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I. Introduction 

This paper is perhaps best characterized as a foundational essay on the geometries 

of  minimal varieties associated to closed forms. The fundamental observation here is 

the following: Let X be a riemannian manifold, and suppose q~ is a closed exterior p- 

form with the property that 

~]r vole (1) 

for all oriented tangent p-planes ~ on X. Then any compact  oriented p-dimensional 

submanifold M of X with the property that 

9[M = VO1M (2) 

is homologically volume minimizing in X, i.e., vol (M)~<vol (M') for any M'  such that 

OM=OM' and [ M - M ' ] = 0  in Hp(X;R). To see this, one simply notes that 

voI(M)=fMqg=fM, CR<~voI(M'). (The first equality follows from (2), and the final 

inequality follows from (1). The middle equality is a consequence of  the homology 

condition and the fact that dq~=0.) 

Condition (2) enables us to associate to an exterior p-form cp a family of  oriented p- 

dimensional submanifolds in X which we call q~-submanifolds. If  ~ is closed and is 

normalized to satisfy condition (1), then the argument above proves that each cp- 

submanifold is homologically mass minimizing in X. 

A closed exterior p-form cp satisfying (1) will be called a calibration and the 

riemannian manifold X together with this form will be called a calibrated manifold. 
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As an example, let X be a complex hermitian n-manifold with K/ihler form o~, and 

consider q~=(1/p !) o? for some p, l<~p<~n. Then the q~-submanifolds are just the canoni- 

cally oriented complex submanifolds of dimension p in X. If d~0 =0, i.e., if X is a K~hler 

manifold, then the complex submanifolds are homologically mass minimizing. This is 

the classical observation of H. Federer IF1]. 

We take a moment here for some reflections on the foundations of geometry. The 

concept of a geometric structure on a manifold X can be formulated in three rather 

different ways. One can consider a structure to be given by an atlas of coordinate 

charts whose coordinate transformations lie in a particular pseudogroup of local 

diffeomorphisms of R n, cf. [KN]. One could also consider a geometric structure to be 

defined by a distinguished family of tensor fields on X. However, it is also possible, and 

more in the spirit of the classical geometries, to consider a structure to be defined by a 

distinguished family of subvarieties of X. Each of these approaches can be usefully 

adopted to study, say, complex or foliated geometry. 

One of the main points of this paper is to exhibit and study some beautiful 

geometries of minimal subvarieties which are really not visible from this first view- 

point. 

We shall concentrate primarily on geometries in R n associated to forms with 

constant coefficients. A significant part of the work will be to derive a tractable system 

of partial differential equations whose solutions represent subvarieties in the given 

geometry. These systems are in a specific sense generalizations of the Cauchy-Rie- 

mann equations. 

The first geometry to be studied in depth is associated to the form 

q0 = Re {dzl A...A dzn} 

in C n, where as usual we shall write z=x+iy. It consists of Lagrangian submanifolds of 

"constant phase",  and is therefore called special Lagrangian geometry. In fact the 

only Lagrangian submanifolds which are stationary are special Lagrangian. 

We recall that the Lagrangian n-planes in C n are exactly the Un-images of the x- 

axis, and up to unitary coordinate changes, every Lagrangian submanifold is locally the 

graph {y=flx)), where f = V F  for some scalar potential function F(x). (The function F is 

arbitrary.) Similarly, the special Lagrangian n-planes in C n are exactly the SUn-images 

of the x-axis. The special Lagrangian Grassmannian is just the fibre of the "Maslov" 

map: Lag--~S 1, from the oriented Lagrangian n-planes to the circle, given by the 

complex determinant. Up to SUn-coordinate changes, special Lagrangian submani- 

folds are locally graphs of the form {y= (VF) (x)) where F(x) is a scalar potential 

4-812904 Acta Mathematica 148. Imprim~ le 31 aofit 1982 
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function satisfying a non-linear elliptic equation. When n=3,  this equation has the 

following beautiful form: 

A F  = det (Hess F). (3) 

We conclude that the graph of  the gradient of any solution to (3) is an absolutely 

volume-minimizing 3-fold in R 6. In particular, any C 2 solution of  (3) is real analytic. 

The equation (3) bears an intimate relation to the work of  Hans Lew y  on harmonic 

gradient maps [Ly] and explains the mysterious appearance there of  the minimal 

surface equation. This is discussed in Chapter  III. 

The  geometry  of  special Lagrangian submanifolds is richly endowed (see Sections 

III.3 and 4), and consti tutes a large new class of  minimizing currents in R n. In 

particular, we are able to explicitly construct  simple minimizing cones which are not 

real analytic (see Section III.3.A) as well as minimizing cones which are quite compli- 

cated topologically (see Section III.3.C). 

Chapter  IV is devoted  to the study of  three exceptional geometries.  There  is a 

geometry  of  3-folds (and a dual geometry  of  4-folds) in R 7, which is invariant under  the 

standard representat ion of  G2. This geometry  is associated to the 3-form q~(x, y, z) = 

(x, y z )  where x ,y ,  z E R  7 are considered as imaginary Cayley numbers.  A 3-manifold 

M c R 7 = I m O  belongs t o  this geometry  if each of  its tangent planes is a (canonically 

oriented) imaginary part  of  a quaternion subalgebra of  the Cayley numbers O. 

The local system of  differential equations for this geometry is essentially deduced 

from the vanishing of  the associator [x, y, z]=-(xy)z-x(yz) ,  and thus the geometry  is 

called associative. This system of  equations has a striking and elegant form. Write 

Im O = I m t I 0 ) I t ,  where I-I denotes  the quaternions,  and consider a function f:  U c  

Im tt---~I-I. Then the graph of  f is an associative submanifold if and only i f f  satisfies the 

equation 

D f =  o f  (4) 

where D is the Dirac operator  and o is a certain first-order "Monge-Amp~re"  operator.  

(See Section IV.2.) The associative geometry  contains a 6-dimensional family of  special 

Lagrangian geometries.  Fur thermore ,  the Cartan-K/ihler theorem give many solutions 

to the system (4); (see Sections IV.3 and 4.), so this geometry is also highly non- 

trivial. (1) 

(~) Added in proof. It was recently observed by Robert Bryant that the cones in this geometry have 
links which are exactly the holomorphic curves in S 6 (with the standard, G2-invariant almost complex 
structure). He went on to prove that every compact Riemann surface can be realized as such a holomorphic 
curve in S 6. See [Br]. 
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The dual geometry of 4-folds in R 7 is called coassociatioe and has a local system of 

differential equations similar to (4). It includes the cone on the Hopf map, presented in 

[LO] as a Lipschitz solution of the minimal surface system which is not of class C I. 

Note that, since it is coassociative, this cone must be absolutely minimizing in R 7. 

The most facinating and complex geometry discussed here is the geometry of 

Cayley 4-folds in RS=-O. This is the family of subvarieties associated to the 4-form 

~(x, y, z, w)-~(x(pz)-z(px), w). It is invariant under the 8-dimensional representation 

of Spin7 and contains the coassociative geometry. It also contains both the (negatively 

oriented) complex and the special Lagrangian geometries for a 7-dimensional family of 

complex structures on R 8. In fact for any of these structures, the form V can be 

expressed as 

/p = -l to2+Re{dz} 

where to is the K~ihler form and dz=dzl A...A dz4 as above. 

The associated system of equations for a function j2 U c H - ~ H  (guaranteeing that 

the graph of f i n  O = H ~ H  is a Cayley fourfold) is again of the form 

Df= af. (5) 

Here D is the Dirac operator (or more suggestively, the quaternion analogue of the 

operator a/~z for functions f: U c C ~ C . )  The operator a is a homogeneous cubic 

expression in the first derivatives of f ,  constructed using the 3-fold cross product in H. 

It is, in fact, linear in the 3x3 minors of the Jacobian matrix off .  

The Grassmannian of Cayley 4-planes in R 8 is of codimension four in the full 

Grassmannian. One actually deduces seven equations which include the four appearing 

in (5). However,  outside a small and explicitly described subvariety of the Grassman- 

nian, the seven equations are implied by these four. (Full details appear in Chapter IV.) 

A plethora of solutions of (5) is again constructed using Implicit function theorem 

techniques and also by using the Cartan-Kahler theorem. 

Chapter V contains a number of comments concerning generalizations of the main 

ideas and results of the paper. These comments include the observation that every 

Cayley 4-fold naturally carries a 21-dimensional family of anti-self-dual S U2 Yang-Mills 

fields. 

The table of contents and the introductory paragraphs of each section give an 

indication of the organization and content of the paper. It should be stated that large 

portions, if not all of  Chapter II can be passed over by the uninterested reader. This 
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chapter contains a number of generalities which are appropriate for this paper but not 

necessary for the study of the explicit geometries subsequently presented. In particu- 

lar, the reader unfamiliar with currents and geometric measure theory will find these 

topics unnecessary in Chapters III, IV and V. 

II. Grassmann geometries 

II.l.  Geometries determined by distinguished families of submanifolds 

We will adopt the point of view that a geometric structure on a manifold is 

determined by a distinguished family of submanifolds. This is in contrast to the 

customary point of view in differential geometry that a geometric structure on a 

manifold is determined by a distinguished atlas whose coordinate transformations lie in 

a particular pseudogroup of local difeomorphisms of R n. One of the main points of this 

paper will be to exhibit several natural and interesting geometries of the first type 

which cannot be realized from the second point of view. 

In the geometries which we shall investigate the prefered submanifolds are deter- 

mined by their first order infinitesimal behavior. More precisely, the geometries can all 

be defined as follows. 

Suppose X is an oriented manifold of class C 1 and dimension m which is countable 

at infinity. Let G(p, TxX) denote the collection of oriented p-planes in TxX, the tangent 

space to X at x. The corresponding bundle will be denoted G(p, TX). Assume that an 

arbitrary subset ~ of G(p, TX) is given. (Note that ~dx=q3n G(p, TxX) may be empty.) 

Definition 1.1. Let S be a p-dimensional, oriented C 1 submanifold with possible 

boundary in X. If, at each point of S the oriented tangent space of S belongs to ~, then 

S is called a %submanifold. The family of ~submanifolds of X constitutes the % 

geometry of X. Such ~geometries shall fall under the collective name of Grassmann 
geometries. 

It is useful to extend the <g-geometry of a space to include manifolds with 

singularities. The nicest such extensions are provided by Geometric measure theory. 

We remark to those unfamiliar with this subject that it is not essential to our paper. The 

remainder of this section may be skipped or passed through lightly on a first reading. 

Our first generalization of a ~geometry employs the class ~c(X) of locally 

rectifiable p-currents on X (cf. [F1]). This class contains p-dimensional submanifolds 

with singularities. It is also closed under addition and subtraction, and allows certain 

infinite sums. In order to recall some of the basic properties of these currents, we shall 
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fix a riemannian metric on X. There is then a natural embedding of the grassmannian 

Gfp, TxX) into the vector space APTxX of p-vectors given by 

G(p, TxX) = {~EAPTxX: ~ is a unit simple p-vector}. (1.2) 

For each locally rectifiable current T E loc ~p (X) there is an associated "volume" mea- 

sure denoted II~ql, and for II~ql-a.e. x there is an oriented "tangent" p-plane, denoted 

T(x)EG(p, T~X). The current T is reconstructed from II~ql and T by setting T-TII~I; 
that is, T(~p)---S(T, ~p)dll/][ for each test form ~p. The locally rectifiable currents are 

generalized integral chains. They form, in fact, a natural closure of the integral 

Lipschitz chains on X. 

Definition 1.3. Suppose TE ~ c ( x ) .  

(a) If iT(x) ~ ~for  112ql-a.e. x then T is called a ~-chain. If, in addition, dT=O then 

T is called a ~-cycle. 

(b) If T(x) E ~ for II ql-a.e. x then T is called a positive ~chain. If, in addition, 

dT=O then T is called a positive ~cycle. 

Remark. Unless the axiom of  positivity, 

is satisfied the word "positive" in Definition 1.3 (b) is inappropriate and the concept of 

a positive ~chain  will be dropped from discussion. 

In our context it is also useful to consider the general class ior ~p (X) of p-dimension- 

al currents of locally finite mass on X. This is simply the space dual to the continuous p- 

forms with compact support (with the usual topology). One has that ~ ( X ) c ~ c ( X ) .  

Furthermore, after fixing a riemannian metric on X, each T E ~ ( X )  gives rise to a 

Radon measure II ql on x and a generalized "tangent" space T(x) E APT~X, defined for 

II/]l-a.e. x E X .  The current T is again expressed as T--T(x)II/]I. (This is an immediate 

consequence of the Riesz representation theorem.) Note that in this general case T(x) 

need not be a simple vector. However, T(x) is always of unit length in the mass norm 

on APT~X. This is the norm whose unit ball is the convex hull of the unit simple p- 

vectors, G(p, T~X). The function T(x) is 11711 measurable and bounded. Consequently, 

T(x) has pointwise meaning for x in the Lebesque set, Leb (73, of T with respect to IITII. 

In fact, 

(T(x), ~(x)) = lim 1 ( (T, ~)  dll/]l 
II l(B(x, e)) 

for each x E Leb (73. 
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Remark. The family of subsets of X of II/~l measure zero is independent of the 

choice of riemannian metric and; except for a set of II Zll measure zero, the tangent p- 

vector T(x) is determined (up to positive multiples) independent of the metric. 

We now let ch c~x denote the convex hull of ~x in APTx X, and set ch ~= Lix chq3~. 

Definition 1.4. A current TE d/pc(X) is called a positive ~-current if "Ix E ch ~q~ for 

II/l]-a.e. xEX.  

Remark. The terminology "positive Y-cycle" has already been employed in Defi- 

nition 1.3 (b), where the current T is required to be locally rectifiable. Therefore, we 

must refer to a positive Y-current T with dT=O simply as a closed pos#ive Y-current. 

A discussion of positive Y-currents is given in Appendix A of this paper. It is 

shown that in the cases of interest here, a substantially weaker notion of positive 

current automatically implies the property of locally finite mass. This generalizes 

known results for positive (1,1)-currents in complex analysis. 

Note that the concepts of Y-chain, positive Y-chain and positive Y-current are 

independent of the choice of riemannian metric on X. (See the remark above.) 

Remark. In general, a current T which is both Y-positive and locally rectifiable 

need not be a positive Y-chain. However, in the cases of interest, the completeness 

axiom I: 

ch ~ N G(p, TX) = qd 

is satisfied; so that a locally rectifiable positive %current is a positive Y-chain. 

Remark. Occassionally, it is conveneient to have still other concepts extending 

that of a Y-submanifold. For example, suppose X is a real-analytic manifold. Then a Y- 

chain T whose support is ap-dimensional, real analytic subvariety of X will be called an 

analytic Y-chain. Furthermore, if T is closed, it will be called an analytic Y-cycle. Most 

concepts of this type are fairly obvious and will not be mentioned here. 

The set of positive Y-chains has the following important compactness property. 

Suppose ~ is closed. Then for  any k>0 and any compact set K ~ X ,  the set o f  positive Y- 

chains T with supp (T)~=K and IITII (g)<.k, is compact in the weak topology. This follows 

easily from fundamental results in [F1]. 

II.2. Local structure theorems 

In this section we briefly examine the concepts introduced in Section 1 for three 

classical Y-geometries. 
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Example I: Complex geometries. Suppose X is a complex manifold, and let 

~cG(2p, TX) be the subset of canonically oriented complex p-planes. Obviously a 

submanifold is just a complex submanifold (with possible boundary) in X. By the 

Structure theorem of J. King (cf. [K] or [H2]), a positive %chain T is, in fact, a 

"positive holomorphic chain". That is, away from the support of its boundary, T is a 

locally finite sum T=Enj [Vj.] where each nj is a positive integer and each Vj. a pure p- 

dimensional complex subvariety of X. 

By the more general Structure theorem of Harvey-Schiffman (cf. [HS] and [H2]) a 

general C~chain T is, correspondingly, a general "holomorphic chain", i.e., away from 

the support of its boundary, T=Enj [Vi] as above, where now each nj- is an arbitrary 

integer. Actually, it was necessary in [HS] to make the "support hypothesis" that the 

Hausdorff (2p+l)-measure of suppT vanish. It still remains conjectural that this 

hypothesis is unnecessary. 

Finally, the local structure of closed positive Cg-currents on X is intimately related 

to the theory of plurisubharmonic functions (cf [Lgl], [HI], [HP2]) since a current T of 

bidegree (1, 1) is a closed positive %current if and only if T is locally of the form T= ia/i?q0 

with q0 plurisubharmonic. Moreover, let TE d/t~c(X) be such a current, and for each c>0 

consider the subset Ec(T) consisting of all the points of Ill]l-density ~>c. It is a striking 

fact  that in any region where T has no boundary, Er is a complex subvariety of 

dimension ~<p. Steming from results of Bombieri [Bo], this fact was conjectured by 

Harvey-King [HK, p. 52] and proved by Siu [Su]. A second shorter proof was given by 

Lelong [Lg2]. 

Example II: Foliation geometries. Suppose F is an oriented, p-dimensional folia- 

tion of X (cf. [L3]), and let ~ be the set of tangent planes to the leaves. Note that a 

connected ~submanifold without boundary is just a closed leaf of the foliation. 

The local structure theorems for currents in this geometry all follow more or less 

trivially from standard facts. Let us fix a riemannian metric on X and denote by F the 

field of unit simple p-vectors tangent to F. Then any positive ~current  T can be 

expressed as Z=lll]lF. The condition that the current T be closed i.e., dT=O can be 

understood as follows. Choose local coordinates (x~ ... . .  xp, y~ . . . . .  Yn-p) on X so that 

the leaves are defined by the equations: yj=constant, j =  1,..., n-p ,  then a positive 

current T is of the form T=/u(a/Ox~ A... A O/Oxp) where/~>~0 is a measure. The condition 

dT=O means precisely that O/z/Oxy=O for j =  1 .. . . .  p. Interior regularity for this system of 

equations is particularly simple; IL must be independent of the variables xl ..... Xp. Thus 

/~ can be written as/z= 1 | where 1 denotes Lebesque measure on R p and v is a Radon 
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measure on R n-p. Note: and a/ax, A...A a/Oxp=T/ffor some smooth nonvan- 

ishing function f .  

Suppose now that T is a ~ c h a i n  without boundary (i.e. a ~cycle) .  In order for 

T=( l |  (a/ax~ A...A O/axp) to be a p-dimensional rectifiable current R", v must be 0- 

dimensional rectifiable current in R n-p, i.e., a locally finite sum of 6-functions (see 

[HLs] for more details). Consequently,  

THEOREM 2.1. Away from the support o f  its boundary, every %chain T can be 

expressed as a locally finite sum T=Znj [Lj] where each nj is an integer and each Lj is a 

oriented closed leaf in X-(supp dT), with locally finite volume in X. Moreover, T is 

positive if  and only i f  each nj is positive. 

Continuing the analogy with the complex case, we let T be a positive %current 

without boundary and consider the set Ec(T) of all points of [12ql-density ~c. For each 

c>0,  Ec(T) is a locally finite union o f  closed leaves. This follows from the fact that the 

points of  density ~>c for the 0-dimensional current v must be isolated. 

Example III: Lagrangian geometries. Suppose X is a symplectic manifold, that is, 

a 2n-manifold equipped with a closed 2-form co such that o9" never vanishes. A tangent 

n-plane P on X is said to be Lagrangian if ogle=0. We let ~cG(n, TX) be the subset of 

oriented Lagrangian planes. Then a ~submanifo ld  is what is commonly called a 

"Lagrangian submanifold".  

Since in this case C~x=- Q3x, a positive ~ c h a i n  is no more special than a ~cha in .  In 

this geometry the ~cha ins  will be called Lagrangian chains. The local structure of 

Lagrangian cycles (Lagrangian chains without boundary) is not understood. 

In Chapter 3 we shall s tudy "special  Lagrangian geometries" where the Axiom of 

positivity is satisfied. Here one might expect a rich local structure theory as in the 

cases above. 

11.3. Grassmann geometries determined by a differential form of comass one 

The ~geomet r ies  of  particular interest in this paper are all defined by means of a 

riemannian metric and a p-form. 

The general construction is given as follows. Let  X be a riemannian manifold, and 

let q~ E F(APT*X) be an exterior p-form on X. Then at each x EX, we define the comass 
of q~x to be 

1191[*- sup { (q0 x, ~x): ~x is a unit simple p-vector at x}, (3. l) 
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that is, I{cpll* is the supremum of go restricted to G(p, TxX)cAPTx X, Furthermore,  i fA is 

any subset of X, we define the comass o f  go on A to be 

llgoll~ = s u p  [Igol/x*. 
xEA 

Note that the comass norm on APT~ X is dual to the mass norm on APTxX, whose unit 

ball is defined to be the convex hull of G(p, TxX). 

Definition 3.2. Suppose go is a smooth p-form of comass 1 on X. We define ~3(go) to 

be the union of the sets 

cg~(go) =_ {~x E G(p, TxX): ( go~, ~x) = 1 }. (3.3) 

That is, ~3(go) is the collection of planes where go assumes its maximum. The ~(go)- 

geometry will be simply called a ep-geometry. Its associated objects will be called go- 

submanifolds, go-chains, qg-cycles, positive go-chains, positive go-cycles, positive go-cur- 

rents, and finally closed positive go-currents. 

Note that go need not have comass one at each point or, equivalently, qSx(q~) may be 

empty for some x. 

Let  T be an arbitrary de Rham p-current with compact support on X, i.e., an 

arbitrary element of the dual space to the smooth p-forms. The mass of T is defined to 

be 

M(T) = sup { T(~O): IIwll  ~< 1 }. (3.4) 

If M(T)<oo, then TE~ppt(X) and M(T)--11ZlI(X) (see Section I1.2). If T corresponds to 

integration over an oriented p-dimensional submanifold S of X, then M(7)= vol (S). 

LEMMA 3.5. Let go be a smooth p-form of  comass 1 on X, and let T be an arbitrary 

p-current with compact support. Then 

T(go) ~ M(T) 

with equality if  and only if  T is a positive go-current. 

In particular, i f  S is a compact oriented p-dimensional submanifold (with possible 

boundary in X, then 

fsgo ~< vol (S) 

with equality if  and only if  S is a go-submanifold. 
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Proof. The inequality is trivial. Equality can occur only when M(T)<oo, and we 

may write T=rll~ql. Thus T(W)=f ~0")ll~ql~<f II I=M(T) and equality occurs if and only 

if q~(T)=l I[/][-a.e., i.e., if and only if T is a positive rp-current. 

If T corresponds to an oriented submanifold S, then II/]l is Hausdorff p-measure 

restricted to S and T is the field of oriented unit tangent p-vectors to S. The second 

statement is easily seen to be a special case of the first. 

Note that any q~-geometry automatically satisfies the Axiom of positivity and the 

Axiom of completeness I mentioned in section II. 1. 

We now examine the classical examples from this point of view. 

Example I: Complex geometries. Suppose X is a complex manifold and let 

~gcG(2p, TX) be the canonically oriented complex p-planes as above. We choose a 

riemannian metric ( . ,  �9 ) on X such that the map J: TX~TX corresponding to complex 

multiplication by ~ / - I  is orthogonal in each tangent space. (Such metrics exist since 

one can always average over the finite group generated by J.) The associated "Ki~hler" 

2-form o9 is defined by setting 

og(v, w)= <jv, w). 

Since j 2 = _  1, we have og(V, W)= -og(W, V), so o9 is a smooth exterior 2-form on X. We 

now set 

1 g2p = ogP. 
p! (3.4) 

Then Wirtinger's inequality (cf. [F1]) says that f~p has comass one at each point x and 

that ~x(~p) is just the grassmannian of (positive) complex p-planes. Consequently, this 

q3-geometry is realized as a ~3(q~)-geometry. 

Example II: Foliation geometries. Suppose F is an oriented p-dimensional foliation 

on X. Introduce a riemannian metric on X. The metric induces an isomorphism between 

APTxX and APT~X. let q0 be the unit decomposable p-form corresponding to the field F 

of tangent p-planes to F. Then at each point x, q~ is of comass one and q3x(q~)={I:~). 

Therefore each foliation geometry can be realized as a cp-geometry. 

Remark. There exist many other forms q~ of comass one at each point which 

determine the same foliation geometry. In fact, the form cp need not be decomposable in 

order that ~x(cp)={Fx). This observation is crucial in [HLs]. 

Example III: Lagrangian geometries. Since Lagrangian geometries satisfy 



CALIBRATED GEOMETRIES: CHAPTER II 59 

~x=_ c~, it is impossible to find go with c~= ~(go). However, for the special Lagrangian 

geometries of Chapter III, such forms exist. 

11.4. Calibrated geometries 

The key fact concerning go-geometries is that for any g0-manifold S, vol (S )=f sg  O. 

This fact is important whenever the form go is closed. 

Definition 4.1. A smooth p-form go on a riemannian manifold X is said to be a 

calibration if go is of comass one on X and dgo=0. A riemannian manifold together with a 

calibration is called a calibrated manifold. 

The fundamental observation is the following. Recall that the homology of the 

complex of deRham currents with compact support on X is naturally isomorphic to 

H.(X; R). 

THEOREM 4.2. Suppose X is a calibrated manifold with calibration go, and suppose 

T is a positive go-current with compact support. Let T' be any compactly supported 

current homologous to T (i.e., T - T '  is a boundary and in particular dT=dT'). Then 

M(T) ~ m(T') (4.3) 

with equality if  and only i f  T' is a positive go-current. 

Proof. Since T - T ' = d S  where S has compact support, we have T(go)-T'(go)= 

(dS) (go)=S(dgo)=0. Hence, by Lemma 3.5 we have 

M(T) = T(~)= T'(go)<~ M(T') 

with equality if and only if T' is a positive go-current. Briefly, Theorem 4.2 says that if 

dgo=0, then any positive go-current T is homologically mass minimizing among all (real) 

currents with the same boundary. Furthermore, any homologous current with the same 

minimum mass must also be a positive go-current. Of course this means that any go- 

submanifold is a minimal submanifold of X. 

There are two cases of particular interest here. Suppose X is a riemannian manifold 

with calibration go. 

COROLLARY 4.4. Any compactly supported positive cp-cycle on X is a current of  

least mass in its deRham homology class. Furthermore, every other rectifiable current 

o f  least mass in this homology class must also be a positive go-cycle. 
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Federer  and Fleming [FF] showed that the homology of  the complex of  rectifiable 

currents whose boundaries are also rectifiable on X is naturally isomorphic to H , (X;  Z). 

Fur thermore ,  if X is compact  one can find a rectifiable cycle of  least mass in each 

homology class. Note ,  however ,  that a positive q~-cycle T minimizes not only among 

rectifiable currents,  but among all real currents homologous to T. Thus,  for example,  a 

positive q~-cycle can never  represent  a torsion class in Hp(H; Z). 

COROLLARY 4.5. Let T be a compactly supported positive cp-chain with boundary 

B=dT. I f  Hp(X;R)=O, then T is a solution to the Plateau problem for B, i.e., T is a 

current o f  least mass among all compactly supported currents with boundary B in X. 

In particular, if q~ is a calibration on R n with the usual metric, then any positive q~- 

chain T with compact  support  is a solution to the Plateau problem for B=dT. 

COROLLARY 4.6. Suppose X is o f  class C k, 2<~k<-to. Each q~-submanifold S 

without boundary o f  class C 2 is actually o f  class C k. 

Proof. S is a classical minimal submanifold so that S is of  class C k by the basic 

regularity results in [M]. 

We now return b r i e f y  to our  standard examples.  

Example I: Kdhler geometry. Suppose X is a complex manifold with a metric 

( �9 ,- ) and 2-form ~o as in Sect ion II.3. If  doJ=0, then X is said to be a K~ihler manifold. 

Setting ~2p=(1]p!)O) p, we recover  the well-known result of  Federer  [F1] that complex 

subvarieties of  a K~ihler manifold are homologically mass minimizing. 

Example II: Foliation geometries. Let  X be a manifold with an oriented, p- 

dimensional foliation F. Suppose there exists a riemannian metric and a calibration q~ on 

X such that ~(q~)= {F}. Then every  compactly supported positive q~-current (or "folia- 

tion cur ren t "  in the sense of  Ruelle-Sullivan [RS]) is homologically mass minimizing. In 

particular, every  d-closed foliation current  (compactly supported positive q~-current 

without boundary)  is nontrivial in Hp(X; R). It will be shown in [HLs] that this last 

condition is, in fact, sufficient for  the existence of  such a metric and calibration. 

Any fibre bundle with discrete structure group (cf [L3]) gives a foliation of  this 

type (the foliation t ransverse to the fibres). 

In certain applications it is important  to have the following generalized notion of  a 

calibration provided by the theory of  flat and coflat currents (cf. Federer  [Fz], [F3]). 

Let  X be a riemannian manifold. 



CALIBRATED GEOMETRIES: CHAPTER II 61 

Definition 4.7. Suppose q0 is a calibration of degree p on X - S ~ ,  where S~ is a 

closed subset of X of Hausdorff p-measure zero. Since II (x)ll* < 1 for all x E X - S ~  the 

coefficients of q9 uniquely determine functions on X that are locally bounded and 

measurable, i.e. they are in L~oc(X). The (generalized) p-form q~ on X will be called a 

coflat calibration on X. 

