Embedding l_{p}^{m} into l_{1}^{n}

by
WILLIAM B. JOHNSON ${ }^{1}$) and GIDEON SCHECHTMAN ${ }^{1}$)
> Ohio State University Columbus, OH, U.S.A.
Texas A\&M University
College Station, TX, U.S.A
Weizmann Institute of Science
Rehovot, Israel
Ohio State University
Columbus, OH, U.S.A.

1. Introduction

It is by now well-known that for any $1<s<2, L_{1}(0,1)$ contains a subspace which is isometrically isomorphic to l_{s}. This of course implies that for any $m=1,2, \ldots$ and any $\varepsilon>0, l_{s}^{m}$ is $1+\varepsilon$-isomorphic to a subspace of l_{1}^{n} if $n=n(\varepsilon, s, m)$ is sufficiently large. Theorem 1, the result of this paper, states that n can be of order m; i.e., that n can be chosen smaller than $\beta^{-1} m$ for some constant $\beta=\beta(\varepsilon, s)>0$. This complements the theorem of Figiel, Lindenstrauss and Milman [4] (cf. also [2], [3] for a somewhat weaker result) which treated the case $s=2$.

Actually the proof of Theorem 1 yields more than the above-mentioned result. First, it shows for $0<s<2$ and $0<r<s$ with $r \leqslant 1$, that for every $\varepsilon>0, l_{s}^{m}$ is $1+\varepsilon$ isomorphic to a subspace of l_{r}^{n} if $m \leqslant \beta n$, where $\beta=\beta(\varepsilon, s, r)>0$ is a constant independent of n. Secondly, the condition that the range of the isomorphism be l_{r}^{n} can be relaxed. What is needed is that the range be an r-normed space which possesses a basis $\left(e_{i}\right)_{i=1}^{n}$ so that for all scalars $\left(b_{i}\right)_{i=1}^{n}$,

$$
\underset{ \pm}{\operatorname{Av}}\left\|\sum_{i=1}^{n} \pm b_{i} e_{i}\right\| \approx\left(\sum_{i=1}^{n}\left|b_{i}\right|^{r}\right)^{1 / r}
$$

The proof of Theorem 1, like the earlier proof of the $s=2$ case in [4], [2], [3], [5] and [11], is probabilistic in nature. A schematic outline of the usual argument specialized to the case $1<s<2$ and $r=1$ goes like this: For appropriate m and n, one defines a probability space (Ω, P) and a random linear operator or matrix $A=A_{\omega}(\omega \in \Omega)$ from l_{s}^{m}

[^0]into L_{1}^{n} ($=l_{1}^{n}$ with the L_{1}-normalization). It is important that for each $x \in l_{s}^{m},\|A x\|_{1}$ is, on the average, close to $|x|_{s}$, the norm of x in l_{s}^{m}; say,
$$
\left|E\|A x\|_{1}-|x|_{s}\right| \leqslant \varepsilon|x|_{s} .
$$

Now it is a standard fact that for small $\varepsilon>0$, if $\left|\|A x\|_{1}-|x|_{s}\right| \leqslant \varepsilon$ for all x in an ε-net of the unit sphere of l_{s}^{m}, then $\left.\left|\left|A x \|_{1}-|x|_{s}\right| \leqslant 3 \varepsilon\right| x\right|_{s}$ for all $x \in l_{s}^{m}$ (see Lemma 3). Equally standard is the fact that the unit sphere of an m-dimensional normed space contains an ε-net of cardinality at most $\exp \left(2 m \varepsilon^{-1}\right)$ (cf. Lemma 2). Thus, in order to conclude the proof of the embedding theorem, it is sufficient to prove (and this is the main step) a distributional inequality which guarantees that for $x \in l_{s}^{m}$,

$$
P\left[\left|\|A x\|_{1}-E\|A x\|_{1}\right| \geqslant \varepsilon|x|_{s}\right]<\exp \left(-2 \varepsilon^{-1} m\right)
$$

In [2], [3] and [11] the probability space is $\{-1,1\}^{n-m}$ with equal mass assigned to each point, and A_{ω} is defined for $x=\sum_{i=1}^{m} b_{i} e_{i} \in l_{2}^{m}$ and $\omega=\left\{\varepsilon_{i, j}\right\}_{i=1, j=1}^{n, m}$ by

$$
A_{\omega} x=\sum_{i=1}^{n} \sum_{j=1}^{m} \varepsilon_{i, j} b_{j} e_{i}
$$

Notice that the entries in this random matrix are independent. Although we use a more complicated probability space and the random matrix we use does not have independent entries, the approach in [11] which uses a distributional inequality for general martingales also works in the present situation.

