ~< A a . , 2  ~ ,  k = 1, 2 . . . . .  A = A(k); 

(e) There is a constant A ,  only depending on d, such that for all x 

co 

n=O i 

where the sum is extended over only those indices i for which Va) is not identically zero on Q,~. 

(Z(', E) denotes the characteristic function o /E . )  

Since the deduction of Theorem 5.1 from Lemma 5.2 is short we repeat it here. 

Let  V be a neighborhood of K, and choose oJ in Lemma 5.2 so that  On~c V whenever 

Q,~ intersects supp ~o. 

I t  is enough to estimate SRg [V~eo[ q [Vm-kf[qdx, O<~k<~m. By Lemma 5.2 (d) we can 

decompose R a in a disjoint union of sets Q',~, (n, i)E I,  such that  Q'~CQn~, and [V~co(x)[ 
! 

A2=~2 "k on Q,f- 

We observe that  by  (5.2) and (4.1) 

, ~ . l V , . - , ~ / I q d ~  AA~-,~2-,~,, [ " IVm/l:d~. 

Thus, for 1 <~k<<.m, 

Here ~ '  indicates tha t  we sum over only those Qnt where Veo is not  identically zero. Thus, 

the sum is finite, although each point in K belongs to infinitely many ~, t  with (n, i)E I.  

I t  follows from (e) in Lemma 5.2 that  

(n,i)EI J qn~ (n , i )G  I 
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For  k = 0 we have 

fRIo~Wll'dx<-< f IWll'd~. 
We know t h a t  vm-1 / (x )=0  a.e. on K.  Since V m-l/ is absolutely continuous on almost  all 

lines, and distribution derivatives are a.e. equal to ordinary derivatives, it follows from 

Fubini ' s  theorem t h a t  vm/(x) = 0 a.e. on K.  Thus  f v I vm/[ q dx < e if V is small enough. This 

proves Theorem 5.1. 

I f  GI.q(K ) =0, (5.1) is no longer t rue in general. I t s  place is taken  by  the  following 

result. 

T~EOREM 5.3. Let /EWqm(Ra), and suppose that /1~: . . . . .  Vk-1/ IK=0 /or some k, 

1 <~ k <<. m - 1. Suppose that K is (m - k + 1, q)-thick at a point x. Then , /or  B n = Bn(x), either 

i.e. (5.1) holds, or 

oo f2-nmB (vmf~]v 

s  "'i 
Bn(/) 

limn~sup 2_n~B~(R m - k~-IVm/I) ~ < A < I  I oo. (5.3) 

Here A is independent o / / ,  K ,  and x. 

Proo/. By Corollary 4.3 

Thus, either 

Bn(/) <. A2-nkB,(Vk/)  + A2-nm cm_k+l, q(K, Bn)-l/qBn(Vm/). 

Bn(]) <~ A2-nmcm_k+l.q(K, Bn)-l/q Bn(Vm]) (5.4) 

for all sufficiently large n, or else 

B=(/) <<. A2-~B~(Vk/) (5.5) 

for a sequence of integers n tending to + c~. I n  the former case (5.1) follows from the 

definition of (m - k + 1, q)-thickness. 

Now assume tha t  (5.1) does no t  hold, so tha t  l i m n ~  2-nmBn(Vm/)/B=(/) = O. We observe 

t h a t  this implies t ha t  
lim 2-nmBn(Vm/)/Bn+r(/) = 0 
n.--~,oo 

for any  fixed positive integer r. 
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In  fact, by  Lemma 4.6, B,J[)~AB.+r(/)+A2-nmB,JV'V), and  thus 

B.+J/)/2-'nBn(Vm/) ~ A-~B.(i)/2-nmB.(V"]) - A -x, 

which tends to + co, as n-~ ~ .  

Let  n o be so large tha t  
2-nmBn_r(vm/) < eBn(/) (5.6) 

for all n >~ n 0. I tere  s > 0 and r > 0 will be chosen later. 

Let  n l > n  o be an integer such tha t  (5.5) holds for n = n  1. B y  assumption n 1 can be 

chosen arbitrari ly large, so the theorem follows if we can prove tha t  

B~(/) <~ A2-"kB~(Rm_k ~ I V'~/[) (5.7) 

for n o ~< v ~< n 1. 