A key property of a calibration, that it be d-closed, is also valid for coflat 

calibrations. 

LEMMA 4.8. Suppose q~ is a coflat calibration on X, then dq~=0 on X. 

By definition a current ~p is coflat if both ~p and d~p have coefficients in Ltoc. 

Consequently, a corollary of Lemma 4,8 is that a coflat calibration is coflat; justifying 

the terminology in Definition 4.7. 

Proof. This is just a special case of the following very general "Removable 

singularity" theorem. (See Theorem 4.1 (b) in Harvey-Polking [HP1].) Suppose P(x, D) 

is any linear differential operator of order n on an open set U=_R m, and suppose S is a 

closed subset of U with Hausdorff (m-n)-measure zero. Then each functionfE Live(U) 

satisfying P(x, D)f=0 on U - S  also satisfies P(x, D)f=0 on U. 

Remark. Note that in order to conclude dq~=0 on X we only used the fact that S~ 

has Hausdorff (m-1)-measure zero, where m=dim (X). 

A coflat calibration q0 on X can be used to define a ~3(q0)-geometry on X by defining 

q3x(q0) to be empty for x E S~0. However, in order to maintain the validity of Theorem 4.2 

(positive q~-currents are "minimal"),  we must restrict attention to positive q~-currents 

which are also locally fiat. We can now state a fundamental result of Federer [Fz] in the 

following modified form. 

THEOREM 4.9. Let q~ be a coflat calibration on a riemannian manifold X, and 

suppose T is a flat positive cp-current on X. Then 

M(T) ~ M(T') 

for all flat currents T' which are homologous to T. Furthermore, M(T)=M(T') for such 

a T' i f  and only if  T' is also cp-positive. 

In this theorem "homologous" can be taken to mean homologous in the complex 

of flat currents or in the complex of all compactly supported deRham currents, since 

the two notions are equivalent [F1]. 
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A number of interesting coflat calibrations of codimension one in R m have essential- 

ly been constructed in [L2] by means of certain compact Lie group representations. 

Each of the resulting geometries contains a mass-minimizing cone of codimension one. 

Among these is the Simons cone on S3•  8, which was originally proved to be 

mass-minimizing by Bombieri, di Georgi and Giusti. 

To pass from the material contained in  [L2] to the construction of a coflat 

calibration is not completely straight forward, so we shall give an outline o f  the 

construction here. Let G be a compact connected Lie group acting orthogonally on R"  

and let ~r~cRm be the union of the principal orbits of G. Recall (cf. [HsL]) that ~ is an 

open subset, st: ~--*~/G is a smooth fibre bundle whose complement has locally finite 

m - 2  Hausdorff measure. We shall construct coflat calibrations of dimension m -  1 on 

R m which are smooth in Y~. 

To do this we introduce some notation. Let p be the dimension of the principal 

orbits. Then we let v: ~ R  denote the volume function of the orbits, and we let ~0 

denote the unit p-form along the orbits. We also let H denote the mean curvature vector 

field to the orbits and set H* equal to the dual l-form, i.e., H*(V)=<V,H).  Suppose 

el . . . . .  e, are local orthonormal vector fields in ~ such that et . . . . .  ep are tangent to the 

orbit foliation. Let e~ . . . . .  e* be the dual 1-forms. Then we have, 

v(x) = vol (G" x) = ~P(G" x) 

Qo=e~ A...Ae* 

H * = ~  ~ (Veiej, ea>e*. 
j=l a = p + l  

Straightforward calculations establish the following: 

dv 
- H * ,  ( 4 . 1 0 )  

d Q o - - H *  A Qo (modI ' / )  (4.11) 

where I is the ideal of differential forms which vanish (and thereby define) the orbit 

foliation. Combining these equations, we see that 

d ( +  f~o) =-0 (modl- / )  (4.I2) 

This gives the following result. 

THEOREM 4.13. Let v and if2 o be as above. Suppose tOo is any closed form o f  

degree m - p - 1  in ~ such that IltOoll* v. Then the smooth form 
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Q = l ~ o A C O 0  
V 

defines a coflat calibration in R m. 

Note  that the form COo can be simply constructed in the orbit space ~/G and then 

pulled back by :r. In [Lz], all the cases where dim(Y~/G)=2, were considered. In each 

case a closed 1-form COo was constructed on ~/G with the property that [l:r*COall*~<v. 

II.5. The importance of the euclidean case---tangent cones 

An obvious and appealing class of  calibrated geometries is provided by the parallel 

forms of  comass one in Eucl idean space. Such geometries are the focus of  the deeper  

parts of  this paper.  

Notice  that, after normalization, each non-zero element ~v E APR ~ determines a 

parallel form of  comass  I, and therefore a geometry  of  (absolutely) minimal varieties in 

R n. These  varieties are in turn always character ized as solutions to certain systems of  

partial differential equations,  such as the Cauchy-Riemann equations in the case of  

complex geometries.  

Notice  also that there is a natural splitting 

where 

(~(q)) = R n X G ( c p )  

G(qg) = {~C G(p, R~): r = II 0ll*} 

is the go-Grassmannian (and where,  as above,  G(p, R n) is the set of  unit simple p- 

vectors in Rn). It is easy to see that for  a generic q~, G(q0)={~} for some ~EG(p,  Rn), 
and the associated qg-geometry is a fiat foliation geometry.  However ,  for  special cp the 

set G(q~) can be quite large. It is the understanding of  these cases which constitutes the 

main part  of this paper.  

There  is of  course  intrinsic interest in understanding the class of  minimal varieties 

so simply at tached to a basic linear algebraic object. However ,  there is a further reason 

for studying these particular cases. Namely,  a " tangent  c o n e "  to a positive cp-current, 

at a point Xo, where cp is an arbitrary calibration on a riemannian manifold, is a " tangent  

c o n e "  in the euclidean tangent space at the point Xo which is a positive q0x0 current.  We 

will discuss this in more detail after  the following study of  tangent cones in R". 

Le t  V denote  the vector  field x" O/ax on R ~ and let opt (x)=-etx denote the correspond- 
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ing flow. A current T is a cone if (got),(T)=T for all t>0, or equivalently, the Lie 

derivative Lv(T)=0. Note that if go E APR" then 

Since 

x 

Ixl 

if we define 

pgo = Lv(go) = d(V.Ago). 

0 I X . d x A  = g o -  " d xA  " I 
Ox 3x ' 

x  jgo 
go" = ~]" ax 

to be the normal par t  of go, and 

~==--~ Ox 

to be the tangential part of go, then 

go =got + i-x~l" dx A gon. 

Restricting the equations dgo=0 and (5.1) to the 

yields 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

sphere S " - I - { x E R " :  lxl=l} 

dgot=0 and dgo,=pgot (5.5) 

Both of these forms got and go, have comass no larger than the comass of go. For instance 

gon(~)=go(xA~) and I]~l]=][xA~t[ for any simply p - 1  vector ~EAP-lx • Consequently, 

the links of go-cones are just the go, submanifolds of the sphere. 

THEOREM 5.6. Suppose goEAPR" is a parallel calibration on R". A (p-1)-  

dimensional submanifold M o f  the sphere S " - l  is a go,-submanifold i f  and only i f  the p- 

dimensional cone CM = {tx E Rn: x E M and t>0} is a go-submanifold o f  R". 

Let ~r(x) --[x[. 

THEOREM 5.6. Suppose go EAPR" is a parallel calibration on R n. A (/9-1)- 

positive go-current on R n with dT=O. Then 

[ [ 1 ] l ( B ( O , r ) ) = p - l r j  T~x~ "dx [I<T,~,r>[I. (5.8) 
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for a.e. r; and for 0 < s < r ,  

~ll~l(B(O, r))--~ll~l(B(O,s)) = f.,o,r)_~o,~) lxl-P (r, ~,) ll~[. (5.9) 

Proof. Let  gr denote the characteristic function of the ball radius r. Since cp= 

p-~ d(V_Jq~), 

II~ql(n(0, r)) = (Zr T, q9 = (Z~ T, p-ld(V_J~)) = ([0B(0, r)] A T, p-~V~).  (5.10) 

The formula (5.8) follows easily and the proof  is omitted. Using (5.10), we see that 

~ll~ql(n(0, r))-l l l~ql(n(0,  s)) = p-~(([0n(0, r)]-[aS(0,  s)])A T, Ixl-PV ~ )  

= p-l([B(0, r)-B(O~ s)] A T, d(txl-PVlq~)). 

H ow ev er, 

d(lxt-PVlO = Ixl-Pd(V_lq~)--plxl-P-l dlxl A (VIq~) 

= p l x l - P @ - i ~  I �9 dxA ~n)=PlXl-Pq~,, 

completing the proof. 

It is useful to have alternate expressions for (T, (x/Ix])" dx A q~n) and (l', ~t) exhibit- 

ing them as non-negative quantities. 

LEMMA 5.11. Suppose N T=Ej.:, 2j~j, where 0~<~.j~<l, E2j.=I, and where each ~j is a 

unit simple p-vector in G(~o). (In Section 7 this is seen to be the case i fT is any p-vector 

o f  unit length in the mass norm with (T, (p)=l.) Then 

N 

T,-~] 'dxA% = ).j ~j__]]~ (5.12) 

N 
x . 0 2  

( r ,  = _ A ( 5 . 1 3 )  

Proof. We may assume T is a unit simple p-vector.  Choose unit vectors ej E spanT 

and e_LspanT such that X/Ixl=cosOel+sinOe, and complete to an orthonormal set 

ej . . . .  , % , e  with T - e  I A . . .A%.  Then, for example, (T, q~t)=((el A...A epA(CosOel+ 

sin 0e)) _2 (cos 0e~' + sin 0e*), q~) = sin 20_+ sin 0 cos 0(e 2 A... A ep A e, q~). 

5-812904 Acta Mathematica 148. Imprim6 le 31 aofit 1982 
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However, (see Section 7), since go(e 1 A... Aep ) = 1 it follows that go(e 2 A... Aep A e) =0. 

Thus, ('1", ~)=sin z 0 where 

x .  O_ =s inOe~A. . .AepAe ,  TA-~ ax 

completing the proof of (5.13). The proof of (5.12) is similar. 

The above formulae contain the basic information about the local behavior of d- 

closed positive go-currents T. If T is a minimal submanifold these formulae are classical 

(see [F1], 5.4.3). If go is (1/p!)ar ~ (the K~ihler case) these formulae can be found, for 

example, in [Hz] Section 1.9. The important facts about "tangent cones" to minimal 

submanifolds can be extended to d-closed positive go-currents using these formulae. 

If T is a d-closed positive g0-current o.n R n with go E APR n (so the above formulae 

apply) then 

I ( + ) , ( 1 )  (B(O, 1))=I[[I]'(B(O,r)) 

is a monotone increasing function of r because of (5.9) and (5.13). 

Consequently, {Zi(1/r), (1)}r<6is a weakly compact set in the mass topology. 

The cluster points C=lim (1/rj), (1) of this set with r]---~0 are called tangent cones 

to T at the origin. Obviously each such C is a d-closed positive go-current. 

The terminology tangent "cone"  is justified by the next result (cf. [F~]). 

PROPOSITION 5.14. Suppose go 6 APR ~ is a parallel calibration on R n and that 

T is a positive go-current with dT=O. Each o f  the many cluster points C=limj_,o(1/r]), (I) 

with r]--*O, is a cone, with Om(llfll,o)=om(llTqp, 0). Moreover, each such C is a d- 

closed positive go-current. 

Proof. 

~ l lCH(B(O'r ) )=l iml l l ( -~ i )*TJI  re I 

=l im l llzll(g(O, rrj)) 
j-,~ (rr]) p 

= c; '  o(ll~ql, 0) 

because r-PIII]I(B(O, r)) is monotone increasing in r. In particular, the left-hand side of 

(5.9) with T replaced by C vanishes. Thus (C, got)=0 for tlCIf-a.e, points x. Thus, by 
(5.13), 
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X �9 a = 0 ,  j =  1 . . . . .  N 
ax 

for IlCll- a.e. points x. Thus 

x 0 
CA . . . .  0 Ixl 

and hence CA V vanishes. However ,  L v ( C ) = a ( C A  V)+OCA V=a(C A V), so that 

Lv(C)=0  which proves  that C is a cone. 

Remark .  It is not known whether  or not the tangent cones C in Proposit ion 5,14 are 

unique. That  is, does limr_~0 ( l / r ) ,  (T) exist? In fact this is not known in the important  

special cases where  

(1) T is a tp-submanifold (or T is a minimal submanifold) 

(2) T is a positive current  of  bidimension p, p in C", q~=(1/p)er ~ with ~0 the 

standard K~ihler form (see [Hz], Conjecture  1.32). 

Now consider an arbitrary calibration on a Riemannian manifold X, and let T be a 

positive q~-current with dT=O. Fix x E supp T and let e: TxX--~X denote the exponential  

mapping. The tangent cones C to (e-1) ,  (T) at the origin are called tangent  cones to T 

at x E X .  

THEOREM 5.15. Let  X be a calibrated manifold with calibration q~, and let T 

be a posit ive q~-current with dT=O. Then each tangent  cone C to T at x is a posit ive q9 x- 

current in TxX  with, dC=O. Moreover ,  C is a cone with density at the origin the same as 

the density o f  T at x.  

The proof  of  Theorem 5.15 is straightforward and we shall omit the details here. 

Since TxX  with q~x is just  euclidian space with a parallel calibration, this Theorem 

5.15 provides the fur ther  justification for studying the euclidian case that was men- 

tioned at the beginning of  this section. 

11.6. Differential systems and boundaries of ~submanifolds 

Classically, ~geome t r i e s  arise in the following way. Given a collection W= (~oj}~, 

of differential p-forms,  define 

#x(tI J) = {~ E G(p, T~X): ~0j(~) = 0, j = 1 . . . . .  N} (6.1) 

at each point x. The elements of  #(tp) are called integral elements and an t(qJ)-  

submanifold is called an integral submanifold of  the system qJ. 
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An important question is: when does a q>geometry ~(q0 arise from a system 

~01=...=~0N=0 as in (6.1)? Of course, if ~p(O=0, then ~p(-O=0, so a more precise 

question is this. 

Question 6.2. Given a q~-geometry ~g(c#) in dimension p, when can one find a 

collection of p-forms W= {~p~ . . . . .  ~N) so that 

(~(0 u ( - ~ ( 0 )  = ~ (~ )?  

Let  A~(q0) denote the linear span of ~3x(q0 in A p TxX. At a fixed point x, we can 

choose ~01 . . . . .  ~PN to be  a basis for the annihilator [AxP(O] ~ Under reasonable assump- 

tions this can be done in a neighborhood, and our question then becomes 

Question 6.3. Given a q>geometry ~d(cp), when do we have that 

c~(q)) U ( -  ~(q))) = AP(q0) fl G(p, TX)? 

(Note this is a possibly stronger condition than the axiom of completeness.) 

This is related to another important question. In any of-geometry the form cp has 

comass 1, that is, 

r  2 ~< It~112 (6.4) 

for all simple p-vectors ~. Can this inequality be strengthend to an equality? More 

precisely: 

Question 6.5. Given a cp-geometry ~3(q0 in dimension p, can one find a collection of  

p-forms W=(~p~ . . . . .  ~?N} (locally) such that 

N 

[c~O] 2 + ~ ,  [~0~(012 -- I1~[I 2 (6.6) 
j=! 

for all simple p-vectors ~? 

If  so, then the equations q, j (~)=0, j=l  . . . . .  N, are precisely the conditions for 

equality in the inequality (6.4). When I[~11--1, equality in (6.4) is equivalent to having 

+~E ~(q0. Consequently,  an affirmative answer to Question 6.5 yields an affirmative 

answer to Questions 6.2 and 6.3. 

We shall show that the answer to Question 6.5 is affirmative for each geometry 

considered in this paper. 

Remark. Each simple p-vector ~ at x can be written as ~=v~A...A Vp for 



CALIBRATED GEOMETRIES: CHAPTER II 69 

v I . . . . .  vp ~ TxX-~R". Let F( v I . . . . .  vp)=llvl A,. ,A II 2 -   0(ol . . . . .  Up) 2. Note that F is a 

homogeneous polynomial which is non-negative. Question 6.3 asks for alternating 

multilinear forms q~j(vl, ..., vp) such that 

F=Eap 2 

on RmX... XR m. Thus we see that at x, Question 6.3 is a modified version of Hilbert's 

seventeenth problem. No counterexample to this modified problem is known. 

Suppose now that q0 is a p-form of comass one and that the comass inequality (6.4) 

has been strengthened to the equality (6.6). Consider the differential ideal I in the 

exterior algebra generated by ~p~ ... . .  ~PN" It is natural to ask whether I satisfies the 

hypotheses of the Cartan-Kiihler theorem. (See Spivak [Sp], for example.) Unfortu- 

nately, this is rarely the case for the examples of interest here. Instead we must 

consider the completion ] of I defined by 

[ = {~p E F(A*T*X): i~p = 0 for all ~ C c~(~v)} (6.7) 

where for ~ E ~gx(q0, i~ denotes the inclusion map is: span (O--> TxX. Using ,/we find that, 

for the cp-geometries studied in this paper, the Cartan-KRhler theorem is applicable. It 

can be used to prove the local existence of qg-submanifolds. 

At the same time this theorem can be used to give a local characterization of the 

boundaries of q~-submanifolds. Note that any such boundary F has the local property 

that for each x C F, 

f~F c span(~x) for some ~x E cgx(qg). (6.8) 

A (p-D-dimensional submanifold F which satisfies (6.8) at each point is said to be 

maximally gv-like. (When the qg-geometry is the geometry of complex submanifolds of 

some given dimension, this is equivalent to the notion of maximally complex, cf. 

[HL~].) In the examples of geometries studied in this paper, the Cartan-K/ihler theorem 

will be used to prove that (locally and in the real analytic case) the boundaries of 

q~-submanifolds are exactly those ( p -  1)-dimensional submanifolds which are maximally 

qg-like. 

In order that a compact oriented submanifold F bound a compact cp-manifold M, it 

must satisfy a certain moment condition, namely: for each (p-1)-form co on X, 

fr OJ = 0 if d~o EF([AP(O]~ (6.9) 

This follows immediately from Stokes' theorem since dwlM--0. 
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Question 6.10. When are conditions (6.8) and (6.9) sufficient to conclude that F 

bounds a compact go-submanifold? 

We complete this section by discussion of the above questions for the classical 

examples. 

Example I: Complex geometries. Suppose X is a complex hermitian manifold with 

-o0 the imaginary part of the hermitian form. Let g)p-~(1/p!)co p and consider the ~p- 

geometry of complex p-dimensional submanifolds of X. Fix x E X and choose a hermi- 

tian orthonormal basis for TxX. Then we can replace TxX by C n and adopt standard 

notation for C". In the spirit of Question 6.5 we have the following strengthening of the 

classical Wirtinger inequality. 

THEOREM 6.11. For each (real) simple 2p-vector ~ in C n, 

I Q p ( t ) l = + . . . +  Idz'A = = (6.18) 
111=2k 

I f  2p<-n the last term on the left-hand side is Eill=2t , Idz'( )l 2. I f  2p >n the last term on the 

left-hand side is Zi11=2~--p)l dz~ A fl2p--(r 

In order to prove Theorem 6.11 we need the following normal form. (See Harvey- 

Lawson [HL4] for the proof.) 

LEMMA 6.13. Given a unit simple 2p-vector ~ in C ~ with 2p<.n, there exists a 

unitary basis e i , Je  I . . . . .  en ,Jen for  C n over R and angles 

O~Ol~02~... ~Op_l~J~/2, Op_l~Op ~Tr, 

such that 

--- el A (Je I cos 01+e 2 sin 0 l) A e 3 A (Je  3 cos  02+e 4 sin 02) A... A e2p_ 1 

A (Je2p_ 1 cos Op+e2p sin Op). (6.14) 

Remark.  If 2p>n then the following formula replaces (6.14). 

- el A (Je i cos 01+e 2 sin 0j) A e 3 A (Je 3 cos 02+e  4 sin 02) A... A ez(n_p)_ 1 

A (Je2(n_p)_ I c o s  On_p+ eE(n_p) sin On_ p) A eE(n_p) + 1 A Je2(n_p) + 1 A . . .  A e n A Je n. 

(6.14') 

Proo f  o f  Theorem 6. I 1. We first assume that 2p<-n. Fix ~ and choose a unitary 

basis for C n so that ~ is in normal form. By the unitary invariance of the expression 
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(6.12) it will suffice to prove the formula in these special coordinates. Expanding out 

the expression (6.14) we see that a typical term is given by 

r / - -cosO 1 . . .cos Omsin Ore+ 1 ... sinOpe I AJe  1 A...A eiAJeiA...Ae2m_ 1 

A Je2m_ I A e2m+l A e2m+2 A...A e~p. 

The general term in (6.12) is 

(dz a A era, A Jem, A...A era,_, A Jem,_k ) (~) (6.15) 

since powers of the Kahler form can be written as a sum of the complex axis planes. 

Here [II=2k and [Ml=p-k.  Replacing ~ by the term r/, (6.15) will vanish unless M = 

{ l, 3 .... .  2 m -  1 }, m = p - k ,  and I=  {2m + 1,2m +2 ..... 2p }. In summary, if ~ is replaced 

by r/ there is only one non-zero term in (6.12): cos201 ...cosZ0m sinZ0m+l ... sinZ0p. 

Consequently, the left hand side of (6.12) is exactly cos201...cos2Op+...+ 

sin 2 0t... sin 2 0 p = ( C O S  2 01 +sin200 ... (cos2Ov+sinZOp) = 1 =II ll 
If 2p>n the proof is similar. Alternatively, the 2p>n case can be derived from the 

2p<~n case by using the Hodge -x--operator and the standard formula for -x-(V A tim), 

with ~p primitive. 

Remark. For each (real) simple 2p+ 1 vector ~ in C n 

IdzjA ff2p(~)12+..,+ ~ '  ]dzZA ff2p_k(~)12+ ... = I 12. (6.16) 
j=  1 Itl = 2k+ I 

If 2p+l~<n then the last term on the left hand side is El~l=zp+~ Idzt(OI 2. If 2 p + l > n  then 

the last term on the left hand side is El~i=zp+l Idz/AQzp+,_n(~)l 2. The proof of (6.16) is 

omitted. 

Let ~1 .. . . .  ~'N denote an enumeration of the real and imaginary parts of dzdAf2v_ ~, 

where lll=2k. It follows directly from (6.12) that for each ~6G(2p, Cn), q-ff2p(~)----1 if 

and only if VI(~)=... =~pN(~)=0. These conditions are equivalent to the conditions that 

+~ represent a complex p-dimensional subspace of C n (i.e., ~6 GcfiO, cn)). 

Let I denote the differential ideal generated by ~Pl .....  Vs- The integral elements of 

dimension p are the complex p-dimensional subspaces of C n. 

Note that the differential ideal I is not complete, that is, there exist forms ~p ~ I  

such that i~'~=0 for all ~ 6 Gc(P, C). 

In order to apply the Cartan-K~ihler theorem we consider the completed ideal i. 
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One can show that i consists of the real and imaginary parts of all forms of bidegree r, s 

with either r>p or s>p. In other words, 

i |  r,s. 
R 

summed over all pairs r, s with either r>p or s>p. This expression characterizes i at 

each point of the complex manifold X. Clearly we have that di=i (since d = a + J ,  etc.). 

Associated with each real subspace V of C n is the holomorphic part H(V)=-VnJV 

of V, and the complex envelope E(V)=--V+JV. Note H(V)cVcE(V) with H(V) the 

largest complex vector space contained in V and E(V) the smallest complex vector 

space containing V. It is straightforward to check that the "regular integral elements" 

of i (see Spivak [Sp] for definitions) are: 

(1) arbitrary if direr V<p 

(2) the subspaces V with dimeE(V)=p if dimR V>.p. 

Note. For a regular integral element V, a larger subspace W is also regular if and 

only if E(W)=E(V). 

Hence the Cartan-K~hler theorem implies the following. 

Let N be a real-analytic submanifold of C ~ with dimE(TzN)=p for each zEN. 

Then there exists a unique complex submanifold iV, of complex dimension p in C~; 

containing N. Moreover, the tangent field to N along N is just E(TN). 

In particular, N is maximally complex if and only if N is the boundary of a complex 

submanifold (the case where TzN is a real hyperplane in E(TzN)). 

Note. There is a brief elementary proof of these statements which avoids the 

Cartan-K~hler theorem. (This will not be true to the same extent for our later exam- 

ples.) Consider 0 E U c R  k where U is open and let f: U-~N=C n be a local real analytic 

coordinate chart. There exists r>0 such that for Ixl<r, f is represented 

by a power seriesf(x~ . . . . .  xk)=Eaxx t with complex vector coefficients. Set 

F(z~ ..... z~)=E atz4 where zs=xs+iy s and [zl<r. The hypothesis on N implies that the 

rank of the complex Jacobian of F is exactly p for ]x]<r and z real (i.e. at points of iV). 

Hence this is true for all z near zero. It follows that image (F) is a p dimensional 

complex submanifold. 

In Harvey-Lawson ([HLI], [HL2] and [HL3]) there is a complete discussion of the 

global question of when N bounds a complex submanifold. 

Example II: Foliation geometries. Suppose that ~ is a decomposable calibration on 
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a Riemannian manifold X (actually we will not use the hypothesis dq~=0 in the 

following). Then ~(q~) consist  of one point which we denote ~ .  Locally,  we may 

choose an or thonormal  frame e 1 . . . . .  e ,  of  vector  fields so that cp--e~'A...Ae*. Let  

~01 . . . . .  ~0 N denote  the other  axis p-forms,  i.e., forms of the type e~A...Ae~, 

where i i < . . . < i  p and p<ip.  Then the comass inequality  (0 <11 11 is modified into an 

equality 

[ v . / o f  = II ll 2 for all ~E G(p, TxX). (6.17) 

Le t  I denote  the differential ideal generated by qJ~ . . . . .  ~0 N .  Then as a consequence of  

(6.17) we see that I has only one p-dimensional  integral element,  namely ~0, at the point 

x. Exact ly  as in Example  I the Cartan-Kfihler cannot  be applied since there are no 

regular integral elements of  dimension p - 1 .  To remedy this defect consider the 

completed ideal 

i--- ( ~  EF(AkT*X): i~0W = 0} 

of  forms vanishing on span ~ for each x. This ideal i is a Pfaffian system generated by 

the one forms {ev+ 1 . . . . .  e*}. Thus we are lead to the standard Frobenius theorem 

applied to the Pfaffian system i. If  i is closed (i.e. d]c ] )  then there exists a foliation 

whose leaves are q~-submanifolds. 

II.7. The mass and comass ball 

The importance of  calibrations on R" with constant  coefficients was discussed in 

the last section. In this section we investigate these euclidean calibrations. 

First  we establish some notation and outline the elementary concepts.  Let  ( , )  

denote  the standard inner product  on R "  extended to A p R ~ and AP(R") *, and let II 
denote the associated norm. As defined above 

Ik011* - sup {~(0: ~E a~o, m) c APR m} 

is the comass  norm.  Let  K denote  the convex hull of  G(p, m) in A p R m. The mass  norm 

on A p R m, denoted [] I], is by definition the norm whose unit ball is K. Obviously,  the 

mass and comass norms are dual to each other  (i.e. the unit ball in the comass norm is 

K*, the polar of  K). 
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Given goEOK* (i.e., IIg01l*=l), the set 

~*(q~) = {~E OK: q~(~) = 1) 

is called the dual facet ofq~. Any subset F c a K  of  this form is also called an exposed 

facet of  K, and it is the geometry  of  these exposed facets that is of  central importance 

to this paper. Note  incidentally that the hyperplane {~ E A v R m" qg(~)= 1 } is a supporting 

hyperplane for K since K meets  this hyperplane but lies entirely on the side where q~< 1. 

Thus,  exposed facets are simply the convex  sets obtained by intersecting K with 

supporting hyperplanes.  

A convex subset FcOK is said to be an extreme facet of K if each line segment in K 

which has an interior point in F is a subset o f F .  Any exposed facet  is an extreme facet. 

Note  that if E is an extreme facet  of F and F is an extreme facet of  K, then E is an 

extreme facet  of  K. (The corresponding statement for exposed facets is false.) In 

particular, each of  the ex t reme points of  ~*(q~) is also an extreme point of  K, i.e., a 

simple vector.  This proves the following. 

LEMMA 7.1. Given cpEAP(Rm) * of  comass one, the q~-Grassmannian G(q~) is 

precisely the set o f  extreme points o f  the exposed facet ~*(cp). Consequently ~*(q~) is 

the convex hull o f  G(cp). 

The (exposed)facetal hull of  a set AcOK, denoted ~(A), is the intersection of  all 

the exposed facets of  K which contain A. The dual facet of  AcOK is the set 

~*(A)={q0EOK*: q~*(~)= 1 for all ~EA}.  Obviously,  ~*(3*(A))={~E 0K: q~(~)= 1 for all 

q0 E ~*(A)} = N {~'*(~): q9 E ~*(A)} = N {~*(g0): ac~(q~)} =~)(A). That  is, 

the double dual facet  of  a set AcOK is equal to the facetal hull of A. (7.2) 

We now observe the following. 