For the most part we use standard Banach space theory notation, as may be found in [6]. Since it is convenient for us to use the L_{r}-normalization in the range of the random matrix and the l_{s}-normalization in the domain of the random matrix, we define for

$$
x=\sum_{i=1}^{n} \alpha_{i} e_{i} \in \mathbf{R}^{n}
$$

(where $\left(e_{i}\right)_{i=1}^{n}$ are the unit vectors in \mathbf{R}^{n}) and for $0<p<\infty$,

$$
\begin{gathered}
\|x\|_{p}=n^{-1 / p}\left(\sum_{i=1}^{n}\left|\alpha_{i}\right|^{p}\right)^{1 / p} \\
|x|_{p}=\left(\sum_{i=1}^{n}\left|\alpha_{i}\right|^{p}\right)^{1 / p}
\end{gathered}
$$

$\left(\mathbf{R}^{n},\|\cdot\|_{p}\right)$ is denoted by L_{p}^{n} and $\left(\mathbf{R}^{n}, \mid \cdot \|_{p}\right)$ by l_{p}^{n}.

We also need the "weak l_{p} " norm on \mathbf{R}^{n}, defined for $x=\sum_{i=1}^{n} \alpha_{i} e_{i}$ by

$$
|x|_{p, \infty}=\max _{1 \leqslant i \leqslant n} \alpha_{i}^{*} i^{1 / p},
$$

where $\left(\alpha_{i}^{*}\right)_{i=1}^{n}$ is the decreasing rearrangement of $\left(\mid \alpha_{i}\right)_{i=1}^{n}$. The space $\left(\mathbf{R}^{n},| |_{p, \infty}\right)$ is denoted by $l_{p, \infty}$.

For $0<r \leqslant 1$, an r-norm is a non-negatively valued function, $\|\cdot\|$, on a vector space which is 0 only at 0 and satisfies the axioms $\|\alpha x\|=|\alpha|\|x\|,\|x+y\|^{r} \leqslant\|x\|^{r}+\|y\|^{r}$. The most basic example of an r-norm is, of course $\|\cdot\|_{r}$.

If f is a measurable function on a measure space, f^{*} is used to denote the decreasing rearrangement of $|f|$.

Finally, we would like to thank Gilles Pisier for a discussion which yielded the present version of Theorem 1. Originally we used only Azuma's inequality, Proposition 2 (i), which led to a proof that for $1<s<2$ and for all $\varepsilon>0, l_{s}^{m} 1+\varepsilon$-embeds into $l_{s / 2}^{n}$ (and hence uniformly embeds into l_{1}^{n}, by Maurey's theorem [8]) as long as $m \leqslant \alpha n / \log n$ for a certain constant $\alpha(\varepsilon, s)>0$. Pisier pointed out to us that by substituting the inequality of Proposition 2 (ii) for Azuma's in our proof, we could uniformly embed l_{s}^{m} directly into l_{1}^{n} provided $m \leqslant \beta n$ for a certain constant $\beta=\beta(s)>0$.

2. The random matrix

Given positive integers n and m with $m \leqslant n$, define $\Omega=\Omega(n, m)$ to be the space

$$
\begin{equation*}
\{-1,1\}^{n m} \times[S(n)]^{m}, \tag{2.1}
\end{equation*}
$$

where $S(n)$ is the symmetric group on $\{1, \ldots, n\}$, and endow Ω with the probability measure P which assigns equal mass to each atom.

Given a fixed sequence $a_{1} \geqslant a_{2} \geqslant \ldots \geqslant a_{n} \geqslant 0$, the entries of the random $n \times m$-matrix $A=A_{\omega}$ are defined for $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m$, and for

$$
\omega=\left(\left(\varepsilon_{i, j}\right)_{i=1, j=1}^{n}, \pi_{1}, \pi_{2}, \ldots, \pi_{m}\right) \in \Omega
$$

by

$$
\begin{equation*}
A_{\omega}(i, j)=\varepsilon_{i, j} a_{\pi_{j}(i)} \tag{2.2}
\end{equation*}
$$

For fixed $0<r<s<2$ with $r \leqslant 1$, we want A_{ω} to be, for some $\omega \in \Omega$, a good isomorphism from l_{s}^{m} into L_{r}^{n}. Of course, the main case is $r=1$ and the reader may want to make this substitution on first reading in order to clean up messy-looking exponents
and constants. In fact, from Maurey's work [8] (which is based on Rosenthal's paper [10]), it follows formally that if l_{s}^{m} embeds uniformly into L_{r}^{n} for some fixed $r<s<2$ (where $m=m(n)$ for $n=1,2, \ldots$), then l_{s}^{m} embeds uniformly into L_{r}^{n} for all $r<s$. So for $1<s<2, r=1$ is, essentially, the general case. On the other hand, the direct embedding gives a stronger result than that which can be obtained by applying Maurey's theorem in that the embedding into L_{r}^{n} can be taken to be a $1+\varepsilon$-isomorphism and the range space need only be a 'random L_{r}^{n} ", space.

Notice that the columns of the random matrix A defined by (2.2) are independent, symmetric, and identically distributed, but entries in the same column of the matrix are not independent. The sequence $\left(a_{i}\right)_{i=1}^{n}$ is chosen so that the columns of A have approximately s-stable distribution; what we need is that m-independent functions with the same distribution as $A e_{1}$, are, in $L_{r}, 1+\varepsilon$-equivalent to the unit vector basis of l_{s}^{m}. That such a sequence $\left(a_{i}\right)_{i=1}^{n}$ exists is the content of our first lemma.