We shall prove (5.7) by  induct ion on v. We know (5.7) is t rue for v = n  x. We assume 

it has been proven for n o < n  ~< v ~< nl, and we want  to prove (5.7) for v = n - 1 .  

We write ]Vm]l =g.  By  (4.1), (5.7) implies 

B~(Vk-J]) < A2-'JB~(R,n_k-~g). (5.8) 

We claim t h a t  (5.7) implies 

B,(R,~_k ~eg ) < ~B~_x(Rm_k ~eg), (5.9) 

if r and s have been chosen suitably. 

Assuming (5.9) for the  moment ,  we find by  (5.8) and L e m m a  4.5, 

B._I(Vk-ll)  = B.,(Vk-~I) + ~.. B,,(Vk-ll) - B,,+I(V~-I/) 
v = n - i  

n , - 1  

<~A2-'Bn,(Rrn_k-,'eg)+A ~ 2-'B~(Vk/) 

nl [ . q \ v - n + l  

<AB~ 1(Rm k-)eg) ~ 2 - q = |  =A2-(n-1)Bn a(Rm_k~g). 
- - ~ = ~ _ ~  \ 2 1  

But  then, in the same way,  

n ~ - I  

B._~(Vk-~/) =B~,(Vk-2/) + ~ Bv(Vk-2 / ) -  B~+~(Vk-2/) 
v=n-1  

n x - 1  

~< B~I(V~-21) + A ~ 2-~B~(V~-ll) 

nt 

<<.A ~. 2-2"B~(R,._k-x-g) 
v = n - 1  

~<A ~ 2 -2~ B,_l(Rm_k~eff)=~~ "R " " ~ n - l (  m - e *  if),  
"v~n--1 
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and so on. Thus  

Bn_l (/) ~ A2 -k(n- 1) B,~_I ( Rm_ ~-)e g) 

for  an absolute  cons tant  A, which proves  (5.7). 

To prove  (5.9) we observe t h a t  for  a n y  posi t ive integer  r 

tiff, - g)qdx} TM B~(R,~_~g) = ~ (R,~ ~ 

.< 1 

q l l l q  

Using the  inequalities ]]h~-g}]q ~ ]]hH1 Hgl[,, and  ftxt<~,-. Rm-k(x)dx ~ A2-n(m-k' on the  first  

te rm,  we find 

B~(Rm-~g)~A2-'~m-k)B~-~(g)+ N2]~J ~ ,%Rm_~(~-y)g(u)eu) e~ I . 

Similarly 

B~-l( Rm-~-)e g) ~ { B~_a ~ _ l  ( f B~_rRm-k(x - y) g(y) dy) qdx) l 'q-  A2-~(m-k) B~-r(g)- 

But  by  (5.6) 
Bv_,(g) < e2vmBv(]). 

Thus,  if B~(/)<~A2-~B~(Rm_k~g), we have  2-~(m-k)B,_,(g)~eB,(Rm_k~g). Fur thermore ,  

b y  choosing r large enough, we can m a k e  sure t h a t  

1 --e ~ Rm_k(y)/Rm_k(y-x ) ~< 1 + s  

for  x E B , ,  y E B~_~, independent ly  of n >/0. I t  follows easily t h a t  

B~(Rm_k ~g) <~ (1 + Ae) Bv_l(Rm_k'+g ) ~ ~Bv_l(Rm_~ ~g), 

if e < 1/2A. The theorem follows. 

The  following theorem is contained in Theorem 4.1 in [17], bu t  we repea t  the  ma in  

steps of the  proof. 

T H e O R e M  5.4. Let K be compact, and suppose that Cm_~.q(K ) = 0 / o r  some lc, O<~k<~ 
m - 1. Let / E Wq~(Ra), and suppose either that lc = O, or that lc ~ 1 and / satisfies (5.3) everywhere 
on K. 
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Then, for any neighborhood V o/K,  and any e > O, there is an o) E C~(V) such that 0 <~ 

r ~< 1, o ) = l  on a neighborhood o/ K, and II[o~llr~,q <e. 