LEMMA 7.3. The dual facet o f  any subset A*cOK* is exposed. In particular, the 

facetal hull o f  At-OK is an exposed facet. 

Proof. We may assume A* is closed an convex without changing ~*(A*). Let  q~o be 

an interior point of  A* (in the sense of  convex sets). Then 

~*(A*) = ~*(q~o) (7.4) 

since the linear function ~ q ~ ( ~ )  (for some ~ E OK) attains its maximum value of  one at 

an interior point goo of  A* if and only if it is constant on A*. This proves the first 

statement.  The second follows from (7.2). 



CALIBRATED GEOMETRIES: CHAPTER II 75 

The exposed facets of K which are the largest (i.e., maximal under inclusion) are 

exposed by extreme points q~ of the comass ball K*. To see this suppose that ~*(q~) is 

maximal but that qo is not an extreme point. Then q0 is an interior point in some extreme 

facet F* ~OK* of dimension i> 1, and ~*(F*)=~*(~v) by (7.4). Let ~0 be an extreme point 

of F* (and therefore also of K*). Then ~p EF* implies ~*0p)_~*(F*)=~*(q0), and so 

~*(~0)=~*(q~) by maximality. 

It is of major importance here to determine the extreme points of the comass ball 

since they lead to the maximal exposed facets of K and therefore to maximal geome- 

tries. We begin our general discussion with the following basic lemma. 

LEMMA 7.5. (Canonical form of a simple vector with respect to a subspace.) 

Suppose V ~ R  m is a linear subspace and ~ E G(p, m) is a unit simple p-vector. Then 

there exists a set o f  orthonormal vectors f l  . . . . .  fr in V, a set o f  orthonormal vectors 

gl . . . . .  gs in V ~, and angles 0<0j<:r/2 for j = l  . . . . .  k (where k<~r, s<~p and r + s - k = p )  

such that 

= (cos O~fl+sin O~ gO A... A (cos Okfk+sin 01, gk) Afk+l A... A f  r A gk+l A... A gs- 

(7.6) 

Proof. Let :~: R'~--->V denote orthogonal projection. Consider the symmetric bilin- 

ear form on span ~ defined by B(u, v) =- (at(u), :~(v)). Let e I . . . . .  ep and 21 .. . . .  2p denote 

the eigenvectors and eigenvalues of B respectively. Then +~=elA.. .A %. Since 

O<<-B(u, u)~lul z, we have 0~<2j~<l for all j. Rearrange the indices so that: 0<2j<l  for 

j = l  . . . . .  k, ~ , k + l = . . . = ~ , r = l  and 2r+l=...---~2p=0. Choose O<Oj<Yg/2 SO that cosZ0y=2j 

for j =  1 . . . . .  k. Now I:r(ej)lZ=B(ej, ej)=2~=cos z Oj for j =  1 .. . . .  k. Hence, 

eFcos  0jfj+sin Oyg i for uniquely determined unit vectors f ie  V and gjE V 1 and 

j = l  . . . . .  k. Set fk+l=ek+l . . . . .  fr=er, gk+1=er+l . . . . .  gs=ep. Since B(e i, ej)=0 for i~:j, :r(e3 

and :r(e~) are orthogonal for i:l:j which proves that f~ . . . . .  fr is an orthonormal set of 

vectors in V. Moreover, ( ei-ar(ei), ej-:r(ej) )= ( e i, e j ) -B(e  i, O ,  which vanishes for i+j. 

Therefore g~ . . . . .  gs is an orthonormal set of vectors in W-. Replacing 

f~ and gl by -f~ and - g l  if necessary, the proof is complete. 

Sometimes it is convenient to eliminate unnecessary variables. Given a form 

q~ EAP(Rm) *, a subspace V*~_(Rm) * is said to envelope q~ if q0 EAPV*~AP(Rm) *. There is 

a unique minimial subspace which envelopes % namely: 

span q0 -= {r//q~: r/E N'-  1R'~}. (7.7) 
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This subspace consists of the essential variables for cp. Note that 

(span go)* = {v E R'n: v_J~ = 0} x. (7.8) 

PROPOSITION 7.9. Given q~EAp(Rm) * of comass one, the dual facet ~*(~) is 

contained in the subspace A p (span cp)* of  A p R m. 

Proof. Since ~*(qg) is the convex hull of the q~-grassmannian G(q0) it suffices to show 

that each r/E G(~) is contained in AP(span ~)*. We may assume that r/is in the canonical 

form given by Lemma 7.5 with respect to the subspace V -  (span q~)*. Since each 

gjEV • we have gjlq~=O. Consequently,  ]q~OI)]=cosOI...cOSOkICp(flA...Afp)I <- 

COS 01 ... COS Ok<l unless k=0,  and hence ___ r/=f~ A ... Afp E APV. 

Remark. Sometimes Proposition 7.9 will be used in the following form. Given 

cp E AP(R") * the set {~ E G(p, m): q~(r I1 11") of unit simple p-vectors that maximize q~(~) 

is contained in A p (span q~)*~_A p R m. 

PROPOSITION 7.10. Let R " = V E ) W  be an orthogonal decomposition. Suppose 

r * has comass one and ~ E A q w  * is a unit decomposable q-form. Then 

~A~pEAP(Rm) * has comass one, and 

G(c# A ~#) = { ~ A ~l: ~ e G(c#) ) 

where ~1 E Aqw is the unit simple q-vector dual to ~p. 

Proof. By Proposition 7.9 we may assume W*=span0p). Let  ~EG(p, m) be any 

unit simple p-vector and put ~ in canonical form with respect to V as in Lemma 7.5. 

Since g~ . . . . .  gs are orthonormal in V • W we must have s<.q. Moreover (~0 A~p)(~)=0 

unless s=q, in which case ~p(glA...Agq)=+_l (we may assume +I)  and 

(q~ A ~p) (~) = +sin01 ... sin 0k ~v(fk+ , A ... A f,) 

~< sin01 ... sin 0k~ < 1. (7.11) 

Thus [Iq9 A ~n *= 1. Moreover,  the only possibility for equality in (7. l 1) is when k=O and 

~=f lA . . .A f ,_qAglA. . .Ag  q. In this case we have (~vA~v)(~)=l if and only if 

fl  A... A fp_q E G(q~). This completes the proof. 

The following is a third application of Lemma 7.5. Case 2 is a result of Federer.  

PROPOSITION 7.12. Let cp=e~A...Ae*+e*+IA...Ae*pEAP(R') *. Then for p>~2, ~v 

has comass one and G(~v) is given as follows. 
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Case 1 (p=2). Let Jel=e 2, Je3=e 4, define a complex structure on 

C 2 = span {e L . . . . .  e4}. 

Then G(q~) consists o f  all canonically oriented complex lines in C2=_R m. 

Case 2 (p>3), G(~)={elA.. .Aep} t3 {ep+lA.../Xe2p }. 

Proof. By Proposition 7.9 we may assume that m=2p. Case 1 is a direct conse- 

quence of the Wirtinger inequality (see Theorem 6.11), so we can assume p~>3. 

Suppose ~ E G(p, 2p) and put ~ in canonical form with respect to V--span {el . . . .  , ep} as 

in Lemma 7.5. Then qg(~)=+cosO1...cosOp+sinO1...sinOp<~[cosZO2...cos2Op+ 

sin 2 02... sin 2 0p]-~<~cos 02... cos Op+ sin 02... sin 0p, which we may assume by induction 

on p is ~<l. The second inequality is an equality if and only if 

cos 02=... =cos  0p= 1 or sin 02=... =sin 0p= 1. It then follows easily that qJ(~)= 1 if and 

only if either ~=el  A... A ep o r  ~=ep+ 1A.../~ ezp. 

We now investigate the largest exposed facets of the comass ball K*. These are the 

facets of the form ~*(~) where ~ E G(p, m). Given a unit decomposable p-vector ~, we 

may choose an orthonormal basis e~ . . . . .  em for R m so that ~=-elA...Ae p. Let 

ef=-e(A.. .Ae~, il<i2<...<i p, denote the Ith axis p-form. The axis p-form cp= e* l . . .p 

certainly belongs to ~*(~). It is clear that ~ is an exposed point of the mass ball, 

exposed by q~. That is ~*(cp)= (~}. Consequently,  by (7.2) the facetal hull of q~ is exposed 

by ~. That is, 

~(q~) = ~*(~) .  

Now we shall prove that cp is the center of an axis "d i amond"  contained in ~*(~). 

PROPOSITION 7.13. Suppose ~=--e I A... A ep and cp=-e~A.../X ep. I f  ~p=- ef is an axis 

p-form with dim(span~N span~p)~<p-2 (i.e., ]IN{1 . . . . .  p}]~<p-2), then cp+~p is on the 

boundary o f  the facet  ~*(~). Moreover, the diamond D formed by taking the convex 

hull o f  the axis p-planes ++_ef with II n { 1 . . . . .  p } ]~p -2  has the following two properties: 

(1) qg+D=~*(~) 

(2) ~s*(~)=affine span of  cp+D. 

By the affine span of a set A we mean the smallest affine subspace containing A. 

Remark. It is clear that we may replace D in Proposition 7.13 by the larger set D'  
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defined to be the convex hull of all unit simple p-forms q) such that dim (span 99 fl 

span ~0)~<p-2 and span ~p =(span 99 N span q,)~((span 99)" n span ~p). 

Remark. The fact that ~*(~)=affine span99+D provides a useful procedure for 

discovering interesting forms of comass one. Suppose 99 has comass one and G(99) 

contains an axis p-vector, say ej (with respect to some orthonormal basis e~ . . . . .  em for 

R").  Then p(m-p)+ 1 of the coefficients of 99- EI)l=p99z e~'are determined. Namely 99j= 1 

and 991=0 for each I with [INJl=p-1. Thus, forms 99 of comass one such that G(99) 

contains several axis p-planes are severely limited. 

Proof. First we establish the following fact. Suppose 99 and ~0 are axis p-planes in 

(Rm) * with intersection of dimension p - 2  or less. Then 

11 99+  11" = max {12 1,1~[}. (7.14) 

Because of Proposition 7.9 the largest value of (299+/~p) (r/) for r/E G(p, m) is attained 

when r/fiA p (span99+span~p)*. Thus we may assume that there exists an orthonormal 

basis e, . . . . .  e m for R 'n with 99=e~'A...Ae*and lp=e~A...Ae*_,Ae*+,A...Ae~+t where 
* �9 * * * p+I=m and t~>2. That is 299+ktv2= e~A.. A e~_~A(2ep_ H A A Now . . . .  A ep+kt%+ 1 ... Aep+t). 

2e*_~+,A...Ae*+pe*+lA...Ae~+ t has comass max(l~.l, [ul} by Proposition 7.12 since 

l~>2. Applying Proposition 7.10 completes the proof of (7.14). 

In order to prove the first part of Proposition 7.1 3 we compute the comass of 99 + t~0 

using (7.1 4) and obtain [[99 + t~o[l* = max { 1, It i}. Con sequently 99 + t~p is on the boundary of 

the comass ball if and only if -l~<t~<l. Since (99+tv2)(~)=1 the line segment 

{ 99 + t~p: - 1 ~< t~  < 1 } is contained in the dual facet ~*(~) and 99 + v 2 belongs to the boundary 

of  this facet ~*(~). This also proves that the diamond D has the property that 

99+ Dc~*(~). 

It remains to show that ~*(O is contained in the affine span of 99+D. Suppose 

~E~*(~)  with r I. First note that ~ 1 . . 7 ~ ( O = 1  since ~E~(~) .  Now 

consider I such that [IN {1 . . . . .  p } l = p - 1 .  Say, for example, I=(2 . . . . .  p,p+l). We must 

show ~1=0. Let  r/-=(cos 0el+sin 0ep+l)Ae2A... A ep. Then ~(~/)=cos 0 + ~ t  sin 0 which 

is ~<(1+~/2) �89 with this maximum value obtained for 0 with cos 0= (l + ~ )  -~. Since 

~(r/)~<l, this proves ~1=0. Therefore ~ belongs to the affine span of 99+D, completing 

the proof of Proposition 7.13. 

A more careful look at the proof of Proposition 7.13 enables us to compute the 

99+~ Grassmanian. 
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PROPOSITION 7.15. Suppose  - * * * Ae*_/A * A q~-e I A. . .  A ep+e I A . . . . .  �9 e~+l A e*+lfor 1>~2. 

Then flail*--1 and G(q)) is given as fo l lows.  

Case 1 (l=2). Define a complex  structure on V---span {ep_j . . . . .  ep+2} by setting 

Jet,-i = ep and Jep+ 1 =ep+z. Then G(q)) = {e I A. . .  A ep_ 2 A ~: rl corresponds to a canonically 

oriented complex  line in Vc_Rm}. 

Case 2 (/~>3). G(q))={e 1A... A ep} tJ {e 1 A. . .  A ep_ tA ep+ I A. . .  A ep+t}. 

In the special case o fA 2 R m (and by Hodge duality A m-2 R m) we can give a complete 

description of the facets of both the mass and the comass ball. 

THEOREM 7.16. Suppose  F is an ex treme face t  Of the mass  ball K in A 2 R m. Then 

there exists a subspace  RZn c R  'n o f  even dimension, a (orthogonal) complex  structure J 

on R2n(=C"), and a f o r m  q~=--e~AJe~+. * * . .+enAJe  . (the associated Kdhler  fo rm)  on C n 

such that F=~*(qo) is an exposed  f ace t  and ~(~0)~l"-~(c) is the grassmannian o f  

complex  lines in C"___R m. The dual f a c e t  F* consists o f  cp+{~O E A2((R2")• I1~11"~<1}. 
Moreover,  each ex treme f a c e t  o f  the comass  ball K* is o f  this form.  

The standard proof is omitted. 

Remark .  Note that, in particular, each extreme facet of  the mass or comass ball is 

also an exposed facet. Also note that the extreme points of the comass ball are just  the 

points q)=-e'{AJe*+ * * . . . + e n A J e ,  with n=[m/2]. 

Similar results hold for the mass and comass ball in A "~-z R m and Am-Z(Rm)*, since 

A z R m ~ A  m-z R m with G(2, m ) ~ - G ( m - 2 ,  m). 

This Theorem 7.16 says that we have not overlooked any constant coefficient 

calibrations cp on R "  which are of  degree p = 2  or p = m - 2 .  For p = 2  the only possibility 

is the standard Kahler  form a~ (with respect to some orthogonal complex structure on 

RZ"cRm). For  p = m - 2  the only possibilities are 

and 

1 r "-1 (for m = 2 n  even) 
( n -  1) ! 

1 o9 n-1/k e m (for m = 2 n + l  odd). 
( n - I )  ! 

Remark .  The Hodge -x--operator gives an isomorphism of AP(Rm) * and Am-p(Rm) * 

which preserves the comass ball. Consequently,  one need only consider p~<2, in 

examining the facets of  the mass ball K or the extreme points of the comass ball K*. 
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We conclude this section with an example of how the above "algebraic" results 

can be used to study q~-chains. 

THEOREM 7.17. Suppose R m = v |  is an orthogonal decomposition and 

cpE APV*cA p R m is a parallel calibration on R m depending only on the variables in V. 

Each positive q~-cycle T on R m must be o f  the form 

T =- E Ti | [ai] 
j = l  

where {al, a 2 .. . . .  } is a discrete subset o f  W and each T i is a positive c~-cycle in V c R  m. 

Proof. By hypothesis TE~r dT=O and q~(T)=l for 117]l-a.e. x E R " .  By 

Proposition 7.9 (also see the remark following this Proposition 7.9), we know that 

TEAPVcAPR m for II~t-a.e. x E R ' .  

Let Z denote the characteristic function of the product of a ball in V with a ball in 

W, chosen so that z T  is an integral current. We may apply the next Theorem to xT, and 

complete the proof of Theorem 7.17 except for the conclusion that {al .. . .  } is discrete. 

This last fact follows immediately from the results of Section 5 which gives a lower 

bound for the mass of a positive tp-cycle S in a ball of radius r. 

THEOREM 7.18. Suppose Rm=v@ w is an orthogonal decomposition. Each inte- 

gral current TEIp(R m) with T(x)EAPV for H~qI-a.e. x is o f  the form 

T = ~ Sj | [ai] 
j = l  

where SjE Ip(V) and 

N(T) = E N(Si)" 
j = l  

Proof. Integral currents R with the property R(x)EAPV for IIRIJ-a.e. x will be 

referred to as being horizontal. The decomposition theorem in [Fd, 4.2.25 implies that 

T can be decomposed into El= 1T i with N(10=E N(Tj) and each Tj. indecomposable. A 

current R E Ip(R m) is said to be a piece o f  T if N(T)=N(R)+N(T-R) .  If a current 

TEIp(R m) has a piece different from T and 0 then T is said to be decomposable. 

Otherwise T is said to be indecomposable. Of course each T~ in the above decomposi- 

tion is a piece of T. Consequently, we must show: 

(1) If TEIp(R m) is horizontal then each piece R o f T  is horizontal. 
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(2) I f  TEIp(R m) is horizontal and indecomposable then T must be of the form 

S |  [a] for some indecomposable S C Ip(V) and some a E W. 

Proof o f  (1). Le t  y denote a linear function on W. A current S can be uniquely 

expressed as SoAdy+S1 where So and S1 can be expressed in terms of one forms 

orthogonal to dy. The current S is horizontal if and only  if S~ =0 for each linear function 

y on W. Consequently T=ToAdy; and i fR=Rody+Rt is a piece of Twe  must show that 

R I = 0 .  First note that 

M(Ro A dy) = sup ((Ro A dy) 0P): dy I ~p = O, ]l~Pl[ * ~< 1 } 

= sup {(Ro A dy+Rl)  OP): dy _l~p = O, [[~Pll <~ 1} 

~< sup {(Ro A @4 R1) OP+~ A dy): dy l~p = dy._jcp = O, 

and [[~p+cpdyH*~< 1} 

<~ M(Ro A dy+ Rl). 

Next we prove that equality holds, i.e. M(RoAdy)=M(R), if and only if R I = 0 .  

To prove this we may choose ~ with dy_]~=O and {IWll*=l so that 

(RoAdy)(~)=M(Ro)=M(RoAdy). Also choose ~ with dylq~=O and II~ll*=l so that 

RI(qJ A dy)= M(R1). 
Then for each 0, 

cos OM(Ro A dy) + sin O M(R O = (Ro A dy + R O ((cos 0) ~O + (sin 0) q~ A dy) 

~< m(R)J[(cos 0) ~/,+ (sin 0) q~ A dyJ]* 

<~ M(R). 

To prove the last inequality note that 

IlW+cp A dyl[* ~< V(ll ll*)2+(ll 011*) 2 

This can be seen as follows. 

Le t  e * - d y  and put ~EG(p,m) in canonical form with respect to e. That is 

~=((cos a) e+(sin a) V)Ar/where el~l=O and e_L V. Then 

(~ + tp A dy) (O = cos a(~v A dy) (e A r/) + sin a~(v A ~1) 

-< c o s  allr +sin all+,ll* -< V(11r 2. 

The inequality 

cos 0M(R) + sin OM(R1) <~ M(R) 

6-812904 Acta Mathematica 148. Imprim6 le 31 aoflt 1982 
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established above for all 0 implies that M(R0=0 as desired. Now by hypothesis 

M(R)+M(T-R)=M(T). 

Also M(RoAdy)<.M(R) with equality if and only if R~=0. Similarly 

M(T-RoAdy)<.M(T-R) with equality if and only if Rl=0. Therefore M(RoA dy)+ 

M(T-RoAdy)<.M(T) and hence equality must occur. That is Rl=0. This proves part 

(1) that R is horizontal. 

Proof of  (2). Suppose T is horizontal. If A is any Borel subset of W, the current 

Za Tis: 

(i) integral with boundary ZA 8T 
(ii) horizontal 

(iii) a piece of T. 

Proof of  (i). Smooth T by smoothing each coefficient. This gives a family of 

smooth T~ with T~---~T and each T~ horizontal. Since ~(~A T)=(aZA)A Te+ZA OT~=xa 8T~, 

we have a(Z A T)=XA aT. 

Proof of  (ii). Obvious. 

Proof of  (iii). M(Z A T)+M((1-XA) T=M(T); and M(8(ZA T))+M(a((1-ZA) T)) -- 
M(aT), because of (i). 

The measure, v(A)-M(ZA T) for all A c  W, must be concentrated at a point a E W or 

(i), (ii) and (iii) above imply that T is decomposable. Therefore T must be supported in 

Vx{a}. Since T is flat it must be of the form S| by a support theorem of Federer 

[F1]. 

Appendix II.A. Positive ttf~currents 

Suppose cp is a p-form of comass one on a riemannian manifold X, and consider the 

associated Grassmann 99-geometry. In this appendix we discuss various equivalent 

definitions of a positive q>current. It is not necessary to assume q~ is closed. In fact, one 

can axiomatize the properties of ~3=~3(cp) needed for the discussion. However, we 

prefer to work with the case of q~-geometries. 

Definition A.1. Suppose ~ is a smooth p-form with compact support (i.e. a test 

form) on X. If (~px, ~x) I>0 for each ~x E ~3(cp), then ~p is called a q~-non-negative test form. 

If ~p is only continuous and the above condition holds, then ~ is called a q>non-negative 

continuous test form. Note that the cone of ~-non-negative test forms includes the 

vector space which annihilates the span of ~(g0). 
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The notion of a positive go-current can be expressed dually in several different 
ways. 

PROPOSITION A.2. Let T be any deRham current of  dimension p on X. Then the 

following are equivalent. 

(a) W I T  is a positive measure for each q~-non-negative test form W. 

(b) TE ~ c ( X )  and W I T  is a positive measure for each go-non-negative continuous 

test form W. 

(c) T is a positive go-current on X. 

Remark. Condition (a) may be rewritten as 

(a)' T(W)~>0 for each go-non-negative test form W, since ( w I T ) ( f ) =  T(fw) for each 

smooth function f. 

Similarly, (b) may be rewritten. As an immediate corollary of (a)' we have that: 

The cone {TE ~(X): T is go-positive} is weakly closed in ~(X).  

Proof. Clearly (b) implies (a). We show that (c) implies (b). By hypothesis, 

TE d/t~~ and TE ch cg(go), ii/ll_a.e. Hence, given a go-non-negative continuous test 

form W we have (% T)~>O, [[/][-a.e., and so 

(w A 73 = T(fW) = fx (W, T)fdl[/][ 0 

for any continuous funct ionf~0.  Therefore, the measure (WIT) is positive as claimed. 

It remains to prove that (a) implies (b). We must show that TE ~ c ( X ) ,  i.e., that T 

has measure coefficients. Fix a compact set K~X.  Consider the associated compact set 

~go)={~EAPTxX:(gox, ~x) =1, II~xll--1 and xEK} .  Since go--I on ~':(go) we see that any 

form sufficiently close to go (in the C~ will be positive on ~x(q~). It follows 

easily that given any point x EX, we can find non-negative test forms Wl ... . .  WN giving 

a local frame field for N'T*X near x. By hypothesis each WilT is a positive measure. 

Therefore T has measure coefficients. 

It remains to show that T~E ~x*(go)=ch Cgx(go)for each x E Leb (T). Recall that for 

x E Leb (T) and any test form W, 

fn W) dll~ql (r, 
('l'x, Wx) = lim ~x,,) 

,--,o § fs(~.~fl/] I (A.3) 
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To begin we consider  the open set U={xEX: Ilcoll*<l). Note  that for any xE U, we 

have ~*(cO)=~, and so any test form ~p with support  in U is automatically non-negative. 

In particular, T0p)~>0 and T(-~0)=T(V?)~>0. It follows that 

II ql(tO = 0, 

and we need only consider  points x where Ilcoxll*--1. 

Fix such a point x and consider  the cone Cx(cO) on ~*(cO)with vertex the origin. By 

definition, the dual cone to Cx(cO) is C'(cO)----{v? E APT~xX: (~p~, ~ }  3 0  for all ~x E Cx(cO)}. 

Since Cx(cO) is closed and convex,  the Bipolar theorem states that (C'(cO))'=Cx(cO). 

Therefore "Ix E Cx(cO) if and only if 

('Ix, ~ ) / >  0 (A.4) 

for all ~p~ E C'(cO). N o w  the interior ofC'(cO), which consists of all ~0 which are strictly 

positive on ~*(cO) (e.g. cO itself), is dense in C'(cO). Hence,  it suffices to establish (A.4) for 

all such ~0~. Recall that if K c X  is compact ,  then ~-* - ~* asK(cO)- t,lre K ~y (cO) is also compact .  

Consequently,  if g~x is strictly positive on ~*(cO), then any continuous p-form ~0 

extending ~0x is strictly positive on ~*(cO) for all y near x. Consequently,  given any ~0x 

which is strictly positive on ~*(cO), we can find a co-non-negative test form ~0 extending 

~p~. Applying (A.3) to ~0 we obtain (T~, ~0x)~>0as desired. This completes the proof. 

Remark. Each current of  the form T=dx~ x with ~xECx(CO) for some x E X  is a 

positive c0-current. Let  C denote the cone all (finite) convex combinations of  such 

currents. First consider  C as a cone in ~ c ( X ) .  Then the cone dual to C is exactly the 

cone of  co-non-negative continuous test forms. The Bipolar theorem states that the 

double dual of  C is the weak closure of  C. Consequently,  by Proposition A.2, we have 

COROLLARY A.5. The weak closure o f  C in d/t~c(X) is the cone of  positive cO- 

currents. 

In exactly the same way  one can prove: 

COROLLARY A.6. The weak closure o f  C in the space ~p(X) of  deRham currents, 

is the cone o f  positive co-currents. 

Let Ax(cO) denote the linear span of  ~dx(cO) in APTx X. Using the riemannian metric to 

introduce an inner product  ( , )  in Ax(cO) we may define the cone 
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C~(99) -- {~]x ~ Ax(99): (rL, ~x) ~> 0 for all L E C~(99)}. (A.7) 

Since -~(~lx, ~x)=rLA'x-~x, the original cone CA99) is contained in the cone C~*(99)if and 

only if -x-(r/xA-X-~x)~>0 for all ~x, rLCC~(99); that is if and only if r/x and -x-~x are 

compatibly oriented for every pair r L, ~x of 99 planes. 

It is natural to consider the ~(99)-geometry defined by setting 

~(99) = c~(99) n C(p, TxX). (A.8) 

If Cx(99)c C~(99) and 

q3x(99) U ( -  qdx(99)) = AxP(99) I1 G(p, T x X)  

(Question 6.3 above) then 

~r = ~(99). 

Consequently, the positive ~(99) chains are just the positive ~(99) chains. 

Nevertheless, it is useful to consider the cone of currents TE d/~c(X) such that 

"rxECx*(99) for II~ql-a.a.x. 

These currents are called weakly positive 99-currents. 

Example I: Complex geometries. Here Ax(99) is just the space AP'PTxx of real p,p- 

vectors. In [HKn], the cone Cx(99) is called the cone of strongly positive p, p-vectors; 

while C~*(99) is called the cone of weakly positive p, p-vectors. Note that -x-(~ A -X-~l)~>0 for 

complex planes ~, r/so that C(99)~_C*(99) (and hence ~d*(99)= cg(99) are remarked above). If 

p=  I or n -  1, then C~*(99)= Cx(99); however for l < p < n -  1 Cx(99) is a proper subset of C~*(99). 

(See [HKn] for proofs and further results.) 

III. Special Lagrangian geometry 

In this chapter we shall study the geometry of n-folds in RZ'~C n associated to the 

calibration a--Re {dz[A...Adzn}. The submanifolds in this geometry are Lagrangian 

submanifolds of C n which satisfy an additional "determinant" condition. They are 

therefore called "Special Lagrangian, submanifolds. They, of course, have the proper- 

ty of being absolutely area minimizing. 

In the first section we prove that a has comass one and characterize the Grassman- 



86 R. H A R V E Y  AND H.  B. LAWSON JR. 

nian of Special Lagrangian n-planes. In the second section we derive a differential 

equation whose solutions correspond to the Special Lagrangian submanifolds. In 

particular, we consider any such manifold M locally as a graph over its tangent plane. 

When M is Lagrangian, this graphing function is the gradient of a scalar "potential" 

function F. We derive a second order differential equation for F which holds exactly 

when M is Special Lagrangian. For example, when n--3, the equation is: AF= 

det (Hess F). This equation is non-linear, but we prove that its linearization at any 

solution is always elliptic. 

We then present a number of explicit constructions of special Lagrangian varieties. 

For example, we prove that the normal bundle to an "austere" submanifold of R ~ is 

always special Lagrangian in T*Rn------- R 2~. There are two cases of particular interest. A 

surface in R n is austere if and only if it is minimal. Hence, the conormal bundle of any 

minimal surface is a special Lagrangian variety. The second case consists of cones on 

austere submanifolds of the sphere. In particular, each compact minimal surface in S 3 

gives rise to a topologically complicated, minimizing 4-dimensional cone in R 8. Many 

new singularity types for minimal currents are constructed in this way. 