LEMMA 1. Let $0<r<s<2, \varepsilon>0$, and let g be a symmetric s-stable random variable on $[0,1]$ with $\|g\|_{r}=1$. Then there exists $\alpha=\alpha(\varepsilon, r, s)>0$ so that for all positive integers m and n with $m \leqslant \alpha n$, if $y_{1}, y_{2}, \ldots, y_{m}$ is a sequence of independent, symmetric random variables such that each $\left|y_{i}\right|(1 \leqslant i \leqslant m)$ has the same distribution as that of

$$
\begin{equation*}
y=\sum_{i=1}^{n} a_{i} 1_{[(i-1) / n, i / n]} \tag{2.3}
\end{equation*}
$$

where

$$
a_{i}=g^{*}\left(\frac{i}{n}\right) \quad(1 \leqslant i<n)
$$

then for all scalars $\left(b_{j}\right)_{j=1}^{m}$ we have

$$
\begin{equation*}
(1-\varepsilon)\left(\sum_{j=1}^{m}\left|b_{j}\right|^{s}\right)^{1 / s} \leqslant\left(E\left|\sum_{j=1}^{m} b_{j} y_{j}\right|^{r}\right)^{1 / r} \leqslant(1+\varepsilon)\left(\sum_{j=1}^{m}\left|b_{j}\right|^{s}\right)^{1 / s} \tag{2.5}
\end{equation*}
$$

Proof. We first show that if $r \geqslant 1$ or if $s \leqslant 1$ and $r>s /(s+1)$ then $E\left|g^{*}-y\right|^{r} \leqslant K n^{r / s-1}$, where $K=K(r, s)$ depends on r and s only. For $1 \leqslant r<s$ we use the fact (cf. [7] or [14]) that for all $t>0$

$$
\begin{equation*}
P(|g| \geqslant t) \leqslant C t^{-s} \tag{2.6}
\end{equation*}
$$

for some constant $C=C(r, s)$ to get

$$
\begin{aligned}
E\left|g^{*}-y\right|^{r} & \leqslant E\left(g^{* r}-y^{r}\right) \leqslant \int_{0}^{1 / n} g^{* r} \\
& \leqslant C^{r / s} \int_{0}^{1 / n} t^{-r / s} d t=C^{r / s}(1-r / s)^{-1} n^{r / s-1}
\end{aligned}
$$

For $s \leqslant 1, s /(s+1)<r<s$ we use the fact (cf. [14], p. 54) that the density function p of a symmetric s-stable random variable normalized in L_{r} satisfies the inequality

$$
p(t) \geqslant D^{-1} t^{-s-1} \quad \text { for }|t| \geqslant D
$$

for some constant $D=D(r, s)$.
Let

$$
F(u)=P(|g| \geqslant u)
$$

then $g^{*}=F^{-1}$ and $g^{* \prime}(t)=-1 / p\left(g^{*}(t)\right), 0 \leqslant t \leqslant 1$. Thus $\left|g^{* \prime}(t)\right| \leqslant D\left(g^{*}(t)\right)^{s+1} \leqslant D c^{(s+1) / s} t^{-(s+1) / s}$ as long as $g^{*}(t) \geqslant D$ and

$$
\begin{aligned}
E\left|g^{*}-y\right|^{r} & \leqslant \int_{0}^{1 / n} g^{*}(t)^{r}+\int_{1 / n}^{F(D)-1 / n}\left(g^{*}(t)-g^{*}\left(t+\frac{1}{n}\right)\right)^{r}+\int_{F(D)-1 / n}^{1}\left(g^{*}(t)-g^{*}\left(t+\frac{1}{n}\right)\right)^{r} \\
& \leqslant C^{r / s}\left(1-\frac{r}{s}\right)^{-1} n^{r / s-1}+n^{-r} D^{r} C^{r(s+1) / s} \int_{1 / n}^{\infty} t^{-r(s+1) / s}+\left(\int_{F(D)-1 / n}^{1} g^{*}(t)-g^{*}\left(t+\frac{1}{n}\right)\right)^{r} \\
& \leqslant C^{r / s}\left(1-\frac{r}{s}\right)^{-1} n^{r / s-1}+D^{r} C^{r(s+1) / s}(r(s+1) / s-1)^{-1} n^{r / s-1}+g^{*}\left(F(D)-\frac{1}{n}\right) n^{-r} \\
& \leqslant K n^{r / s-1}
\end{aligned}
$$

Let $g_{1}, g_{2}, \ldots, g_{m}$ be independent, symmetric s-stables with $\left\|g_{i}\right\|_{r}=1$ and set for $1 \leqslant j \leqslant m$

$$
z_{j}=\sum_{i=1}^{n} a_{i} \operatorname{sign}\left(g_{j}\right) 1_{\left[a_{i}<\mid g_{j}<a_{i-1}\right]} .
$$