Remark. As in the first remark following Theorem 5.1 it  is enough to assume tha t  

[ e Wq~(K~). See [18 a], Lemma 2: 

Proof. Let  (if k >/1) E N = {x E K; B~(f) ~< N2-'~B~(R,,_~ ~e [V m f I), Vn ~> N}. Then E~ is 

E closed, since B~(f) and Bn(Rm_k-,'e [Vmf]) are continuous in x. By  assumption K =  O~=M N 

for any M. 

First let M be so large tha t  V is a 2-M-neighborhood of K, and assume either tha t  

K = EM, or tha t  k = 0. 

Le t  {Q} be a Whitney covering of K ~ and let (~ ~-AQ be suitably enlarged cubes so 

tha t  Q contains a ball centered on K which contains Q. Denote the center of Q by xe. 

Let  d > 0  and let G~ be the union of all Q such tha t  IQ1-1 f~ (Rm_k~_ IV~/I )qdx>~_~. 

By Lemma 4.2 (a) in [17] we have Cm_k.q(G'~) <ASqH/llqm.q. Since Vm_k.q(K) = 0  we can there- 

fore choose a neighborhood Ge of K such tha t  G~ c G~, and 

We can also assume tha t  0 ~ . K  is a union of Whitney cubes. Then, for all Whitney cubes 

Q not in G e we have 
I 

I _  (Rm-k ~e IVm/I )q< d-q- (5.10) IQI do 

As in [I7], p. 72, we let v be a positive measure with support  in Ge, such tha t  V v= 

Rm_e~e (Rm_k,'e v) ~-1 >~ 1 on G,, and IIRm_~vH~ <AC,~_e.q(G,). 

We then let qb(r), r >~0, be an increasing C ~176 function such tha t  qb(r)=0 for r ~< �89 and 

(I)(r) =1  for r~>3/4, and we set o ) = r  V v, so tha t  o ) = l  on Ge, and o) EC~. 

This can be done in such a way tha t  supp w c  V, and so tha t  (by Lemma 4.5 in [17]) 

there is a function h >~ 0 such tha t  

fB hqdx<~ AOm_k,q(GD Ad~llfll~m.~; <~ 

(If mq=d the integral should be taken over a fixed ball containing K.) 

h has the Harnack  property,  i.e. for any  Whitney cube Q 

(5.1]) 

A-~h(y) 4 h(x) <~ Ah(y), xEQ, yEQ; 

[ Vm-~o)(~) [ < Ah(:~); 

(5.12) 

(5.13) 
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IW-'to(x) l ~< Ah(x) ('~-j)l(m-k), k <<. ~ <~ m; (5.14) 

IW-'to(z)l <~Ah(x)l(Q) j-k, i <~k, xEQ. (5.15) 

Here Lemmas 4.4, and 4.6 in [17] have been used. 

We can now estimate ~a~ I V'n-JtoiqlVJll qdx, 0 <~i <<.m. Let Q be a Whitney cube where 

Vto does not vanish identically. 

First consider the case 0~j~<k.  We know by  (5.3), (4.1), and (5.10) tha t  

Al  Q (~-J)q f lV'll~ <- ( )  f(Rm_~lWtl)~176 

Then, by  the Harnack property (5.12), (5.15), and (5.11) 

f o Ivm-~ tolflVqnOdx < Ah(xo)r Q)(~-~)~I(Q)(~-'~I QI ~-~ < Aa-r ~o h~dx. 
Thus 

fRI Vm-' to I,I vVloax.< A~-o f,, hoa~ ~ AII/II~.r 

Now let k + l ~ < j 4 m - 1 .  Write lW/I =g,  and ( m - i ) / ( m - k ) = O .  By Lemma 4.7 we 

have I V'/I ~A(Ma)'-~ ~ By (5.14), (5.12), (5.10), and HSlder's inequality 

fO [vm-'toiqi~I/]qdx~ A fQ h~176 t~q 
~1-o f 1 [" (R,,_k ~e g)~ dxl ~ 

2 ,  

{L }0{f  y0 A hqdx (Mg)qdx (yqo. 

