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0. Introduction 

The problem of the regularity of functions u(x) minimizing a variational integral 

F(u; f2) = I f ( x ,  u, Du) dx (o.1) 

has been one of the main questions since the introduction of direct methods has 

allowed to pove the existence of minima in suitable classes of generalized functions. It 

would be impossible to list all the significant contributions since the pioneering work of 

E. De Giorgi [4]; and we refer to the nowadays classical books by O. A. LadyZenskaya 

and N. N. Ural'ceva [17] and C. B. Morrey [20]. 

With extremely few exceptions, all the papers concerned with the regularity 

problem have as a common starting point the Euter equation of the functional F and 

therefore require at least some smoothness of the function f and suitable growth 

conditions for its partial derivatives f ,  and fp. 
It goes without saying that the smoothness of f is necessary if one wants to prove 

the differentiability of the minima; on the other hand, if we look only at the continuity 

of the solution such assumptions seem superfluous, and it would be preferable to derive 

it directly from the minimizing property of u. 

In addition, it is clear that results obtained from the  Euler equation do not 

distinguish between true minima and simple extremals, and therefore it is sometimes 

necessary to introduce as hypotheses properties--as for instance the boundedness of 

the solution--which might hold for minima but are in general false for extremals. 

The aim of the paper is to investigate the continuity (in the sense of H61der) of the 

minima, directly working with the functional F instead of working with its Euler 
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equation. In fact we shall not suppose any differentiability, but only that the function 

f :  ~2 •215 satisfies: 

(i) f is a Carath6odory function; i.e. measurable in x for each (u,p)ERN• N, 

and continuous in (u, p) for almost every x E if2. 

(ii) There exist positive constants a and k and a real number m> 1 such that 

~olm-k <~ f(x ,  u, p) <~ a))lm + k. (0.2) 

We note that (i) and the first part of inequality (0.2) are the usual assumptions in the 

existence theory; we remark however that the main hypothesis for existence, the 

convexity of f with respect to p, is not needed when the regularity is concerned. 

We shall restrict ourselves to the case 1 <rn<n. In fact, when re>n, every function 

in W ~' '~ is trivially H61der-continuous by the Sobolev theorem. The borderline case 

m=n has been treated in his book [20] by C. B. Morrey, who proved the H61der- 

continuity of functions minimizing F, for every N>~ 1 (Theorem 4.3.1; see Corollary 4.2 

below). 

When l < m < n ,  we cannot expect in general that minima for F are H61der- 

continuous (or even bounded) if N>  I ; a well-known example due to E. De Giorgi [5] 

shows that there are linear elliptic systems with unbounded solutions in dimension 

n~>3, and we are led to the usual distinction between the scalar (N= 1) and the vector 

case (N>I) corresponding respectively to a single equation or to a system. 

When N= 1 we prove the H61der-continuity of functions u E W~o~(Q), minimizing 

locally the functional F. This is done in sections 2 and 3. For the sake of completeness 

we mention that a result of this type was obtained in [7] by J. Frehse, under very strong 

assumptions on the function f. 

The last two sections deal with the general case N~  > 1. Here we prove in section 4 

that minimizing functions have derivatives in L "+~, for some a>0, whereas the last 

section 5 is devoted to the study of partial regularity for minima of quadratic function- 

als. 

1. A simple, but fundamental lemma 

It is the following: 

LEMMA 1.1. Let f( t)  be a non-negative bounded function defined for O<~To<<.t<<-Tl. 

Suppose that for To<<.t<S<<.T1 we have 

f( t)  <~A(s-t)-a+B+Of(s) (1.1) 
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where A, B, a, 0 are non-negative constants, and O< 1. Then there exists a constant c, 

depending only on a and 0 such that for every Q, R, To<~Q<R~TI we have 

f (o) <~ c[A(R-o )-a+ B] �9 (1.2) 

Proof. Consider  the sequence {ti} defined by 

to = Q; ti+~-ti= ( l - r ) r i (R-~9)  

with 0 < r < l .  By iteration 

]' 
f(to) <" Okf(tk)+ (R-e) -a+B E oir-ia" 

i=0 

We choose now r such that r - a 0 < l  and let k--->~, getting (1.2) with 

c = ( 1 - r ) - ~ ( 1 - 0 r - ~ )  -1. Q.E.D. 