Now the z_{j} 's have the same distribution as the y_{j} 's and, by the fact that $\left(g_{j}-z_{j}\right)_{j=1}^{m}$ forms a 1-unconditional basic sequence in L_{r} and by Hölder's inequality, we get that if $1 \leqslant r<s<2$ or $s /(s+1)<r<s \leqslant 1$,

$$
\begin{aligned}
E\left|\sum_{j=1}^{m} b_{j}\left(g_{j}-z_{j}\right)\right|^{r} & \leqslant \sum_{j=1}^{m}\left|b_{j}\right|^{r} E\left|g_{j}-z_{j}\right|^{r} \\
& =\sum_{j=1}^{m}\left|b_{j}\right|^{r} E\left|g^{*}-y\right|^{r} \leqslant K n^{r / s-1} \sum_{j=1}^{m}\left|b_{j}\right|^{r} \\
& \leqslant K\left(\frac{m}{n}\right)^{(s-r) / s}\left(\sum_{j=1}^{m}\left|b_{j}\right|^{s}\right)^{r / s}
\end{aligned}
$$

So for all $\delta>0$ there exists an $\alpha>0$ such that if $m / n<\alpha$

$$
\left(E\left|\sum_{j=1}^{m} b_{j}\left(g_{j}-z_{j}\right)\right|^{r}\right)^{1 / r} \leqslant \delta\left(\sum\left|b_{j}\right|^{s}\right)^{1 / s}
$$

The monotonicity of the function $\varphi(r)=\left(E|f|^{r}\right)^{1 / r}$ implies that the same conclusion holds for all $r, s, 0<r<s<2$. The conclusion of the lemma follows now from the fact that

$$
E\left|\sum_{j=1}^{m} b_{j} g_{j}\right|^{r}=\left(\sum_{j=1}^{m}\left|b_{j}\right|^{s}\right)^{r / s}
$$

Returning now to the random matrix A defined by (2.2) and (2.4), we check that $E\|A x\|_{r} \approx|x|_{s}$ for all $x \in l_{s}^{m}$. So suppose $\alpha=\alpha(\varepsilon, r, s)>0$ satisfies the conclusion of Lemma 1 and $m \leqslant \alpha n$ and fix $x=\sum_{j=1}^{m} b_{j} e_{j} \in l_{s}^{m}$. Then

$$
E\|A x\|_{r}^{r}=E n^{-1} \sum_{i=1}^{n}\left|\sum_{j=1}^{m} b_{j} \varepsilon_{i, j} a_{\pi_{j}(i)}\right|^{r}=E\left|\sum_{j=1}^{m} b_{j} \varepsilon_{1, j} a_{\pi_{j}(1)}\right|^{r}
$$

The random variables $\varepsilon_{1, j} a_{\pi_{j}(1)}(1 \leqslant j \leqslant m)$ on Ω are independent and symmetric; moreover, the common distribution of their absolute values is the same as that of " y " in (2.3), thus from Lemma 1 we have

$$
\begin{equation*}
(1-\varepsilon)^{r}|x|_{s}^{r} \leqslant E\|A x\|_{r}^{r} \leqslant(1+\varepsilon)^{r}|x|_{s}^{r} \tag{2.7}
\end{equation*}
$$

We now state a distributional inequality, to be proved in Section 2, which allows us to select an $\omega \in \Omega$ for which $\left\|A_{\omega} x\right\|_{r} \approx|x|_{s}$ for all $x \in l_{s}^{m}$. (In the notation of Proposition 1 , set $x=\left(b_{j}\right)_{j=1}^{m}$ and $\|\cdot\|=\|\cdot\|_{r}$. Then for $\omega=(\varepsilon, \pi) \in \Omega$,

$$
\left\|A_{\omega} x\right\|_{r}^{r}=\left\|\sum_{j=1}^{m} b_{j} \sum_{i=1}^{n} \varepsilon_{i, j} a_{\pi_{j}(i)} e_{i}\right\|_{r}^{r},
$$

which is not the same as $f(\omega)$. Of course, f and $\|A x\|_{r}^{r}$ have the same distribution, which is all that we need. We state Proposition 1 for f rather than for $\|A x\|_{r}^{r}$ in order to simplify notation in its proof.)

PROPOSITION 1. Let $0<r \leqslant 1<p<2$, let m and n be positive integers, and let Ω be given by (2.1). Suppose that $\|\cdot\|$ is an r-norm on $\mathbf{R}^{n},\left(b_{j}\right)_{j=1}^{m} \in \mathbf{R}^{m}$ and $a_{1} \geqslant a_{2} \geqslant \ldots \geqslant a_{n} \geqslant 0$. Define for $\omega=(\varepsilon, \pi) \in \Omega$

$$
f(\omega)=\left\|\sum_{j=1}^{m} b_{j} \sum_{i=1}^{n} \varepsilon_{i, j} a_{i} e_{\pi_{j}(i)}\right\|^{r}
$$

Then for all $t>0$

$$
\begin{equation*}
P[|f-E f| \geqslant t] \leqslant 2 \exp \left[-4^{-q} \delta_{p} t^{q}\left|\left(a_{i} b_{j}\right)_{i=1, j=1}^{n}\right|_{r p, \infty}^{-r q} \cdot \max _{1 \leqslant k \leqslant n}\left\|e_{k}\right\|^{-r q}\right] \tag{2.8}
\end{equation*}
$$

where $p^{-1}+q^{-1}=1$ and $\delta_{p}>0$ depends only on p.