In the next section we show the relationship of specialLagrangian geometry to the 

work of Hans Lewy [Ly] on harmonic gradients. 

The last section examines boundaries of special Lagrangian varieties and the 

Cauchy problem for the special Lagrangian differential equation. 

As we point out in Chapter V (Section 3), Special Lagrangian geometries are 

naturally defined on any Ricci-flat K~ihler manifold. The existence of such manifolds is 

established by Yau's recent proof of the Calabi conjecture. 

III.1. The special Lagrangian inequality 

Let C n denote complex euclidean n-space, with coordinates z=(z t ,  ..., z,), where 

z = x + i y  with x = ( x  I . . . . .  xn) and Y=(Yl .. . . .  yn). Let R n denote the subset of C n where 

y=O, with the standard orientation. The form we shall study is 

a =  Re  {dzl A ... A dzn} E A n C  n. (1.1) 

An oriented real n-plane ~ in C n is called totally real if it contains no complex lines. 

That is, if u C ~ implies Ju ~ ~. An oriented real n-plane ~ in C n is called Lagrangian  if 

the stronger condition, 
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Ju .1_ ~ for all u E ~, (1.2) 

is valid. 

Let  (,)-Es=ldzs| denote the standard hermitian form on C n, let 

( , ) - ~ s L 1  2 2 dx)+dy) denote the standard inner product on C n, and let w=E (i/2)dzsAd2 s 

denote the standard K~hler form on C ~. They are related by the formula 

(u, v) = (u, v ) - iw(u ,  v), 

for all vectors u, v E C ~. 

Therefore ( Ju, v )=Re (Ju, v)=Re i(u, v ) = - I m  (u, v)=w(u, v). Consequently we 

may rephrase the definition of Langrangian replacing (1.2) by the following: 

w restricted to ~ vanishes. (1.2)' 

Consider the grassmannian G(n, 2n) of oriented real n-planes in C n, and let Lag 

denote the subset consisting of the Lagrangian planes. (Note that Lag consist of 

oriented planes.) One can easily check (using either (1.2) or (1.2)') that the unitary 

group Un acts on Lag. Moreover  this action is transitive. Suppose that ~=e ,A . . .As  n 

and ~'---s~ A... A s' n are Lagrangian with the epsilons denoting orthonormal bases. Then 

e I . . . . .  en, JQ, . . . , J s  n and e~, ..., s'n, Js' l . . . . .  Je', are both orthonormal basis for R2n--c ~ 

Consequently the linear map A sending the unprimed basis into the primed basis is 

unitary and A~=~'. The isotropy subgroup of U~ at the point ~0---R n is SO n acting 

diagonally on R"OR ". Thus 

Lag = U,/SOn. (1.3) 

Definition 1.4. An oriented n-plane ~ in C ~ is called special Lagrangian if 

(1) ~ is Lagrangian 

(2) ~=A~o, where A E U~ has the special property d e t A = l .  

Thus we have singled out the fibre above 1 C S 1 in the fibration 

Lag ~ U,,/SO,~ de tc  S I . 
(1.5) 

This fibre above 1 E S 1 consisting of all the special Lagrangian n-planes will be denoted 

S(Lag). 

Remark. Each fibre of the map (1.5) is the Grassmannian associated to a calibra- 

tion on R 2n. In fact, this family of Grassmannians belongs to the family of forms: 
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a o -  Re {e iO. dZl A ... A dZn} 

for 0~<0<2:r. Thus we have an SLfamily of  "Special  Lagrangian" geometries compati- 

ble with the given complex structure.  Since these geometries are equivalent under U,,, 

it will suffice to study the one associated to a=ao. 

For  notational convenience  we set 

fl = Im dz = Im { dzl A ... A dzn} 

so that dz=dzlA. . .Adzn=ct+i f l ,  with ct and fl real. 

THEOREM 1.7. For any ~EG(n,  2 n ) c A n R  2n, 

Idz(Ol ~ = a(r162 2 = Ir A Jr 

Proof. Suppose el . . . . .  e~ is an oriented basis for  ~CG(n, 2n) (not necessarily 

orthogonal).  Le t  e l , . . . ,  en, Jel . . . . .  Je,  denote the standard basis for  R"ORn=C n. Le t  A 

denote the linear map sending ej to e i and Jej to Jej. In particular A is complex linear, 

and 2~=e lA . . .Aen=A(e lA . . .Aen) ,  where 2>0.  Now (dz lA . . .Adzn ,A(e lA . . .Aen) )  = 

detcA,  and since d z l A . . . A d z n - a + i f l  this can be rewritten as 

Thus 

2a(~) = Re (detcA) (1.8 a) 

2fl(~) = Im (detcA). (1.8 b) 

a(2~)z+fl(2~) z = IdetcAI z = detRA = IA(el AJe I A . . .  A e ,AJe , )  I 

= Ia(e, A... A e n A J e  , A... A Je.)I=Z21r162 I. 

This completes the proof.  

LEMMA 1.9. I~AJr 2, for  all ~CG(n,  2n), with equality i f  and only i f  ~ is 

Lagrangian. 

Proof. Let  el . . . . .  en denote  an oriented orthonormal  basis from ~. Hadamard ' s  

inequality implies that 

I ~ A J r  = le, A . . .  Ae,,AJe, A.--AJE,,I ~< I~,1 .. .  I~,,I IJ~,l  . . .  IJ~,,I, 

with equality if and only if e~ . . . . .  En, Jel . . . . .  Je n is an orthogonal system. Since ~ is 
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Lagrangian if and only if e n . . . . .  e,, Je~, ..., Je, is an orthogonal system, the lemma 

follows. 

THEOREM 1.10. The form a - R e d z  has comass one. In fact, a(O~<[~[ for all 

E G(n, 2n), with equality if and only if ~ is special Lagrangian. 

Proof. az(o+fl2(O=[r 2, with equality if and only if ~ Lagrangian. There- 

fore a(O~<lr and equality holds if and only if r is Lagrangian and upon writing 

~=A(el A... A en) with A unitary, detcA =a(O+ifl(O = 1. 

COROLLARY 1.11. Suppose ~ E G(n, 2n). Then either ~ or -~  is special Lagrangian 

if and only if  

(1) ~ is Lagrangian, 

and 

(2) /3(0=0. 

Moreover, if A is any complex linear map sending ~o=enA...Aen into 2~ with 
ER, then 2/3(O=ImdetcA. 

Proof. The characterization of + ~ special Lagrangian is an immediate consequence 

of the proof of Theorem 1.10. The fact that 2fl(O=Im detcA is just (1.8 b). 

The above results imply, in particular, that or=Re dz is a calibration. 

Definition 1.12. The form cx=Re(dz) on C" is called the special Lagrangian 

calibration on C". 

Remark. The form a is left fixed by SUn but not Un. Also SUn acts transitively on 

S (Lag) with isotropy subgroup at ~0=Rn=C" equal to SOn; i.e. 

S (Lag) = SUn~SOn. (1.13) 

The results presented above contain an alternate definition of a Lagrangian subspace 

of C n. 

PROPOSITION 1.14. Idz(01 l l for all ~E G(n, 2n) with equality if and only if ~ is 
Lagrangian. 

Proof. By Theorem 1.7 and Lemma 1.9 

Idz, A... A dzn(~)l 2 = Ir A sr 1r 

with equality if and only if ~ is Lagrangian. 
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This characterization of Lagrangian planes can be used to graph a Lagrangian 

submanifold over one of the 2 ~ axis Lagrangian planes. 

COROLLARY 1.15. Suppose ~E Lag is not one of  the axis n-planes. Then ~ can be 

written as the graph o f  a linear map over at least two o f  the 2 ~ axis Lagrangian planes 

(cf. Arnold [A], Chapter 8.41 D). 

Proof. Expand out 

(dx,+idy 0 A ... A (dx,+idy n) = Z ~ + i  Z ~1~, 

where the ~ and the r/~' are the Lagrangian axis planes, and apply Proposition 1.14. 

Remark. An alternate approach to the "special Lagrangian inequality", a(~)~<]~t, 

is provided by the K~ihler equalities derived in Chapter II, Section 6. This approach will 

not be used in the remainder of this paper. Let Qp denote (1/p !)aP. Recall that 

Case 1 (n=2p even). 

Idz, A ... A dz, ,(OI2+.. .  + ~ ] '  Idz'A Qp_k(r . . . +  [Q~,(r = ir (1.16) 
111=2t, 

Case 2 (n=2p+ 1 odd). 

n 

Idz, A ... A dz,,(r ,~_,' Idz'A ~,~_k(t:)12+...+~_,, Idz~A %(012 = I ;I 2. (1.17) 
111=2.+1 j=l 

Since [a(~)]2+[fl(r 2, the above two equalities immediately imply 

a(~)~l~l. The proof of (1.16) and (1.17) shows more; equality holds if and only if ~ is 

special Lagrangian. 

III.2. The special Lagrangian differential equation 

III.2.A. The explicit formulation 

Definition 2.1. An n-dimensional oriented submanifold M of C n is called a (special) 

Lagrangian submanifold o f  C n if the tangent plane to M, at each point, is (special) 

Lagrangian. 

Suppose that M is a special Lagrangian submanifold of C n. Locally M can be 



CALIBRATED GEOMETRIES: CHAPTER 11I 91 

described explicitly as the graph of a function over a tangent plane. Since all special 

Lagrangian planes are equivalent, under SUn, to the axis plane ~0=R n, we may 

consider M to be given as the graph, in R~+iRn=C ", of a function y=f(x) where 

z=x+iy. 

Recall the classical fact. 

LEMMA 2.2. Suppose ff2cR n is open and f: Q--~R" is a C l mapping. Let M denote 

the graph o f f  in C"=R~+iR ". Then the graph M is Lagrangian if  and only if  the 

Jacobian matrix ((af/axj)) is symmetric. In particular, i f  ~2 is simply connected, the M 

is Lagrangian i f  and only i f  f=VF,  is the gradient f ield o f  some potential function 
F E C2(~"~). 

Proof. We replace f by its Jacobian f ,  at some fixed point. Then f , :  R"---~R n i s  

linear and its graph is of the form TM=(x+if , (x):xER~}.  By definition TM is Lagran- 

gian if and only if Jv_I_TM for all v E TM. Suppose v=x+if,(x). Then Jv=- f , (x )+ix .  

Thus TM is Lagrangian if and only if - f , (x )+ix  and x'+if,(x') are orthogonal for all 

X, X' E R n, i.e., if and only if - (f,(x), x ')  + (x , f , (x ' ) )  =0 for all x, x' 6 R". Consequently 

M is Lagrangian if and only if the Jacobian matrix of f is symmetric at each point of ff~. 

Since f2 is simply connected, this is equivalent to the existence of a potential function 

F: f 2 ~ R  with VF=f. 

In order for the graph of f to be special Lagrangian it must be Lagrangian and 

satisfy one other condition. Let 

H e s s F - -  \ \  aXiOXj/) 

denote the Hessian matrix of F: Q ~ R  and let oj.(HessF) denote the jth elementary 

symmetric function of its eigenvalues. 

THEOREM 2.3. Suppose FE C2(Q) with l'-2~ n Let f - -VF denote the gradient 

field, and let M denote the graph o f f  in Cn=RnOiR". Then M (with the correct 

orientation) is special Lagrangian i f  and only i f  

[(n-I)/2] 

Z (-- 1)kO'2k+l (Hess F)  = 0, (2.4) 
k=0 

or equivalently, 

Im {detc ( /+ /Hess  F)} = 0. (2.4)' 
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Remark., The special case n=3 is worth noting. In this case (2.4) becomes the 

simple and beautiful equation 

AF = det (Hess F). 

That is, the Laplacian of F equals the Monge-Amp6re of F. 

Proof. Replacing M by the tangent space to M at a fixed point, we may assume that 

f: Rn--~R n is linear and symmetric. In f a c t , f  is simply the linear map associated with the 

quadratic form HessF .  The graph o f f  is the image of r  n under the 

complex linear map A: Cn--~C n defined by A--I+if. It now follows immediately from 

Corollary 1.11 that M is special Lagrangian if and only if (2.4)' holds. It remains only to 

prove the equivalence of (2.4)' and (2.4). 

Since the action of SOn on C n, given by g(x+iy)--gx+igy, preserves the set of 

special Lagrangian n-planes, we may replace f by any linear map of the form 

g o f o  g-~ for g C SO n. In particular since f is symmetric, we may assume it is diagonal 

with eigenvalues 21 .. . . .  2n. In this case we have Im{detc(I+iJ)}=Im{l-Ij= 1 (l+i2j)}= 

Zk(--1)kaZk+10'). Since the first and last terms are SOn-invariant, this proves the 

equivalence of (2.4)and (2.4)' in general. 

Remark 2.6. From equation (1.8 a) and the argument above, 
{n/2] 

2a(~) -- Re [det c (I+i Hess F)] = ~ ( -  1)~cr2~ (Hess F). 
k=0 

(Here Cro---i by definition.) The correct orientation for the graph of f i n  Theorem 2.3 can 

be determined by computing the sign of a(~) from the equation above. That is, if 

equation (2.4) is satisfied (so that _+~ is special Lagrangian), then 

(sign a(~)). ~ E S(Lag). 

One can show that {~ E S(Lag): ~ can be graphed over RncC n} has n components if n is 

even and n -  1 components if n is odd. 

From the main Theorem II.3.5 and the discussion above we now have the follow- 

ing result: 

THEOREM 2.7. Suppose FE C 2 ( Q )  with ff2~ ". I f  F satisfies the differential 

equation 

[(n- 1)/2] 

Z (-1)ko2k+l (Hess F) = 0  (2.8) 
k=0 
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on ~ ,  then the graph o f  VF is an absolutely volume minimizing submanifold o f  R 2n. 

Consequently,  the regularity results o f  Morrey [M] imply that any C z solution o f  

equation (2.8) is real analytic. 

III.2.B. Elliptieity 

The differential equation derived in part A above is non-linear, but it has some 

remarkable and beautiful properties. We shall show here, for example, that the lineari- 

zation of this equation at any "solut ion"  is an elliptic operator of laplacian type. 

Suppose we are given a real-valued function F over a domain g2cR ~, and consider 

the gradient map f=VF:  Q--->R" with Jacobian matrix 

f ,  = F** -- Hess (F) 

at each point. Letting e~, .., en denote the canonical basis of R n, the special Lagrangian 

condition is that 

a((e l+i f ,  e 1) A ... A (e ,+i f ,  e,)) > 0 

fl((el +i f  , el) A ... A (e ,+i f ,  e,)) = 0 

which leads immediately to the equations 

Re {detc(I+i f , )  } > 0 

Im {detc(I+i f , )  ) = O. 
(2.9) 

The second line in (2.9) is simply the equation (2.8) derived above. The inequality in 

(2.9) determines the appropriate orientation. 

We now consider a scalar function U on ff~ and set u=VU: Q---~R. As before we 

write 

u,  = U** = Hess (U). 

Assuming that F is 

operator: 

a given solution of (2.9), we want to consider the linearized 

L F ( U ) -  Im d detc {l+i(f,  +tu,)} It=0 

on all such functions U. For simplicity we write 

(2. I0) 

A - l + i f ,  
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and observe that 

det (A + itu,) = det (A) det (I+ itA-lu,). 

Consequently, 

-~ det (A + itu,) e=0 = det (A) tr (iA-1 U,) = tr (iA* u,) 

where A* denotes the transposed matrix of cofactors of A (considered as an 

nxn complex matrix). Observe now since u,  a real n• matrix, we have that 

Im (tr (iA*u,))=tr (Im (iA*) u,) =tr (Re (A*) u,). Hence, the linearization can be written 

a s  

Lv(U) = tr {Re (A*)- U**} (2.11) 

and the inequality from (2.9) is reexpressed as 

det (A) > 0. (2.12) 

Observe now that LF is elliptic if and only if the matrix Re (A*) is positive definite. 

However, after an appropriate orthogonal change of basis the symmetric matrix f ,  

becomes diagonal and we can write 

A =  

Then 

(171 0) 
' ' ~  

l+i~n 

( I_L_ 0 ) 
l+i3q 

A* = " �9 detA, 

1 
0 l+iAn/ 

and by (2.12) we have that 

1 

0 

Re (A*) = det A > 0. 

Thus we have proved the following: 
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THEOREM 2.13. The linearization o f  the special Lagrangian operator at any 

solution F o f  the system (2.9) is a homogeneous secondorder elliptic operator 

Lr(U) = 2 ai~(x) 
a2U 

i,j= 1 oxioxJ 

where ((a/J(x))) is a positive definite symmetric matrix at each point. 

In particular we can conclude the following: 

COROLLARY 2.14. Let ff2cR n be a bounded, strictly convex domain with smooth 

boundary, and let F o E C~ be a solution o f  the special Lagrangian system 

(2.9). Denote by %=/701 m the boundary values o f  Fo, Then there is an open neighbor- 

hood 91 o f  q~o in C2(aff2) such that for  each q~E91 there exists a solution 

FC C~ fl C2(ff2) of(2.9) with Flan=q~. 

More succinctly this says that the Dirichlet problem is solvable in a C 2 neighbor- 

hood of any solution. This corollary follows from standard Implicit function theorem 

techniques together with the interior regularity theory of Morrey [M] and the boundary 

regularity theory of Allard [A]. 

Note that the function F - 0  is always a solution of (2.9) over any domain. Hence, 

we have established the existence of enormous families of special Lagrangian submani- 

folds in each C". 

III.2.C. The implicit formulation 

We recall the following classical fact. 

LEMMA 2.15. Suppose that f i  . . . . .  fn are smooth real valued functions on an open 

set ff2cC" and suppose that dfl . . . . .  dfn are linearly independent at points o f  M =- 

{z E ~:fl(z)  = . . .=f,(z)=0}. Then the submanifold M is Lagrangian if  and only if  all the 

Poisson brackets 

{fj, fk} -- 2 ( afj afk afj afk ~ _ 2i 2 ( afj Ofk afj ~f~ ~ 
/=1 k OXl OYl OYl OXl] /=l OZI OZl OZl ~Zl] 

vanish on M. 

The proof is 
( / ) - -  n 

= ~ 'k=  l dxkAdYk. 
immediate from either the definition (1.2) or (1.2)' with 
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Suppose M is Lagrangian and described implicitly as in Lemma 2.15. Then the 

normal n-plane to M is spanned (over R) by af~/9x+i(afk/ay), k= 1 . . . . .  n. The operator J 

sends normal vectors to tangent vectors, and hence the vectors 

all 3 f  l af. afn 
t-i ~-i 

c3y ~x . . . . .  Oy ~x 

span the tangent space to M. The complex n • matrix ((2iafj/a2i)) sends el . . . . .  e. into 

the above basis for the tangent space for M. Thus the next theorem is an immediate 

consequence of Corollary 1.11 and Lemma 2.15 above. 

THEOREM 2.16. Suppose M--  { z E ~2:fl(z) . . . .  =fn(z)=0} is an implicitly described 

Lagrangian submanifold o f  ff2~ ". Then M (with the correct orientation) is special 

Lagrangian i f  and only i f  

(1) Im {detc((af//a~-))}=0 on M for  n even 

o r  

(2) Re {detc ((afi/agj)))=o on M for n odd. 

III.2.D. A note 

It is interesting that the special Lagrangian submanifolds are just the Lagrangian 

submanifolds which are minimal. That is; 

PROPOSITION 2.17. A connected submanifold McR2n~-cn is both Lagrangian 

and stationary i f  and only i f  M is special Lagrangian with respect to one o f  the 

calibrations ao--Re { ei~ dz).  

Proof. Of course any special Lagrangian submanifold is minimal. Conversely given 

a Lagrangian submanifold M we consider the function 0: M---~R/2erZ defined by the 

relations (see Proposition 1.14): 

dz(Mp) = e i~ (2.18) 

a straightforward calculation shows that for any tangent vector V to M 

V(O) = - (H, JV)  (2.19) 

where H is the mean curvature vector of M in R z~ and where J is the almost complex 

structure on C". It follows that M is minimal if and only if 0 is constant. 
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111.3. Examples of special Lagrangian submanifolds 

In this section we present  a large collection of  specific special Lagrangian subva- 

rieties of  C n. The collection includes many new area-minimizing cones. One of  our  

basic construct ions is a specialization of  the fact that for  any submanifold M P c R  n, the 

normal bundle N*(MP)cT*(R")~R~xR~_--__C" is Lagrangian. 

III.3.A. Examples invariant under the maximal torus in SU,, 

Our first set of  examples is invariant under  the subgroup Tn-~={diag" i0~ te , . . . ,  e iOn) " 

01+.. .+01=0} in SUn. 

and 

THEOREM 3.1. Le t  Mc denote the locus in C n of the equations: 

Iz , l : - Iz i l  2 = cj, j = 2  . . . . .  n (3.2) 

Re(Zl . . .  z . )  = c I i f  n is even, 

Ira(z1 ... z,) = cl i f  n is odd. (3.3) 

Then Me (with the correct orientation) is a special Lagrangian submani fold  o f  C n. 

Remark .  This theorem provides us with examples of  special Lagrangian cones 

which are not real analytic,  thus providing the simplest examples of  absolutely area 

minimizing cones which are not real analytic. 

Suppose n is odd and choose all the constants cl . . . . .  Cn to be zero. The cone M is 

the union of  two cones M + and M -  with vertices at the origin through the n - 1  

dimensional tori T § and T -  respectively where 

T + =- { ( e  i01 . . . . .  ei~ 0 1 + . . . + 0  n ~- 0} 

T -  { ( e i01 , ion =--- .... e ): 01+. . .+0n = Jr}. 

Note that T + and T -  are disjoint and that - T + = T  - so neither M + nor M -  is real 

analytic. However ,  both the cones M § and M -  are special Lagrangian. 

Proof. Using the formula 

{ f , g } = 2 i ~ (  a f  8g 

7-812904 Acta Mathematica 148. Imprim6 le 31 aofit 1982 

azk ~ (3.5) 



98 R. HARVEY AND H. B. LAWSON JR. 

one computes  that for  any pair of  the n-functions f~(z) . . . . .  f , (z)  defined by (3.2) and 

(3.3) the Poisson bracket  is zero. Thus by Lem m a  2.15, Me is Lagrangian. If  n is even 

then, with f l (z )=2 Re zl . . .  z , - c l ,  

( zl ... z./zl 

z, 

= Z 1 

Zl 

- - Z  2 

- - Z  3 

zl'" z./zn/. 
- z  n / 

Expanding in the first row shows that detc ((0j~/a~j)) is a sum of  terms of the form 

+lzl ... Zni2/izkl 2. Therefore ,  Im {detc((af-/0s and so Mc is special Lagrangian by 

Theorem 2.16. I f  n is odd the proof  is similar�9 

Of  course the above proof  obscures the idea behind the construction of  the 

examples Me. They  were obtained as follows. The maximal torus T "-I has a commuta-  

tive Lie algebra generated by 81OOl-OlaOi,j=2 . . . . .  n. Now in C, 8180-- 

-y(O/c~x)+x(c~/ay), and a / O O I d x A d y = - ( x d x + y d y ) .  Therefore  a/00 is a Hamiltonian 

vector  field with Hamiltonian function H(z)--  = ~z] 2, since d H = x d x + y d y .  

In particular, we have the n - 1  Hamiltonian functions fj(z)=�89 2) with asso- 

ciated Hamiltonian vector  fields O/OOl-O/aOj on C" (i=2 . . . . .  n). Since these vector  

fields commute,  the Poisson brackets  ~ , f j )  vanish. The functions f2 . . . . .  f ,  must be 

constant on M if M is to be Lagrangian and invariant under T "-1. To construct  the last 

function fl(z),  assume n is even.  Then f l  must satisfy Im{detc((Ofi/as by 

Theorem 2.16�9 But as noted above,  after substituting for f2 . . . . .  fn, detc((C~f/Os a 

sum of  terms of  the form 

+ Zk a f  l .. Z,/iZkl 2. 
- -  ~ z k  Z l  " 

The equations {fl,fj} =0  for j = 2  . . . . .  n become 

~fl afl a 
~1 -~-7-_ - s = ~,, j = 2  . . . . .  n. 

(YZ 1 oZj  

Hence,  Im {detc ((a3~/a2j))} =0 reduces to 

f_  afl Zn)=O. I m t z i ~ z l ' Z ,  ... 

These equations are solved by f l (z)- -Re (zl ... Zn). The case n odd is similar. 
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I I I . 3 . B .  E x a m p l e s  i n v a r i a n t  u n d e r  SOn 

The second family of examples are invariant under the diagonal action of 

SO, on Cn-------Rn• ". In order for an n-dimensional submanifold M n of C '~ to be SOn 

invariant it must be the orbit of a curve F in the positive quadrant of the first complex 

axis plane C. That is M=-{(x,y)ECn: Ixly=lylx and (Ixl, lyl)Cr}. Let r denote Ixt and 

denote lYl. Suppose F is the graph of a function Q(r). Choose q0(r) to be a primitive of 

Q(r). Then Vq0 =Q(r) Vr = Q(r) (x/r). Thus M is the graph of Vq~ and is consequently always 

Lagrangian. 

THEOREM 3.5. Let 

Mc =- ((x, y ) E C  n: IxlY-- lYlx and Im(Ixl+ilYl) n = c}. 

Then Mc (with the correct orientation) is a special Lagrangian submanifold of  C ~. 

Proof. As noted above M is Lagrangian. Generically M is the graph of 

F(x)-o(Ixl)(x/lxl).  The differential F ,  of this map from R n to R n is given by the matrix 

F,=(h,7 ) where 

_ _ 0 (Q(lxl) x ~ = ~(Ixl)  6..+ d (Q(r) ] xixj 
hij 

OX i \ IX I 3") ix I u dr \ r ] Ixl 

Thus the linear map F , :  Rn-->R n has the eigenvector x with eigenvalue 

r dr dr" 

Moreover, the hyperplane perpendicular to x is an eigenspace with eigenvalue Q(r)/r of 

multiplicity n -  1. Let  K: C~---~C '~ denote the complex linear map defined by mapping ej 

to ej+iF.(ej),j=l . . . . .  n. That is, let K=I+iF. .  Then K maps RncC ~ onto the graph of 

F . .  Hence the graph of F .  (oriented correctly) is special Lagrangian if and only if 

Im (detc K} = 0. 

Since 2q=do/dr, 2j=Q(r)/r, j = 2  .. . . .  n are the eigenvalues of F , ,  

[ - [ / 2 ,  ~ ( 1+i Q(r ) ) ( n - i - ~ - r )  d e t c K =  ( 1 + ) =  1+i . 
j=l r 

Therefore 

Im {det c K dr} -- ~ Im {(r+iQ(r)) "-~ (dr+idQ)} = 0 
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if and only if 

Im [(r+iQ) "-~ (dr+i@)]  = O. (3.6) 

This is an exact equation with potential 

Im ( 1  (r+iQ)n), 

and the proof is complete. 

Note that for c:~0, each component  of the manifold Mc is diffeomorphic to 

R x S  n-~. The variety Mo is a union of linear subspaces. 

Q = lyl  

n = 3  
w 

n = 5 r = Ixl 
Q(5r  4 -  IOr2Q2 +Q 4) = c 

f 
lyl = x / -Y lx l  

r = Ixl 
Q(3r2--Q 2) = c 

e = ly l  

III.3.C. Special Lagrangian normal bundles 

It is a classical fact that for any submanifold M of a manifold X, the canonical 

embedding of it 's normal bundle N(M) into T*X is Lagrangian with respect to the 

natural symplectic structure on T*X. In this section we shall determine the p-dimen- 

sional submanifolds M of R n whose normal bundles N(M) are special Lagrangian in 
R n �9 R n. 

We define the embedding 

~f: N(M)---> R n (~ R n (3.7) 

by setting v/(Vx)=(x, vx) where, in the second factor, v x is regarded as a vector based at 

the origin. We shall compute the tangent space to this embedding at vx0. Near Xo we 

choose an orthonormal tangent frame field el . . . .  , ep and a similar normal frame field 

v I . . . . .  Vq, p + q = n ,  so that (e~ . . . . .  Vq) is positively oriented. For  convenience we 

assume that the fields vk are chosen so that N_ )N (Vvk)x0--0 where ( denotes orthogonal 
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projection onto the normal space Nx0(M). We recall that the second fundamental  form 

of  M in the normal direction v is given by 

av(v)  = (Vv p)T (3.8) 

where ~ is any extension of  v to a local normal field and where ( ) T = I - - ( ) N  is 

orthogonal project ion onto T, oM. 

With respect  to coordinates  (x, t) on N(M), where x is a parameterization of M near 

x0 and t=( t  1 . . . . .  tq) E R q, the mapping (3.7) can be expressed as 

~p(x, t) = (x, E tj vi(x)). 
J 

The tangent space to this embedding at v(x0)=E cjvi(Xo) is spanned by the vectors  

Ej--~p.(ej)=(ej, aV(ej)), j =  1 . . . . .  p 

Nj- -  ~p.(O/O O = (0, uj), j = 1 . . . . .  q 

where the fields ej, vj are evaluated at xo. 

