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1. Introduction 

Following work by Yau [5] on the Calabi conjecture,  Cheng and Yau [1] have 

shown that each smoothly bounded strictly pseudoconvex open set ff2cC n, n~2 ,  

admits a unique K~ihler-Einstein metric equivalent to the Bergman metric. The condi- 

tion that the metric be Einstein can be expressed as 

R j ~ =  - 0 i 0~(log det (Ge4))  = - ( n +  1) Gj~ (1.1) 

where Rj~-, Gj.k-are the components  of  the Ricci tensor and metric tensor respectively.  

The constant  on the right-hand side could be any negative number;  - ( n + l )  is chosen 

for convenience.  

One can search for such a metric by requiring that the potential G E C=(ff2) satisfy 

the following complex Monge-Amp~re equation: 

det (0y O~G)  = e ("+ l)~. (1.2) 

(~) Research supported in part by the National Science Foundation under grant number MCS 8006521. 
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Indeed, if G satisfies (1.2), then Gj,-=ajaCG satisfies (1.1). This condition can be 

reexpressed in the form given by Fefferman [2]: 

v k- 
J(v)  = ( -  1)" det = 1 (1.3) 

vj vj~ 

where v=e  - c ,  or else in the form given by Cheng and Yau [1]: 

M(u)  = det (g~//+ ujk)' (det (g~))- 1 e(,+l), = e e. (1.4) 

Here g = - l o g ( - r p )  is obtained from a smooth defining function rp for f~, G = g + u  

satisfies (1.2), and FE C~(~), defined by 

e F = j ( _ 9 ) - I  = e(,+~)g(det(gjs (1.5) 

measures the failure of g to be a solution of (1.2). The condition that Gjk-be equivalent 

to the Bergman metric is expressed as 

C-~ gjs << - (gj~+ uj~) <- Cgji. (1.6) 

In this paper it is shown that the solution G = g + u  to (1.4), (1.6) is a graded 

Lagrangian distribution associated to the conormal bundle N*(af2). More particularly, 

there are functions ~p/E C=((2) and a defining function q~0 for f2, with 

~)j=qp~n+l)Jo~j, j>~ 1, ajEC~~ 

such that, for all N E N, 

N 

u -  E ~pj(log (-90))J E C('+I)N-I(~) 
j = 0  

(1.7) 

G - ( - l o g ( - q ~ o ) ) E C " ' a ( ( 2 )  for all 0 < 6 <  1, (1.8) 

or equivalently v EC'+~'6((2) for the solution to equation (1.3), unless the leading 

logarithmic term ~0~ vanishes at the boundary. The regularity result (1.8) improves that 

obtained by Cheng and Yau; the expansion (1.7), up to the first logarithmic term, was 

obtained formally by Fefferman in [2]. 

vanishes to order ( n + l ) N - 1  at the boundary. This asymptotic expansion completely 

determines the form of the singularity of G at the boundary, in the C = sence. 

Conversely, the Taylor series of the coefficient functions q~j are completely determined 

by (1.7). The optimal H61der regularity of the potential is easily seen to be 
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The proof of (1.7) consists of a careful study of the nonlinear elliptic system (1.4), 

(1.6), and in particular the form of its degeneracy at the boundary. The linearization of 

the complex Monge-Amp6re operator M, in (1.4), is - ( A g + n + l ) ,  where Ag is the 

Laplace-Beltrami operator of the metric g~k-associated to a smooth defining function qp 

for ~ .  First it is shown that the linearized operator is an isomorphism between certain 

H61der spaces, defined by estimates degenerating at OQ in a way that reflects the 

strictly pseudoconvex geometry of the boundary. These results are strengthened by 

showing how to commute vector fields through Ag. Next, similar results are obtained 

for the nonlinear operator M, by regarding it as a perturbation of 1 - (Ag+n+  1). These 

results show that the solution u to (1.4), (1.6) is a Lagrangian distribution. Finally, the 

asymptotic expansion (1.7) is derived by symbolic methods familiar from the theory of 

linear differential operators. 

Certain of the results and methods of [4] are used, most especially the character- 

ization of the space of Lagrangian, or conormal, distributions associated to the bound- 

ary in terms of the action of vector fields tangent to 8Q. The space L~,"((~) of totally 

characteristic pseudodifferential operators, discussed in [4], is used in a less essential 

way in the proof of degenerate Schauder estimates. 

The first step is the analysis o f  the Laplace-Beltrami operator Ag. In Section 2 a 

detailed study of the form of Ag near the boundary is made, showing its relation to the 

boundary Laplacian [Do of Kohn (see (2.30)). The H61der spaces A~'a(f2)are defined in 

Section 3 in terms of singular coordinate charts near the boundary, and are shown to be 

the same as the spaces used by Cheng and Yau in [1]. 

In Section 4, it is shown that for x>0, 

Aa,+x: 9"Ak+2'a(Q)-~q~'Ak'~(~), (0<~r<�89 nZV~--~)) (1.9) 

is an isomorphism. This can be shown by applying standard Schauder theory to suitable 

coordinate charts which send the boundary to infinity; we prefer, however, to apply the 

theory of totally characteristic pseudodifferential operators~ While not shorter, the 

proof given here is more in the totally characteristic spirit which is fundamental to this 

paper. 

In Section 5, the commutation properties of vector fields are used to improve the 

estimates (1.9) significantly. This is closely related to the invariant Cauchy-Riemann 

(CR) structure on the boundary. The maximal complex subbundle HcCT(Of2) is 

defined as the annihilator of the contact line bundle in T*(Sf2), given by R(iSq?). 

Suppose that V6C~176 is a vector field on ~ which is tangent to $f~. V is assigned 

weight (at most) 1 if it restricts to H over $Q; otherwise it is assigned weight 2. Any 
11-812904 Acta mathematica 148. Imprim6 le 31 ao0t 1982 



162 J. LEE AND R. MELROSE 

vector field vanishing on 0Q is given weight 0, and more generally, if V has weight s 

then q0rV is given weight s-2r. This weighting can be extended to a filtration of the 

space of totally characteristic linear differential operators on ~ ,  i.e. differential opera- 

tors generated by vector fields tangent to aQ. In particular, formula (2.30) shows that 

Ag is totally characteristic and of weight 0. The spaces Ak'~'s(f2)for 0 < a <  1, s<-2k fiN 

are defined as consisting of those functions in A k' a(Q)which are mapped into A k-p; a(ff2) 

by any differential operator of order p and weight at most s. Then it is shown that 

Ag+n: q)rAk+Z'a;s(ff2)---~rAk'a;s(Q), 0 < r < 2 J ( n + ~ ) ,  s<~2k) (1.I0) 

is an isomorphism. 

The complex Monge-Amp6re operator M is considered in Section 6 and shown to 

be a totally characteristic, nonlinear, differential operator of order 2 and weight 0 with 

linearization - ( A g + n +  1). This sets the value of n in (1.9), and these estimates can be 

applied to strengthen the results of Cheng and Yau on the regularity of the solution to 

(1.4), (1.6) by using the inverse function theorem in the spaces q)rAk'~(Q). More 

importantly, the same method can be applied using the mapping properties (1.10) giving 

the much more refined regularity 

u6N~rAk'~'s(ff~), 0 < a < l , 0 < r < n + l  (1.11) 
k, s 

for the solution to (1.4), (1.6). 

Section 7 is devoted to a discussion of the properties of distributions satisfying 

(1.11). Indeed, it follows from an argument in [4] that 

N q)rAk'~;s(ff2) c ~ ( 0 )  (1.12) 
k, s 

is a subspace of the space of Lagrangian, or conormal, distributions associated to aQ. 

A filtration ~/~s)((2)c~/(O) is introduced with the multiplicative properties 

qgr~(s)(~'~) ~/g~(s+r)(~-~), ~(s)(~-~) .  ~(r)(~=~) C g~(s+r)(~-~). (1.13) 

Finally, in Section 8, this filtration is used to derive the asymptotic expansion 

(1.7). Provided s>0,  

M: sg<s)(~)---~ ~/~)(~2). (1.14) 

If N+ OQ is the inward pointing half of the normal bundle to Off& local coordinates in 
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induce a map: N+ OQ--+(2 near the boundary, which in turn induces a well-defined 

symbol isomorphism for conormal distributions: 

M(s)((2)IM (~+ 1)(~2)--+ M(*)(N + 8fa)IM (~+ I)(N+ c3ff2). (1.15) 

This reduces M to an ordinary differential operator: 

[M(u)- ll., = E[u],, 

where the indical operator is 

E = (xDx)Z+inxDx+n+ 1, 

well-defined on NaQ. This, and related higher order identities, allow (1.7) to be 

obtained by induction. Similar results are also given for solutions to the linear problem 

(Ag+~)wE99"C~((2), wEM(r)((2) for some r > 0 .  