To apply Proposition 1, we need two standard lemmas involving δ-nets of the unit sphere. By a δ-net of a subset, U, of an r-normed space $(X,\|\cdot\|)$ we mean a subset M of U such that for all $x \in U$,

$$
\inf _{y \in M}\|x-y\|^{r} \leqslant \delta
$$

LEMMA 2. Let $(X,\|\cdot\|)$ be an r-normed space $(0<r \leqslant 1)$ of dimension m and suppose that $0<\delta$. Then the unit sphere of X contains a δ-net of cardinality at most $\exp \left(2 r^{-1} \delta^{-1} m\right)$.

Proof. Let M be a subset of the unit sphere of X maximal with respect to " $\|x-y\|^{r} \geqslant \delta$ for all distinct points x, y in M '. M is obviously a δ-net of the unit sphere and the open balls (relative to the metric $\|x-y\|^{r}$) of radius $\delta / 2$ around the points of M are pairwise disjoint and contained in $B(1+\delta / 2)$, the open ball around the origin of radius $1+\delta / 2$. Consequently,

$$
\operatorname{card} M \cdot \operatorname{vol} B(\delta / 2) \leqslant \operatorname{vol} B(1+\delta / 2)
$$

Since $B(t s)=t^{1 / r} B(s)$ for any $s, t>0$ and $\operatorname{dim} X=m$, we conclude

$$
\operatorname{card} M \leqslant[2(1+\delta / 2) / \delta]^{m / r}=(1+2 / \delta)^{m / r} \leqslant \exp \left(2 r^{-1} \delta^{-1} m\right) . \quad \text { Q.E.D. }
$$

Lemma 3. Suppose that $(X,\|\cdot\|)$ is an s-normed space $(0<s \leqslant 1),(Y,\|\cdot\|)$ is an r normed space $(0<r \leqslant 1)$ and $T: X \rightarrow Y$ is a continuous linear operator. Suppose that $0<\varepsilon, \delta<1$ are such that for some $\delta^{s / r}$-net, M, of the unit sphere of X and all $x \in M$ we have

$$
1-\varepsilon \leqslant|T x|^{r} \leqslant 1+\varepsilon .
$$

Then for all x in the unit sphere of X we have

$$
\begin{equation*}
\frac{1-2 \delta-\varepsilon}{1-\delta} \leqslant|T x|^{r} \leqslant \frac{1+\delta}{1-\delta}(1+\varepsilon) \tag{2.9}
\end{equation*}
$$

Proof. Given x in the unit sphere of X, write

$$
x=x_{0}+\sum_{n=1}^{\infty} a_{n} x_{n}
$$

with $\left(x_{n}\right)_{n=0}^{\infty} \subseteq M$ and $0 \leqslant a_{n}^{s} \leqslant \delta^{s n / r}$ for $n=1,2, \ldots$ Then

$$
\left||T x|^{r}-\left|T x_{0}\right|^{r}\right| \leqslant\left|T x-T x_{0}\right|^{r}=\left|\sum_{n=1}^{\infty} a_{n} T x_{n}\right|^{r} \leqslant \sum_{n=1}^{\infty}\left|a_{n}\right|^{r}\left|T x_{n}\right|^{r} \leqslant \frac{\delta}{1-\delta}(1+\varepsilon) .
$$

A trivial computation now yields the desired conclusion.
Q.E.D.

We can now prove the main result.
THEOREM 1. Let $\tau>0$, and suppose that $0<r<s<2$ with $r \leqslant 1$. Then there exists $\beta=\beta(\tau, r, s)>0$ so that if m and n are positive integers with $m \leqslant \beta n$, then l_{s}^{m} is $1+\tau$ isomorphic to a subspace of L_{r}^{n}.

Proof. For a value of $\varepsilon=\varepsilon(\tau, r)>0$ to be specified later, we take $\alpha=\alpha(\varepsilon, r, s)$ from Lemma 1 and let $0<\beta \leqslant \alpha$ be such that β also satisfies another numerical inequality which comes up later. Now fix $m \leqslant \beta n$ and let $g,\left(a_{i}\right)_{i=1}^{n}, \Omega$, and A be as in Lemma 1 , so that for all $x \in l_{s}^{m}$,

$$
\begin{equation*}
(1-\varepsilon)|x|_{s}^{r} \leqslant E\|A x\|_{r}^{r} \leqslant(1+\varepsilon)|x|_{s}^{r} . \tag{2.10}
\end{equation*}
$$