By HSlder's inequality for sums 

fR lVm-'tolq]VJllqdx< A {fRydx}~ {fRd(Mg)qdx}l-~ 

<. Aa~176 a -~ ~ AIIIII~.o. 

Finally for j=~,  ~ i~lonWllO~< ~d iWllO~. Thus, I1~111~.o is un~ormly boundod, 
independently of & On the other hand ~(x)l(x)~O, as &~O, for xEK ~. Thus there is a 

sequence {co,}, n-+ ~o, such tha t  to, l tends to zero weakly in Wq~. By the Banach-Saks 

theorem there is a sequence of averages tending strongly to zero in wq(Itd), which finishes 

the first par t  of the proof. 

E Now let K be as in the theorem. We have K = U N=M N, where E N are compact. Let  

0 <s  < �89 q, and let to M be the function just constructed, so tha t  supp tom C V, 0 ~<toM ~< 1, 
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coM = 1 o n  a neighborhoodGMof EM, and I I/co~llm,~ <~/2. Set f~ =l(1-co~),so that l ll-l~lim,~ < 
e/2. Then for each .Bn(x), XEEM+I, n>~M+l,  we have 

Bn(fM) < B,(f) < (M + 1) 2 nk.Bn(Rm_ k-)r [ Vm/[ )' 

and thus, by (4.1), for 1 <j~<k, 

B,(VJ/M) <~ A2"JB,(/M) +A2-n(k-J)B,(V~/M ) 

<. A ( M  + 1)2-~e-J)(B~(Rm_k~e I Vmfl) + B,(Rm_e ~ I VmfMI )). 

By a slight modification of the first par t  of the proof, using the fact tha t  II/.llm o~< 

211/lira.o, w e  n o w  construct coM+~ SO tha t  0~<coM+~ 1, coM+X=I on a neighborhood GM+I of 

EM+ a, and II/MO~M+IIIm.o<~2--~. Set /M+I=fM(1--coM+I), SO tha t  ll/M--/M+dlm.o<e2-=, and 

/M+~ = 0 on GM U G~+I. Proceeding inductively we construct fN so tha t  II/-/NIl m.~ < ~ ~U-  M 2 - -, 

a n d / N = 0  on [.1N G,, G=~ E, .  But  K is compact, s o / N = 0  on a neighborhood of K if N is 

large enough. This proves the theorem, if we set co = 1 -  (1 --coM) -.. (1--coN)" 

Theorem 3.5 is now an immediate consequence of Theorem 5.3 and the following 

extension of Theorem 5.1. 

T]Z~OREM 5.5. Let K be compact, let /EWq(Rd),  and let 0~<k~<m-1.  Suppose that / 

satis/ies (5.1) everywhere on K, except on a set E c  K such that Cm_k(E)=O, and suppose 

(i/ k >~ 1) that / satis/ies (5.3) everywhere on E. Then,/or any neighborhood V o/ K, and any 

e > O, there is an co E C~(V) such that 0 <~ co <~ 1, co = 1 on a neighborhood o / K ,  and 11/co II m.q < e. 

Proo/. Let V be given so tha t  SvIVm/Iqdx<e q, and choose M so large tha t  V is a 

2-M-neighborhood of K. Let  B n = Bn(x ) and set 

We can assume tha t  Bn(/):4:O for all n and all xEK,  since otherwise/-=0 on Bn(x), and K 

can be replaced by  IC'...Bn(x ). Thus the above sum is a continuous function of x, and F N 

is compact. Moreover, K ~ E ~  [.J~ F N. 

By the proof of Lemma 5.2 there is a function co N E C~(V) such tha t  coN= 1 on a 2 -N- 

neighborhood of F N, 0<coN-~ < 1, and llcoN/ll~.o<A Sv I Vmll~ Moreover, it is easily seen 

tha t  con can be constructed so tha t  con = 1 on a 2-n-neighborhood of Fn for each n = M, 

M + I ,  ..., N. ({coN} is essentially an increasing sequence.) Thus there is an increasing 

sequence of open sets GN, GN~ FN, such tha t  coN= 1 on GN, and [[coN/Hq~.q~<A ~v [vm/] qdx. 