2. Laplace-Beltrami operator 

Let Q c C "  be a bounded C ~ strictly pseudoconvex domain, and suppose 

q9 C C~((2) is any smooth defining function for Q, with 99<0 exactly in the interior of s 

and d99=1=0 on M = a Q .  It is well-known (see Cheng and Yau [1]) that, provided 99 is 

strictly plurisubharmonic, the real function g= - log  (-99) defines a complete Kiihler 

metric on f~: 

ds 2 = gjx:dk;dj - -  82g - dzJdz ~. (2.1) 
8z j 8z ~ 

In fact, given any defining function 99, it is possible to modify 99 away from a neighbor- 

hood of 8f2 so that (2.1) defines a complete Kiihler metric. To see this, observe first 

that 

gJl ;  = --99~k- 4 992 " (2.2) 

The condition that f2 is strictly pseudoconvex means that ~k-is positive definite when 

restricted to the annihilator of &# on the boundary. Because of this, there is associated 

to 99 a distinguished (1,0) vector field ~ on (2 near OQ, defined by 

~_J899= 1, ~__JS&p=0 mode99. (2.3) 
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We define a function r E C=(f2) near 0s by 

r = q~j~k-. 

Then we have, from (2.3), 

The matrix ~Pjk-, defined by 

(2.4) 

~ k ~  = r~-. (2.5) 

~pj~ = c~+(1 - r )  ~.c~- (2.6) 

is nondegenerate near aQ, since ~pj~ agrees with q)k when restricted to the annihilator of 
njk" j aq~, and ~pi~'~ ~= 1. Ifg jk- is the matrix of the dual metric on T'f2, So that s gmk =f~m' o n e  

verifies directly that 

gjk- = (_q~) (~jk-_ t 1 +qg-rqJ~j~t;~ (2.7) 
rqg- I / '  

which shows that gik is indeed nondegenerate near af2. It is then possible to modify g 

away from a neighborhood of 0f2 so that it is strictly plurisubharmonic everywhere on 

if2. 

The non-negative Hermitian matrix 

g J,( 
h jk- - (2.8) -q~ 

has corank one on Of 2. To  see this just  note that 

.- _q~2 ~ (2.9) 
gjkq) = rq~- 1 

so, since ~pjk is nondegenerate and the matrix (~J~) has rank one, 

ker (h ik-) = span (2  dzJ) (2.10) 

as a bilinear form on l~ M (2. 

Observe that this differential form O99=qb-dz J restricted to the boundary is a pure 

imaginary form, and 

0 = t*(iOqg), t: M = 3f2 ~ (2 

spans the contact line bundle of the CR-structure induced on M. The Levi form of 0 is 

the Hermitian form L defined on the complex vector bundle H=O• by dO: 
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L(v, w) = dO(Jr, w) (2.11) 

where J is the complex structure on Tf2~TM.  

In view of (2.10) the bilinear form defined by hJ~-on ~ (2 descends to a degenerate 

bilinear form, h, on T*M given by 

h(a, 13) = hJk aj13; (2.12) 

if a=aj  dzJ +a~dzklo~, fl=flj dzJ +fl~dz~ba. 

LEMMA 2.13. The bilinear f o rm  h is equal to the dual o f  L on T*M. 

Proof. Using the injection T M = T Q  the Levi form becomes 

L(v, w) = -ia~cfl(Jv, w). (2.14) 

On H, 00tp agrees with~p=~pjs ~. The dual of the tensor u~=-i~p(J.,  .) on T~ is 

just ~pjk on T*(2. Over the boundary it follows from (2.7) and (2.8) that hJk-agrees with 

v2 js on the annihilator of ~, and hJk-annihilates iOqg; this proves the lemma. 

We define 

T= - i (~-~) ,  W= ~+~. (2.15) 

Then it is easy to check that 

rAd~=0, 

W__3 dq~ = 2, 

Tl iOqJ = 1, TI - iOOqo = -rdcp, 

W ~iaq~ = i, W.~- ia~ fp  = ir(~q~-~q~). 
(2.16) 

In particular, W is proportional to the gradient of ~ with respect to gjs while T is 

tangent to 0f2 and everywhere transversal to the maximal complex subspace H. 

Given any boundary coordinates y E R 2"-1 for M=aff2, this provides a preferred set 

of coordinates (x, y) in Q near a•, where x=-qv and the yS are extended to be constant 

along the integral curves of W. We shall call such coordinates normal coordinates. In 

normal coordinates, 

a~= -�89 (2.17) 

Recall that on any manifold with boundary (see [4]) the ring of totally characteristic 

differential operators Diffb((2) consists of those operators which can be written as 

polynomials in C ~ vector fields tangent to the boundary. In local coordinates (x, y) 

with x~>0, this condition requires that P E Diff,' ((2) be of the form 
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P =  E Pa,J(x'y)Dy (xDx)J" (2.18) 
j+lal<-m 

PROPOSITION 2.19. The Laplace-Beltrami operator Ag is totally characteristic on 

(2 and in any local coordinates x=-q~, y E R  2n-1 near the boundary is o f  the form 

Ag = l(xDx) +xR t (2.20) 

where R1 is also totally characteristic and the indicial polynomial is 

I(2) = 22+in2. (2.21) 

_ r �9 Proof. With x - - c p ,  p)-Oy/Ozi, r= l  . . . . .  2 n - l ,  and P~--~k,r-- �9 we have 

OZj= --f~Ox"~'~ Oyr, ~Zs --f19k-~x'q-~l'~rk-~yr �9 (2.22) 

Substituting into Ag= gJ~DjD~ gives 

Ag -= gjk(-qOjD x-t-kt; D /)  (-q)k'D x +ktSk- Dy,) 

= gjk~. gk_DZx+gjk~.(Dx q~_) Dx_gjkl~ ~ (D/q~-) Dx-gJktz} q~-Dyr D x-gjk ~.ktSk_Dx Dys 

j k -  s j k -  �9 s - g  q~(D x/u~-) Dy, + g (,aj Dyr) (/,tl( Dy,). 

From (2.9), 

and from (2.22), 

(2.23) 

- x 2 

gjk~ q~_ = 1 +rx (2.24) 

= -i~Dxq~-+it.t~Dy, q~-. 

Substituting these relations into the first three terms in (2.23) gives 

x 2 z . j~ _ 1 (xDx)Z+inxDx. 
l+rx Dx+tg ~s l+rx 

Now the fourth and fifth terms in (2.23) are 

- " X 2  j r k- r 

-(gJkqk'/~J+gJkq~a~)DxD/= l+rx ( ~ ) + ~  ~rk-)DxDyr" 

(2.25) 

(2.26) 

(2,27) 
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Thus Ag is certainly totally characteristic. Evaluating (2.26) at x=0 gives the totally 

characteristic ordinary differential operator 

l (xOx) = (xDx)  2 + i n x D x .  (2.28) 

This corresponds to (2.21), so it is only necessary to observe that the last three terms in 

(2.23) vanish at x=0 since the gJs do so. 

It is important to identify the first order terms in the Taylor series of Ag at x=0, as 

a totally characteristic operator. 

THEOREM 2.29. I f (x ,  y) are normal coordinates near the boundary o f  if2 then 

Ag = I(xD~) +x ( -  r(xDx) 2 + E] b + V) +x2R2(x, y, xDx, Dr) (2.30) 

where Nb is the boundary Laplacian given by the Levi form on Of 2 and the volume form 

OAdO n-l, V is a vector field tangent to ~ ,  and 

l(xDx) = (xDx) 2 +inxDx. 

R2 is elliptic where Fqb is characteristic. 

Proof. Recall that []b is defined as cSg'CSb+C5 b ~ ,  which reduces to O~'0b on func- 

tions. Here, 06fis  the coset of Of in T*~Q/0 if f is extended to a neighborhood of aft ,  

and 0g is the formal adjoint. Thus, for any u E C~(M), 

([]b f, U) = (Oh f, ~bu) = hJtfk-uj~p (2.31) 

whenfand  u are extended to a neighborhood of aft ,  and ~p=OAdO n-j. Using (2.22) and 

the fact that hjk-annihilates 0% this becomes 

s 
(Dbf, u) / j*- ~ = h #ts Oy,(l,t) z~. 