Now fix any $x=\sum_{i=1}^{m} b_{i} e_{i} \in l_{s}^{m}$ with $|x|_{s}=1$. Recalling the distributional inequality for s stable variables mentioned at the beginning of the proof of Lemma 1, we see that the a_{i} 's defined by (2.4) satisfy

$$
a_{i} \leqslant C^{1 / s} n^{1 / s} i^{-1 / s}
$$

For some constant $C=C(r, s)$. Using this and the easy observation that

$$
\left|\sum x_{j}\right|_{s, \infty}^{s} \leqslant \sum\left|x_{j}\right|_{s, \infty}^{s}
$$

if the x_{j} 's are disjointly supported vectors in $l_{s, \infty}$, we get

$$
\left|\left(a_{i} b_{j}\right)_{i=1, j=1}^{n}\right|_{s, \infty}^{s} \leqslant \sum_{j=1}^{m}\left|b_{j}\right|_{s, \infty}^{s}\left|\left(a_{i}\right)_{i=1}^{n}\right|_{s, \infty}^{s} \leqslant C n\left|\left(i^{-1 / s}\right)_{i=1}^{n}\right|_{s, \infty}^{s}=C n .
$$

Assume that $r>s / 2$ and set $p=s / r$ so that $1<p<2$. Applying Proposition 1 we get for any $x \in l_{s}^{m},|x|_{s}=1$,

$$
\begin{aligned}
P\left[\|A x\|_{r}^{r}-E\|A x\|_{r}^{r} \mid \geqslant \varepsilon\right] & \leqslant 2 \exp \left(-\delta_{p} \varepsilon^{q} C^{-r q / s} n^{-r q(1 / s-1 / r)}\right) \\
& =2 \exp \left(-\delta_{p} \varepsilon^{q} C^{r /(r-s)} n\right)
\end{aligned}
$$

so that (since $m \leqslant \beta n \leqslant \alpha n ; \alpha$ from Lemma 1)

$$
P\left[1-2 \varepsilon \leqslant\|A x\|_{r}^{r} \leqslant 1+2 \varepsilon\right] \geqslant 1-2 \exp \left(-\delta_{p} \varepsilon^{q} C^{r(r-s)} n\right)
$$

Using Lemma 2, pick an $\varepsilon^{s / r}$-net of the unit sphere of l_{s}^{m} with card $M \leqslant$ $\exp \left(2 r^{-1} \varepsilon^{-s / r} m\right)$. Then

$$
P\left[1-2 \varepsilon \leqslant\|A x\|_{r}^{r} \leqslant 1+2 \varepsilon \quad \text { for all } x \in M\right] \geqslant 1-2 \exp \left(2 r^{-1} \varepsilon^{-s / r} m-\delta_{p} \varepsilon^{q} C^{r(r-s)} n\right)
$$

hence, by Lemma 3,

$$
\begin{aligned}
& P\left[\frac{1-4 \varepsilon}{1-\varepsilon}|x|_{s}^{r} \leqslant\|A x\|_{r}^{r} \leqslant \frac{(1+\varepsilon)(1+2 \varepsilon)}{1-\varepsilon}|x|_{s}^{r} \text { for all } x \in l_{s}^{m}\right] \\
& \quad \geqslant 1-2 \exp \left[\left(2 r^{-1} \varepsilon^{-s / r} \beta-\delta_{p} \varepsilon^{q} C^{r(r-s)}\right) n\right] .
\end{aligned}
$$

Thus if we choose $\varepsilon=\varepsilon(\tau, r)>0$ and $\beta=\beta(\varepsilon, r, s)>0$ sufficiently small, we get for $m \leqslant \beta n$ that

$$
\begin{equation*}
P\left[(1-\tau)|x|_{s} \leqslant\|A x\|_{r} \leqslant(1+\tau)|x|_{s} \quad \text { for all } x \in l_{s}^{m}\right]>\frac{1}{2} \tag{2.11}
\end{equation*}
$$

This completes the proof in the case $r>s / 2$.
The general case follows formally from the case $r>s / 2$ by iteration. A more elegant way to finish (which yields a better estimate for β) is to use (2.11) for two different values r_{1}, r_{2} with $s / 2<r_{1}, r_{2}<s$ to select an $\omega \in \Omega$ so that A_{ω} is simultaneously a good isomorphism form l_{s}^{m} into $L_{r_{1}}^{n}$ and into $L_{r_{2}}^{n}$ and use a standard extrapolation argument to conclude that A_{ω} is also a good isomorphism from l_{s}^{m} into L_{r}^{n}.
Q.E.D.

Remarks. (1). It follows from a result of Maurey's [8] and Theorem 1 that for $0<r<s<2$ and $m \leqslant \beta n, l_{s}^{m}$ is $K(r, s)$-isomorphic to a subspace of l_{r}^{n}, but we do not know whether $K(r, s)$ can be taken close to one when $r>1$.
(2) As is easily seen from the proof, the assumption in Theorem 1 that the range space is L_{r}^{n} can be relaxed a bit. It is enough to assume that the range is an r-normed space which contains vectors $\left(e_{i}\right)_{i=1}^{n}$ so that for all $\left(b_{i}\right)_{i=1}^{n}$,

$$
\begin{equation*}
\underset{ \pm}{\operatorname{Av}}\left\|\sum_{i=1}^{n} \pm b_{i} e_{i}\right\|^{r}=\sum_{i=1}^{n}\left|b_{i}\right|^{r} \tag{2.12}
\end{equation*}
$$

This perhaps explains why our proof breaks down when r approaches 2 (i.e. for $r>1$), because (2.12) is true for $r=2$ if the e_{i} 's are all the same unit vector in any Banach space.