2. The scalar case: local boundedness  

In this section we shall consider  local minimum points for the functional F, i.e. 

functions u E W~ocm(f2) such that for  every  ~ E W 1' "~(Q) with supp ~v c c Q we have 

F(u; supp c,v) ~< F ( u + ~ ;  supp ~). (2.1) 

The function f (x ,  u,p) satisfies hypotheses  which are slightly more general than those 

described in the introduction: we shall suppose that 

lpl -b(lula+ 1) ~f(x,  u, p) <~ alpl'"+b(lula§ l) (2.2) 

where a and b are positive constants,  and m<~a<m*=mn/(n-m). In [17] it is proved the 

boundness of a function which minimizes F(u; C2) among all functions taking prescribed 

values z(x) at OQ, provided z(x)is bounded: here we shall consider the problem of local 

boundedness  of  minima, in the sense o f  the definition above, independently of  the 

boundary data. 

THEOREM 2.1. Let (2.2) hold, and let uE I,m Wio c (Q) be a local minimum for the 

functional F. Then u is locally bounded in Q. 

Proof. We can suppose Q bounded and u E wl'm(f2). Let  Xo E if2, and denote by B~, 

the ball of radius s centred at x0. For  k>0  let 

3-812904 Acta  Mathemat ica  148. Imprim6 le 31 ao0t 1982 
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Ak = {x C ~ : u(x) > k} (2.3) 

and Ak, s=AkflBs. Let  w=max(u-k,O) and let q(x) be a C ~ function with 

supp r/cBs, 0~<q~<l,~/= 1 onBt, [V~/[ ~<2(s-t) -1. If  u=u-~lw, we have using the minima- 

lity of u and (2.2), 

fak.s [Du'm dX ~ ~l{ fak, s(1-rl)m'Du'm dX + fAk, swm'Drllm dx + fA,,sw~' dx +( l +ka) 'A~," l" 

(2.4) 

We observe now that if w E WI''(Bs) and [supp w[~< �89 we have the Sobolev inequal- 

ity 

(fswm*dx)mlm*<~cl(n,m)fl~[Dwlmdx (2.5) 

and therefore, if m~a<m*, 

[,-aim* [ IOwlm dx. (2.6) c, tlWllm*=-m In s 
, . I B  s 

We can choose T so small that for s<~T we get 

a - m  I-aim* ~< 1 
c,FI.41m. 18.1 -~ 2;q" (2.7) 

On the other hand, we have 

and therefore for k~ko we have 

km*lAk[ ~< Ilullm: 

IAkl < �89 [Brnl. 

For such values of  k we then have [supp w [<�89 and therefore, if T/2<.s<.T, 

since [[UHm.>~l]Wl[m .. 

(2.8) 
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In conclusion, if T/2<.t<s<.T, we have from (2.4) and (2.8), 

fa 'DUlmdX<~2~'l{fA 'Du[ mdx+ IrA wmdx+(l+ka)[ak,,l) �9 
k,s k, sNak, t (s--t)m ~,~ 

Suppose now T/2~p<-t<s~R~T; we get 

fak. IDulm dX<'2Yl fAk.s\A,, lDulm dX+2~'l{(s--t)-m fAi Wm dx+(l +ka) [ak, R[ }" 

Adding to both sides 2V~ times the left-hand side we get eventually 

fA 'OulmdX" 'Ou'mdX"[-l(S--t)-ml wradx'k-(l-[-ka) lak'R])" 
k., 2Yl + I k., t. aak.R 

We can now apply L e m m a  I. 1 and conclude that 

fA..olDu,m dx.yz{(R--o)-" fa..Rwm dx+(l +k'~) ,ak.R, l. (2.9) 