JM 

After the usual integration by parts, this shows that 

I-qbf= -- (hJs Or,) (~sk-~y~) f + Wf) (2.32) 

where V is some vector field tangent to 092. Therefore, the last term in (2.23) can be 

replaced by x([]b+ V). 
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Next  observe that in normal (x, y) coordinates 

0 W(y r ) =  r ~:r 

so the fourth and fifth terms in (2.23) vanish, from (2.27). The first-order term of  (2.26) 

at x=O is clearly 

-xr(O, y) (xDx) 2. 

Finally, the sixth term in (2.23) vanishes to order  x 2, by virtue of (2.9). This shows that 

A t is given by (2.30); to complete  the proof  we need only observe that the ellipticity of 

Rz on R0, where [3b is characterist ic,  is a trivial consequence of  (2.9). 

Remark. By means of  a rather laborious integration by parts, the vector  field V in 

(2.30) can be shown to be equal to l i ( n - l )  T. Since we have no need for this result, we 

omit the proof. 

3. HOlder spaces 

In carrying out the analysis of  A e near a~2 we shall use spaces of functions 

satisfying certain degenerate  H61der estimates. On the half-space Z=I~ §215  N-I, with 

natural coordinates (x,y) consider,  for each 0 < a < l ,  the subspace Ba(Z)cL=(Z) of  

functions satisfying: 

(x+x') a If(x, y) - f (x ' ,  Y')I ~< C([x-x' Ia+(x+x') ~ [y-y'l a) (3.1) 

for some constant  C. If C is the smallest such constant  set 

Ilfll~ = I l f b o + C .  (3.2) 

More generally if K E N  we write Bk'a(Z) for the space of  functionsfEL~~ with 

(xDx)PD~yfE B"(Z), Vp+lfi I <~k, (3.3) 

where the derivatives are to be taken in the sense of  distributions in Z. With the 

obvious norm I I l l k  a,  is a Banach space. In fact, under the diffeomrophism 

9 (x, y) ~ (log (x), y) E R N 

these correspond to the usual H61der spaces Ck'~(RN), of  functions satisfying 
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IDf,,y)g(s, y)-Ofl(s,y)g(s', Y')] ~< C](s, y)-(s ' ,  Y')I, VI~I ~< k, (3.4) 

where s =log (x). 

The estimates (3.1), (3.3) are local in nature, in the sense that if Q 6 C~(Z) and 

f 6  B k' ~(Z) then 9fE B k' ~(Z). In fact B k' ~(Z) is a ring under pointwise multiplication. We 

write B~'~(Z), k, B~o c (Z), Bk'~(U) for the rings of compactly supported functions in Z, of 

functions locally in B k' a(Z) and of functions defined analogously for any open subset 

UcZ,  respectively. 

Consider the space of almost regular distributions ~/(Z)=@'(Z), defined in terms of 

the usual Sobolev spaces by 

fC  M(Z) ~ 3s E R such that (XOx)PD~yfE H~oc(Z), Vp, ft. (3.5) 

It is readily shown (see [4]) that ~r is just the space of extendible Lagrangian, or 

conormal, distributions on Z associated to the boundary, i.e. to the conormal bundle 

N*aZ. Since L=(Z)~I-I~Ior it follows that 

f'l B k' ~(Z) = ~ L = ( Z )  c M(Z), (3.6) 
k 

with the intersection independent of a. This fact is very basic to the method used in this 

paper. 

As in the standard case of HOlder (or Lipschitz) spaces there is a useful approxi- 

mation criterion for a func t ionf to  be in B k' a(Z). Indeed, suppose there is a decomposi- 

tion of the form: 

f =  E f  k (3.7) 
k=0 

where for some constant A, 

I[LIIL~ ~< A2-k'~ (3.8) 

[[xDxfklIL=, *-ka tlOy~fkllL=<~A2 , s= l  . . . . .  N-1 .  (3.9) 

LEMMA 3.10. I f  f is given by (3.7), where (3.8) and (3.9) hold, then fEBa(Z). 

Proof. Using the diffeomorphism s=log(x) this reduces to the usual result for 

HOlder spaces (see for example [3]). 

Next we introduce some even more degenerate HOlder spaces on the strictly 

pseudoconvex domain •. First choose a finite set of normal coordinate charts (U(x, y)) 
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covering ~ ,  with range {0~<x<r} •  N - I  for each chart. Given p E 0Q choose a chart  

containing p. An affine linear t ransformation in the y variables, to y '=A(p)y+B(p) ,  

depending smoothly on p E U can then be chosen so that at p=(0 ,  0) 

0 = d(y2"-l) ', (3.11) 

d(yl) ', .... d(y2n-l) ' are orthogonal with respect  to h i~. (3.12) 

Dropping the prime, we next  define singular coordinates based at p, 

1 _ 1  

v = x  2, w r = x  2yr, t=x - ly2n- I ,  r = l  . . . . .  2 n - 2 = N , 2 .  (3.13) 

These are defined in the preimage in Q of  the region 

gp = {{y{ ~< Rx~, lY2"-'[ ~< Rx, x ~ r} (3.14) 

under the normal coordinates (x, y ' )  where R is independent of p. As p traverses the 

boundary it is clear that the Vp cover  a neighborhood of  0g2. 

Definition 3.15. The space A k' a(ff2) consists of those functions f E  L~(ff2) for  which 

there exists a constant  C such that ]{f]lk,~<C in each singular coordinate system (3.13), 

on the set Vp, corresponding to p and a finite covering of ~ by normal coordinate  

systems. 

Clearly A~'~(~) is a Banach space with respect  to the norm ]If Ilk*a, given by the 

smallest constant  C. It is necessary to show that the definition is independent  of  all 

choices made. In fact this follows immediately from the fact that a change of normal 

coordinates,  or affine reduct ion to (3.11), (3.12) at p, induces a C ~ diffeomorphism on 

each of  the spaces lip, depending smoothly on p. Since B~'c'(V)is coordinate invariant, 

A k'~(Q) is well-defined. The main reason for introducing these spaces, and the singular 

coordinates (3.13), is that the geometry  is bounded with respect  to them, in the sense of  

Cheng and Yau [1]. 

0 LEMMA 3.16. Let  go' g be the entries o f  the metric tensor, derived from a strictly 

plurisubharmonic defining function for  ~ ,  expressed in singular coordinates log (v), w, t 

as in (3.13). Then gO, gij are C ~ in Vp with bounds on all derivatives independent o f  p, 

with respect to a suitable covering. 

Proof. We can use the calculations of Section 2. The metric g'S occurs as the 

principal part of  A x in (2.30), (2.32). In terms of the singular coordinates,  

s=log  (v), w, t, 
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1 

2xD x = D~-wrDwr-2tD,, X2 Dyr  = Dwr, xD = Dt, r = 1 .. . . .  2n-2 .  (3.17) y2n I 

Since the second order part of ]"]b, in (2.32) is composed of vector fields tangent to the 

maximal complex bundle H, and therefore of the form: 

2n-2 2n-  I 2n-  I 

Zj= E M;Dy,+ E YkM;,kD/+ E tN]Dyr, 
r=0 r=0 r=0 

it is clear that X[]b is a C = differential operator in (s, w, t) in each Vp. Similarly, using 

(3.17) all the other terms in (2.30) are C = in the singular coordinates. This shows that 

the gO are C a, clearly uniformly as p varies. Moreover, Ag is uniformly elliptic in Vp, 
so the inverse gij is also C ~. 

In [1], Cheng and Yau defined holomorphic coordinate charts covering g2, such 

that each z E s is contained in a chart in which the entries of the Hermitian matrices 

gjk, gjk- with their derivatives of any finite order are uniformly bounded, independently 

of z. They were then able to introduce spaces, (2k+~(f~), consisting of the functions with 

uniform H61der estimates with respect to those coordinate charts respecting the 

bounded geometry. The fact that the coordinate charts are holomorphic is of no 

significance for such estimates, so as a corollary of Lemma 3.16 and Definition 3.15 we 

have 

Ak,~(f~) = (~k+~(~), Vk, a. (3.18) 

4. Schauder estimates 

In this section we show that if ~v is any defining function such that g=-log (-qv) is 

strictly plurisubharmonic, the Laplacian Ag gives, for each x>0, isomorphisms: 

Ag+x: q0rnk+Z'a(f~)---> cprAk'a(g2), 0 <  r < ~ ( n + ~ )  (4.1) 

of the degenerate H61der spaces defined in Section 3 above. Here, we write q0rA k' a(f~) 

for the space of functions of the form cp~ f E A  k' ~(~2). Equipped with the obvious norm 

it is a Banach space whose topology is independent of the defining function q). To prove 

that (4.1) is an isomorphism we use some facts concerning totally characteristic 

pseudodifferential operators. For the general theory of these operators the reader is 

referred to [4]. For convenience the definition and some elementary properties are 

recalled here. 
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A totally characteristic pseudodifferential operator on the half-space Z=l~+ xR N-j 

is a continuous linear map C~(:Z)--,~'(Z), where @'(Z) is the space of distributions on ;~ 

which can be extended to a neighborhood of Z, of the form 

Au(x'Y)=(2~)-Nl ( ei('-~ (4.2) 
J Z  J R N 

The amplitude a E S~,0(ZxR ~) is required to satisfy the lacunary condition with respect 

to the ;t-variable: 

fR eitl-t)~'a(x,y,;t, rl)d;t = 0 for t < 0 .  (4.3) 

m )< N The space of such symbols of order rn is denoted S~,~(Z R ) and the corresponding 

space of operators with kernels locally of the form (4.2) by L'b"(Z). The residual space 

L~-~(Z)=Nm L'~(Z) consists of operators mapping ~'(Z) into s~(Z). 