3. The distributional inequality

The main tool for proving Proposition 1 is a martingale inequality which, along with its proof, was communicated to the authors by Gilles Pisier (part (ii) of Proposition 2). This inequality is in turn a consequence of Azuma's martingale inequality (part (i) of

Proposition 2) [1], [13]. Versions of Azuma's inequality have previously been used in Banach space theory [9], [11], [12].

PROPOSITION 2. Let $\left(d_{k}\right)_{k=1}^{n}$ be a uniformly bounded martingale difference sequence (i.e., $\left(\sum_{i=1}^{k} d_{i}\right)_{k=1}^{n}$ is an L_{∞}-bounded martingle which has mean zero).
(i) (Azuma) For all $t>0$,

$$
P\left[\left|\sum_{k=1}^{n} d_{k}\right| \geqslant t\right] \leqslant 2 \exp \left[-t^{2} / 4 \sum_{k=1}^{n}\left\|d_{k}\right\|_{\infty}^{2}\right]
$$

(ii) For all $1<p<2$ and all $t>0$,

$$
P\left[\left|\sum_{k=1}^{n} d_{k}\right| \geqslant t\right] \leqslant 2 \exp \left[-\delta_{p} t^{q} /\left|\left(\left\|d_{k}\right\|_{\infty}\right)_{k=1}^{n}\right|_{p, \infty}^{q}\right]
$$

where $1 / p+1 / q=1$ and $\delta_{p}=(2-p) / 8 p(q+1)^{q}$.
Proof. (i) Let $E_{i}(1 \leqslant i \leqslant n)$ be the conditional expectation with respect to the sigma field generated by $d_{1}, d_{2}, \ldots, d_{i}$, so that $E_{i} d_{j}=0$ for $1 \leqslant i<j \leqslant n$. Given any real λ, we have

$$
\begin{aligned}
E \exp \left(\lambda \sum_{i=1}^{n} d_{i}\right) & =E E_{n-1} \exp \left(\lambda \sum_{i=1}^{n} d_{i}\right) \\
& =E \exp \left(\lambda \sum_{i=1}^{n-1} d_{i}\right) E_{n-1} \exp \left(\lambda d_{n}\right) \\
& \leqslant E \exp \left(\lambda \sum_{i=1}^{n-1} d_{i}\right) E_{n-1}\left[\lambda d_{n}+\exp \left(\lambda^{2} d_{n}^{2}\right)\right] \quad\left(\text { since } e^{x} \leqslant x+e^{x^{2}}\right) \\
& =E \exp \left(\lambda \sum_{i=1}^{n-1} d_{i}\right) E_{n-1} \exp \left(\lambda^{2} d_{n}^{2}\right) \\
& \leqslant \exp \lambda^{2}\left\|d_{n}\right\|_{\infty}^{2} E \exp \left(\lambda \sum_{i=1}^{n-1} d_{i}\right)
\end{aligned}
$$

By iterating the above we obtain

$$
E \exp \left(\lambda \sum_{i=1}^{n-1} d_{i}\right) \leqslant \exp \left(\lambda^{2} \sum_{i=1}^{n}\left\|d_{i}\right\|_{\infty}^{2}\right)
$$

Hence for all $t>0$,

$$
\begin{aligned}
P\left[\sum_{i=1}^{n} d_{i} \geqslant t\right] & =P\left[\exp \left(\lambda \sum_{i=1}^{n} d_{i}\right) \geqslant e^{\lambda t}\right] \\
& \leqslant e^{-\lambda t} E \exp \left(\lambda \sum_{i=1}^{n} d_{i}\right) \leqslant \exp \left(\lambda^{2} \sum_{i=1}^{n}\left\|d_{i}\right\|_{\infty}^{2}-\lambda t\right)
\end{aligned}
$$

Setting $\lambda=t /\left(2 \sum_{i=1}^{n}\left\|d_{i}\right\|_{\infty}^{2}\right)$ we get

$$
P\left[\sum_{i=1}^{n} d_{i} \geqslant t\right] \leqslant \exp \left[-t^{2} /\left(2 \sum_{i=1}^{n}\left\|d_{i}\right\|_{\infty}^{2}\right)\right]
$$

Since also

$$
P\left[-\sum_{i=1}^{n} d_{i} \geqslant t\right] \leqslant \exp \left[-t^{2} /\left(2 \sum_{i=1}^{n}\left\|d_{i}\right\|_{\infty}^{2}\right)\right]
$$

we get the desired result.
(ii) Assume, without loss of generality, that

$$
\left|\left(\left\|d_{k}\right\|_{\infty}\right)_{k=1}^{n}\right|_{p, \infty}=1
$$

and choose a permutation π of $\{1, \ldots, n\}$ so that

$$
\left\|d_{\pi(k)}\right\|_{\infty}=\left\|d_{k}\right\|^{*} \quad(1 \leqslant k \leqslant n)
$$