Set H =  U ~  GN. By weak compactness there is a weakly convergent subsequence of 

{(1 -coN)/} tha t  converges to a function/0, which vanishes on H, and satisfies [[f-f0llm.0 < 
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Ae. By the Banach-Saks theorem a sequence of averages of {(1 - o ~ ) [ }  converges strongly 

to/0.  We can ~lso assume tha t  these averages are of the form ( 1 -  (5,)/, where 0 ~ ohn 4 1, 

and ~5, = 1 on some G~=, with l im,_~ in = c~. 

N o w l e t E ~ = { x e K ~ H ;  B,(/)<~N2-~B,(Rm_~e [V~/[ ),Vn>~N}. T h e n K ~ H  = ( J ~ E ~  

for any  M, K ~ H  is compact, and Cm_~.q(K~H)=0 by assumption. As in the proof of 

Theorem 5.4 we have for x 6 E ~  and M1 B~(x), n>~N, tha t  

B,([o ) < B~(/) -~ N2-'kB,(Rm_x-)e I Vm/[ ), 
and 

Bn(V~/o) <~ AN2-n(~ "(B"(Rm-~-)r [vm/I) + B,(Rm-~ -)e [Vm/01)) 

for 1 ~]~/c. 

Thus, as in Theorem 5.4, we can construct a function eo'6C~(V), 0 ~ o ' < 1 ,  ~o'=1 on 

a neighborhood H '  of K ~ H  so tha t  II/0 'Hm i t  follows tha t  [ ' = / o ( 1 - w ' ) = 0  on a 
o 

neighborhood H U H '  of K, and ] [ / - / ' ] l~ .a~  < ][f-/o]lm.q+ [I/oW'[[~.e <Ae,  so / e  w~(g~). 

Moreover, [ ] / ' - / (1-05~)  (1 -o/)]]m.q<A maxlal< m [[D~(1 -w')Ho~[[/0 /(1 -~S.)[[~,q<e if n is 

large enough. Since K ~ H '  is compact and K ~ H ' c  13oo G~,, it follows t h a t / ( 1 - ~ . )  • 

( 1 - o ) ' ) = 0  on a neighborhood of K if n is large enough. Set r  Then 

eo satisfies all the requirements of the theorem. 

Proo/ o/ Theorem 3.1. To prove Theorem 3.1 we only need to modify the preceding 

argument slightly. 

Let  K be an arbi trary compact set, and let / be the given function. Let  V, M, FN, ~oN, 

eh~,/0, G~0 and H be as in the preceding proof. Denote H by  H 0. 

By the Kellogg property and Theorem 4.1 we have CI,q(Ho~K ) =0. NOW let EIN= 

{x 6 K ~ H o ;  B~(/) <~ A2-~(m-1)B,(R~ ~e ] V'~/I), Vn >~ N}. Then E1N is compact,  and C L q(El~) = 

0. Moreover, by the Kellogg property and Theorem 5.3 (applied for k = m - 1 ) ,  we have 

E C2.,(K\(Ho U (U~:~ ~)))=0. 
As in the proof of Theorem 5.4 there are functions ~01N6 C~(V) such tha t  0 ~colN4 1, 

ohN= 1 on a neighborhood Hl~ of E1N, and functions /1N=/0(1--e01i) .... (1--WlN), SO tha t  

/~N = 0 on U ~ H~., and [[/0 -/~N[[ m,q < e/2. Set U s = [J ~ Hln. As in the proof of Theorem 5.5 

a sequence of averages of the functions/iN converges strongly to a function/1, such tha t  

/~=0 on H 0 U H 1 and [[[o-/~[[m,q<e/2. We write/~=lim~_~oo/0(1-~51~), and assume tha t  

o51. = 1 on Hl~,~ , lim~-~oo i .  = c~. 