Observe that a totally characteristic differential operator 

�9 ' a 

P(x, y, xD x, Dy) = E Pi, a(x, y) xllTx D,, 
j+lal~<,n 

as in Section 2 is an element of L'~(Z) with symbol, in the sense of (4.2), 

P(x'Y'2'rl)= E PJ, a (x'y);tirl% 
J+lal<~m 

An operator A E L~'(Z) is said to be elliptic if its symbol is elliptic in the usual sense. 

The invariance and symbolic properties of these operators are extensively discussed in 

[41. 
We wil l  show that any element of L~'(Z) is locally bounded on the appropriate 

singular HNder spaces B*'~(Z). The first step is to show that the error terms in the 

calculus are well-behaved. 

LEMMA 4.4. If  R Or. Lb'(Z), then R: xrLc(Z)-'*xrB~og(Z) for all r, k>-O, all 0 < a <  1. 

Proof. By localizing it can be assumed that r~.S~a~(ZxR N) has support with 

compact projection onto the base Z. Then the corresponding element R E Lb=(Z)can be 

written: 
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Ru(x, y) = kR(x, y, y', t) u(xt, y') dt dy' (4.5) 
N - I  

where the kernel, in this sense, kR, is C a in all variables and, because of  (4.3), rapidly 

decreasing with all derivatives as t-~or and t ~ 0 .  The integral above converges 

absolutely, and Ru is clearly bounded when u is bounded. In fact, for any in teger j  and 
�9 Ct  ~ k ,  tx  multiindex a, (xDx)3DyRU is of the same form (4.5), and so R maps L~ into Bioc. 

Finally, since R(xru)=xrR'u, where R '  is again an element of Lb'(Z), the lemma is 

proved. 

THEOREM 4.6. I r A  E L~ then A:B~'~(Z)-->B~o~*(Z) for each 0<:ct<l, kEN0. 

Proof. Consider  a useful partition of  unity. Choose ~p E C~(R N) with ~p(2, r/)-- I in 

[(2, q)[<�89 ~P0-, r/)=0 if [(2, q)[~>l. Then set 

~0-,  r/) = ~p(2-k(2, q))--~p(2-k+~(2, r/)), k />  1. (4.7) 

oo N These functions q~ E Cr ( R )  are uniformly bounded in S~ N) and give a partition of 

unity as 

~ p §  c~= 1. 
k~>l 

They do not however  satisfy the lacunary condition (4.3), so we modify them slightly to 

correct this. Set Qk=cpk--Tcpk where 

= (2~) -1 ( e i(l -s)(2-;~')Q(s) fp(~' ,  r]) d)~' ds (4.8) T~(Z, ~) 
) 

and 0 E C~(R) satisfies O(t)= 1 in t<  �89 Q(t)=0 in t>~. Since T(I)=0, the Ok also give a 

partition of  unity. Moreover  (see [4]), T is bounded from S ~ into S -~, so the 0k are 

bounded in S0ac(RN). 

Now,  suppose that a E S~215 N) is such that the Fourier transform 

fl(x, y, s, tl) = f eill-S)~a(x, y, 2, r/) d2 = 0 if s < 2 I , (4.9) 
3 

strengthening (4.3) which demands that it be zero in s<0.  The Fourier transform o f  the 

product  
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ak(x, y, 2, r]) = Ok()., ~/) a(x, y, )., ~/) (4.10) 

is the convolution of  the two Fourier  transforms, so has support  in s>0,  since the 

Fourier transform of  0, in the sense of  (4.9), also has support  in s>~. Thus, a k E S~ is a 

bounded sequence.  The corresponding kernels 

flt,(x, y, s, w) = f e i(1 -s)'~+iw~lak(x, y, 2, ~1) d)- dq 

satisfy, for each k>~l and for each p > 0  and compactum K ~ Z :  

I/k[ = f w ) d s d w  <~Cp2 -pk (4.11) 

for some constant Cp. To see this note that from the definition of flk 

"I k = -(2~)Nak(x, y, O, O) = (2yr)U a(x, y, O, O)(Tcpk)(0, O) 

since ~k(0, 0)----'0. If  the action of  T is written as convolution then 

T%(O, O) = f f ( - ) - ,  O) %()-, O) d). 

where f ,  coming from the Fourier  transform of 0, is singular only at 0 and is rapidly 

decreasing as [)-[--> ~ .  Recall the definition of  the ~k, which shown them to be supported 

in 2k-2~<]()-, r/)[~<2 k. Now,  changing variable to 2-k)- immediately gives (4.11). 

Let  us consider  the partition of  unity q~k, constructed above,  more carefully. 

LEMMA 4.12. For each p E R, there exists a constant  Cp such that 

I/Y~D~ T~(2~()-, r/))[ ~< Cp2-kP(l+[()., r/)[) -p, Ifll ~<P. 

Proof. Inserting the change of  variables (2, r/)~-~2k()-, r/), 2'~--~2k)- ', s~--~(l-2-kr) in 

formula (4.8) for Tcpk gives 

T%(2k()-, r/)) = (2Jr) -I fe-ir' - 'O(1-2-kr) ().', r/) d).' dr 

where we have used the fact that 

~(2k(2, ~/)) = r q) = q~()-, ~/)-q~(�89 q)). 

If we denote by ~(r, r/) the Fourier  transform of q~(2, q) with respect to 2 then c,b is rapidly 

decreasing and 
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I/T~ D~v Tq~(2k(2, r/)) t = (2at)-' frJe-'%(1-2-kr)D~(-r, rl) dr 

and since the integral is supported in r~>12 k the estimates (4.13) follow by integration by 

parts, proving the lemma. 

The estimates in (4.13) are clearly invariant under Fourier transformation, in 

particular they show that the correction terms Tq~k make only a trivial change to the 

standard proof (see for example [3]) of the boundedness of pseudodifferential operators 

on Hflder spaces. Thus, to prove Theorem 4.4, suppose first that u E B'~(Z). Modifying 

A E LOb(Z) by an element of Lff=(Z) we can assume (4.9) holds. The error committed in 

doing this is negligible because of (4.4). Now, 

Au =- E Aku (mod ~/L=(Z)) 
k~l  

where each A~ E Lb-=(Z) has symbol ak, as in (4.10). Using (4.13) we see that 

Iaku(x'Y)l<-lu(O'O) f flk(x'y's' w)dsdw[+C f [flk(x'y's' w)(Isl+lwl)aldsdw 

C a 2-ka+2-NkfJ Ifl'k(X, y, 2k(S, W))[ (Isl § Iwl)ads dw 

C2 -ka 

where we have also used the fact that 

ilk(x, y, s, w) = 2-ukfl'k(X, y, 2k(S, w)) 

with/3~, a bounded sequence in the Schwartz space o% from (4.13) and (4.7). Similarly 

(3.9) also holds for Ak u so by applying Lemma 3.10, Au E BlOc(Z), and 

A: B~(Z) I> Bl~(Z). (4.14) 

Similarly if u E Blc ' a(Z) then for A E L~ the commutators [xD x, A], [D~.j, A] are in 

L~ (see [4]) so 

xD x u = A (xD x u) +[ xD x, A] u ~ Bloc(Z ) 

and similarly for DyrU. A simple inductive argument completes the proof of Theorem 

4.6. 
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Rk, at~_._>Rk+m, c t (~  COROLLARY 4.15. I f  A E Lbm(Z), mEN, then A : - c  . . . .  c ,~,. 

Proof. (xDyDyA: k,a __~ k,~ Br (Z) Blor (Z), Vlal+j<~m. 