We now consider  the complex structure J defined on C ~ - R " e R "  by setting 

J(X, Y)=( -Y ,X) .  We clearly have that (JN~,Nk)=(JNi ,  E t ) = - ( N j ,  JE,)=O for all 

j ,  k, I. Moreover ,  (JEj, Ek)=(ek,  aV(ej)) --(AV(ek), e~)=0 from the symmetry  of the sec- 

ond fundamental  form. Hence ,  ~p(N(M)) is a Lagrangian submanifold of C"---R"@R". 

We are now interested in the conditions under which this manifold is special 

Lagrangian for some choice of  special Lagrangian calibration, go--Re { e i~ dzl A,. .  Adz,} .  

By performing an SO,  change of  coordinates on R n we may assume that at Xo the 

vectors e I . . . . .  ep, v~ . . . . .  Vq give the standard basis of  R n. This change of  coordinates is 

applied simultaneously to the two factors in R~0)R ~. We denote the standard coordi- 

nates in RnO)Rn by (x I . . . . .  Xn, Y l . . . . .  y,) and set Zk=Xk+iyk. Finally, without loss of  

generality we can assume that the vectors  ei . . . . .  ep were chosen to diagonalize the 

symmetric form A v at x0, i.e., we assume that A~(ek)=2 k e k for k= 1 . . . . .  p, at Xo. Conse- 

quently,  the oriented tangent plane ~ to the embedded normal bundle at v,0 is given by 

r 1A... A E p A N  I A. . .  A Nq=(e 1, 21 e0A. . .  A(ep, )h %)A(0, v0A. . .  A(0, vq). It follows 

that 

p 

(dzt A ... A dz,) (~)= iq H ( l +iAk). (3.9) 
k 1 
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In particular, we have [dzlA...Adz,,(~)]=l]~]l which gives a second proof that ~ is 

Lagrangian. We now choose the calibration 

q0 = Re {i-qdZl A ... A dzn} (3.10) 

and obtain the following result. 

THEOREM 3. I 1. Let  M be any submanifold o f  dimension p immersed in R n, and let 

~'n=~0[N(M)] be the canonical immersion o f  its normal bundle in RnORn=Cn given by 

(3.7). Then Nn is special Lagrangian (with respect to the calibration (3.10)) i f  and only 

i f  all the invariants o f  odd order o f  the second fundamental form at each normal vector 

to M vanish, i.e., 

ozk_j(A v) = 0 (3.12) 

for all k = l  . . . . .  [(p+ 1)/2] and for  all v. 

Remark 3.13. This condition on M is equivalent to the condition that for each 

normal vector v, the set of  eigenvalues of A v is invariant under multiplication by - 1, 

i.e., it is of the form 

(41 . . . . .  2p) = (a, - a ,  b, - b  .....  c, - c ,  0, 0 . . . . .  0). (3.14) 

Definition 3.15. Any submanifold of a riemannian manifold whose second funda- 

mental form A satisfies condition (3.12) will be called austere. 

Note. The total space of  the normal bundle to any (not necessarily orientable) 

submanifold of  R n inherits an orientation from R n. 

Proof. From (3.9) we see that N will be special Lagrangian if and only if 

Z k ( -  1)kaZk_l(21 . . . . .  2p)=0 and Zk~ 0 (-- l)kcr2k(21 . . . . .  2p)>0 at each normal vector v. How- 

ever, for each real number t, the eigenvalues of A tv a r e  t2~ . . . . .  t2p. Hence the first 

condition is equivalent to the vanishing of  the polynomial. Ek(-1)kt2k-~a2k_~(2~ . . . . .  2p), 

which occurs if and only if o2k_1(21 . . . . .  2p)=0 for k = l , 3  . . . . .  [(p+l)/2]. This implies 

condition (3.14) which immediately implies, by (3.9), that i-q(dZl/k.../~ dZp) ( ~ ) =  I1 11 =. 
This completes the proof. 

Theorem 3. t 1 leads to a large collection of  interesting examples of special Lagran- 

gian varieties. Note that when p=2 ,  the only condition is that trace (A~)~0, so that M 2 

is austere if and only if M 2 is minimal. 
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COROLLARY 3.16. Let  M 2 be any minimal surface properly immersed in R n. Then 

the canonical embedding (3.7) o f  its normal bundle in R 2" is an absolutely mass 

minimizing current in R 2~. 

This corollary can be used to construct  minimizing 3-folds in R 6 with interesting 

singularities. Also by choosing M 2 to be a triply periodic minimal surface in R 3, one 

obtains a minimizing 3-manifold in R 6 invariant under a 3-dimensional lattice of  

translations. 

Another  large set of  austere submanifolds are the submanifolds of R 2k which are 

complex analytic with respect  to some complex structure on R 2k. However ,  the area 

minimizing propert ies of  the normal variety are not new in this case. 

A particularly nice set of  examples comes from considering minimal submanifolds 

of the unit sphere S n - l c R  n. If MP-1cS n-I is a minimal submanifold, then the cone on 
MP-- l  

C(MP-1) = { t ' x C R ~ : x C M  p-l and tER} 

is a minimal variety in R ". The normal vectors to M p-l in S "-~ at x are exactly the 

normal vectors to C(M p-l) at tx for t~:0. Fur thermore ,  if the second fundamental  form 

A v of M p-1 in S n-I has eigenvalues 21 . . . . .  2p_ 1, the second fundamental form .4~ of  

C(M p-l) at tx has eigenvalues t21 . . . . .  t2p_l, O. It follows that M p-1 is an austere submani- 

fold of  S "-1 if and only if its cone is an austere submanifold of R ~. Hence,  we have the 

following. 

THEOREM 3.17. Let  M be any compact  austere submanifold o f  S "-j.  Then the 

" twis ted normal cone"  

qCJV'(M)={(tx, s v ( x ) ) E R ~ O R n : x E M  and t, s E R ) ,  

(where v(x) ranges over all unit vectors normal to M in S ~-1 at x) is an n-dimensional 

cone o f  least mass in R 2n. 

Note  that ~)r represents  a natural "compact i f ica t ion"  of the normal variety to 

C(M). That  is, the closure of  this normal variety is obtained by adding the cone on the 

Gauss image: M*={(O,v)  E R n ~ R n : v  a unit normal vector  to M in S n-l} as the 

"normal  space"  to the ver tex of  C(M). The Gauss image M* can be fruitfully consid- 

ered as a spherical dual. We note for example that M**=M.  Fur thermore ,  one can 

show that (at regular points) M is austere if and only if M* is austere. 
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Of course, any minimal surface (of dimension 2) in S "-~ is austere. There are two 

particularly nice cases of this sort. 

Example 3.18. Let Z c S  3 be a compact orientable minimal surface of genus g (cf. 

[L1]). The dual Z* is known classically as the polar surface. The zeros of the function 

I - K ,  where K is Gauss curvature, form a divisor of degree 4g-4  on Z (cf. [L1 

Proposition 1.5]). These points correspond precisely to the branch points of Y*. To 

each point x E Z, let x*=v(x) denote the unit normal to Y at x. 

COROLLARY 3.19. Let  Z c S  3 be any compact surface minimally immersed in S 3. 

Then 

~r = ((tx, sx*) E Rs: x E Z, s, t E R} 

is a minimizing cone o f  dimension 4 in R 8. 

The above corollary holds even when Z is non-orientable. Such examples exist for 

all topological types but p2(R) which is prohibited. The resulting cones have a rather 

complicated singular structure. Using the examples from [L1], however, one also 

obtains cones with large finite symmetry groups. 

If X is antipodally invariant, then cr is a cone on M 3 c S  7 where M 3 is the 

image of a singular map of X x S1/Z2 . (Z2 is generated by ( - 1 , - 1 ) . )  

Example 3.20. Another interesting set of minimal surfaces are those of constant 

positive curvature, given as follows. Let {qq . . . . .  q~N) be a L 2 orthonormal basis for the 

spherical harmonics of degree k on S 2. Then (cf. ]DW]) the immersion 

*k=(~  . . . . .  q~k): Sz---~S Nk-~ is a minimal immersion which commutes with the obvious 

actions of S03. This homogeneity implies that the image has constant Gauss curvature. 

If k is even, the image is an embedded projective plane. When k=2, it is the well known 

Veronese surface V ~ p 2 ( R ) c S  4. The dual is SO3-invariant and can be written as 

V*=SO3/Z2@Z2 . In spite of the complicated nature of V and V*, the twisted normal 

cone is topologically euclidean. 

COROLLARY 3.21. Let  V denote the Veronese surface in S 4. Then ~?r is a non- 

trivial mass-minimizing cone in R l~ which is homeomorphic to R 5. 

Proof. The orbit space $4/S03 is homeomorphic to [ -1 ,  1] where the endpoints 

correspond to V and -V.  (V N ( -V)=~ . )  The remaining orbits are all diffeomorphic to 

the bundle of unit normal vectors to V in S 4. Of course, each such orbit lies at a fixed 
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distance from V (and -V).  The orbit corresponding to 0 is exactly V*. From this 

information one can easily construct a homeomorphism qg)C'(V)N $7--~S 4. 

Example 3.22. Consider the minimal submanifold S"-~• Rn• ~. 

IxlZ=lYlZ=~}cS 2n-~. This manifold is homogeneous under SOn• The eigenvalues 

of the second fundamental form at any point are 1, -1 ,  1, -1  . . . . .  1, -1 .  Hence, this 

manifold is austere. It follows that 

(~V(S n-I x S  n-l)  = {(tx, ty, sx, -sy)  E R4n: Ix[ = lyl = 1 and s, t E R} 

is area minimizing. Topologically this is a cone on s"-lxS"-~• where Z2 is 

generated by ( -  1, - 1, - 1). 

HI.4. Degenerate projections and harmonic gradients 

First, in subsection A, w e  characterize the Lagrangian submanifolds of T* R* 

which have degenerate projections onto R n. This places a construction of Hans Lewy 

[Ly] in an invariant geometric context. In subsection B we discuss the relation of this to 

his work of harmonic gradient maps. 

III.4.A. Degenerate projections 

The construction of Lagrangian submanifolds as normal bundles can be somewhat 

extended. Suppose, that in addition to a p-dimensional submanifold M of R n, we are 

given a smooth function h on M. The exterior derivative dh can be used to translate the 

normal bundle, N(M), in the cotangent bundle T* R n l M  . More precisely, let H denote a 

smooth extension of h to the ambient space R n and define an affine subbundle A(M, h) 
of T* RnIM by 

Ax=-Nx(M)+(dH)~ for each xEM. (4.1) 

The exact sequence 

0 

implies that the affine space Ax defined by (4.1) is independent of the extension H of h, 

and depends only on (dh)xE T~M. 

PROPOSITION 4.2. The affine bundle A(M, h), constructed as in (4.1) above, is a 
Lagrangian submanifold of T* R n. 
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Proof. Near  (x, y) CA, choose orthonormal  coordinates x=(x ', x"), x'=(xl . . . . .  xp) 

and y-(y ' ,y")  etc. so that the x'-axis is tangent to M at x. Then M can be described 

explicitly as the graph of  x"=u(x'). Extend h to a function H(x') depending only on x' .  

Then A can be parameter ized by: 

(x', y")~--~ (X', U(X'), - O-Z~-7 (u(x'). y")+ ~-~TH, (x'), y") . 
~x ~x / 

Substituting for x" and y ' ,  one finds that y. dXlA=dH(x'), which is d-closed; and hence 

A is Lagrangian. 

The proposit ion has a converse  which provides a structure theorem for Lagrangian 

submanifolds with degenerate  projections.  

THEOREM 4.3. Suppose X is an n-dimensional Lagrangian submanifold of  T* R n 

whose projection :r:X---~R n is degenerate with constant rank p. Then X is an affine 

subbundle A(M, h) of  T* R" defined as in (4.1) with M and h uniquely determined by X. 

Proof. Let  M denote  :r(X). By the hypothesis of constant rank p, M is a p- 

dimensional submanifold of  X. Moreover ,  Tx.yX= TxM• W where W is a subspace of  

T~R n. In order  for  X to be Lagrangian we must have W=(JT~M)• which 

proves 

Tx.rX= T,(M) x N,(M). 

Consequently,  if we choose coordinates x- (x ' ,  x") for R" with x'=--(xt . . . . .  xp) so that 

O/aXl . . . . .  O/OXp are tangent to M at x and let y=(y',y") denote the corresponding 

coordinates in T*R  n, then O/ax I . . . . .  O/Oxp, O/Oyp+ 1 . . . . .  a /ay,  is a basis for the tangent 

space to X at x, y. Therefore ,  X can be expressed as the graph (locally) of  a vector  

valued function (x"(x', y"), y'(x', y")). Moreover ,  since X is Lagrangian (i.e. dx. dylx=O) 

the one form - y ' .  dx'+x"'dy" is d-closed on M. Consequently this form is exact  on M. 

That  is, there exists a generating (or potential) scalar function F(x', y") with 

OF aF 
y'(x', y") = ---8x' and x"(x', y") ~- ay"" (4.4) 

Expressing X as a graph over  the x', y"-axis yields: 

X = f [ x , ,  aF aF ,,'~] 
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Since ~r(X)---M and M is the graph of x"=u(x') we must have aF/$y"=u(x'), or 

F(x', y") -- H(x')+y". u(x'), (4.5) 

for some scalar function H(x'). This proves: 

PROPOSITION 4.6. Under the hypothesis o f  Theorem 4.3 i f  X is graphed (locally) 

over its tangent space T~,yX--TxMXNx(M), the generating function F is affine in the 

normal variables y" E Nx(M). 

Now X can be expressed as a graph over the x', y"-axis as follows: 

X=_{(x , ,u (x , ) ,_y , , .~u  + aH ,,'~ 
~x' ~-Tx"Y ).1" (4.7) 

Since the normal bundle fiber can be expresesed in coordinates as 

Nx(~/)= {(-y" .au/ax ' ,y"):y"ER n-p} this proves that jr-l(x)=Nx(M)+(dH)x as de- 

sired. 

Remark. We have proved more (locally). Suppose X is a Lagrangian submanifold 

of  T* R n with the property that, first, X can be graphed over the axis n-plane Vx W with 

V c R  n and W c  T~xRnand, second, the generating function is affine in V. Then X is of the 

form A(M, h). 

III.4.B. Harmonic gradients in three variables 

If n=3 the above considerations are intimately related to the work of Hans Lewy 

[Ly]. In this case we shall construct special Lagrangian submanifolds M 3 of C 3. Let  

z=x+iy with x=(xl ,  x2, x3) and y=(y~, Y2, Y3)" Then given a smooth real-valued function 

F(x) on an open set ~ R  3, we know from Theorem 2.3 that the graph (correctly 

oriented) of VF: Q---->R 3 is special Lagrangian if and only if 

A F - d e t  (Hess F) - 0. (4.8) 

Motivated by the discussion above, it is natural to consider the special case where F is 

affine in x3. This leads to the following interesting result. 

THEOREM 4.9. Let  F(x 1, x 2, x3)=h(xj, x2)+x 3 u(xl, x2) where h and u are arbitrary 

smooth real-valued functions, and let X= {(xl, Xz, x3, h 1 +x 3 uj, h2+x 3 u2, u)} denote the 
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graph of VF in R3~)R3=C3. Then X (with the proper orientation) is special Lagrangian 

if and only if 

(1 +u~) Ull-2u, u z u,2+(l +u]) uz2 = 0 (4.10 a) 

and 

(l+u~) h, ,-2u l u2 h,2+(1 +u~) h22 = O. (4.10b) 

Remark. The first equation is just the classical minimal surface equation for u and 

hence is satisfied if and only if the graph o f / / i s  a minimal surface S in R 3. The second 

equation is satisfied if and only if h, considered as a function on the surface S with the 

induced riemannian metric, is harmonic. If h - 0  then Theorem 4.9 is essentially 

equivalent to Theorem 3.1 1 with n=3. 

Proof. Note that AF=Ah+x3 Au and that 

//hll+x3 Ull h12+x3//i2 0 //1) 
//21 h22 +x3//22 // Hess F = [h21 + X  3 2 

\ //l //2 

A direct calculation shows that AF-det(HessF)=ax3+b where a and b are the 

expressions given in (4.10a) and (4.10b) respectively. This completes the proof. 

We continue the discussion of the case n=3. Note that X, which is the graph of VF, 

where F=h+x3 u, has a degenerate projection onto the axis 3-plane with coordinates 

(xl, x2, Y3). This projection is the minimal surface S which is the graph of y3=-//(Xl, x2). 

Note that the orthogonal 3-plane with coordinates yl,y2,x3 is special Lagrangian. 

Suppose that the projection of X onto this 3-plane is non degenerate and let G(y~, Y2, x3) 

denote the corresponding potential function. The image of VG: R3-->R 3 is just the two 

dimensional minimal surface S determined by y3=u(x~, x:), and hence det (Hess G), the 

Jacobian determinant of this map VG, must vanish identically. Since G must satisfy the 

special Lagrangian differential equation (4.8), G is harmonic. 

Now we turn attention to the converse. A special Lagrangian submanifold X of 

C3~-R3(~)iR 3 can be expressed locally, after perhaps an SU3-change of coordinates, as 

a graph of VG, over the axis Lagrangian 3-plane with coordinates (y~,yz,x3). The 

potential G must satisfy the special Lagrangian differential equation AG--det (Hess G). 

Suppose now that G satisfies the degeneracy condition 

rank (Hess G) ~< 2. (4.1 I) 
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Then the special Lagrangian differential equation becomes the classical equation 

AG = 0, (4.12) 

so that G must be harmonic in 3-variables. Under the assumptions (4.11) and (4.12) we 

have that rank (Hess G) is either 0 or 2 at each point. Assuming it to be 2 everywhere, 

the image of the map VG is a surface S in the (xl, xz, Ya)-axis 3-plane. It was originally 

discovered by Hans Lewy that, in fact, S is a minimal surface. He went on to show that 

S together with a uniquely determined harmonic function h on S, actually characterizes 

G; that is G could be reconstructed from h and S. This was the first step in his deep 

work on harmonic gradients in 3-variables. Our discussion above implies that X is the 

translate of the normal bundle to S by the exterior derivative of a function h on S; and 

that upon graphing X over the (xl, x 2, x3)-axis the generating function F((x~, x 2, x 3) is of 

the form h+x3 u. As noted above the special Lagrangian equation for F is equivalent to 

u satisfying the minimal surface equation and h being a harmonic function on S-graph 

u. Thus the above discussion illustrates that some of Hans Lewy's  observations are a 

natural part of special Lagrangian geometry in C 3. 

In summary, this proves the following. 

THEOREM 4.13. Let X c R  6 be a connect&d special Lagrangian submanifold. Then 

the following are equivalent. 

(i) X has a degenerate orthogonal projection into L • for some special Lagrangian 

plane L. This degenerate image is necessarily a branched minimal surface S or a point, 

and X is necessarily the translate o f  the normal bundle to S by the exterior derivative o f  

a harmonic function h on S. 

(ii) X can be locally represented as the graph of a harmonic gradient map 

VG: L--~L • with degenerate hessian, where L is the same special Lagrangian plane as 

in (i). 

(iii) X can be locally represented as the graph of a gradient map VF: L-->L z, 

where s is special Lagrangian and F is as in Theorem 4.9 (i.e., F is affine in one of the 

variables). 

III.5. Boundaries of special Lagrangian submanifolds 

The purpose of this section is to give a local characterization of the boundaries of 

special Lagrangian submanifolds of C n. As a consequence we will have a local 

existence theorem which shows that special Lagrangian geometry is quite rich. 
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The key concept  here  is that of  an isotropic submanifold of  C ". This is a submani- 

fold i: M---~C n such that i*co=O where 

co _-_ i E dzk A d~ k 
2 k 

is the standard K~ihler or symplectic form on Cn-------T * R". Of course M is isotropic if and 

only if each of  its tangent spaces is isotropic. Let  I(co) denote the differential system 

generated by co. In terms of  differential systems, the isotropic subspaces are just  the 

integral elements of  I(co) and the isotropic submanifolds are just  the integral submani- 

folds. 

Given tangent vectors  u, v we say that u, v are skew orthogonal, denoted u -< v, if 

co(uA v)=0. Also let W-' denote  the subspace of  tangent vectors skew orthogonal to a 

subspace W. The condition 

i~vco = 0 (5. l )  

that a subspace W be isotropic can be reformulated as 

W c W" (i.e. u -~ v for all u, v E W). (5.2) 

Of  course if W has dimension n then W is isotropic simply means W is Lagrangian. It is 

a standard fact that 

W is isotropic if and only if W c  L where L is Lagrangian. (5.3) 

In terms of  the standard inner product  on C n we have that 

W is isotropic if Ju L W for each u ~ W. (5.4) 

A subspace W is coisotropic if W-' is isotropic, that is if W- 'c  W. The standard existence 

theorem in symplectic geometry  states the following. 

Suppose N is a k-dimensional isotropic submanifold contained in a coisotropic 

submanifold P of  codimension p. Assume that P is chosen transverse to (Tx N)-'. Then 

there exists a unique isotropic submanifold M of  dimension k+p with N = M c P .  

This result is valid in both the C ~ and the real analytic setting. The proof, from the 

point of  view of  differential systems is obtained by noting that the system l(co)le 
(restricted to the submanifold P) has Cauchy characteristics (TxP)-'. Repeated applica- 

tion of  this result implies the existence of  lots of  isotropic submanifolds of  dimension 

O<.k<.n. 
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We now wish to locally character ize  the boundaries of  special Lagrangian subman- 

ifolds. Recall that these submanifolds are much more rigid than the Lagrangian ones, 

since they are, in particular, minimal submanifolds (and hence real analytic). Of  course,  

the boundary of  a Lagrangian submanifold must be an isotropic submanifold. For  

special Lagrangian submanifolds, the converse  is true, at least locally in the real 

analytic case. 

THEOREM 5.5. Suppose N is a real-analytic isotropic ( n -  l)-dimensional submani- 

fold o f  C n. Then there exists a unique special Lagrangian submanifold M containing N. 

Proof. Consider the ideal I(co, fl) generated by the K~ihler/symplectic form co and 

the n-form f l=Imdz=Imdz~ A ... Adz~. The integral elements of this differential system 

consist of  the isotropic planes of  dimension k<n and of  the special Lagrangian n- 

planes. Given an isotropic (n-1)-dimensional  plane W there exists a unique special 

Lagrangian plane containing W. To see this we may assume that W is spanned by 

e 1 . . . .  , en_ 1 where e 1 . . . . .  e,, is the standard basis for RncC n. 

The Lagrangian planes containing W are of  the form Lo= span (e~, ..., e n_ ~, cos 0e, + 

sin OJen}. Since fl[L=e~A... A e*_ 1A(sin 0) (Jen)*, the unique special Lagrangian plane 

containing W is spanned by e 1 . . . . .  en. Consequently,  each integral element is regular 

and the Cartan-K~ihler theorem applies to yield Theorem 5.5. 

Remark 5.6. Note  that the above discussion goes through if we replace a = R e  dz by 

ao=Re(ei~ For  a given isotropic (n-1)-dimensional  submanifold N we thereby 

produce a l -parameter  family Mo of  minimal submanifolds all intersecting transversely 

in the manifold N. 

The Theorem 5.5 may be reformulated by considering N to be the graph of  a vector  

valued function f:  Z---~R n defined on a hypersurface Z in R n and M to be the graph of  a 

vector  valued function F on R n. Of course  M is Lagrangian if and only if F=VG for  

some scalar function G, The following are equivalent: 

N is isotropic. (5.7 i) 

f i s  a compatible 1-jet on Z. (5.7ii) 

Og on Z with f =  Vg on Z. (5.7iii) There  exist Cauchy data g, On 

Now Theorem 5.5 can be restated as follows. 
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THEOREM 5.8. Suppose F, is a (real-analytic) hypersurface in R n and (real- 

analytic) Cauchy data g, ag/an is gioen on F,. Assume that the unique special Lagran- 

gian n-plane containing the isotropic (n-1)-plane given by graphing Vg(xo) over TxoE 

projects non-degenerately on R n. Then there exists a unique solution G to the special 

Lagrangian differential equation 

[(n - 1 )/2] 

E ( -  1)ka2k+l (Hess G) = 0 
k=0 

with the prescribed Cauchy data on E. 

The assumption that the unique special Lagrangian n-plane containing 

TzoN=graphVg(xo) projects non-degenerately onto RncC n can be seen to be equiv- 

alent to E being non-characteristic for the special Lagrangian differential equation at 

the point Zo=-(Xo, Vg(xo)). In particular, the Cauchy-Kowalewski theorem implies 

Theorem 5.8 and hence Theorem 5.5. 

IV. The exceptional geometries 

In this chapter we shall explore certain fundamental geometries with exceptional 

automorphism groups. These geometries are all defined in low dimensions and can be 

presented in a unified way by using the algebra of the Cayley numers. We begin by 

defining certain calibrations in R 7 and R s and proving sharp versions of the comass 

inequality for them. The forms are, of course, classically known and there is an 

extensive literature concerning them. However, the sharp inequalities established here 

are new. In each case, the inequality leads to a first-order system of partial differential 

equations (analogous to the Cauchy-Riemann equations), with the property that graphs 

of solutions precisely form the family of subvarieties in our geometry. 

Throughout this chapter we shall make extensive use of the octonions (or Cayley 

numbers) O. A brief discussion of this algebra is given in Appendix A. Certain detailed 

computations underlying the inequalities are carried out systematically in Appendix B. 

|V.1. The fundamental inequalities 

We are concerned here with three distinct geometries and our discussion falls 

accordingly into three parts. 
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IV.1.A. The associator inequality 

Consider on Im (O)~--R 7 the trilinear form ~v given by 

q~(x, y, z) -- (x, yz).  (1.1) 

Note that ~v(x,x,z)=(x, xz)=lxl2(1,z)=O since zEIm(O).  Similarly, we have 

q~(x,y,x)=(x, yx)=lxlE(1,y)=O, and gv(x,y,y)=(x, yE)=- (x ,  yy)=-IylE(x, l)=O. 

Hence, the form c,v is alternating. 

Let e l= l ,  e2=i, e3= j,  e4=k, es=e, e6=ie, e7=je, es=ke denote the standard basis 

for the octonians O. Let 0)1, .,.,0)8 denote the dual basis for O*. We shall use the 

notation 0)pqr for 0)pAtOqA0) r. Consulting a multiplication table for O, the form q9 is 

expressed in terms of axis 3-planes as follows. 

(P ~ 0 ) 2 3 4 - -  0)278 - -  0)638 - -  0)  674 - -  0)265 - -  0 )  375 - -  0)485" (1.2) 

Note, in particular, that q~(ImH)=l where ImIt=iAjAk=e234 is just the canonically 

oriented imaginary part of the standard quaternion subalgebra It of O. (Also note 

~A~=O.) 

Defintion 1.3. If ~ E G(3, 7)cA 3 Im O is the canonically oriented imaginary part of 

any quarternion subalgebra of O, then the oriented 3-plane ~ is said to be associative. 

The set G(q~)-{~EG(3,7):~ is associative} will be referred to as the associative 

grassmannian. 

Now we can state and prove the associator inequality. 

THEOREM 1.4. The form q~ has comass one. In fact, cp(~)~<l for  all 

E G(3, 7)cA 3 Im O, with equality i f  and only i f  ~ is associative. 

Proof. Suppose ~=u I A R2Au 3 where u~, a2, a 3 is an oriented orthonormal basis for 

~. Then q~(~)= (Ul, a 2 u3) ~<]u~l lu21 lu31 = 1 by the Schwartz inequality. Moreover, equality 

holds if and only if the multiplication rules Up=Uq I~l r hold for all cyclic permutations 

(p, q, r) of (1,2, 3). Finally, these rules hold if and only if ~ is the canonically oriented 

imaginary part of a quaternion subalgebra of O. 

Definition 1.5. The 3-form q0 E 6 3 (Im O)*, defined by (1.1) is called the associative 

calibration on ImO. 

It is essential for the derivation of the partial differential equations appropriate for 

8-812904  A c t a  M a t h e m a t i c a  148. I rnpr im~ le 31 aoflt 1982 
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"associative geometry" that we strengthen the above inequality into an equality. An 

extra term is neccessary and it involves the associator, defined by 

[x, y ,z] - (xy) z-x(yz) for all x, y, z E O. 

The basic fact about the associator, which is proved in Lemma A.4, is that it is 

alternating on O. 

THEOREM 1.6. (X, yz)E+~l[x, y, z]12=lxAy/Xzl 2 for all x, y, z E ImO. 

Proof. In Appendix- B we prove that the triple cross product x•  has length 

[xAy/Xzl, real part (x, yz), and imaginary part �89 y, z] (for x, y, z purely imaginary). 

Theorem 1.6 follows immediately. 

This theorem provides an important alternate description of associative 3-planes. 

COROLLARY 1.7. Suppose ~ is an oriented 3-plane in ImO. Then either ~ or - ~  is 

associative if and only if[x,y, z]=O for ~=xAyAz. 

Proof. Express ~=xAyAz, where ICI = 1. Then ~ or - ~  is associative if and only if 

q02(r = (x, yz)2=l  by Theorem 1.4. Consequently, ~ or - ~  is associative if and only if 

[x, y, z] =0 by Theorem 1.6. 

Recall now that the group of automorphisms of O is the Lie group denoted Gz. 