Finally. we estimate 

(1 + k ~) IAk,. I ~ 2k~lak, R I ~< 2(km*lak,. I) '~ I , - , ~ - m ~ *  

~Ollulla-rnkmlA II-(m/n)+(l-a/m*) 
I'll lira* I k, RI 

Introducing the last expression into (2.9) we get for T/2<~p<R<<. T, 

fa,.elDulm dx<.Y3{(R-p)-m fa~.R(u-k)m dx+km[ak. RIl-('nln'+'l-~/m*' }. (2.10) 

Since - u  minimizes the functional 

P,v;,,,= fj,x,v, Dv) dx 

with fix, v, p)=f(x, -v, -p) satisfying the same growth condition (2.2), inequality (2.10) 

holds with u replaced by - u .  We may then apply to both u and - u  Lemma 5.4 of  

chapter  II of  [17] and conclude that u is bounded in Br/z. Q.E.D.  

The above result may easily be generalized; for instance one might assume that the 

constant  b appearing in (2.2) is actually a function belonging to some suitable L r space. 
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Moreover, one can assume that the minimizing function u(x) belongs to 

W t, re(Q) NLq(ff2), for some q>~m*. In this case the conclusion of the theorem holds if 

r >  n and a<m n+q q 
m n r 

3. The scalar case: H61der continuity 

An argument similar to the one above will give now the H61der continuity of local 

minima for the functional F(u). We suppose that the function f(x, u,p) satisfies the 

growth condition 

~olm-b(lt/1) ~ f(x, u, p) ~ a(h/l)~OIm + b(M) (3.1) 

for every x E f~, lul<~M and p E R n. 

THEOREM 3.1. Let (3.1) hold and let u(x) be a function in W]om(g2) NLloc(~), 

minimizing locally the functional F(u). Then u is HOlder-continuous in g2, 

Proof. We take as before v=u-tlw; from F(u)<-F(v) we easily deduce, using (3.1) 

with M=sup Iul, 

fa~,slDulm dx<~ 74{ fak, s(1-~l)mlDulm dX + fA~sWmlDqlm dx + lak, sI )" 

Observing that ~/= 1 on Bt and that IDrll<.2(s-t) -~ we get therefore for R>-s>t, 

fAk, IDulm dx<<" ~5{ fA~,s\Ak, IDulm dx+(s--t)m fA,,R(u--k)m+IAk'RI }" 

Arguing again as in the above, we conclude from Lemma 1.1, 

fa,.olDUlm dX <~ Y6{ (R--O)-m fAk, R(u--k)'~ dx + lAk, gl 1. (3.2) 

The same inequality holds with u replaced by - u ,  and therefore the function u belongs 

to the class Bm(~"2, M, Y6, 1 , 0 )  of [17]. Applying Theorem 6.1 of chapter II of [17] we 

conclude that u is H61der-continuous in Q. Q.E.D. 

Using the same argument it is not difficult to prove regularity up to the boundary 

for solutions of the Dirichlet problem, provided the boundary datum is itself H61der- 
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continuous on Of 2 and 8f2 is sufficiently smooth. In fact, inequality (3.2) still hold when 

the ball BR intersects OQ, provided the constant k is greater than sup~t~n~RU, so that we 

can apply the result of [17], chapter II.7. 

4. The case N~>I. Estimates for the gradient 

The purpose of this section is to prove an L q estimate for the gradient of minima, in 

the vector valued case. 

Results of this kind were proved first by B. V. Boyarskii [2] and N, G. Meyers [19] 

for solutions of linear elliptic equations; besides their intrinsic interest they are an 

essential tool in the study of regularity of solutions of non linear elliptic systems, 

following the method introduced in [9] (see also [10] [11] [15]). 

We shall suppose that the function f satisfies the growth condition stated in the 

introduction: 

[plm-k <.f(x, u, p) <. a~olm+k (4.1) 

in f2•215 R nN. For v6L~(A) we denote by :fa vdx the average of v in A: IAI-~fA vdx. 
We have 

THEOREM 4.1. Let f satisfy (4.1) and let u 6W~o ~ (Q, R N) be a local minimum for 

the functional F. Then there exists an exponent q>m such that u fiWloq(ff2, RN). 

Moreover for every R<dist  (Xo, 0Q) we have 

(LR/2(xo)(l+,Dul)q dx) l/q<~c(Ln%)(l+lDu,)mdx) l/m (4.2) 

c being a constant depending only on a, k, N, n, m. 