COROLLARY 4.16. I f  A E L~m(z) then A: xrBr a(Z)__>xrB~+m, "(Z) for all r>0, m E N. 

Proof. If uEB*c'"(Z) we can use (4.2) to write 

A(xru) = xrnu, (4.17) 

where B ELbm(Z) is of the form (4.2) with amplitude b satisfying 

f ei(l-t'b(x, y,2, rl)d2 = tr f ei(I-t)~a(x, y,2, rl)d2, 

clearly in S~ac(Z• Thus Corollary 4.15 applies. 

Returning now to the proof of the isomorphism (4.1), we note first that Agq-X is 

bounded: 

Ag+~.. ~rAk+2'a(Q)----~ ~rAk'a(~2), Vr>0 ,  kEN. (4.18) 

Indeed, as noted in the proof of Lemma 3.16 above, in any singular coordinate chart 

(v, w, t) as discussed in Section 3, we have 

! 
xO x = 1 1 r ~vDv-TW Dw,-tDt, X2Dyr = D w. XDy2,-I = Dr (4.19) 

Making these substitutions into (2.30) it is clear that Ag is totally characteristic and 

uniformly bounded in such singular coordinates, which implies (4.18) directly from the 

definition of the A k'a. 

In view of (3.18), we have the following result proved by Cheng and Yau [1]: 

PROPOSITION 4.21. Ag+x: Ak+2'a(ff2)----~Ak'a(ff2) is an isomorphism for all k>0, 

0 < a < l .  

Now, for any s ER, it follows from the decomposition (2.30) for Ag that 

where 

[Ag, q~S] = s~SQs, (4.22) 

Qs: Ak+2' a(if2) ---) A k' a( if2 ) (4.23) 

is a differential operator of order 1 wich is C ~ and totally characteristic in singular 
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coordinates, and is bounded independently of s for s small. Thus, for s sufficiently 

small, 

~-S(Ag_k;~) q~s __. (Ag+x)_ksQs:  Ak+2,a(Q).___~ Ak, a ( ~ )  (4.24) 

is also an isomorphism. In particular, if (Ag+g)u E q~rAk'~(Q)for r>0, then u ~ 0  on 

Now the isomorphism (4.1) follows easily from this result, together with the 

following proposition: 

PROPOSITION 4.25. I f  u E C~ vanishes on Of~, and 

(Ag+g) u = f 6  ~ A  k' ~(~) (4.26) 

for z>0, O<s<12(n+'V/ n2 +4x), then u E ~SAk+2'~(Q). 

Proof. First we use the standard maximum principle to show that u E q~SL~(f~). By 

direct computation, in some neighborhood N of aft ,  

Ag(-~)s=(-qo)S(-s2+sn-s2 i repro), (4.27) 

where r is as in (2.4). Thus, if we choose A large enough, 

(Ae+z) (u-a(-cp) ~) = f+A(s2 - sn -x )  (-cp)S-as 2 r(-~)s+l < 0 
1 -rq~ 

in N, provided sZ--sn--;r Then u-A(-cp)s<.O, since otherwise the difference has a 

positive maximum in the interior, which is a contradiction. Similarly it follows that u is 

bounded below by a multiple of (-q~)S. 

As is clear from Lemma 3.16, Ag is elliptic as an element of L 2 in the singular 

coordinates (v, w, t), uniformly in p. Thus it has a parametrix B E Lb 2, with 

So we can write u locally as 

B(Ag+;C)-Id = R E Lb =. (4.28) 

u = B f - R u .  

Now Corollary 4.16 shows that Bf6 sAk+2.atc,~ q~'~loc ~--J, and Lemma 4.4 gives 
s k+2,a Ru E cp Ajo c (Q). By the uniformity of Ag with respect to p, these norms are globally 

bounded. This proves Proposition 4.25. 
12-812904 Acta mathematica 148. Imprim6 le 31 ao0t 1982 
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Remark  4.29. The isomorphism (4.1) can also be proved by applying the Riesz 

representation theorem to the continuous linear functional 

v ff(x, y) O(x, y) dg (4.30) 

on the Hilbert space H obtained by closing Cc(f2) with respect to the first Sobolev 

norm of the metric g, i.e. 

II.tg = J IdulZ~ + xlulZ dg, 

The fact that the solution so obtained is actually in q~rAk+2'~(f2) can be proved by 

methods similar to those used in this section. 

5. Commutation 

In this section we will improve the regularity result of Section 4 by commuting 

operators in Diffb(~) through Ag. The non-degenerate Cauchy-Riemann structure on 

the boundary 8f2 induces a filtration on Diffb ((~), the properties of which are closely 

related to the nilpotency of the Heisenberg group, which is in turn related to the 

decomposition (2.30) of the Laplacian. 

It was noted in Section 2 above that a choice of defining function q~ fixes a contact 

form 

0 = t*(iaq~), t: Of2 ~ f2. 

The maximal complex subspace H = O •  carries a formally integrable complex 

structure J; if H l ' ~174  is the i-eigenspace of J the integrability conditon can be 

written 

V, WE C=(H I'~ ~ [V, W] E C=(HI'~ (5.1) 

The choice of defining function also fixes a vector field TE C~176 defined in (2.15). 

T can be characterized intrinsically in M=Of2 by 

O(T) = 1, T I d O  = O. (5.2) 

If (x, y) are any normal coordinates near Of 2, we can use them to extend vector fields 

unambiguously from the boundary to (~; if Z~ . . . . .  Z._~ is a frame for H j'~ this gives a 

local basis xDx, T, Z1 . . . . .  Z . - i ,  Zi . . . . .  2._ 1 for vector fields on ~ tangent to 892. 
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Any totally characteristic differential operator P E Diff,(f2) can be written in the 

form 

P = E pk, j,a(x, y) (XDx)kZ~',~"T J (5.3) 
k +j+~Sl~m 

where fl=(fl', fl") ranges over (2n-2)-multiindices. We now define a double filtration of 

Diff~ which reflects the number of factors, T, Z i, and ,~k appearing in (5.3). If (m, w, s) 

is a triple of nonnegative integers we define Diff~'w'*(f2)cDiff~'((2) as the space of 

operators P which, in a covering of 3f2 by normal coordinate systems, have the form 

(5.3) with each term satisfying 

lfll+2j-2r<~ w, lfll-2r<~s, (5.4) 

where r is the greatest integer such that x-rpk,j ,  fl is C = up to x=0.  

This definition depends on the choice of defining function cp, but once a defining 

function is given, it is independent of other choices; in particular, it is obviously 

independent of the choice of normal coordinates or frame Z. As a consequence of the 

following lemma, the definition is also independent of the order of factors appearing in 

(5.3), since rearranging the vector fields can only introduce additional terms of lower 

weight. 

LEMMA 5.5. [Zj, Zk], [Zj,,Y,k], [T, Zj], [T,Z,k] E Diff~'Ll((2);[Zj,,Y,k] E Diff~'2"(~2). 

Proof. Observe that Z i and ,~k have weights (1, 1), while T has weights (2,0). In 

view of the integrability condition (5.1), [Zj., Zk] has weights (1, 1), as does [,~/, Zk]. On 

the other hand, [Zj-, Zk] may involve a term T, with weights (2, 0), and terms in Zj- and 

Zk, with weights (1, 1). Observe from (5.2) that 

0 = dO(T, Z)  = TO(Z)-Zj O(T)-O([T, Zi]) = -O([T, Zj]) 

so [T, Zj] has weights (l, 1), again satisfying the statement; the same applies to [T, Z,k]. 

We also remark in passing that the definition does not really depend on the fact 

that the vector fields Zj, Zk, T are extended normally from the boundary, since any 

other extension differs from this one by a vector field vanishing on a•, which does not 

affect the inequalites (5.4). 

The following proposition allows us to prove our regularity result by induction on 

the weights of operators in Diffb (~)). 
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PROPOSITION 5.6. I f  P 1 " ml 'w| ' s l  " m2'w2's~ E D l f f  b , P2 E D l f f  b -, t h e n  

~ .  t.l.rn I + m  2 -  I, w I +wg,  s I +s~--  1 __ ~ .  ox.m I +m~--  1, w I +w2- -2 ,  s I + s  2 
[P1,P2] E D I I I  b - - -I- L I I I I  b - 

Proof. From L e m m a  5.5, the result is true for the vector  fields T, Zj-, Zk. Now it 

suffices to consider  the case r=0  in (5.4), since a factor  of x r effectively commutes  

through the expansion (5.3) without changing the weights. For  any pair of  operators 

P~,P2, writing them in the form (5.3) reduces the computat ion to the case of  mono- 

mials 

P1 = Z~'Z~"Tk, Pz = Z~'2~"TJ. 