That is: 

Gz==- {gEGL8(R): g(xy)= g(x)g(y), Vx, yEO}.  

Suppose g E G2. Note that x E O is imaginary if and only if x 2 is real. Hence g(x) is 

imaginary if and only if x is imaginary. It then follows from linearity that g($)= g(x). 

Thus g is an isometry. This proves that G2 is a subgroup of the orthogonal group on 

Im O=R 7. This fact and the above definition of G2 implies that 

G2 = { g E  O 7 : g * ~  = ~ } .  

In particular, G2 acts on the associative grassmannian G(q~). 

THEOREM 1.8. The action of  G2 on G(qg) is transitive with isotropy subgroup S04. 
Thus G(~)-~G2/S04. 

The action of S04=Spl x Sp 1/Z2 on Im O (and hence on G(3, 7)) is given as follows. 

We assign to each pair of unit quaternions (q~, qz)E Sp~xSp~ the map 
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g(a, b) = (ql a(li, q2b(li). 

One can easily check that each such g belongs to G2. 

(1.9) 

Proof. Suppose r Then by definition there exists an orthonormal pair 

el, e2 EIm O with ~= e lA e 2 A e I e 2, and Hi =span (1 A ~) is a quaternionic subalgebra of 

O. The isomorphism g: H---~Hi sending i~--~ e I,j ~-~e 2 extends to an automorphism of O 

by Lemma A. 15. Thus Gz acts transitively on G(q~). 

Let Ko=Spl• denote the subgroup of Gz defined by (1.9). Obviously this 

subgroup leaves ~o=iAjAk fixed, so that KocK=the  isotropy subgroup of G2 at ~0- It 

remains to show that Ko=K. 

Clearly every element g EK can be expressed, with respect to the canonical 

splitting O = H O H ,  asg=(g  l, g2) where gl E Aut (H)--=SO3 and g2 E 0 4. The group Ko is 

transitive on pairs (F, e) where F is an oriented orthonormal frame in ~o and e is a unit 

vector in {0} • 

Therefore, after applying an element in Ko we can assume g~=identity and 

g2(1)=l. Since g is an automorphism, we have that g(O,q)=g((q,O)(O, 1))= 

g(q,O)g(O,1)=(q, 0)(0, 1)=(0, q), Hence g2 is also the identity, and so g=identity. It 

follows that K=Ko and the proof is complete. 

Other G2 actions that are perhaps more standard are closely related to that in 

Theorem 1.8. Let VT, z denote the Stiefel manifold of oriented pairs of orthonormal 

vectors in I m O = R  7. Let V~7,3 denote the collection of ordered orthonormal triples 

epez, e3EImO with qc(elAe2Ae3)=O (i.e. e3_l.e I ez). Let {~0=0} denote the subset of 

G(3,7) on which qo vanishes. Let S 6 denote the unit sphere in Im O. Obviously G2 acts 

on 1/7, 3, VT, 2, {99=0} and S 6. 

PROPOSITION 1.10. There are natural diffeomorphisms: 

(a) V~7,3--~---G 2 

(b) {qJ=O}=G2/S03 

(c) vT,2 -62/sw  
(d) S6~Gz/SU3. 

Proof. Part (a) is just a restatement of Lemma A. 15 and implies part (b). Part (a) 

implies that (72 acts transitively on VT, 2 and S 6. The computation of the isotropy 

subgroups in parts (c) and (d) is omitted. 
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Remark. The unit 3-planes ~ with 9(~)=0 will be referred to as O-generating 3- 

planes since an orthonormal basis et ,e 2,e 3 for such a ~ generates O by repeated 

application of the Cayley-Dickson process (see the proof of Lemma A. 15). These 3- 

planes arise in Section 4 below on boundaries. 

IV.1.B. The coassociator inequality 

The basic 4-form ~ on Im O is defined as follows. 

Definition I. I 1. The 4-form ~V E A 4 (Im O)*, defined by 

~p(x ,y , z ,w)- �89  fora l lx ,  y,z ,  w C I m O  

is called the coassociative calibration on Im O. 

We must prove several results to justify this definition. 

LEMMA 1.12. The form (x, [y, z, w]) is alternating on O. 

Proof. This multilinear form on O is alternating in the last three variables y, z, w 

since the associator is alternating. Moreover, using (A. l) and (A.2) 

2~(x, x, z, w) = (x, [x, z, w]) 

= (x, (xz) w)  - (x,  x (zw))  

= (x~, xz)-Ixl 2 ( 1, zw> 

= Ix12(( ~ ,  z ) -  ( ~ ,  z ) )  = 0, 

and so ~p is alternating in all the variables. 

Consulting a multiplication table for O the above form ~p may be expressed in 

terms of axis 4-planes. 

~) = O95678-- (O 5634-- (.D 5274-- 035238 +60 3478 +(.0 2468 +(O 2367" (1.13) 

Recall that the -x--operator gives an isometry of the euclidean spaces 

-x-: A3 R7--->A4R 7 which maps simple forms to simple forms. 

PROPOSITION 1.14. ~p=~q0. 

Proof. Compare the formulas expressing q0 and ~p in terms of axis planes. 
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Definition 1.15. An oriented 4-plane ~ E G(4, 7)cA 4 Im O is said to be coassociative 

if the canonically oriented normal 3-plane -x-~ is associative. 

Consequently, the associator inequality combined with the fact that ~p =-x-g0 imme- 

diately proves the following coassociator inequality. 

THEOREM 1.16. The form ~p has comass one. In fact, 

~p(~) <<. 1 for all ~ ~ G(4, 7) c A 4 Im O 

with equality i f  and only i f  ~ is coassociative. 

Just as with the associator inequality the above inequality can be strengthened into 

an equality. In Appendix B we define the coassociator by, 

�89 y, z, w] = - 4  Alt ((y, zw} x) 

= - ( @ , z w ) x + ( z ,  x w ) y + ( x ,  y w ) z + ( y ,  xz )w) ,  (1.17) 

for all x ,y , z ,  wEImO.  

Obviously, Ix, y, z, w] is alternating. 

THEOREM 1.18. ~(x,[y,z ,  wl)2+�88 wltZ=lxAyAzAwl z, for  all x ,y , z ,  wE 

Im O. 

Proof. In Appendix B we prove that for x, y, z, w EIm O, the fourfold cross product 

x X y X z x w  has length IxAyAzAwl,  real part � 89  imaginary part 

~[x, y, z, w]. Consequently, Theorem 1.18 follows immediately. 

COROLLARY 1.I9. Suppose ~ is an oriented 4-plane in Im (O). Then either ~ or - ~  

is coassociative i f  and only i f  [x, y, z, w] =0 for  any basis x, y, z, w o f  ~. 

Theorem 1.18 provides an alternate description of coassociative 4-planes. 

COROLLARY 1.20. Suppose ~ is an oriented 4-plane in ImO. Then either ~ or - ~  is 

coassociative i f  and only i f  xy E ~• for all x, y E ~. 

Proof. If x, y E ~ implies xy E ~• then by (I. 17) we see that [x, y, z, w]=0 for all 

x, y, z, w E ~, and we apply Corollary 1.19. Conversely, suppose _+ ~ is coassociative and 

we are given z, W E ~. We must show that (y, zw) =0 for any y fi ~. If y, z, w are linearly 

dependent, then (y, zw)=go(y,z,w)=O since go is alternating. If y ; z , w  are linearly 

independent, we may choose x so that ~ = x A y A z A w ,  By Corollary 1.19, we have 
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Ix, y, z, w]=0 and, in particular, the coefficient (y, zw) of x in expression (1.17) must 

vanish. 

IV.1 .C .  The  Cayley  inequal i ty  

The basic 4-form on O is obtained from the triple cross product (see Appendix B). 

Definition 1.21. The four form @ E A40 * defined by ~(x, y, z, w ) - ( x ,  y•215  for 

all x, y, z, w E O is called the Cayley calibration on O. 

To justify this definition we must prove several facts. 

LEMMA 1.22. The form (x ,y •215  is alternating on O. 

Proof. Since y•215  is alternating we need only show that ( x , x •  for 

x, z, w orthogonal. In this case xXz• by (B.5), and hence 

(x, x x z x w )  = (x, x(~w)) = (1 ,  z:w)lxl  ~ = (z,  w ) l x l  ~ = o 

as desired. 

For the moment we postpone geometric characteriaztions of the 4-planes ~ with 

r = 1. 

Definition 1.23. An oriented 4-plane ~ E G(4, 8)=A40 is called a Cayley 4-plane if 

~(~)=1. 

THEOREM 1.24. The form �9 has Comass one. In fact, @(~)~<1 for all 

~E G(4, 8)cA 4 O, with equality if  and only if  ~ is a Cayley 4-plane. 

Proof. Suppose x , y , z , w  is an orthonormal basis for ~. Then @(r 

(x, yxzxw)<-Ix l l yxzxwI=l  by the Schwartz inequality, since lyXzXwl=lYAZAw]=l 

by Lemma B.4. 

Equality holds if and only if x = y x z x w .  Thus for our first characterization of the 

Cayley 4-planes we have: 

PROPOSITION 1.25. Suppose ~E G(4, 8)cA40. Then either ~ or - ~  is a Cayley 4- 

plane i f  and only i f  y x z x w  E ~for all y, z, w E ~. 

Proof. One need only consider the case where y, z, w are orthonormal since 

y x z x w  is alternating. The proposition then follows easily from the argument given for 

Theorem 1.24. 
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This condition on ~ can be described alternatively in terms of a complex structure 

on O. A distinguished 6-sphere of complex structures on O is provided by Cayley 

multiplication. 

Let S 6 denote (uEImO:lul=l}; and given uES  6, let J,:O--~O be defined by 

Juv=vu for all vEO. Since u 2 = - I  and (vu)u=v(u2)=-v, we have J2,=-1. Thus Ju is a 

complex structure on O. 

Given an oriented 2-plane a E G(2, 8), as is well known, one can impose a natural 

complex structure J on a as follows. If x, y is an oriented orthonormal basis for a then 

define Jx=y and J y - - x .  (This definition of J is independent of the pair x, y.) This 

complex structure J on a is induced by one of the above distinguished complex 

structures on O. To prove this we first define a map from G(2, 8) to S 6 by sending 

a=xAy  into the cross product y x x .  By Lemma B.2 and Lemma B.9, y •  

and is independent of the oriented basis x, y for a. 

LEMMA 1.26. Given a=x A y, the complex structure Jr• on 0 induces the natural 

complex structure on the subspace a o f  O. 

Proof. Suppose x ,y  is an oriented orthonormal basis for ct. Then yxx=:fy and 

hence Jy• x= x(2~Y) = IxtZY =Y. 

Now we can give another characterization of Cayley 4-planes. 

PROPOSITION 1.27. Suppose ~EG(4,8)cA40. Then ~ is a Cayley 4-plane if and 

only i f - ~  is a complex 2-plane with respect to one (all) o f  the complex structures 

determined by the two planes a contained in ~. 

Proof. Suppose ~ is an oriented 4-plane, and z, w is an orthonormal pair in ~. Let 

Jw• denote the complex structure on O determined by the two plane a--zA w. Choose 

x, yE~ so that x , y , z , w  is an oriented orthonormal basis for ~. Note Jw• by 

Lemma 1.26. If ~ is a Cayley 4-plane, then x=y•215215 and hence - ~ =  

y A J y A z A J z  is a complex 2-plane. Conversely if - ~  is complex, then we must have 

X=Jw•215215 so that ~ is a Cayley 4-plane. 

This inequality in Theorem 1.24 can be strengthened into an equality. 

THEOREM 1.28. For all x, y, z, w E O, 

d~(xAy A z A  w)E+llmx•215215 2 = IxAy AzA wl 2. 
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Proof. In Appendix B we prove that x x y x z x w  has length ]xAyAzAw] and real 

part dp(x, y, z, w). Theorem 1.28 follows immediately. 

Remark. Recall from part (3) of Lemma B. 15 that 

2 I m x x y  x z x  w = [x, y, z, w]+ xl[y, z, w]+ yl[z,x, w]+ zl[x, y, w] +wl[y, x, z]. 

COROLLARY 1.29. Suppose ~ is an oriented 4-plane in O. Then either ~ or - ~  is a 

Cayley 4-plane if  and only i f lmx•215  for any basis x,y, z, w for ~. 

The characterization of Cayley 4-planes given by this corollary will provide us with 

a means of deriving a system of partial differential equations associated with Cayley 4- 

planes. 

There are several alternate descriptions of the Cayley calibration qb. First we have: 

PROPOSITION 1.30. ~=l*Acp+~p. 

From (1.2) and (1.13), we then conclude that q~ is the following sum of axis 4- 

planes. 

C O R O L L A R Y  1 . 3 1 .  

(I) ~ (01234--(.OI278--(DI638--(J)I674--(01265--(01375--(01485 

+(05678 - -  (05634 - -  (0 5274 - -  (0 5238 -4-- (03478 nt- (0 2468 "1- (02367" 

Proof. By Lemma B.9 and Lemma B.15 we have that 

y x z• w = (y', z'w' ) + ~[y, z, w]+ y, �89 zl+ z. �89 wl+w,�89 y]. 

Therefore, since ~(x,y ,  z, w ) - ( x ,  y x z x w ) ,  we see that 

�9 ( x , y , z ,w)= ( y ' , z ' w ' ) x l + ( x ' , w ' z ' ) y l + ( x ' , y ' w ' } z t + ( x ' , z ' y ' )  wl+(x,�89 

= (1"  A ~o) (x, y, z, w)+~O(x, y, z, w). 

Our second description relates qb to the complex structure associated to 

e=(0, I) E I-IxH. 

PROPOSITION 1.32. Consider the complex structure Je on O=C 4. Let (0 denote the 

associated Kiihler form and identify H c O  with R 4 c C  4. Then 

qb = -l(0A(0+Re (dz). 
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Proof. Express to A to and Re (dz) in terms of the standard basis e~ ..... e8 for O, and 

compare - ~toAto+Re (dz) with qb using Corollary 1.31. 

For any oriented unit 4-plane ~ E G(4, 8) the restriction to{~ can be put in canonical 

form. Namely, we may choose ~1 . . . . .  ~'4 to be an oriented orthonormal basis for ~, and 

0~<2~<1, - 1 ~ < 2  such that: 

tol  = ,t, t ^ A 

The numbers/~<2 are called the eigenvalues of tolr I f /~=2=0 then r is Lagrangian. 

More generally: 

Definition 1.33. If 2=- /~  then ~ E G(4, 8) is anti-self dual. If, in addition, dz(O>~O 

(i.e., is real and positive) then r is special anti-self dual. 

Note that ~ is anti-self dual with eigenvalues +1 and -1  if and only if - ~  is a 

complex subspace; and in this case dz(O=0 so that r is automatically special. 

PROPOSITION 1.34. Consider the complex structure Je on O~C 4. Let to denote the 

associated K~hler form and let d z - d z l  A... Adz4 denote the form associated with the 

identification o f  I-IcO with R4cC 4. A 4-plane ~E G(4, 8) is Cayley if and only i f  ~ is 

special anti-self dual. 

The proof follows easily from the canonical form, 

= e 1 A (Je  I COS 01+e 2 sin 01)  A e 3 A (Je 3 cos 02+e 4 sin 02), 

where 0~<01~<Jt/2 with ).=cos 01,01~02~3~ with /~=cos  02, and el, e2, e3, e4, 

Je I, Je 2, Je 3, Je 4 is an oriented orthonormal basis for O=C 4 over R. 

Remark. This point of view relates to the Yang-Mills equation (cf. Chapter V). 

We shall now analyze the subgroup of 08 which preserves the Cayley calibration. 

We begin with the following formulation of the group SpinT. For each a E O, let 

R,: O--->O be defined by Ru(x)=xu. Note that for u~0, we have R,  EGL+(O). 

Definition 1.35. Spin7 is the subgroup of S08 generated by S6=--(Ru: u E ImO and 

lul=l}. 

Remark. The Moufang identity Lemma A. 16 (b) says that, for each u EIm O, 

R.oRooR~ 1 = R_.o~. 
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Therefore, xg(Rv)=goRvog-1 defines an action Z of Spin7 on the vector space 

{Ro: v E Im O}----Im O ~ R  7. In fact, Spin7 is just the subgroup of S08 which conjugates 

the space of endomorphisms (Ro: vEImO} into itself. That is, given gES08, then g 

belongs to Spin7 if and only if for every v EIm O, there exists w EIm O such that 

goR,,og-l=R,,. Applying this last expression to lEO,  we see that w=g(g-l(1).v). 

Hence, if we define ~:Spin7---~SO(ImO)=SOy by ~g(V)=g(g-l(1)'v), then ~ is the 

standard double cover of SOy by Spiny. It follows that Spiny={g~SO8: g(g-l(y)v)= 

y~g(V) for all v, y E O}. Setting u=g- ~(y) we finally get the useful alternative definition: 

Spiny - {g E S08: g(uv) = g(U)2g(V) for all u, v E O}. 

PROPOSITION 1.36. The form d~ is fixed by the subgroup Spiny. 

Proof. Suppose u E S 6 c I m O .  Then, making use of the equivariance in Pro- 

position B.11 (3), ~ ( x u A y u A z u A w u ) = R e x u • 2 1 5 2 1 5  
-u2Rexxy• y, z, w). 

Next we wish to consider one of the distinguished complex structures J~ where u 

is a unit imaginary quaternion. By Proposition 1.10 (d) there exists an automorphism 

g E G2 with u=g(e). Note that ~g(v)=g(v) and hence g E Spin7 (in fact it is easy to see 

that g E G2 if and only if g E Spin7 and g( l)= l). Therefore g * ~ = ~  by Proposition 1.36. 

If o5 denotes the K/ihler form corresponding to the complex structure Ju, then it is easy 

to check that g*(a~)=~o. Finally, let I:I denote g(H), and let d~ denote d~A.. .Ad24 

where I:I is identified with R 4 c C  4. Then g*(d~)=dz. 

PROPOSITION 1.37. Given a quaternion subalgebra (-IcO and a unit u_LI-I, Propo- 
sition 1.32 remains valid with Je replaced by J~ and H-----R 4, replaced by I:I~R 4. That is, 
�9 =-�89 Ae3+Re dL 

Proof. The previous discussion yields the proof since g E G2 can be chosen so that 

not only u=g(e) but also I:l=g(H) (see Proposition 1.10 (a)). 

Remark. Consider the transitive action )~g(Ju)=goJuog -1 of Spiny on 

S6=(J~: u E ImO and lul=l} discussed above. The isotropy subgroup of Spiny at the 

point JeES 6 is just H=SpinyN U 4 where U4 is the unitary group with respect to the 

complex structure Je. Since H leaves q~ and l~oA~o fixed, it must also leave Re(dz) 

fixed. Therefore, HcSU4. However,  since S6=Spiny/H we see that dim (/-/)=15 and 

that H must be connected. Hence H=SU4, and we have the well known diffeomor- 

phism 
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S 6 ~" Spin7/S U4. 

We conclude this section by describing the grassmannian of Cayley 4-planes as a 

homogeneous space. 

THEOREM 1.38. The action of  Spin7 on G(d~) is transitive with isotropy subgroup 

K=--S U 2 x S U 2 x S U2/Z 2. Thus G(~)~- Spinv/K. 

Proof. To begin we observe that since SpinT~SU4 (see above), Spin7 acts transi- 

tively on $7cO. The subgroup fixing 1 E O contains G2 by Proposition 1.30. By a 

dimension count we see that SpinT/G2 is a covering space of S 7, and hence we have 

S 7 ~ Spin7/G2. 

Suppose now that ~ E G(qb) is a Cayley 4-plane. Let x, y, z, w be an oriented orthonor- 

mal basis for ~. Since Spin7 is transitive on S 7, we may choose go E Spin 7 such that 

go(x)=l. By Proposition 1.30 we have that go(YAZAW) is an associative 3-plane in 

ImO. Consequently there is a g I E G2cSpin 7 so that gl go(YAzAw)=iAj Ak (cf. Theo- 

rem 1.8). Setting g=g~ go, we have g(~)= 1 AiAjAk.  This shows that Spin7 is transitive 

on G(~). 

The group K defined above acts on O as follows. Given g=(q~,q2, q3)E 

Sp I xSp~ xSp~ (where Spl is the unit quaternions), let 

g(a+b e) = q3 acll +(q2 bOO e (1.39) 

for all a, bEH. The subgroup of SplxSplxSpl acting as the identity on O is Z2, 

generated by ( - l ,  - 1 ,  -1).  Using the alternative definition of Spin7 given in the remark 

above, one can easily show that (1.39) gives an embedding K~Spin7. Clearly K leaves 

the ~o=lAiAjAk  fixed, and so K~_Ko = the isotropy subgroup of Spin7 at ~o. Suppose 

on the other hand that gEKo and g(1)=XE~o. Normalizing by h=(1,1,~) we 

may assume that g(1)--1. Then g belongs to the isotropy subgroup of Gz at iAjAk,  and 

hence g E K by Theorem 1.8. This completes the proof. 

IV.2. The partial differential equations 

In this section we derive systems of partial differential equations (somewhat 

analogous to the Cauchy-Riemann equations) to be satisfied by a function f in order 

that the graph of f be a submanifold in one of our exceptional geometries. 
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IV.2.A. The assoeiator equation 

The objects of interest here are the following. 

Definition 2.1. An oriented 3-dimensional submanifold M of RT=Im O is said to be 

associative if the tangent plane to M at each point is associative. 

Note that an associative submanifold is one whose tangent space at each point is 

the imaginary part of a quaternion subalgebra of O. 

Because of the associator inequality Theorem 1.4 we may apply the basic theorem. 

THEOREM 2.2 Associative submanifolds are absolutely area minimizing. 

Recall that any two associative 3-planes are equivalent under G2 acting on ImO 

(Theorem 1.8). Therefore there is no loss in generality in assuming that the tangent 

plane to an associative manifold M at a particular point is I m H = i A j A k c I m O .  Let 

denote an open subset of I m H c I m O ,  and consider a C 1 map f." Q-->H. Locally M may 

be considered as the graph o f f  over its tangent plane Im H. 

Our next objective is to describe a system of equations t ha t fmus t  satisfy in order 

for the graph of f to be an associative submanifold. Two differential operators are 

involved. Let x=x  1 + X  2 i+x3j+x 4 k denote a point in H. 

Definition 2.3. Let f: ~ -*H be a C 1 map, where ff~ is a domain in ImH. The Dirac 

operator on f is defined by 

C~X 2 OX 3 aX 4 

The first order Monge-Ampkre operator on f is defined by 

a(f)= afx af x af 
~X 2 ~X 3 aX 4" 

Note that the definitions of both operators D and a are independent of the choice 

of oriented orthonormal basis for Im H. 

THEOREM 2.4. Let f'. Q--->H be a C 1 map, where ~ is a domain in ImH. Then the 

graph o f  f is an associative submanifold o f  Im O=Im H@H i f  and only if f satisfies the 

differential equation 

D(f)  = 0(30. 

Since associative submanifolds are minimal we conclude the following from the 

regularity results of C. B. Morrey [M]. 
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COROLLARY 2.5. Any C 1 solution o f  the equation D(f)=a(f) & real analytic. 

Proof o f  Theorem 2.4. It suffices to prove the theorem in the case where 

f:Imlt--~H is linear. In this case D( f )=- f ( i ) i - f ( j ) j - f ( k ) k ,  and o(f)=f(i)• 

The oriented graph o f f  is spanned by x- i+f( i )  e, y=-j+f(j) e, z -k+f (k )  e. Proposition 

B. 14 (2) may be used in conjunction with either Lemma B. I0 (2) or with the equation 

(2)' occuring in the proof of Lemma A. 11 to calculate that 

Im x x y • z = Im { (i(f(j) xf(k)) +j(f(k) • + k(f(i) xf(j)) } + (o(f)-D(f)) e. 

Let ~ denote the oriented graph o f f .  If ~ is associative then Imx•  and 

hence, in particular, a(f)=D(f).  Conversely, suppose a(f)=D(f). Then �89 z] = 

Im x x y x z EIm H c Im O. By Proposition B. 16 (4) (ii), [x, y, z] is orthogonal to x, y, and 

z. However, since [x ,y , z ]EImH and the components of x , y , z  in ImH are i , j ,k  

respectively, this orthogonality implies that [x, y, z]--0. It follows that, with the appro- 

priate orientation, ~ is associative. 

Note that in general one must choose the appropriate orientation on each compo- 

nent of the graph off .  Of course, if • is connected and dfis sufficiently small at some 

point (for example, if we are graphing over a tangent plane at some point), then the 

orientation naturally induced from Im H is the correct one. 

IV.2.B. The coassociator equation 

Dual to the associative geometry is the following. 

Definition 2.6. An oriented 4-dimensional submanifold M of R7=Im O is said to be 

coassociative if the tangent plane to M at each point is coassociative. 

From Theorem 1.16 we have the following. 

THEOREM 2.7. Coassociative submanifolds are absolutely area minimizing. 

Of course the corresponding result holds for "coassociative varieties" and "coas- 

sociative currents". 

Arguing as above we see that there is no loss of generality in assuming that a 

coassociative manifold is given locally as the graph of a function g from an open set in 

H to Im H. Let x=x~ +x z i+x3j+x 4 k denote a point of H. 

Definition 2.8. Let g: Q---~ImH be a C 1 map, where [2 is an open domain in H. Let 
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g=g2i+g3j+g4k denote the components of g and interpret Vg p as a quaterion in the 

obvious way. The (dual) Dirac operator on g is defined by 

f)(g) = _ Vg2i-- Vg3j- Vg4k. 

The (dual)first order Monge-AmpOre operator on g is defined by 

O(g) = Vg 2 x Vg 3 x Vg 4. 

These operators are independent of the choice of oriented orthonormal basis for 

Im I-I. 

THEOREM 2.9. Let f: ~2---~Imtt be a C 1 map where • is a domain in H. Then the 

graph o f f  is a coassociative submanifold of  Im O=Im ItOI-I if  and only i f  f satisfies the 

differential equation 

f ) t  f )  = o(f) .  

Proof. A direct proof of this can be given using the coassociator equality 1.18. The 

details of this proof are omitted. Instead this equation is obtained as a consequence of 

Theorem 2.22 in the next section (see Remark 2.51). 

As above we have the following. 

COROLLARY 2.10. Any C 1 solution to the equation 19(f)=O(f) is real analytic. 

This result is sharp. In Section 3 we shall construct a Lipschitz solution to this 

equation which is not C 1. 

IV.2.C. The Cayley equation 

Definition 2.11. An oriented 4-dimensional submanifold M of R8~O is said to be a 

Cayley submanifold if the tangent plane to M at each point is a Cayley 4-plane. 

Remark 2.12. The geometry of Cayley submanifolds includes several other geome- 

tries. 

(a) A submanifold M which lies in I m O c O  is Cayley if and only i fM is coassocia- 

tive. This follows directly from Proposition B. 14, part (3), which shows that any Cayley 

4-plane in Im O is coassociative. 

(b) A submanifold M of O of the form RxN,  where N is a submanifold of ImO, is 

Cayley if and only if N is associative. This follows from the definition of the Cayley 

calibration qb and the fact that ( 1 , y x z x w > = ( y ' ,  z 'w ' )  (see Lemma B.9 (2)). 
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(c) Fix a unit imaginary quaternion u E S6cImO. Consider the complex structure 

J ,  and let O~C 4. Each complex surface in O, with the reverse orientation, is a Cayley 

submanifold. This is a consequence of Proposition 1.37. 

(d) In addition to choosing one of the distinguished complex structures J ,  (as in 

(c)) choose a quaternion subalgebra I:I of O orthogonal to u and identify R a c c  4 with 

I:IcO. Each special Lagrangian submanifold of C4---O is a Cayley submanifold. This is 

also a consequence of Proposition 1.37. 

THEOREM 2.13. Cayley submanifolds are absolutely area minimizing. 

The corresponding result holds for "Cayley varieties" and "Cayley currents". 

Each Cayley submanifold can be described locally as the graph of a funct ionfover  

one of its tangent planes. Recall that any two Cayley 4-planes are equivalent under 

Spin7 (Theorem 1.36). Therefore, there is no loss in generality to consider the case 

where the tangent plane is ~--HcO. Let fl denote an open subset of H c O  and consider 

a C 1 map f." f~--->I-I. The purpose of this section is to extract a simple and rather beautiful 

system of equations for f which is equivalent to the graph of f being a Cayley 

submanifold. This system of equations should be considered as the appropriate ana- 

logue of the Cauchy-Riemann equations for functions from H to H. To express this 

system concisely we shall define three distinct first order operators on C 1 functions 

f: f~--->H with ~'2~ 

The first, called the Dirac operator, is given by the formula 

D f  ~f  a f .  a f .  a f  k ' 
8x, 8x 2 ' -  ax----~a--~x4 (2.14) 

where (xl, x2, x3, x4) are coordinates with respect to the basis 1, i,j, k, for H. It is easy to 

check that 

4 

Dr= s (Vejf}O j (2.14)' 
j=l 

where el . . . . .  e4 is any orthonormal basis for H. This operator D is a first order, linear, 

elliptic operator. It is the quaternionic analogue of the operator 8/Oz =- �89 

which acts on g: C---~C. With respect to the quaternion inner product xp the adjoint of D 

is the operator - / )  defined by 

D(f)  = ~f  + af  i+ Of j+ ~_f k, (2.15) 
~x I 8x 2 8x 3 ~x 4 
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The operators D and/9 satisfy the relationship 

D/9 = / g D  = A-I,  (2.16) 

where A is the scalar Laplacian and I is the 4• identity matrix. 