Now let E2N={XEK~(Ho U H~); B.(/)-%A2-n('n-2)B.(R2"~ [V~/[), Vn>~N}. Then 

C~. q(E2N ) = 0 for each N, E2N is compact, and Ca. ~ ( K ~ ( H  o U H 1 0 ( [J ~= M E2N) ) ) = O. We con- 

struct functions 0~N, C%N = 1 on neighborhoods H2N of E2N,/2N=/1(1 --W2M) ... (1 --C%N), and 

a function/~. =lim/~(1 -~5~.), so t h a t / 2 = 0  on H2= I.JH2N as before, and ][/~-/~[[~,q <e2 -2. 
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We proceed inductively until we have constructed [m-x = lim~_~/m_2(1 -(Sin_ L ~)so tha t  
m--X Ilfm_X--/m_2Um.~<e2 -re+l, fro_l=0 on Uk=0 Hk, H~= U~'=M Hk~, H~N is a neighborhood of 

( ff ) 4 EkN= x e K ~  H, ; B,~(/)<~A2-n(m-k)Bn(Rk~lvm/I), u . 

Then Cm.q(K~( U'~ -1 Hk)) =0, and K ~ (  tJ~ ~-1 Hk) is compact. Thus there is an COmEC~(V) 

such tha t  corn = 1 on a neighborhood Hm of K ~ (  U~ -1 Hk), and/m=(1-com)/m-~ satisfies 

II/m--/m-=llm,o<=2-=. ~t fonows tha t  II/m--/llm.o<=, and t h a t / m = O  on U~ Hk, which is a 
0 

neighborhood of K, and thus / e Wq~(KC). 

Finally, if lim~| i t  follows as before t ha t  

ll/m -- (1--co=) (1--  Im-=ll .o = ll(a-com)(Im- -- 

~< A maxl~l<~JlD~(1--~om)H=ll/m_~--(1--~Sm_L,)/~_2[[~.( ~0, as n - ~ .  

Moreover, by  compactness (1 -corn) (1 - o5.,_ L ~) = 0 on a neighborhood of K ~ (  I.J ~-~Hk) 

if n is large enough. Continuing backwards step by  step we find tha t  there are functions 

~Sk,~, k = 0 ,  1 ..... m - l ,  so tha t  c o = l - ( 1  - -5o .no)(1--~51,nl )  ... (1 --(Din--1 . . . . .  0( 1 --corn) = 1  

on a neighborhood of K, and ]l/~llm,o<e. This proves Theorem 3.1, except for the last 

s tatement.  But  this follows directly from Theorem 3.6, which we now prove. 

Proo/o/  Theorem 3.6. See also [36], where a somewhat simpler proof is given for the 

case E = O. 

Let  /E W,~(Ra), and suppose tha t  Cm,q(E)=0. As always we can assume tha t  f has 

compact support,  and tha t  E is bounded. 

We have I/(x) [ ~< A S Ix - y[ m-a[ VW(y) ] dy = A Rm-)e g(x), g = [ VW]. We can assume tha t  

b L = l .  
Let G'~=(x; Rm-)eg(x ) >n) .  Then G~ is open and Cm,q(G'~ ) <n -q. We can choose open 

G~ so tha t  E U Ga G Gn and Cm.q(G,~) <n -q. 

By a now well-known result of V. G. Maz'ja [23; Theorem 3.3] (see also Adams-  

Polking [4]) there is a function ~o such tha t  co(x)= 1 on G~, 0 <co ~< 1, and ]]co ]],~. q <~ An  -1. 

As has been pointed out by  D. R. Adams [2; Proposition 1], Maz'ja 's  theorem can 

now be proved rather  easily by means of the interpolation inequality in Lemma 4.7. 

Let  in fact ~ > 0  be any function such tha t  Rm~+q0>~l on Gn and []~l[q~<n -1, and let 

again r r ~> 0, be an increasing C ~ ftinction with (I)(r)= 0 for r ~< �89 and (I)(r)= 1 for r ~> 1. 

Then set co=qbo(Rm~-~0), and estimate the derivatives of co by  means of the chain 

rule and Lemma 4.7, keeping in mind tha t  VQo = 0  on G,. A computation which we omit 

(see [2], [17; Lemma 4.5] or [36; p. 131]) gives 
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IVJco[<A(M~) j/~, l < ] < m ,  
and 

IW~ I < AMq~ + A [ V~(R~ ~v) l. 