The commuta tor  can be writ ten as a sum of  terms like Z~'2~"[ T ~ ,Z  ~'] 2~~ J, each 

involving a commuta tor  of  two vector  fields. By Lem m a  5.5, each term has weight at 

most (w~ +w 2, s I +s  2-1)  or (wj +w 2 -2 ,  sj +s2). 

Now we can use these spaces to define subspaces of the HOlder spaces Ak'~(f2). 

Set 

A k, ~;s(f~) = { u E A k' ~(f2): Pu E A ~ ~ whenever  P E Diff,' s' ~}. (5.7) 

This is a Banach space, and we have the obvious mapping properties: 

p : x t A k ,  a;s_..> x t A k - m  . . . .  -w i fPEDif f~ '  . . . .  with m<~k, w<.s.  (5.8) 

With these preliminaries we can now improve the regularity result, Proposit ion 

4.25, for the Laplacian Ag. Using the defining function q~ to construct  the spaces 

Diff, '  . . . .  (~) ,  we have from (2.27) 

A g  E Diff2'~176 (5.9) 

PROPOSITION 5.10. Suppose u E C~ vanishes on af2, and 

(Ag+x) u = f E  cprA .... ;s(ff2), 

where x>0 ,  l < r < � 8 9  and s<~2m. Then u E q~rAm+2'a;s(~'2). 

Proof. For  s=0 ,  the conclusion reduces to Proposit ion 4 .25,  So we  proceed by 

induction over  s and for given m we suppose that ~rAm+2'a;s-!(f2). We want to show 

that Qu E cffA~ for all Q E Diff~'+2's'P; it is sufficient to show that 

QuEcprA 2'a for all QEDiff~ n's'p (5.11) 
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since Q E Diff~ '+2' ~'P can be written E Pi QJ with Pj. E Diff 2' 0.0 and Qj C Diff," ~'p, using the 

fact that s<~2m. We will show (5.11) by induction on p. Naturally, the method is to 

commute through Ag operators in Diff~ ''~'p. We start with the case p=0,  and take 

QE Diff~ ''s'~ Then, by (5.9) and Proposition 5.6, 

[Q, A e] E Diff~'+l'~-l'~ 

so by the inductive hypothesis on s, 

( A g + ~ )  (Qu) = Qf+[A e, Q] u C q0rA ~ (5.12) 

To apply Propostion 4.25, we need only show that Qu vanishes on OQ. Observe that Q 

can be written Q = E ~. Qj where Vs- are vector fields tangent to Off~ and Qj. E Diff,'- 1.s- 1.0. 

By the inductive hypothesis, Qju C ~rAZ"~. Now in any singular coordinates (v, w, t) it is 

easy to see that Vj-maps cprAl'~(Q), into q~r-lA~ So Proposition 4.23 gives (5.11) 

for p=0.  

Now suppose p>0,  and Q E Diff~"s'P(~). Again applying Proposition 5.6, 

[Q, Ag] E Diff'~+l,~-l,P(~)+Diff'b"+~,s,P-J(Q). 

We therefore deduce (5.12), by using the inductive hypothesis on s and that on p. As 

before, Qu E qgr-lA~ and so we have (5.11) for all p; this proves the proposition. 

6. Complex Monge-Amp6re operator 

The results of the previous sections concerning the Laplace-Beltrami operator can 

be applied to the complex Monge-Amp6re operator 

M(u) = Y(u) e -~n+l)u u (6.1) 

where 

Y(u) = det (gjk- + ujk-) det (gjk-)-1 (6.2) 

to give corresponding regularity results for the solution to (1.4). The linearization of M 

about the funciton u=0 is just 

M'(0) = - ( A g + n +  1). (6.3) 

In [1] Cheng and Yau showed that there exists a unique solution u E N k A k' a(Q)to 
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(1.4), (1.6), and that if F in (1.4) vanishes on 0 ~ ,  then so does u. In this section we 

improve their result to show that i f F  vanishes to order  r on af2, 0 < r < n +  I, then in fact 

U E ~ qgrAk'a;s(Q). 
k,s 

We shall say that a nonlinear differential operator  Y on (2 is totally characteristic if 

it can be written in the form 

Y(u) = F(x, y, u, Pj u . . . . .  Pp u) (6.4) 

where the Pj are totally characteristic linear differential operators with C = coefficients 

and F is a C = function. Given a strictly plurisubharmonic defining function q~ for ~ ,  the 

weights of the P~. are defined as in Section 5; we say Y has weights (w, s) if there is a 

representat ion (6.4) for  Y in which all the Pj E Diff,, ~'"'''~((2), provided the coefficients of  
I 

the Pj are C = when expressed in local coordinates (v, y ) = ( x  2, y). The introduction of  v 

is simply to make the vector  field x Zj, which is of weight zero, have C ~ coefficients. 

THEOREM 6.5. I f  cp is any defining function for Q such that g = - l o g  ( - ~ )  is strictly 

plurisubharmonic, then the operator Y(u), given by (6.2), is totally characteristic with 

order 2 and weights (0, 0). 

Proof. The operator  Y can be written in the form: 

Y(u) = 1 -  Ag u+ G2(x, y ; ujs +... + Gn(X, y ; uj~) (6.6) 

where the Gk are C ~ functions of x, y and homogeneous  polynomials in the derivatives 

u~k- with respect  to a given choice of  complex coordinates in C n. The weights of  the Gk 

depend on the number  of  factors Z~, '~k, T, when uj~ is written in the form (5.3), and the 

order  of  vanishing of  the coefficients at x=0.  Thus in computing the weights of  Y it 

suffices to f reeze the coefficients Gk at some boundary point y=37 and consider only the 

x-dependence.  

If  we choose complex coordinates z~, ..., z n centered at (0, 37)E ~f2 such that 

dx = 2Re(dzJ), qjk -= 6jk- at (0,37) (6.7) 

then (2.2) shows that, as a function of  x, with y = y  fixed, 

gli =x-Z+O(x-l) ,  gji=Oj~x-J+O(1) if j/c#: l i .  (6.8) 
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Now, recalling from (1.5) that 

det (gjk-) -I = eFx "+l (6.9) 

we proceed to consider the various terms in (6.6). Of course the first two terms are 

taken care of by (5.9). 

The expansion law for determinants,  applied to the second factor in (6.2), shows 

that the coefficient of 

in Gm is a product of the form 

(6.10) 

C(x, y )x  "+~ .gj,,.,~,,,+, .....gj,,s (6.11) 

where the indices (/'5 . . . . .  J',,), (/,,+i . . . . .  j , )  and (s . . . . .  1~,,), (tS,,+~ . . . . .  s are partitions of  

(I . . . . .  n). Now observe from (6.8) that the product (6.11) is of  order x "+j unless 

1 r (/'l . . . . .  Jr,) and I r (/~1 . . . . .  /<,,), in which case it is of order x '~. 

On the other hand, the definition (2.15) for Tand  W shows that, at the base point, 

a~ = -~(W+iT)  = iOx-~iT , Oi = -~_(W-iT) = iDx+~iT, (6.12) 

and since a j E H  at (0,y) for j > l ,  we can take Zi=~j, j = 2  . . . . .  n at (0,37). Since any 

vector field which vanishes at x=0 has weights (0,0), this shows that 
3 

x2alai,  x~a~Ok -, x2O~ai and xajak-, where j , / ( + l ,  | ,  are all totally characteristic with 

weights (0, 0). Combining this with the observation above on the vanishing order of 

(6.11), the theorem is proved. 

In order to prove an analogue of Proposition 4.25 for the Monge-Amp~re operator 

M, we will make use of  the folowing lemma. 

LEMMA 6.13. Suppose uEAk'C'(g2) vanishes on ~f2. Then every singular coordi- 

nate chart Vp, all totally characteristic derivatives o f  u o f  order ~ k  vanish on ~f2, 

uniformly in p. 

Proof. Recall that uEAk'~(f2) means that u E C  ~'" in logarithmic coordinates 

(s, w, t)=(logo, w, t). Now suppose uEA~'~(~) and u--,O on a~ .  If in logarithmic 

singular coordinates some derivative Du does not approach zero as s----~- ~ ,  the HOlder 

condition for Du implies the existence of 6, ~>0, and a sequence of points p ,  with 

s ( p . ) ~ - ~  such that, say, Du>e in Ba(p,). Integrating, we obtain a contradiction to 

the fact that u---~0 as s---~-~. Induction on k completes the proof. 
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PROPOSITION 6.14. Suppose F E C = ( ~ )  vanishes to order r on ~s 0 < r < n + l ,  

and u E A ~ is the unique solution to 

M(u) = Y(u) e -C"+l)" = e v. (6.15) 

Then u E I'lk qgrAk'a(~d). 