The second operator, called the first-order Monge-Ampkre operator is defined as 

follows. 

o ( f , - - ( a f  • 8f x 8 f ~ + ( S f  X 8f X 8 f ) i _  ( af • 8[ x 8 f~ j+(  8f 8f 8 f )  
OX2 OX3 8X4/ tOXl 0X3 OX4 tSXl 0X2 ~X4/ \0Xl X 8X2 X Ox3 k. 

(2.17) 

It is straightforward to check that the basis 1, i,j, k for H may be replaced by any 

oriented orthonormal basis e~ . . . . .  e4 for H without altering the operator o. In fact, a 

can be expressed in the following invariant form. 

O(f)= ~ (VelISX VeI2fx Vei3f ) (ei,• 
il<i2<i 3 

(2.17)' 

Remark 2.18. I f f  is endependent of x l, then the above definitions of D(f) and o(f) 

agree with those given in (2.3). 

The operator o is a non-linear first order operator which is homogeneous of degree 

three. It is, in fact, a linear function of cofactors of the jacobian matrix for f.  

There is an auxiliary operator, homogeneous of degree two, which must be 

studied. 

Ox~ Ox 2 

+(.Of X af 
\axl  8x4 

8f X a f ) i + ( a f  x a f + a f x ~ f )  j 
~X 3 OX 4 ~X l ~X 3 ~X 2 

Ox 2 (2.19) 

Replacing 1, i,j, k by any orthonormal basis e l, e2, e 3, e 4 for H does not alter 6. 

6(f) = Im Z (Ve~fXVe.f) epxeu (2.19)' 
p<q 

The main result concerning the above differential operators is the following. 

THEOREM 2.20. Suppose f: ffa--+H, with Q~ is of class C 1. Let M c H x H =  

H + H e = O  denote the graph off. Then M is a Cayley submanifold if and only if 



and 

(1) 
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D(f)  = a(f) ,  

129 

(2) 6(f)  = 0. 

Moreover, if the jacobian determinant o f f  is never 1 then equation (2) is an automatic 

consequence of  equation (1). 

It follows immediately from Theorem 2.20 that there exist many interesting Cayley 

submanifolds. As in the special Lagrangian case, we can retreat to a potential, i.e., we 

consider f=lSg where g: g~--->H is a C2-map and g~ is a bounded domain in H with 

smooth boundary. The first equation in Theorem 2.20 now becomes 

(1)' Ag=o(/)g). 

The linearization of this at g=0 is simply the Laplace equation Ago=0. Hence, by 

implicit function techniques, we can solve the Dirichlet problem for (1)' in a C 2 

neighborhood of zero. We can assume that the resulting functions f=lgg will not have 

Jacobian determinant identically equal to 1. Hence, the graph of each suchf i s  a Cayley 

4-fold. 

Proof. It suffices to prove the theorem in the case where f." H--,H is R-linear. Let 

x - l + f ( 1 ) e ,  y=-i+f(i)e, z=-j+f(j)e, w - k + f ( k ) e .  (2.21) 

Then the graph o f f  is the oriented 4-plane spanned by x ,y ,z ,  w. Consequently, by 

Corollary 1.29, the graph of f is a Cayley 4-plane if and only if 

Notice that 

Imxxyxzxw =0.  

D(f)  = f(1)- f ( i )  i - f ( j ) j  - f (k)  k, 

a(f )  = f(/) xf(j) xf(k) + 0r(1) xf(j) xf(k)) i -  Or(l) xf(t) xf(k)) j  + 0r(1) x f(/) xf(j)) k, 

8(f) = Im[( f (1)xf ( i ) - f ( j )x f (k)) i+(f(1)xf ( j )+f( i )x f (k)) j+(f(1)xf (k)- f ( i )x f ( j ) )k] .  

It follows directly from Lemma B. 10 (3) that 

Im x x y x z x w = 6(f) + (a ( f ) -  D(f)) e. (2.22) 

where x, y, z, and w are defined by (2.21). 

9-812904  Acta  Mathernatica 148. Imprim6 le 31 aof~t 1982 
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This proves the first half of Theorem 2.20. Before giving the proof of the second 

half of Theorem 2.20 we study the equivariance properties of the operators D, o and 6. 

LEMMA 2.23. Suppose  a is a unit quaternion, and x, y, z are arbitrary quaternions. 

Then, 

(i) (xa)•215 

(2) (ax) • (ay) =x • 

(3) (xa) • (ya) x (za) = (x • y • z) a 

(4) (ax) • (ay) • (az) = a(x • y • z). 

Proof. 

(ax) • (ay) • (az) = ~ [axayaz -  azayax] = ~ [axyz -  azyx] = a(x • y • z) 

proves (4). The proofs of (1)-(3) are similar. 

Remark.  Note that a is not required to be purely imaginary, as it is in the analogous 

Proposition B. 11 for the cross product of Cayley numbers. 

PROPOSITION 2.24. Suppose  that f: H---~H is R-linear and that a, b and c are unit 

quaternions. Then 

(1) D ( L ~ o f o L b ) = a D ( f )  b and D ( f o R c ) = D ( R r  

(2) t r (LaofoLb)=aa( f )  b and a( foRc)=a(Rc o f )  

(3) 6 ( L a o f o L b ) = 6 ( f )  and 6 ( foRc )=c6(Rco f )  (:. 

Proof. Let (et . . . . .  e4} be an orthonormal basis of It. Then for any unit quaternion 

x, {• . . . . .  xe4} is also an orthonormal basis. Hence, 

D(La~176  = E af(bei) ~i = a E f ( b e  i) (be i) b = a D ( f )  b, 

and also 

D( foRc)  = E f ( e i c )  ei = E f ( e i c )  c (eie) = D(R~of) .  

Similarly, by using Lemma 2.23 (4), we see that 

O(LaofOLb)= E (af(ei ,)•  • f i(i3)) (( - ' l ) e  be, • (-2)be' • (-'3))be, = acr(f)b, 

and that 
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~176 = E (f(eil)•215 ((ei, c)•215 c')) =a(Rc~ 

Finally, using Lemma 2.23 (2), we see that 

c~(L a o fo  Lb) = E ( af( %) ) • ( af( e q) )( t~%) x ( be q) = 6(f). 

The argument for 6(foRc) is similar. 

In the following we will refer to a Cayley 4-plane in O = H x H e  which can be 

graphed over H as a Cayley 4-graph. The isotropy subgroup of Spin7 acting on G(q~) at 

the point ~o--IAiAjAk=H is K-Spl•  Theorem 1.38). Suppose ~ is a 

Cayley 4-graph off:  H---~H and g-(q1, q2, q3) E Sp! • • Then g(~) is also a Cayley 

4-graph since g leaves H and He fixed. Recalling the action (1.39) of g on O, one 

obtains that g(~) is the graph of h: H--~H with 

h(a) - -  q2f(t~3 aqO (h. (2.25) 

Under this action of Sp~ • Sp~• Spoon 4 x 4 matrices we have the following canoni- 

cal form. 

LEMMA 2.26. Given an R-linear map ~H---~H, with detf~>0, there exists 

gESpl •  such that the h defined by (2.25) has the canonical form 

h = RqOp. 

Here q E SplCH and P is a semipositive diagonal matrix. 

Proof. Recall that by the polar decomposition theorem and the diagonalization of 

semipositive matrices, there exist k~, k z E SO 4 and P semi-positive diagonal so that 

f =  kl opok2. (2.27) 

Recall also that S04=SplxSpl /Z  2 where (a, b)ESplxSpl  acts on R4=It by the ortho- 

gonal transformation k(x)=ax6=LaoR~(x ). Hence, we may rewrite (2.27) above in the 

form 

f =  LaIoRgI~176176 

Setting ql=b2, q2=~l, q3=a2 and q=/~i 62 '  w e  have that RqOP=h as desired. 

(2.27)' 



132 R. HARVEY AND H. B. LAWSON JR. 

Remark  2.28. I f  de t f<0 ,  then Lemma 2.26 remains valid with P replaced by a 

diagonal matrix with first eigenvalue negative and all other eigenvalues posit ive.  

To comple te  the proof  of  Theorem 2.20 we assume that f = R q o e  is in canonical 

form with q=  ql +q2 i+ q3j+ q4 k E SP lcH,  and with the diagonal matrix P having eigen- 

values 21,2z, 23,24. Since f(1)=21 q, f(i)=22 iq, f( j)=23j q and f(k)=23 kq, by definition 

and Lemma 2.23 we have 

D f  = 2j q-22 iqi-23jqj-24 kqk. (2.29) 

o( f )  = 2234 q--2134 iqi--2124jqj--2123 kqk. (2.30) 

6( f )  = (21z-234) Im (~iqi+ (213--224 ) Im 0jqj+ (214-223) Im (tkqk. (2.31) 

where 2o.=2i2 j and 2Uk=2i2j2k. Direct calculation yields 

D(f)-o(f) = [(21+22+23+24)-(2234+2134+2124+2123)] ql 

+ [(21 +22--23--24)--(2234+2134--2124--2123)] q2 i 

+ [(21 --22 +~'3 --24) -- (2234 --2134 + 2124 -- 2123) ] q3J 

+[(21--22--23+24)--(2234--2134--2124+2123 ) ] q4k, 

O(f) = [(~13+224+214+223) ql q2+(--213--224+214+223) q3 q4] i 

+[(212+234+214+223) ql q3 +(212+234--2i4--223) q2 q4]J 

+[(212+234+213+224) ql q4+(--212--234 +213 +224) q2 q3] k 

where 2i~=2i2~ and 2~k=2i2j2 k. A straightforward but somewhat  tedious analysis now 

shows that if D ( f ) = o ( f ) ,  then either 6 ( f ) = 0  or det ( f ) =  1. Cases where 6(f)~:0 can 

arise. The simplest example is where f=Rq and no component  of  q is zero. A generic 

example is where  q=q~ +q2 i and (25 . . . . .  24) =(it, 1//~, v, 1/v) for/z, v>0.  We leave these 

final details of  the proof  of  Theorem 2.20 to the reader. 

Suppose f: f2---~H is of  class C l, with f2 an open subset  of H. Let  f= f l+f2 i+f3 j+f4  k 

express the components  o f f .  Using the rows Vf l, Vf 2, Vf 3, Vf 4, instead of  the columns 

8f/Sx 1 , 8f/Sx 2, 8f/Sx 3, 8f/Ox 4, of the j acobian matrix Jy for f ,  we may define opera tors / ) ,  

O, and 6: 

D ( f )  =-- Vf '  - Vf2i - Vf3j - Vf4k (2.32) 

d( f )  -- Im [ (Vf I • Vf  2 - Vf  3 • Vf  4) i+ (Vf I • Vf 3 + Vf 2 x Vf4)j+ (Vf' • Vf 4 - Vf 2 • Vf  3 ) k]. 

(2.33) 
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o(f) ~ ('~7f2 x ~rf3 X Vf4)+ ('~Tfl xVf3 xVf4) i__(Vfl xVfZxVf4)j+(vfl x Vf2 x Vf3) k. 

(2.34) 

Recall the special cases (Definition 2.8) where f l - 0 .  One can easily check that the 

standard basis 1, i,j, k can be replaced by any orthonormal basis el, ..., e4 as was done 

in (2.14)', (2.17)', and (2.19)' thereby obtaining invariant forms for/5,  6, and O. Of 

course, if f is R-linear then 

/ ) ( f )  = O(~), ~(f) = 6((f) and 0(30 = ti(~). (2.35) 

PROPOSITION 2.36. Suppose f: Q--~H is of  class C 1 with if2 an open subset of  I-I. 
Then, 

(1) D ( f )  = D(f) 
(2) o(f) =o(f) 
(3) d( f )  = 6 ( f )  

Proof. We may assume j2 H---~H is R-linear. Furthermore, we may assume (cf. 

(2.27)) that f=La10Ra0POLa0Ra2 where P is diagonal with respect to the standard 

basis 1, i,j, k and has eigenvalues 21, 22, 23, ~.4. Note that tf=La20Rb20PoL~x0Rb. Thus, 

by Proposition 2.24 

/ s f  = Dtf = D(La2ORb2OpoLa oRb) = (tzD(Rb2b OP) (q, 

and 

Df = D(LalORgopoLazoRg2) =a I D(RgIg2OP) ~i2=O 2 D ( R ~  op) gq. 

To complete the proof of (1) we must show that D(Rqoe) = D(R4oP), which follows 

immediately from (2.29). The proofs of parts (2) and (3) are entirely similar. 

Suppose now that f:O--->I-I where if2 is an open subset of H. Let 

M(f)--{x+f(x) e: x ~ s denote the graph of f over f 2 c H c O ,  and let 

M(f)--{f(x)+xe:x E ~} denote the graph o f f  over f f2ecHecO.  Note that: 

37/(f) = M ( - f )  e, (2.37) 

the image of M ( - f )  under right multiplication Re by  e. Because of Theorem 2.20, M(f)  

is Cayley if and only if M ( - f )  is Cayley. Proposition 1.36 implies "that M ( - f )  is Cayley 

if and only if M ( - f )  e is Cayley. This proves the next result. 
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PROPOSITION 2.38. Given f: Q---~H o f  class C l with ~ an open subset o f  H, the 

graph o f  f o y e r  Q c H c O  is Cayley if  and only if the graph o f  f o y e r  Q e c H e c O  is 

Cayley. 

This Proposition 2.38 is also an immediate consequence of Theorem 2.20 and the 

next equation (for g R-linear): 

Im { (g(1) + e) x (g(i) + ie) x (g(j) +je) x (g(k) + ke) } = - 6 (g ) -  (o(g)-D(g)) e. 

(2.39) 

One cay verify this exactly as in (2.22) by using Lemma B.10 (3). Alternately, the 

equivarience Lemma B.11 (3) implies that the left hand side of (2.39) equals 

- e I m  { (1 - g(1) e) • ( i -  g(i) e) x ( j -  g(j) e) x (k - g(k) e) } e. 

Using (2.22) this equals 

- e ( O ( - g ) - ( a ( - g ) - D ( - g ) )  e) e = 6(g) - (a(g)-D(g)) e. 

Of course, using Proposition 2.36 we have 

Im {(g(1)+e)x(g(i)+ie)x(g(j)+je)• = ~(g)-(O(g)-lS(g))e.  (2.40) 

THEOREM 2.50. Suppose f: Q--*H is a function of  class C I on an open subset ~2 o f  

H. Let l(/l(jO--{f(x)+xe:x6f~} denote the graph o f f  over f2ecHe in O. Then 2~1 is 

Cayley i f  and only i f  

(1) D(D=o(D 
and 

(2) 6(f )=O.  

Moreover, i f  the Jacobian determinant o f f  is never I, then equation (2) is an immediate 

consequence o f  equation (1). 

Proof. There are two options. The first is to combine Theorem 2.20, Proposition 

2.38, and Proposition 2.36. The second is to the use equation (2.40) directly for the first 

part of the theorem. 

Remark 2.51. If R e f = f  I vanishes .then h4 ( f ) c ImO and in this case 2t~ is Cayley if 

and only if it is coassociative (Remark 2.12(a)). Moreover, f l ~ 0  implies that the 

Jacobian determinant of f vanishes. Consequently, Theorem 2.9 concerning coassocia- 

tive submanifolds is a corollary of Theorem 2.50. 
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Finally we conclude this section by establishing the relationships between the 

operators D, o, ~ on f and on f -  l 

PROPOSITION 2.52. Suppose f is a class C 1 dif feomorphism o f  an open subset o f  H 

to an open subset  o f  H. Then setting y=f(x)  we have that: 

(1) D(f - l )y=(de tJ f )  -1 or(f) x 

(2) o(f-1)y=(detJf)  -1 D ( f )  x 

(3) c~(f--1)y=(detJy) -1 O(f)x 

In particular, D ( f ) = o ( f )  i f  and only i f  D ( f - l ) = o ( f - t ) .  

Proof. Similar to that of Proposition 3.36 and hence omitted. 

IV .3 .  Coassoc iat ive  fourfolds invariant  under  Spl 

One of the most interesting examples of a coassociative submanifold is found by 

looking for symmetric solutions. The group S p l = S 3 c H  acts on O in several ways. The 

action we wish to consider is given by 

a+be ~ qagl+b(le, (3.1) 

for each q E S p l c H .  

Recall from (1.9) that this embeds Spl into G2, and therefore this action preserves 

the coassociative calibration % Note that the orbit of any point a+be E O, with b:~0 is 

diffeomorphic to S 3. 

To obtain a coassociative fourfold invariant under SpI we choose a fixed unit 

vector e E I m H  and seek a curve in the half plane R x R + ~ R e @ R + e c I m O  which is 

swept out into a coassociative submanifold (of dimension 4) under the action of Spl. 

Let (s, r) denote coordinates in R x R  +. 

THEOREM 3.2. Suppose  e E Im  H is a f ixed  unit vector and c E R. Then 

M e =  {sqegl+r(le: q E S p  1 and s(4sZ-5r2) 2 = c} 

is a coassociative submanifold invariant under Spl. In particular, 

s=(V~-/2) r then 

) :  r } M o -  r - - - -~qeq+qe qESpl and ER + 

i f  c=0 and 
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which is the cone on the graph o f  the Hop f  map ~: $3--~S 2 defined by rl(q) =-- ~vr5-(leq, is 

a coassociative 4-fold. 

Remark. The cone M0 above is the graph of the function q: H ~ I m H  defined by 

V-3-_ 
~l(x) = ~lxlXeX for all x E H. (3.3) 

This graph was first discovered by the second author and R. Osserman [LO]. They 

observed that r/represents a Lipschitz solution to the non-parametric minimal surface 

system which is not C ~. We have now shown that the graph of ~/ is absolutely area 

minimizing. Furthermore, we have the following. 

THEOREM 3.4. The function r 1 given by (3.3) is a Lipschitz solution to D(r/)=o(r/) 

which is not C 1. 

This makes sharp the regularity result that C a solutions to D ( f ) - o ( f ) = O  are real- 

analytic. 

Before proving Theorem 3.2 we establish two lemmas. 

LEMMA 3.5. Suppose that M= {g(x)+x.e: x E H} c I m  O is the graph o f  a function 

g: H---~ImH. Then M is invariant under the action (3.1) o f  Spt i f  and only i f  

g(x) = 1~12 ~g(lxl) x (3 . 6 )  

i i 

for all x E I-I. 

Proof. If M is Spl-invariant, then for each q E S p ~ I - I  and each xE I-I, the vector 

qg(x) (~+x(le also belongs to M. Consequently, 

g(xgl) = qg(x) (1 

for all qESpl  and all xEH.  Replace x by Ixl and q by  /Ixl t o  obtain (3.6). 

LEMMA 3.7. Suppose eEImI-I is a f ixed unit vector, and q~:R+---~R, is a given 

function, s=q~(r). Define g: I-I---~Im H 

.~ex 
g(x) = ~ ~(Ixl) 

so that M=graph(g) is Sprinvariant. Then M is coassociative if  and only if 

q~'(r) - 4r~r) 
4q~ 2 (r)-  r 2" (3.8) 
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Since the right-hand side of (3.8) is homogeneous of degree zero in r and s=qv(r), 

the standard substitution z=r/s yields the integral curves 

s ( 4 s 2 - - 5 r 2 )  2 = c ,  

thereby completing the proof of Theorem 3.2. 

< 
s = 0  

r 

' s  

Fig. 3.10 

Proof of Lemma 3.7. We must compute Dg-og.  The fact that g(x(1)=qg(x)(1 for 

q E Spl, implies that dg~o(u)=qdgx(U q) (1, where dgxdenotes the differential of g at x. 

From Proposition 2.24 we have that (Dg) (x(1)=q(Dg) (x) and (crg) (x(1)=q(ag) (x). Conse- 

quently, it suffices to compute Dg-crg at x= Ixl=r E R +. For convenience, and without 

loss of generality, we set e=i so that 

g(x) = 2ix-~ q~(r). 

Straightforward calculation then shows that 

Og (r)= qJ(r)i, O--~-g (r)=0, O-~-g (r)=2q)(r)k, 
Ox~ c~x 2 ~x 3 r 

2 q)(r)j. 
~4x 4 ( r) = - r  

Computing directly from the definitions of D and o (See (2.14)), we find that 

(Dg)(r)=(4qo(r)+q~'(r))i 
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and 

Therefore, we have that 

(og) (r) = ~ ~2(r) q~'(r) i. 

(Dg-og)  (rO) = ~2 (4rcp+(rZ-4q)2) cp') (li, 

and the proof is complete. 

(3.11) 

IV.4. Boundaries of exceptional submanifolds 

The purpose of  this section is to give a local characterization of the boundaries of 

associative, coassociative and Cayley submanifolds, at least in the real analytic case. 

We consider the boundary as a set of initial data and apply the Cartan-Kfihler theorem 

according to the procedure outlined in Section 6 of Chapter II. 

We begin with the case of associative submanifolds. 

THEOREM 4.1. Suppose N is a two dimensional, real analytic submanifold o f  

Im O ~ R  7. Then there ex&ts a unique real analytic associative submanifold M o f  Im O 

which contains N. 

Proof. Let  I denote the ideal generated by the forms ~Pl . . . . .  ~p7EA3(ImO) *, 

obtained by taking the components  of the Im O-valued alternating 3-form [x, y, z] on 

ImO.  By Theorem 1.6 we know that the 3-dimensional integral elements of I are 

exactly the associative 3-planes, up to orientation. Since I contains no forms of degree 

<3,  any 1 or 2 dimensional plane is a regular integral element. We now make an 

elementary observation. 

LEMMA 4.2. Given any 2-plane ~1 in ImO,  there exists a unique associative 3-plane 

with ~1 c ~. 

Proof. Choose an orthonormal basis {u, v) for ~/. Then u • v is a unit vector in Im O 

orthogonal to r/. Let  ~----u A v A (u• v). Then q~(~)= 1 and so ~ is associative. Finally, if ~' 

is any associative 3-plane containing r/, then ~'--~uAvAw for some unit vector w 

orthogonal to ~/. Since l=q~(~')= (w, u .v ) ,  we must have w = u . v = u x v  and the unique- 

ness is proved. 

Theorem 4.1 now follows from the Cartan-Kfihler theorem. 

We now consider boundaries of Cayley submanifolds. 
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THEOREM 4.3. Suppose N is a three-dimensional, real analytic submanifold o f  O. 

Then there exists a unique real-analytic Cayley submanifold M o f  O which contains N. 

Proof. Let I denote the ideal generated by the forms ~p~ .... , ~P7 E A 4 O* which are 

the axis components of the vector-valued alternating form Im x xy  •  w on O. From 

Theorem 1.28 we know that a 4-plane is an integral element of ! if and only if it is a 

Cayley 4-plane. Any k-plane with k<4 is trivially an integral element, and all integral 

elements are regular. In fact, we have the following. 

LEMMA 4.4. Given any 3-plane ~ in O, there is a unique Cayley 4-plane ~ with 

Proof. The plane ~ is given by ~ ( x x y •  where {x, y, z} is any orthnor- 

mal basis of r/. The Lemma is a direct consequence of the formula 

dp(w,x ,y ,z)= ( w , x • 2 1 5  

Theorem 4.3 now follows directly from the Cartan-K~ihler theorem. 

Finally, we consider the boundaries of coassociative submanifolds. In this case 

there is a necessary condition. 

PROPOSITION 4.5. I f  N is the boundary o f  a coassociative submanifold M, then 

the unit tangent space qx to N at each point x must be an 0 generating 3-plane; that is 

qx must satisfy the equation 

go(qx) = O, 

where go is the associative calibration. 

Proof. Choose an orthonormal basis x,y, z for the tangent space to N at a 

particular point p E N .  Then by Lemma 4.4 the tangent space to the coassociative 

submanifold M at p must be spanned by x, y, z and x •  Now Re x•215 y, z) 

must vanish since M c I m  O. 

This necessary condition is also sufficient. 

THEOREM 4.6. Suppose N is an 0 generating 3-dimensional, real analytic sub- 

manifold o f l m O .  Then there exists a unique real analytic, coassociative ~bmanifold 

M of  Im O which contains N. 

Proof. Let [ denote the ideal generated by goEA 3(Imtq)* and by 
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~P~ ..... ~P7 EA4(ImO) *, the coordinates of [x, y, z, w] on ImO. In the proof of Proposi- 

tion 4.5 we have shown that 

i~qg=0 for each coassociative 4-plane ~. (4.7) 

Therefore, Theorem 1.18 (the coassociative equality) implies that the 4-dimensional 

integral elements of [ are the coassociative 4-planes. Obviously the 3-dimensional 

integral elements of [ are the elements rl satisfying ~(r/)=0. These integral elements are 

regular since each such ~/is contained in a unique coassociative 4-plane. Theorem 4.6 

now follows from the Cartan-K~ihler theorem. 

Appendix IV.A. The Cayley-Dickson process 

In this appendix we collect together the basic facts about the normed algebras, R, 

C, H, and O (cf. Curtis [Cu]). By a normed algebra we mean a (not necessarily 

associative) finite dimensional algebra over R with multiplicative unit 1, and equipped 

with an inner product ( , )  whose associated norm [ I satisfies 

Ixyl -- Ixl lyl for all x, y. 

Given a normed algebra B we will adopt the following notational conventions. Let 

Re B denote the span of 1 EB, and let ImB denote the orthogonal complement of ReB. 

Then each x E B has a unique orthogonal decomposition 

X = X 1 + X ' ,  

with xt EReB and x' EImB. (Occasionally we let Rex denote xt and Imx denote x'.) 

Conjugation is defined by 

Thus 

~ X 1 - - X  t , 

x~ = ~ (x+x)  x '  = ~ ( x - x ) .  

Given w fiB, let Rw denote the linear operator right multiplication by w. Similarly let 

L,, denote the linear operator left multiplication by w. 

The elementary facts concerning Rw, Lw, and conjugation are: 

(RwX, Rwy ) = (x,y)lw] 2, {Lwx, Lwy ) = (x,y)lwl z (A.1) 
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tR w = R~, tLw = L~. (A.2) 

Yc=x, xy=y~, (x,y)=RexY=�89 x:~=lxl 2. (A.3) 

Polarizing the identity Ixwl2=lxt Iwl 2 in x yields the first half of (A. 1). To prove (A.2) 

we may assume Rew=0 .  Repeated use of (A.1) yields: 

(x ,y)  (l+lwl 2) = (x ( l+w) ,y ( l+w))  = <x,y) ( l+lwlZ)+(x,yw)+(xw, y), 

which proves the first half of (A.2). Repeated use of (A.2) establishes xy=yx. 

An object of  fundamental  interest on a normed algebra B is the associator defined 

by 

[x, y, Z] = (xy) Z-x(yz) 

for x, y, z E B. The following weak form of associativity always holds on a normed 

algebra. 

LEMMA A.4. The trilinear form [x, y, z] on B is alternating. 

This means that the associator vanishes whenever two of its arguments are equal. 

An algebra on which the associator is alternating is called alternative. The lemma states 

that any normed algebra is alternative. 

Proof. Note that the associator vanishes if one of its variables is real. Hence,  it 

suffices to show that the associator vanishes whenever two of its variables are set equal 

to wEImB.  Now we prove that [x ,w ,~ ]=0 .  Since w~=lwl 2, we must show that 

(xw)W=xlwl 2, Note that by (A.2) ( (xw)~ ,y )=(xw,  yw) which by (A.1) equals 

(x,y)lwl 2. Since [x, w, ~]=0 ,  [w, y, w]=-[w, w, y]. Thus it remains to prove that 

[w, v~, z]--0 which follows in the same way as Ix, w, ~] =0. 

As an immediate consequence of the Lemma A.4 and the fact that x~=lxl z we have 

that: 

LEMMA A.5. (a) Each nonzero element x E B  has a unique left and right inverse 
x-~=x/Ixl 2. 

(b) Given elements x, y E B  with x~=O, the equations xw=y and wx=y can be 

(uniquely) solved for w with w= y/Ixl z and w=y /Ixl 2 respectively. 

Note that (a) alone without the weak associativity (Lemma A.4) does not imply (b). 

From the equation 2(x,y)=x~+y:L we have that 

2(x ,y)  w-x(~w)-y(s  = Ix, 37, w]+[y, x, w], 
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Consequently L e m m a  A.4 can be reformulated as 

x(~w) + y(s = 2 ( x, y)  w, 

and (proved similarly), 

(w~)x+(ws  ---- 2(x, y)  w. 

In particular, if x and y EB are orthogonal and w EB is arbitrary, then 

X)5----- --37X 

x ~ w )  = --y(~fw) 

The equations in (A.7), 

(A.6a) 

(A.6b) 

(A.7 a) 

(A.7b) 

(w3~) x = - (ws y. (A.7 c) 

which enable one to interchange x and y if they are 

orthogonal,  can be used to motivate the Cayley-Dickson process.  