Proof. Let Xo fi f~ and O<t<s<R<dist (Xo, 8f2). With the usual choise of ~/, let UR = 
~BR~xo)U dx and let V=U--q(U--UR). From the minimality of u and (4. I) we get as usual 

LslDulmdx~v7{Ls\nlOut mdx+ 

and therefore, arguing as in section 2, 

( S - - t )  m , 

(4.3) 

(4.4) 
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We now use the Sobolev-Poincar6 inequality, 

f, lu-uRlmdx<~cl(n,m)(fBIDu(dx)m/~, n m  
r ~ -  

n + m  

and we get from (4.4) 

~R,(l+'Du')mdx<~y9(fBR(l+'Du')rdx) m/r" 

The result now follows at once from [10], Proposition 5.1. Q.E.D. 

As we have already noted, results of this type were obtained previously for 

solutions of  elliptic equations and systems. Recently, H. Attouch and C. Sbordone [1] 

have proved a conclusion similar to our Theorem 4.1 in the special case o f f= f ( x , p )  

convex in p. It is worth remarking that the above theorem does not hold for extremals 

of the functional F, even assuming that f is convex in p and N =  1, see J. Frehse [7]. 

When N >  1, the result is in general false for elliptic systems, even if we assume that u is 

bounded (see [6]), and it is necessary to suppose that u is small ([9], [10]). 

It is easily seen from the proof of Proposition 5.1 of [10] that the exponent q<m 

can be taken in an interval (m, re+o), with cr independent of m for m close to n. We 

have therefore the following. 

COROLLARY 4.2. There exists a o>0, depending only on a and k in (4.1), n and N 

such that i f  re>n-or and the function f satisfies the growth condition (4.1), then every 

local minimum o f  the functional F is H61der-continuous in s 

In particular, the above corollary extends Theorem 4.3.1 of Morrey 's  [20]. For 

elliptic systems, results of this type have been proved by K. O. Widman [24] (see also 

[21], [23], [I0]). 

5. Quadratic functionals 

In this section we shall prove some regularity results for minima of quadratic func- 

tionals 

F(u)=fA (x,u)Oou'Oa dx ( A ~ =  #a a), ). (5.1) 
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Here summation over repeated indices is understood, the greek indices running from l 

to n, and the latin ones from I to N. We assume that the coefficients A~ are bounded 

continuous functions in ~ •  N and satisfy the condition 

A~(x,u)~>~tl~l z, V~6R "N, t > 0 .  (5.2) 

For sake of simplicity we shall assume that the coefficients A~ are uniformly 

continous and bounded in g2xR N. This implies in particular that there exists a 

continuous, increasing, concave function w: R+-->R + satisfying w(0)=0, w(t)<-M, and 

such that 

[a~(x, u) - a~(y ,  v)] <~ ~(Ix-yl =+ lu-vl2). (5.3) 

THEOREM 5.1. Let  the hypotheses above be satisfied, and let u E Wlo2c (Q, R N) be a 

local minimum for the functional (5.1). Then there exists an open set f~oCff~ such that 

u E C ~ a(ff~ o, R N) for  every a< 1. Moreover 

~--Q~ {x~ e ~2 : liminfR2-" R,Xo, 'Dul2 dx > e~ (5.4) 

where eo is a positive constant independent o f  u. Finally 

an-q(~-Qo) = 0 (5 .5 )  

for  some q>2, H n-q denoting the (n-q)-dimensional Hausdorff  measure. 

Proof. We use the ideas introduced in [9]. Let xo 6 Q, R<�89 (xo, a~)  and let v be 

the solution of the problem 

fB uR) DviDvJ dx--> min. Au(xo, 
R~x0) (5.6) 

v - u  e WIO'2(BR(Xo), RN). 