Proof. Choose tgEC=(R) with •(x)=l for x~<~, Q(x)=O for x~>l, and set ~n(x)= 

Q(x/R); then with x=-q0, tgR is globally defined on ~ with support in { - ~ < R } .  If we set 

uR=(1-QR) U, tY=~R U, and g~=g+uR,we can write (6.15) as 

det (g~jk + V~) d e t  (gjl~)-I e-<"+l)<u" +~") = e F. (6.16) 

Linearizing this about v=0, we obtain: 

-det(g~-)det(gj~)-le-("+l)"(Ac~+n+l)= --(AeR+n+ 1)+QR (6.17) 

where QR=0 in {-~v~<R). Therefore, we can write (6.16) as 

- (A~+n+I) tP+G~(vR)+. . .+G~(vR)  = eV--M(un)--QR(v R) (6.18) 

where the right-hand "side is in ~vrAk'~(Q) for all k~>0, and the G~ are nonlinear 

differential operators which are totally characteristic with weights (0, 0) and are at least 

quadratic in tP. We can factor each G~(v R) as C~(v R) PjR(vn), where the P~j are linear 

and the Ci g are (possibly) nonlinear. Freezing the coefficients C~(vR), we see that v R 

satisfies the linear differential equation 

( -  Ag,-  (n + 1)+C~(v R) P~z +... + Cn~(v R) pR) V R E q0~A k' ~(Q). (6.19) 

Now observe that Lemma 6.13 implies that VR=ORU approaches zero in all 

Ak'~(f2) as R--->0, and that similarly UR=(1--OR)U~U; in particular u R is uniformly 

bounded in all Ak'a(~). This means first of all that the symbol of Ag, and its inverse 

are uniformly bounded in all A~'~(f2). The proofs of Theorem 4.6 and Corollaries 4.15 

and 4.16 show that the norm of the parametrix B of (Ag+n+ 1) on the spaces ~rAk' ~(f2) 

depends only on the estimates 

I(xD yD~ D~, ~) b(x, y, )~, tl) I <<. C(1 + 12, r/I) -2-ff[ 

on its symbol; a similar remark applies to the residual term Ru. Combining these 

observations with (4.1), we see that 
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(AgR+n+ 1): ~rAk+2'a(~"2)---~ q~rAk'a(Q) (6.20) 

is an isomorphism with uniformly bounded inverse as R--*0. Moreover, the coefficients 

of C~ and P~j in (6.19) are also uniformly bounded in R; thus since vR--~O the operator 

norm of the perturbation terms in (6.19) can be made arbitrarily small by choosing R 

small. For some R>0,  therefore, the operator (6.19) is invertible on q~rAk+2'a(f~). This 

proves the proposition. 

THEOREM 6 . 2 1 . ' I f  FEC~176 vanishes to order r on a•, l < r < n + l ,  and 

u 6A~ is the unique solution to (6.15), then u 6  t'lk. ~ ~rAk'a;*(Q). 

Proof. If we write 

R(u) = M ( u ) -  l+ (Ae+n+  1) u (6.22) 

then from (6.6) it is clear that R is a nonlinear totally characteristic operator of weights 

(0, 0) with each term at least quadratic in u. Thus, for every k, r, a, s 

R: q0rA k+2, a; s(~"2) + ~2rAk '  a; s(~--~). (6.23) 

For r~>l, qjrAk'~;s(f2)cAk'~;*+l(~), SO from (6.23), 

R: ~Ak+Z'~;s(g2)---~ q~rA~'a;~+J(f~) (6.24) 

provided r>~ I. 

Now for any k, Proposition 6.14 shows that uEq~rAk'~(g2). From (6.22) and the 

hypothesis, 

- ( A g + n +  1) u = e F -  1 - R ( u )  6 q)r l~lr a; I(Q). (6.25) 

Since Cheng and Yau showed that u vanishes on ag2, we can apply Proposition 5.10 to 

conclude that u 6 q~Ak+Z'~;l(Q). Then (6.24) allows us to complete the proof by induc- 

tion on s. 

7. Conormal distributions 

If Z=R+>(R N-I is the standard half-space, we define the space of conormal, or 

almost regular, distributions M(Z)c@'(Z) as in Section 3 by 

u 6 sr iff Bs 6 R such that Pu 6 Hl~oc(Z), all P 6 Diff b (Z), (7.1) 
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where Hs(z)  is the usual Sobolev space on Z. It is shown in [4] that ~r is just the 

space of extendible Lagrangian distributions associated to the conormal bundle N*OZ. 

In order to obtain an asymptotic expansion for the solution to (1.4) near the 

boundary of 92, we shall construct a filtration of ~r that behaves well under 

multiplication. We define 

sgL ~ = {u E M(Z): Pu E L~(Z)  

Then, for any s E R, define 

for all PE Diffb(Z)}. (7.2) 

(s) /d R As usual, we setMioc(Z)={ :Q E ~d(s~(z) whenever 9 E C~(Z)). 
oq(s). We note first that all conormal distributions fall into some ~Ioc- 

LEMMA 7.4. M(Z)= U~e ~(s)~m R ~ J o c  ~ ' ~ ! "  

Proof. If u E M(Z), the definition (7.1) shows that 

D(x,y)(X u ) E n l o c ( Z )  f o r  al l  lal ~<p. 

This implies xPu C H~o+f(Z). The Sobolev embedding theorem then shows that xPu is 

locally bounded if we choose p large enough. A similar argument shows that all totally 

characteristic derivatives of xPu are likewise locally bounded. 

From definition (7.4), we have the characterization 

~U~(Z) = xS ~(~ (7.5) 

and the mapping properties 

P: M(s)(z)---~ sg(s)(z), for any PEDiffb(Z) (7.6) 

X: ~r M(s-I)(Z)~ for any XE C~(TZ). (7.6) 

We also have the inclusions 

sg(~)(Z) ~ C ( Z )  for all 0 ~< r < s, 

which follows from (7.7) and the fact that M(')(Z)cC~ for e>0. 

Since elements of M(Z) are actually C ~ functions on Z, they can be multiplied. 

The filtration { d  ~)} turns M(Z) into a filtered algebra, by virtue of the following lemma: 

s~(s~(Z) = N xr.~L"(Z). (7.3) 
r ( S  
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LEMMA 7.8. l f  u E Mt~)(Z), v E M(t~(Z), then uv E ,ffl~+')(Z). 

Proof. First assume u, v E ~r176 Then 

(xD~)kD~ (uv) = E Cp,~((xD~)PD~) ' u) ((xD~)qD~ v). 
p + q = k  

fl + ;/=a 

Each term in this sum is bounded by hypothesis. Now in general, write 

u=xS-~ 1, v=xt -~ ,  with q, ~ E ~/L ~. Then Igv=xS+t-2e?]~,, which shows uv E M(s+t)(Z), 

The most important examples of functions in ~r162 are xSa and x'~a (log x) p, where 

a E C=(Z). We shall say u E ~d(Z) is graded if it admits an asymptotic expansion in 

functions of this form; more particularly, u E ~r is graded if there exist real numbers 

sj--.oo asj--~oo, integers M#, j>~l, and functions ~j,p E C=(Z),such that 

u -  E ~ ~PJ, p x~ (log x) p E ~(SN)(Z). (7.9) 
j<~N p =  1 

We shall be interested primarily in certain subspaces of the space of graded distribu- 

tions. We define sgp, q(Z) as the space of graded conormal distributions having an 

expansion (7.9) in which the sj are consecutive integers, and the M, are dominated as 

follows 

Mj<~min(1,s j_p+ l)4 s F P  
q 

In other words, the first occurrence of logx is with x p, and the power of logx increases 

by 1 only after q steps. We also set ~p~)q(Z)= J s ) ( z ) ,  N ~r q(Z). It is easy to see from (7.6) 

and (7.8) that 

P: sC~p~,)q(Z) ~ Jp~)q(Z), for any P E Diffb(Z) (7.10) 

~~ is closed under multiplication. (7.1 l) 

On a strictly pseudoconvex domain g2cC' ,  we define ~r as the space of 

functions on f2 which restrict ~1~oc in any local coordinates, and similarly for 

,s~(s)(~'~), ~p,q(~'~). It is obvious from the definition of the spaces Ak'a:s(f2) that 

n cprAk'~;~(f~) c ~r 
k,~ (7.12) 
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Using the expressions (6.1), (6.6) for the complex Monge-Amp6re operator M, it 

follows from (7.10) and (7.11) that 

M: M~p~ jp0jp(~) for all p/> 1. (7.13) 

8. Asymptotic expansions 

In this section we show that the solution u to the complex Monge-Amp6re equation 

is graded. We will construct the expansion (7.9) explicitly. The method relies on the 

fact that, due to the decomposition (2.30) for the Laplace-Beltrami operator, on 

M~s)/M <s+l) the operator (Ag+n+l)  reduces to 

[(Ag+n+ l)u]s = E[u]s (8.1) 

where E is the totally characteristic ordinary differential operator 

E = l(xDx)+n+ 1 = (xDx)Z+inxDx+n+ 1. (8.2) 

As mentioned in the introduction, the symbol isomorphism (I. 15) for conormal distri- 

butions defines E invariantly as an operator on JS)(N+ aQ)/J~+l)(N+ aQ). Similarly, 

from (6.1) and (6.4) the Monge-Amp6re operator M reduces to 

[M(u)- 1]s = E[u]s, provided s I> 1. (8.3) 

Observe that the kernel of E on C~(R+) is spanned by the functions x -I and x ~n+l). 