I t  follows from the last inequality tha t  f ]Vmto lqdx  < A ~ q~qdx < A n  -x, i.e. Maz' ja 's  

theorem. 

We now want  to estimate I[/~llm.o" It is easily seen that ~1~ I~ ~ is arbitrari ly 

small, so it is enough to estimate f IVJtolqlv'n-J/Iqdx for 1 < j < m .  Applying Lemma 4.7 

again we find 
[Vm-J/[ < ARj~eg  < A(Mg)X-z '~(R,~eg)Zm. 

Moreover, R , , ~ g  <<.n off G~, so we obtain 

ivJ~ I lyre J/I <A(iqJ)J/m(Mg)Z-J/rnn jim, 1 <<-j < m - 1 .  

By HSlder's inequality, and the Maximal theorem, 

II(M~)J/m(Mg)~-J/'l lq < 11~11~ m IIg]l~ - "~  < n-J/'~llgll~ - j ~  = n-J/m" 

F o r  j = m w e  h a v e  I Vm~ I lSl < I Vm~ In, so  for  all j, 1 < j < m, we f ind  

/ Iv,~101w ,flodx< A, independently of n. 

But  as n-+ do, w(x)-*0 a.e., so the theorem follows by  weak compactness, and the Banach-  

Saks theorem. 

6 .  A p p l i c a t i o n s  

We give a few applications and equivalent formulations of Theorem 1.1, in addition 

to the application to the Diriehlet problem given in Theorem 1.2. Proofs are found in [17]. 

See also the survey [18]. 

Let  W'_~(R ~) denote the dual to Wq~(Ra). 

THEOREM 6.1. Let T be a distribution in W~_~(Rd). Suppose 1 < p  <2  + 1/ ( d - 1). Then 

/or any e > 0  there are measures #~, ~ multiindiees with 0 < ] ~ ]  < m - - 1 ,  such that supp/~ac 

supp T, and l I T - ~  D:tzall_m.,<e. 

THEOREM 6.2. Let G c R  ~ be bounded and open. Suppose l < p < 2 + l / ( d - 1 ) . . L e t  

Arau = 0 in G and suppose u EI_2( G). Then /or  any e > 0 there are measures t*~, 0 < I o~ I <<" m -  1, 

supp t*~ c ~G, such that 

Here Em is the/undamental  solution to A m, i.e. ArnE,n = E,n Am= ~. 

17 - 812903 Acta mathematica 147. Imprim6 le 12 F6vrier 1982 
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We say tha t  a compact  set K ~ R  d is (m, q).stable if every  / in Wq~(R ~) such tha t  / 
0 

vanishes on K c actual ly  belongs to  Warn(K~ See Babuw [5], Sehulze-Wfldenhain [31], and 

Us]. 
I t  is well known t h a t  K is (2m, q)-stable if and only if every / in L~(K) which satisfies 

A ~ / = 0  in K ~ can be approximated  in LZ'(K) by  functions which satisfy the equat ion on 

neighborhoods of K.  See [5], [17] and [29]. 

T H ~. o R v. M 6.3. K is  (m, q ) - s t ab l e /o r  q > 2 - 1 /d  i / a n d  only i /every / in Wq~(R d) such that 

/[ Ko = 0 satis/ies Da/[ o~ = 0 / o r  all ~, O <~ [ ~ [ <~ m - 1. 

TH~OI~E~ 6.4. K is (m, q)-stable /or q > 2 - 1/d i / K  ~ is (k, q)-thick (k, q)-q.e, on ~K /or 

k = 1, 2 . . . . .  m. 

T ~ O R E ~  6.5. K is (m, q)-stable /or q > 2  - 1 / d  i/ there i san u >O suchthat Ck.q(U'~K)  >7 

~IU~.q(U~K ~ /or k = l ,  2, ..., m and all open sets U. 

Remark. T. B a g b y  has recent ly  given a necessary and sufficient condition for L ~- 

approximabi l i ty  by  solutions of elliptic equations. See [6 a]. 
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