Since the coefficients are now constant, the Euler operator is coercive and the problem 

has a unique solution. Moreover we have 

f tDv]Pdx <~ C 1 ~ [Du[ p dx (5.7) 
.IB R(Xo) J BR(xo) 

and for every Q<R (see [3]), 
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fBR(xo) lOul2dx~c2(-'~)nfBR(xo)]Oo[2dx" 

Let n o w  w = u - v ;  w e  have  w E W~'2(BR, R N) and therefore 

c3~ [Dw'Zdx<~ A~(Xo, UR)DawiD~widx. 
R R 

On the other hand 

(5.8) 

(5.9) 

fB A~(Xo, UR) D a viD~ w/ dx = 0 
R 

and therefore 

fBRA~(xo, uR)D~w~D~widx=~RA~(xo, UR)D,~u~D/3widx 

~ [A~(xo, UR)_A~(x,u)] i i = D~(u +v)D~widx 
R 

+ f. [A~(x, v)-A~(x, u)] D a viDz v ] dx 
R 

+~ A~(x,u)Dau'Dl~u/dx-~ A~jZ(x,v)Dav'D~vidx. 
R R 

Since u minimizes  F,  and u = o  on OBe,  the sum of  the last two  terms is non  posit ive.  

Using the Schwartz inequality ab<~ea2+ e -~ b 2 and assumption (5.3), we easily get from 

(5.9) 

IDwlZdx<~c4~ [,Dul2+[DvlZ][~Z(RZ+Ju-uRl2)+ojZ(R2+lu-vlZ]dx. (5.10) 
R R 

Taking inte account  the fact that a) is bounded,  w e  have  

and using (5.7) with p = q  
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fnRlDol2~2dx<~c6fB (l+[Dul)2dx(fBRogdx) l-2/q 
Since w is concave, we have 

\ asR 

and similarly 

In conclusion, 

( l+lOul)  = fB IDwl2 dx<-c9 (eZ+c,oR2-" fBRIo.12 dx) l-2/q dx. 

From (5.8) we now easily get 

fBo(l-~lOlll2) dX~Cll[(~)n-l-o)(R2"~cloe2-nfBRlOlgl2dx)l-2/q]fB2 R 

for every Q<R<2R<dist(xo, aft2). The result now follows as in [9]. 

41 

(1 + IDu[ z) dx 

(5.11) 

Q.E.D. 

H n - q + e ( ~ ' ~ -  ~"~0) = 0 ,  • > 0 .  (5.12) 

Consequently,  instead of (5.5) we have the weaker conclusion 

The case of  (non uniformly) continuous coefficients needs some technical adjust- 

ments both in the statement and in the proof. We shall not discuss the details, and we 

limit ourselves to the remark that f~- f2  o is now the union of the set given by (5.4) and 

of 

{Xo E Q : Iim sup [Uxo, + = + o o } .  
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Let us now consider a special case of the functional (5.1), namely 

coefficients take the diagonal form 

A~#(x, u) = 6uA~(x, u) 

so that 

when the 

(5.13) 

/- 
F(u) = JQA~3(x, u) Da uiD~ bli dx. (5.14) 

We suppose, of course, that 

( a'C(x, u) ~a ~a >>- ,q~l z, 2>0; 
Ia~(x, u)[ ~< M. (5.15) 

Moreover, 

bounded local minimum u is a solution of the system of Euler equations 

f a~(x,u)DauiD~q~i dx= f gi(x,u, Du)q~i dx (5.16) 

for every q0 in W1o'Z(Q, R N) nL~176 RN), where 

-~Ay(x, h h gi(X, U,P) = -- U) pa P~" (5.17) 

Systems of the type (5.16) have been considered in connection with the regularity 

of harmonic mappings by S. Hildebrandt and K. O. Widman [13] (see also [14]). They 

conjectured that every bounded solution of (5.16) was Hrlder-continuous if the right- 

hand side g would satisfy the inequalities 

Ig(x, u, p)l <~ alp[ 2 (5.18) 

ui g,(x, u, p) <.,~ *[pl 2 

with 2*<2. The conjecture has been proved in dimension n=2 by M. Wiegner [26]. 

When n>2, M. Meier [18] and P. A. Ivert [16] have shown that a-priori estimates for 

the H61der norm of solutions of (5.16) cannot exist, thus throwing serious doubts on the 

validity of the conjecture. Recently, M. Struwe [22] has shown with a counter-example 

that the result does not hold for n~>3. 