Since we will always be working in M ~s) for s>0, only the latter will appear. Thus if 

fl E C~(~), a solution r/E j s ) ( ~ )  of 

[E(r/)].~ = [xS/3]~ 

is given in normal coordinates by 

-x~/3 if s :# n+ 1, (8.4) 
q = ( s - n - l ) ( s + l ) '  

while for s = n + l  we must take 

__ X n + 113 

r / -  n+2 l~ (8.5) 

where 7E C~176 is arbitrary. In general, if/3 is a finite sum of terms of the form 
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a(y)x ~ (logx) p, then E(r/)=fl has a solution of the same form. Even more generally, we 

have, 

LEMMA 8.6. If flE~l~s)(z), s~O, then 

has a solution ~1 E sgr 

E(~)  = 

Proof. We set 

[ + ( x - *  fo x fl(w,y) dw+xn+'('w-n-zfl(w,y) dw) 
rl(x' Y) = x ~Xx 

(8.7) 

i f s < ~ n + l  

(8.8) 

i f s > n + l  

Then r/solves (8.7), as can be verified by direct calculation. Moreover, for any t<s, we 

can write fl(x, y)=xta(x, y) for some a E ~/L=(Z). Making this substitution in (8.8), it 

follows easily that for any q with t<q<s, x-qq is bounded with all its totally character- 

istic derivatives, and thus r/E J~)(Z). 

Then 

COROLLARY 8.9. Suppose ~/1, ~]2 E 6~(s)(~:~), S~0, and 

[E(o 1)]s = [E(r]Z)]s- (8.10) 

[t]l]s=[~]2]s if s<<-n or s>n+l; (8.11) 

[r/1]s = [r/2+v(--q~)n+l]s for some function vEC~((2) ifn<s<~n+l. (8.12) 

Proof. Since E(~h-r/z)E~U+l)((2), Lemma (8.6) shows that there exists 

~E ~/~+1)(~) with E(~)=E(~/I-~/2). Then ~/1-~/2-~ is in the kernel of E, which implies 

that there exists some 7 E C=((2) such that 

~h-r /2-~ = ~,(-~v)'+J. 

This immediately implies (8.11), (8.12). 

In [2], Fefferman showed how to obtain a smooth defining function q0 o for f~ such 

that J(-Cpo)-I  vanishes to order n+  1 on aft2. For  completeness, we give an alternate 

construction of  ~Vo. 
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THEOREM 8.13 (Fefferman, [2]). There exists a smooth defining function q~ofor g2 

such that g=- log ( -q0o)  is strictly plurisubharmonic, and 

det (gjs e -("+ t)e = 1 + O(q0g + l). (8.14) 

Proof. Let  9 be any defining function such that g=  - l o g  ( - 9 )  is strictly plurisubhar- 

monic. First we find a function r/E C=(~) such that 

det(gj~+rli;)e-("+l)(g+~)---~ 1 on 0f2. (8.15) 

Since gjf__,oo on 0f2, for any such q, 

det(g~+rlj~)det(gj~)-I--~ I on 0f2, 

and so the choice r / = - F / ( n +  1), where F is as in (1.5), gives (8.15). Now cp '= -  e -(e+") is 

a smooth defining function for g2; modifying co' away from a neighborhood of 092 we 

may assume that - l o g ( - q ) ' )  is strictly plurisubharmonic. 

Now suppose that by induction we have a smooth defining funciton q), such that 

g = - l o g ( - ~ )  is strictly plurisubharmonic and satisfies 

det (gjl~) e-("+ I)g = 1 +(-q~)'fl (8.16) 

with fl C C=((2) and l<~s<-n. If  we define r/as in (8.4), then r/is globally defined and C = 

on (2, and (8.3) shows that 

det (gjk-+r//k) -j e-("+l)~g+q ) = l+O(cp'+l). (8.17) 

Again modifying q~'=-e -(g+") away from 0f2, we may assume - l o g ( - q < )  is strictly 

plurisubharmonic, thus completing the induction. 

With q~o as in Theorem 8.13, Theorem 6.21 guarantees that the solution u to (1.4), 

(1.6) is in M("§ We are now in a position to derive our principal result: 

THEOREM 8.18. Let  q~o be as in Theorem 8.13. Then the solution 

~(~+~) :~" Specifically, there exist functions u E M(n+l)((2) to (1.4), (1.6) is in ~,+ j , ,+ l t~ ) .  

ui, u E C=(~) such that for  all N E N ,  

N 

u ' Z  Z uJ, p cPg+J(l~ ))pEM(N+"+')(~)" 
j=l ~[.+/~ (8.19) 
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Proof. We work in normal coordinates near the boundary; it is clear that the 

coefficient functions in (8.19) can be extended to all of ~ .  

Directly from (8.3), u satisfies 

[ E ( / / ) ] n +  I = [e F-  1 ] n + l .  

If we define 

e F -  1 
r / -  - -  logx E ~("+J~(~), 

n+2 

then [E(r/)]~+,= [e r -  1]n+,, and so Corollary 8.9 shows that there exists some 7 r C~(~) 

such that 

Thus the result holds for N = I .  Moreover, if we set um=rl+),x "+', then (7.13) shows 

that M(um)-e F E ..,(,+2) ~0~ "5C/" n + | ,  n +  1 \ ~ I  �9 

Now assume that by induction we have u~ E ~g("§ 1 .. . . .  N - 1 ,  with 

u -  E uoE ~r (8.20) 
j<.N- 1 

~. ) -Ft''~(N+n) t'r (8.21) M ~ Uf/-) --e '~7,.3.~n+l,n+ll,~ ). 
~ N -  1 

Setting v=E uu), rl=u-uE ~r (6.6) gives 

en=M(u)=M(v+~)=(1-Ag(v+tl)+G2(v+rl)+...+G,(v+tl))e-("+m~ (8.22) 

Now observe that, since oE~n+~)(~), each of the nonlinear terms Gj satisfies 

Ofiv+tl)=Gfio) + ~(N+~+J~(~). Therefore, we can write (8.22) as 

e F = M(o)-E(r])+s~l(N+n+t}(~2). (8.23) 

If we take U(N ) E S4(N+~(~2) to be a graded solution to 

[E(U<N,)]N+, = [M(v)--eFIN+~, 

then we have (8.20) with N - 1  replaced by N; and again (7.13) shows that (8.21) also 

holds for N. This completes the induction. 

The expansion (8.19) can easily be converted to the form (1.7) given in the 
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introduction by taking ~pp to be a function on ~2 which has uj.p, j>~l, as its Taylor  

coefficients. 

We have a similar result  for  solutions to the linearized problem. The proof  is 

similar but easier,  and is omit ted here.  

THEOREM 8.24. Suppose  x>0 ,  and let m = � 8 9  For f E  q<C=(~), where 

r is an integer such that 0<r<rn ,  let u E ~l<r)((-2) be the unique solution to 

(Agq-X) U = f .  

I f  m is an integer, then u E ~) - sg~+l,~(f2), and there exists a funct ion ~p E C~(f~) such that 

u-q~ log (-qVo) E C~(~) .  

I f  m is not an integer, then there exists  ~ E C ~ ( ~ )  such that 

u-~p(-~Vo)" E c~(~). 

Graham, in [6], has obtained some related results for the special case of  the 

Bergman metric on the ball. 
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