LEMMA A.8. Suppose  that A is a subalgebra (with 1 EA) o f  the normed algebra B 

and that eEA • with lel--1. Then Ae is orthogonal to A and ( a + b e ) ( c + d e ) = ( a c - d b ) +  

(da+be)e  fo r  all a, b, c, d ~ A .  

Proof. Note  x E A if and only if s E A since 1 E A. Then a, b E A implies ba E A and 

hence (a, be) = (ba, e) =0 Va, b EA. This proves A •  Note  that e Z A  implies e E I m B  

and hence l=ltet lZ=eg=-e z so that e 2 = - l .  Expanding we have (a+be)(c+de)= 

ac+(be) (de)+a(de)+(be)c.  Next  we make repeated use of  (A.7) above to rewrite the 

last three terms. 

(be) (de) = -d((--~e) e) = d((~l~) e) = -d((eg) b) = - d b  

a(de) = a(ed) = e(ad) = (~td)e = (da)e 

(be)c = (be) e. 

This completes  the proof.  

Definition A.9. Suppose A is an algebra. Motivated by lemma A.8 we define a 

product  on AO)A by: 

(a, b) (c, d) =- ( a c - d b ,  da+be).  

The new algebra B - - A O A  is said to be obtained from A via the Caley-Dickson process.  
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Remark. Under the hypothesis of Lemma A.8 the conclusion may be restated as 

follows. A+Ae is a subalgebra of B isomorphic to the algebra AO)A obtained from A via 

the Caley-Dickson process. 

Definition A. 10. C-----Rt~R, I-I----C~)C and O--I-It~It via the Caley-Dickson process. 

With the standard basis 1, i , j ,k ,e ,  ie,je, ke for O we have C = R + R i ,  H = C + C j ,  

O = H + H e .  

LEMMA A. 11. Suppose B=A G A  is obtained from A via the Caley-Dickson process 

then 

(1) B is commutative i f  and only i f  A=R.  

(2) B is associative i f  and only i f  A is commutative. 

(3) B is alternative if  and only i f  A is associative. 

Proof. Suppose x=(a,a)=a+ae, y=(b, fi)=b+fie, and z=(c, y)=c+~e. One can 

easily verify the following formulas. 

(I)' �89 [x, y]=~[a, b]+ImOf l+( f l lma-a lmb)e .  

(2)' [x, y, z] = [a, ~fl]+[b, dy]+[c,  fla]+(a[b, c]-fl[a, c]+v[a, b]+a[fi, y]+[ct, y]fl+ 
y[a,/~]) e, assuming A is associative. 

(3)' [x,~,y]=[a, fi, a]+[a,l~,a]e. 

The lemma now follows easily. 

Hence,  C is commutative and associative, H is associative but not commutative,  O 

is alternative but not commutative and not associative, and B=O0)O is not an alterna- 

tive algebra. In particular B---O~O is not a normed algebra, although one can check 

that x~=lxl 2 is still valid, so that each non-zero element has a unique left and right 

inverse. 

THEOREM A.I2.  (Hurwitz). The only normed algebras over R are R, C, H and O. 

Proof. Suppose B is a normed algebra. Let  At=ReB(------R). f f  Al=B we are 

finished. If  not, choose e I CA~- with levi= I, and let A2=A~+A l e~(----C). By Lemma A.8, 

A2 is a normed subalgebra of  B isomorphic to C. I fA2=B we are finished. If  not choose 

e 2 E A~- with IE21= 1 and let A3=Az+A 2 e 2. Again by Lemma A.8, A3~I-I. If  A3=B we are 

finished. If  not choose e 2 E A~- with le2l = 1 and let A4=A3+A 3 & By Lemma A.8, A4~O. 

Finally, we must show A4=O=B.  If  not choose e E A~- with lel--1 and let 
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As=A4+A4e. By L e m m a  A.8, A5------OOO which is not a normed algebra. This is a 

contradiction since A s c B  and B is a normed algebra. 

The weak form of  associativity, corresponding to the fact that the associator is 

alternating, can be strengthened. 

THEOREM A.13 (Artin). The subalgebra A with unit generated by any two ele- 

ments o f  O is associative (in fact, A is contained in a quaternion subalgebra o f  0). 

Proof. Suppose x, y E 0 are generators.  If  A ~ R  we are finished. If not we may 

assume Imx4:0 and define e l - I m x / l l m x  I. Then by Lem m a  A.8, AI=R+Rel----C is 

associative. If  yEA1, then A=A1 and we are finished. If  not, write y=yl+y2 with 

Yl EA1, Y2EA~ and y2ar Now  let e2=Y2/lY21. Then A 2 - A l + A  1 e2-------H is associative. 

Also x, yEA2 and hence A=A2-------H. 

PROPOSITION A.14. R, C, H and 0 are normed. 

Proof. It suffices to show that O is normed. Suppose x, y C O. Then by Theorem 

A.13 the subalgebra with unit generated by x ,y  is associative. Therefore  lxyl 2= 

(xy) (-~)=(xy) (~s163 Ixl 2 lyl 2 

The Cayley-Dickson process  can be used to generate the automorphisms of  O. 

LEMMA A.15. Suppose el,e2, e 3 is an orthonormal triple in I m O  with e3_l_ele 2. 

Then there exists a (unique) automorphism g of  O sending i---~el,j---~e2, and e---~e3. 

and 

Proof. Applying L e m m a  A.8 succesively we have 

g: C-%R+ReI=A1, g :H-~Al+Ale2=Az ,  

g: O--~ A2+A 2 e 3 = O. 

Finally we shall need the Moufang identities: 

L E M M A  A . 1 6 .  

(a) 

(b) 

(c) 

(xyx)  z = x~y(xz))  

Z(xyx) = ( (ZX) y) x 

(xy) (zx) = x (yz )  x .  

Proof. Consider  the differences of  the left and right hand sides above. They  vanish 

if any two of  the variables are equal by Theorem A. 13. Since they are linear in y and z, 
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we may assume x, y, z are orthogonal. By repeated use of (A.6) we have that: both sides 

in (a) equal -Ixl2~)z, both sides in (b) equal -[xlZ~y, and both sides in (c) equal 

-[xl2s (x, yz )  x. 

Appendix IV.B. Multiple cross products of Cayley numbers 

First we consider the cross product of two octonions. This is well known but is 

included to motivate the cross product of three and four octonions. 

Definition B. 1. Let x •  for all x, y E O. This product will be 

called the cross product  of x and y. 

We consider the next Lemma to justify the terminology "cross product". 

LEMMA B.2. 

(1) xxy  is alternating 

(2) Ixxyl=lxAy 1. 

Proof. (1) The cross product is alternating since xxx=0.  

(2) Consequently, it suffices to compute Ixxyl in the special case where x and y are 

orthogonal. By condition (A.7a), if x and y are orthogonal than x x y = y x .  Therefore 

Ix• [Yxl = ]xl lYl = I x Ay[ as desired. 

Remark.  The proof that Ixxyl= IxAy[ explains why we needed the conjugates in the 

definition o f x x y ;  namely we wanted the vanishing of (x, y) to imply that xxy  could be 

expressed as one term yx. 

Remark.  I fx ,  y E I m H c O  then xxy  can be expressed in many ways 

x x y  = ~[x, y] = xy- l z (xy+ yx) = xy+ (x, y)  = x y - R e x y  = Imxy; 

and is just the usual cross product on R3--=ImH. 

The natural extension of the cross product to three vectors is the alternation of 

x(Yz). (Note that this is not xx(yxz)!)  Since y x x  is already alternating this equals the 

alternation of -x(y x z) which is just - l(x(y xx) +y(z xx)  + z(x xy)). However, this ex- 

pression can be simplified by repeated use of (A.7). Therefore we adopt as our 

definition of the triple cross product: 

Definition B.3. Let x x y x z - ~ ( x ( y z ) - z ( y x ) ) ,  for all x, y, z E O. 

10-812904 Ac ta  Mathemat ica  148. Imprim~ le 31 aot~t 1982 
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LEMMA B.4. 

(1) x x y X z  is a l t e rna t ing  on 0 

(2) Ixxyxz l - - IxmyAz l  for  al lx ,  y, z e O .  

Proof .  (1) Since the subalgebra generated by any two elements is associative. 

x x x x z  = �89 2) = 0 

x • y • y = 1 (xlyt2_y(yx)) = O. 

Obviously x •  and so x x y x z  is alternating. 

(2) As a consequence  of  (1) we may assume that x,  y,  z are orthogonal. Then 

repeated use of  (A.7) shows that - z ( y x ) = x ( y z )  and hence that 

x x y • z = x (yz )  i f  x,  y , z are orthogonal. (B.5) 

Therefore  Ix x y x zl = Ix~yz) l = Ixl lyl Izl = Ix A y A zl. 

Now we consider  a f o u r f o l d  c ross  p roduc t .  This is defined as the alternation of 

~(yxzxw). 

Def in i t ion  B.6. Le t  

x x  y x z  x w =- l($(y x z x w ) +  p ( z x x  x w)+  Z (xx  y x w)+  ff~(y x x x z ) ) ,  

for all x,  y,  z, w E Q.  

LEMMA B.7. 

(1) x x y x z x w  is a l t e rna t ing  

(2) I x x y x z x w l - - I x A y A z A w l .  

Proo f .  (1) Since y •  is alternating, it is obvious from the definition that 

x x y • 2 1 5  is also alternating. 

Since both sides of  (2) are alternating we may assume for the remainder of  the 

proof  that x, y, z, w are mutually orthogonal.  

If  x,  y,  z, w E Q are orthogonal,  then x • 2 1 5  w = ~(y(s (B.8) 

As in the proof  of  (B.5), repeated use of  (A.7) can be used to verify (B.8). The details 

are omitted. 

(2) This follows immediately from (B.8) since Q is a normed algebra. 
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The real part of  a cross product is an alternating scalar valued form on Q and thus a 

candidate for a calibration on Q. Given x E Q, we let xl=--Rex and x'=-Imx. 

LEMMA B.9. 

(I) R e x x y = 0  

(2) R e x x y x z = ( x ' , y ' z ' )  

(3) R e x • 2 1 5  y x z x w ) .  

Proof. (1) 2 R e x • 1 8 9 1 8 9  (2y-yx) =0. 

(2) First note that l x y x z = - y x z  which has no real part by (I). Therefore 

R e x x y x z = R e x '  xy '  xz ' .  In (1.1) it was shown that (x', y 'z ')  is alternating. Therefore 

we need only prove (2) for x, y, z purely imaginary and orthogonal. In this case we may 

apply (B.5). 

R e x x y •  = Rex(pz) = -Rex(yz)  = (x, yz).  

(3) In Lemma 1.22 we have shown that (x, y x z x w )  is alternating. Therefore we 

need only prove (3) for x, y, z, w pairwise orthogonal. In this case we can apply (B.5) 

and (B.7). Rexxyxzxw=Re~(y (~w) )=  (x, y(~w) ) = (x, y •  as desired. 

Remark. The fact that 

(x, y x z x  w) is alternating in x, y, z, w E O, 

can be reformulated as 

xXy•  is orthogonal to x,y ,  and zE O. 

The various cross products can be expressed in a very elegant way in terms of  

ordered pairs of  quaternions. The next lemma is used to derive the Cayley partial 

differential equation. 

LEMMA B. 10. Let  x, y, z, w denote the octonions a+ae, b+fle, c+Te, d+6e respec- 
tively, where a, b, c, d, a, fl, 7, 6 are quaternions. Then 

(1) x x y = axb-ax f l+(a t~- f l f t )  e 

(2) x x y x z  = axbxc+a(flx?')+bO, xa)+c(axf l )  

+(ax f l x  y+a(b xc)+fl(c xa)+9/(axb)) e 
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(3) x x y •  <a, b x c x d > + ( a ,  f l•215 

+(a • (c• d ) - ( a  • (bxd)+(a•  (bxc)  

+(fl xy) (a x d ) -  ffl x ~) (axc)+(yx6) (axb) 

+[(f lxyx6)  a + ( y x a x 6 )  6+(ax f i x6 )  a + q 3 x a x  7) d 

- a ( b  x c  xd ) - f l ( c  x a x d ) - y ( a x b  x d ) - 6 ( b  xaxc)]  e. 

Remark. Notice that these formulas are more elegant than the corresponding 

standard formulas for [x, y] and [x, y, z] (given in the proof of Lemma A. 11); providing 

additional evidence of the naturality of the cross products vis-h-vis the Cayley-Dickson 

process. 

Proof. The proofs of these formulas are direct calculations, using the definition of 

the cross products. For example, 

.fy = ( a - a e )  (b+fle) = ab+fla+(fla-al~) e 

yx = (b-f ie)  (a+ae) = 6a+Ofl+(al~-fi~) e, 

and hence 

x•  =-- �89 = �89189 e 

= a • b -  a •  + ( a t ~ - ~ )  e, 

proving (I). 

Next we discuss the equivariance properties of the cross products. 

PROPOSITION B.11. Suppose u E I m O  and lul=l (hence ~=-u ) .  Then for all 

x ,y , z ,  wEO:  

(1) (xu)•  fi 

(2) (xu)x(yu)•215 u 

(3) (xu)•215215215 a. 

Proof. We may assume that x, y, z, w are pairwise orthogonal. Then 

(I) (xu)•  (xu)=-u(~x) u=u(z• a by the Moufang identity 

Lemma A. 16 (c). 

(2) (xu)•215 which by the proof of (1) equals 

- (xu)  (u(~z)u). Now by the Moufang identity Lemma A. 16 (b) the above equals 

--(((xu) u) (PZ)) u = (x(~z)) u = (x X y X Z) u. 
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(3) By (B.8) and part (2), (xu) • (yu) • (zu) • (wu) =(xu) ((y(~w)) u) = 

-(u~) ((y(s u). This equals -u(g(y(gw))) u=u(x •215  w) a by Lemma A. 16 (c). 

Recall, Definition 1.33, that Spin7 acts on O and is generated by {R, :uE 

S6cIm O}, Also recall that Zg(V)-Zg(Ro)=-goRoog -I=R w (where w-g(g - l (1 )  v)) de- 

fines an action of  Spin7 on RY~-(Rv: vEIm O} and that Z: SpinT--gS07 is the standard 

double cover. 

COROLLARY B. 12. For each g E Spin7 

(1) (gx)•215 

(2) (gx)•215215215 

(3) (gx) • (gy) • (gz) • (gw) =Zg(x • x z • w). 

The cross products can be related to the commutator Ix, y], the associator Ix, y, z], 

and a third object, the "coassociator" Ix, y, z, w]. 

Definition B. 13. The coassociator is defined by 

�89 w] =- --((y' ,  Z'W') X '+(Z' ,X 'w')  y ' + ( x ' , y ' w ' )  Z '+(y ' , x ' z ' )  w'), 

for all x, y , z, w E O. 

This definition is consistent with that of the commutator and associator because of 

the next result. 

PROPOSITION B. 14. For all x, y, z, w E Im O purely imaginary: 

(1) Imx•189 y] 

(2) Imx•215189 z] 

(3) Imx•215215189 y, z, w] 

Remark. One can show that 

2Ix, y, Z, w] = [wx, y, Z]-X[W, y, Z]-[x, y, Z] w. 

The right hand side is a function considered by Kleinfeld [KI]. 

Proof. (1) is immediate. Since both sides of (2) and (3) are alternating we may 

assume x ,y , z ,  w E I m O  are pairwise orthogonal. Then, by (B.5), I m x • 2 1 5  

- Im x(yz) = - �89 (x(yz) + (zy) x). Repeated use of (A.7) shows that - (zy) x = (xy) z, which 

proves (2). 
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Orthogonality implies, by (B.8), that x x y  • x w=x(y(zw)) and hence 

( x x y x z x w ,  x)  = (x(y(zw)),x) = (y(zw), 1 >lxl = 

= - Re (y x z x w) Ixl 2 = _ (y, zw ) Ixl 2. 

Consequently, x x y x z x w  and �89 y, z, w] differ (at most) by an octonian a s  ortho- 

gonal to x , y , z ,  and w. Since [ x , y , z , w ] E I m O ,  we can write I m x x y x z x w =  

�89 z, w]+a where a E ImO is orthogonal to x, y, z and w. It remains to show that 

( I m x x y x z x w ,  a )=0 .  Since a E I m O ,  this is equal to 

( x X y X z x w ,  a) = (x(y(zw)), a) = - (a(x(y(zw))), 1 ). 

Using (A.7) to make four permutations of adjacent symbols, this becomes 

-(x(y(z(wa))) ,  1 ), which equals - ( a ,  w(z(yx))). Using (A.7) to make 6 permutations of 

adjacent symbols yields ( x X y x z x w ,  a) = (x(y(zw)), a) = -  ( a, x(y(zw)) ). Thus x(y(zw)) 

is orthogonal to a, completing the proof of Proposition B. 14. 

This Proposition B. 14 is a special case of the next result. 

PROPOSITION B. 15. For all x, y, z, w ~ O. 

(1) I m x x y = ~ [ x , y ] - ( x l  y ' - y l  x') 

(2) I m x x y x z = � 8 9  [x, y, z]+~xl[z, y]+�89 z]+~zl[Y, x] 

(3) I m x x y x z x  w=�89 [x, y, z, w]+�89 z, w]+�89 x, w]+�89 y, w]+~- wl[Y, x, z]. 

Proof. Because all the expressions in the proposition are alternating; and have 

been verified (Proposition B.14) when x ,y ,  z, w are purely imaginary, it suffices to 

prove (I)--(3) when x = l  and when y, z, w EImO are purely imaginary and pairwise 

orthogonal. 

In this case, 

(1) 1 x y = - ~ ( y - # ) = - y '  

(2) Note y x z = # z  since (y , z )=O.  Now by (B.5), l x y x z = y z = y X z .  Therefore, 

using Proposition B. 14, Im 1 x y x z = I m y x z =  ~[y, z]. 

(3) By (B.8) and (B.5), I m l x y x z x w = I m y ( Z w ) = I m y x z x w ,  which equals 

~[y, z, w] by Proposition B. 14. 

The commutator [x,y], the associator [x, y, z], and the new object [x, y, z, w] share 

common properties. For the sake of completeness we list them for the commutator and 

associator as well as for [x, y, z, wJ. 
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PROPOSITION B. 16. [x, y], [x, y, z], and [x, y, z, w] are 

(1) alternating 

(2) imaginary valued (i.e. the real part vanishes) 

(3) depend only on the imaginary parts o f  x, y, z, w (for example [x, y, z]= 

[x', y', z']). 

(4) (i) [x, y] is orthogonal to x and y 

(ii) [x, y, z] is orthogonal to x, y, z and [a, b] for each subset {a, b} of  {x, y, z} 

(iii) [x, y, z, w] is orthogonal to [a, b] and [a, b, c] for each subset {a, b, c} o f  

{x, y, Z}. 

The proof is omitted. 

Remark. The orthogonality (4) has useful implications for the decompositions of 

Imxxy ,  I m x x y x z ,  and Imx•215215  given in Proposition B.15. 

V. Some observations and questions 

The ideas developed here for the euclidean case are equally interesting for a much 

broader class of manifolds. 

V.1. Grassmann geometries in locally symmetric spaces 

Let X=G/K be a riemannian symmetric space (cf. [He]) and let A~(X) denote the 

algebra of G-invariant differential forms on X. (Recall that A~(X) is naturally isomor- 

phic to the fixed point set of K acting on APToX, where "0"  denotes the identity coset 

in G/K). Each element q~ E A~(X) is parallel in the riemannian connection on X. In 

particular, dq0=0 and Itcpl[~ is independent of the point x EX. Hence, q~ gives rise to a G- 

invariant Grassmann geometl'y on X. 

There are two fundamental cases of interest here: The irreducible symmetric 

spaces of compact and non-compact type. If G is compact, then there is a natural 

isomorphism A~(X)=H*(X;R). Thus to every cohomology class of X=G/K there is 

associated an interesting geometry of minimal varieties in X. If, for example, we 

consider X to be one of the Grassmann manifolds, then the cohomology of X consists 

essentially of the universal characteristic calsses. The associated geometries might be 

called "characteristic class geometries". For example, let X=SUn+m/S(U,• U m) be the 

Grassmannian of complex n-planes in C n+m. Then H2(X; R)=R is generated by the first 
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Chern class ct which, in this case, is also the K~ihler form of X. Thus ~fgeometry is 

just the complex geometry of X in dimension p. 

Question 1.1. What is the structure of ck-submanifolds of the complex Grassman- 

nian X, where ck E H2k(X; R) denotes the kth universal Chern class? 

Question 1.2. What is the structure of pk-submanifolds of the real Grassmannian 

X, where Pk C H4k(X; R) is the kth universal Pontrjagin class? 

Of course this question can be asked for any (p E Hk(X; R) where X is a riemannian 

symmetric space of compact type. The answers are sometimes available. Consider, for 

example, the quaternionic projective space x = p n ( H )  with its Spn+l-invariant metric. 

Let (p EA4p,+~(X)~H4(X; R)--=R be the parallel 4-form of comass 1. Here one can prove 

that any connected (p-submanifold of  Pn(H) is an open subset o f  some projective line 

Pl(H)cpn(H). To see this one first observes that at any point xEX,  ~x((p) consists of 

"quaternion lines" in TxX, i.e., 4-dimensional subspaces invariant under the local 

"I,  J, K"-endomorphisms. One now applies the elementary fact that if U is a domain in 

H then any C ~ map f: U---~H n whose differential is H-linear at each point, is a linear map 

up to constants. 

Similar questions can of course be asked for any riemannian symmetric space 

X=G/K of non-compact type. The question is particularly interesting when one passes 

to a compact quotient X'=FXX where F is a discrete subgroup of G acting freely and 

properly discontinuously on X. Any G-invariant form (p on X descends to a parallel 

form on X'. The (p-cycles on X' correspond to the F-invariant (p-cycles on X. 

As a simple example let X=R ~ and consider a flat torus T~=R~/A where A is a 

lattice in R n. Any q~-cycle in T ~ lifts to a A-periodic ?'-cycle in R ~. 

Question 1.3. Do there exist periodic submanifolds of R n belonging to the geome- 

tries discussed in Chapters 3 and 4? 

We note that in complex geometries, such periodic cycles can exist. However the 

lattices must be special for the complex structure (in order that the quotient C~/A carry 

integral (p, p)-cohomology classes). 

V.2. Locally homogeneous spaces 

The discussion above can be essentially carried over to any riemannian homogen: 

eous space X=G/H. Each G-invariant form (p gives rise to an interesting (p-geometry on 

X, although in general (p may not be closed. When G is compact, the complex (A~(X), d) 
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of G-invariant forms has cohomology isomorphic to the cohomology of X. However, d 

is not, in general, zero. 

A good example is provided by the manifold S7=SpinT/Gz (cf. the discussion in 

I1.5). There are Spin7-invariant forms in each dimension 0, 3, 4 and 7, corresponding to 

the forms on R 7 fixed by G2. Let q9 be the invariant 3-form of comass 1. Then ~ =-x-~ is 

the invariant 4-form of comass 1. Clearly, d~p=0 and dq~=c.~ for some c~0. Since 

d~p=0 and H4($7)=0, we see that there are no positive V-currents without boundary in 

S 7. In particular, there are no compact ~p-manifolds without boundary. However, there 

do exist 3-dimensional ~v-manifolds. In fact, we have the following correspondence. 

Consider S7cR8~Q with the action of Spin7 as given above. 

PROPOSITION 2.1. A 3-manifold M c S  7 is a ~v-submanifold if  and only if the 4- 

dimensional cone CM= {tx E Rs: x E M and t>0} is a Cayley submanifoId o f  R 8. 

Proof. Let W denote the Spin7-invariant 4-form of comass 1 in R 8, and define a 3- 

form cp on S 7 by setting 

q~x= x L  ~ 

for x ~ S  7. This form is Spin7-invariant, since for x ~ S  7, VI, V2, V3~ TxS7-~x • and 

gCSpin7 we have: (g*q~)x(V1, Vz, V3)=(~V)gx(gVl,gVz, gV3)=-W(gx, gVl,gVz, gV3)= 

(g*~)(x, V 1, V 2, V3) =qJ(x, V 1, V2, V3)=-~x(V ~, V 2, V3). Clearly, ~v has comass one, since 

~p.,.(~) = W(x A ~) (2.2) 

and II ll=llxA ll for any simple 3-vector ~EA3(x• Hence, ~v is a generator of ASpin7(S3 7) 

of comass 1. The remainder of the proof now follows immediately from (2.2). 

Let C4cR7cR 8 be the cone on the Hopf map discussed in Section IV.3. Since C 4 

is coassociative, it is in particular a Cayley submanifold of R 8. Let M= C 4 fl S 7. Then M 

is a r of S 7 which is homeomorphic to S 3. 

Using the complex geometries contained in the Cayley geometry of R 8, one obtains 

many more examples of ~v-cycles in S 7. 

V.3. Special Lagrangian geometries on complex manifolds 

with trivial canonical bundle 

We point out here that Special Lagrangian geometries can be defined on any 

complex manifold X with trivial canonical bundle. Let f2 denote a never vanishing 



154 R. H A R V E Y  AND H.  B. L A W S O N  JR. 

holomorphic n form on X. Given a hermitian metric on X this metric can be normalized 

by a conformal factor  so that If~l-1 on x .  Then 

q~ = Re (tr) 

is a calibration on X (d-closed and, in fact,  of  comass 1 at each point of  X). 

I f  the hermitian structure provides a Kfihler/symplectic structure then the q0- 

submanifolds are a distinguished subclass of  the Lagrangian submanifolds of  X. 

For  each unit complex number  e i~ we have a corresponding form % = R e  (e i~ f2) 

with its associated geometry.  Thus,  as in the case of  C ~, we obtain an sl-family of  

Special Lagrangian geometries  on X. 

Note.  In the case n=2, the Special Lagrangian geometries are actually again 

complex geometries.  Each  non-zero element  in span {w, %, ~0~/2} determines an ortho- 

gonal complex structure parallel in the given metric. 

In the case that n=4 ,  we can also define an Sl-family of  Cayley geometries on X (if 

X is K/ihler), by setting 

qb 0 = ~w2+Re (e iO if2) 

where oJ is the Kfihler form on X. 

The K/ihler form can be chosen so that ~o  is parallel since it has now been proved 

by Calabi and Yau (see Yau [Y]) that any compact  K~ihler manifold X with c , (X)=0 

carries a Ricci flat K/ihler metric. Such manifolds include hypersurfaces  of  degree n +2  

in Pn+l(C). 

V.4. A remark concerning holonomy groups 

If  X is a connec ted  riemannian n-manifold with holonomy group Go_On, then any 

G-invariant p-form on R n extends to a parallel p-form ~v on X. A ~v-geometry is then 

defined. The available ho lonomy groups of an irreducible riemannian manifold are 

discussed in [S], [B1]. It is still unknown whether  there exists a riemannian 7-manifold 

with holonomy G2 or an 8-manifold with holonomy Spin7. 

V.5. A remark concerning Yang-Mills equations 

It is a consequence  of  our  discussion in Chapter  IV (See Propost ion 1.3.4.) that a 

Cayley submanifold M 4 ~ R 8 = O  has the following property:  The Ki~hler 2-form we 
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associated to each of  the complex structures Je, e E S 6, is anti-self-dual when restricted 

t o M  4. 

We now choose e l, e 2 and ea=e 1 �9 e 2 to be an orthonormal basis of Im H where H is 

any quaternion subalgebra of O, and we consider the Im H-valued 2-form 

~'~H ~ Z O)ek (~ ek" 

This form is exactly the curvature 2-form of the canonical Spl-bundle over 

P(H0)H)~-S 4, pulled back to H OH=O. We denote this bundle by PH. From our 

observation above we have the following. 

THEOREM 5.1. Let M 4 be a Cayley submanifold of  RS-------O. Then for each quater- 

nion subalgebra H c O ,  the associated Spl-bundle PH with its standard connection has 

an anti-self-dual curvature tensor when restricted to M 4. In particular, each such 

connection gives a global solution to the Yang-Mills field equations over M 4. 

Note. It should be emphasized here that the Yang-Mills equations hold with 

respect to the conformal structure on M 4 induced from the immersion M4~-~,R s. 

The above result leads to a kind of "transform method" for constructing Yang- 

Mills fields. Let i,j, k be the standard basis for H. Consider H=C 2 with complex 

structure i. Let O = H G H  as above and set •=QH and P=PH. Then for each holomor- 

phic mapping 

h: C2--~ C 2 

we let M4--graph(h) be the corresponding Cayley submanifold. Then for each 

g E Spin7, we have that the bundle g*P restricted to M has a Yang-Mills connection 

with anti-self-dual field g* Q. 

Analogously, we could consider a real valued potential function F: R4--->R which 

satisfies the special Lagrangian equation (Theorem III.2.3), and set M4=graph (grad F). 

Again for each g E Spin7, the form g* Q[M4 is a Yang-Mills field. 

To construct anti-self-dual Sp~(=SU2) fields over the riemannian 4-sphere S 4, it 

suffices to find, say, polynomial maps ~:C2---~C 2 so that the metric induced on 

graph (~) is conformally flat. 
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