The situation is completely different for minima of quadratic functionals. In fact, 

we have 

we shall assume that the coefficients are differentiable, so that every 
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THEOREM 5.2. Assume that 

1 .uha~uh(X, U) D a uiDl~ u i <~ 2*lOul z ( 5 . 1 9 )  
2 

with ~*<2. Then every bounded local minimum of the functional (5.14) is HSlder- 
continuous. 

Proof. In view of Theorem 5.1 it is sufficient to prove that for every Xo E fl we have 

Q2-~ l lOut 2 dx < e~ (5.20) 
Jn ~(x0) 

for some ~)<dist (x0, ~f~). 

Let R<�89 c~).  Taking qg=r/u in (5.16), r]ECo(B2R(xO)), riCO, we get from 

(5.15) and (5.19) 

2 ~ rllDufZdx<< -~l f~ A~D~IuI2D~ldx+2.I.,B2R rl'DulZdx (5.21) 
2R 2R 

and since ).>2", the function z=M2(2R)-lul 2, M(t)=supB,lul, is a non-negative super- 

solution of an elliptic operator. From the weak Harnack inequality [12] we have 

therefore 

R-" I z dx <<- cl2 infz. (5.22) 
JB 2R BR 

Let n o w w E  ~2 W~' (B2R) be the solution of the equation 

fn a~DawD~dx=--~ f~ cfdx, VQgEW~'2(B2R). 
2R 2R 

Taking q~=wz we easily get 

l f A ~  w2D, zdx+fBza~ l f B  = -~T wzdx. 
2 Js~ ~ 2R R 2R 

(5.23) 

The second integral on the left-hand side is non-negative; moreover we have w<~a~ in 

Bzn and from the weak Harnack inequality W ~ a 2 > 0  in BR, since w is a positive 

supersolution. 

We note that the constants ai and ct2 do not depend on R. To see that, we perform 

the change of independent variables x=Ry. The function v(y)=w(Ry) is a solution of the 

Dirichlet problem 
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{ -Da(a~ = 1, inB 2 

v = 0, on OB 2 

where aa~(y)=A~a(Ry, u(Ry)), and therefore 

v(y) ~< al ,  inB2 

u(y) ~ 0~2 ~ 0 , inBj 

with al and a 2 depending only on the constants ). and M in (5.15). The same constants 

al and a2 give an upper  and lower bound for w in BER and BR) respectively.  

Le t  now r/=w2; we have from (5.23), 

~ Aa~DazD~rldx<~c,3R-2( zdx 
2R d B2R 

which together  with (5.21) and (5.22) gives 

fB [Du[2 dx <~ c R "-2inf = c R"-2[MZ(2R)-M2(R)]. (5.24) Z 14 14 
R BR 

On the other  hand, we have 

~[MZ(21-kR)-M2(2-kR)] <~ M2(2R) <~ sup lul 2 (5.25) 
k=0 f2 

and inequality (5.24) implies immediately (5.20) with Q=2-*R for some k and therefore 

the regularity of  u. Q.E.D.  

We remark that f rom (5.25) follows that the radius Q for which (5.20) holds can be 

estimated in terms of  sup~ lul only and hence the H61der norm of  u in any compact  set 

K c f l  is bounded in terms of  dist (K, af2) and of  sup~ lul. 

Finally, we observe that all the results in this paper hold for relative minima of  the 

functional F; i.e. for functions u such that 

F(u; supp q0) ~< F(u + cp; supp q0) 

for every  ~ with compact  support  and small Lm-norm. 

Moreover ,  the results of  sections 2, 3 and 4 hold for quasi-minima, i.e. for 

functions u such that: 

F(u, supp cp) <~ A F(u +q~, supp q~) (5.26) 

for some constant  A independent  of  cp. 
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An important  example  of  quasi-minima is that of  quasi-conformal  mappings (see 

[8] for the definition). Actually,  if u is a quasi-conformal  mapping it satisfies (5.26) with 

F(x, E) = f IDvl" dx, 
J E  

and therefore by  Corol lary 4.2 it is H61der-continuous; a result already proved  in [8]. 
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