Thus we have for $k=1,2, \ldots, n$,

$$
\left\|d_{\pi(k)}\right\|_{\infty} \leqslant k^{-1 / p}
$$

Given an integer $N \leqslant n$ we have

$$
P\left[\left|\sum_{k=1}^{n} d_{k}\right| \geqslant(q+1) N^{1 / q}\right] \leqslant P\left[\left|\sum_{k=1}^{N} d_{\pi(k)}\right| \geqslant q N^{1 / q}\right]+P\left[\left|\sum_{k=N+1}^{n} d_{\pi(k)}\right| \geqslant N^{1 / q}\right] .
$$

But

$$
\left|\sum_{k=1}^{N} d_{\pi(k)}\right| \leqslant \sum_{k=1}^{N}\left\|d_{\pi(k)}\right\|_{\infty} \leqslant \sum_{k=1}^{N} k^{-1 / p}<q N^{1 / q}
$$

so we get by Proposition 2 (i),

$$
\begin{aligned}
P\left[\left|\sum_{k=1}^{n} d_{k}\right| \geqslant(q+1) N^{1 / q}\right] & \leqslant 2 \exp \left[-N^{2 / q} /\left(4 \sum_{k=N+1}^{n}\left\|d_{\pi(k)}\right\|_{\infty}^{2}\right)\right] \\
& \leqslant 2 \exp \left[N^{2 / q}(1-2 / p) /\left(4 N^{(1-2 / p)}\right]\right. \\
& =2 \exp [-(2-p) N / 4 p]
\end{aligned}
$$

If $t \geqslant q+1$, set

$$
N=\left[\left(\frac{t}{q+1}\right)^{q}\right]
$$

so that

$$
1 \leqslant N \leqslant\left(\frac{t}{q+1}\right)^{q} \leqslant 2 N
$$

Then

$$
\begin{aligned}
P\left[\left|\sum_{k=1}^{n} d_{k}\right| \geqslant t\right] & \leqslant P\left[\left|\sum_{k=1}^{n} d_{k}\right| \geqslant(q+1) N^{1 / q}\right] \leqslant 2 \exp [-(2-p) N / 4 p] \\
& \leqslant 2 \exp \left[-(2-p) t^{q} / 8 p(q+1)^{q}\right]
\end{aligned}
$$

If $t \leqslant q+1$, then

$$
2 \exp \left[-(2-p) t^{q} / 8 p(q+1)^{q}\right] \geqslant 2 \exp [-(2-p) / 8 p] \geqslant 2 e^{-1 / 8}>1 . \quad \text { Q.E.D. }
$$

We turn to

Proof of Proposition 1. For the convenience of the reader, we recall that

$$
\Omega=\{-1,1\}^{n \cdot m} \times(S(n))^{m}
$$

and for $\omega=(\varepsilon, \pi) \in \Omega$, we define

$$
f(\varepsilon, \pi)=\left\|\sum_{j=1}^{m} b_{j} \sum_{i=1}^{n} \varepsilon_{i, j} a_{i} e_{\pi, i}\right\|^{r}
$$

where $\|\cdot\|$ is an r-norm on \mathbf{R}^{n}, the b_{j} 's are reals,

$$
a_{1} \geqslant a_{2} \geqslant \ldots \geqslant a_{n} \geqslant 0, \quad 0<r \leqslant 1<p<2, \quad \text { and } \quad 1 / p+1 / q=1
$$

In order to apply Proposition 2 we need to define a martingale difference sequence which sums to $f-E f$.

Set $L=\{1, \ldots, n\} \times\{1, \ldots, m\}$ and linearly order $\{0\} \cup L$ by taking 0 as the first element and using the Hebrew dictionary order on L; i.e.,

$$
0<(1,1)<(2,1)<\ldots<(n, 1)<(1,2)<\ldots<(n, 2)<(1,3)<\ldots
$$

We let $\mathscr{F}_{0}=\{\varnothing, \Omega\}$ and for $(i, j) \in L$ we define a sigma field on Ω by saying that an atom of $\mathscr{F}_{(i, j)}$ is determined by specifying the values of $\varepsilon_{l, k}$ and $\pi_{k}(l)$ for all $(l, k) \leqslant(i, j)$. Then $\left\{\mathscr{F}_{t}: t \in\{0\} \cup L\right\}$ is an increasing sequence of sigma fields; the first field is trivial and the last is the collection of all subsets of Ω.

For $(i, j) \in L$ let $(i, j)^{\prime}$ be the immediate predecessor of (i, j) in $\{0\} \cup L$ and define

$$
d_{i, j}=E\left(f \mid \mathscr{F}_{(i, j)}\right)-E\left(f \mid \mathscr{F}_{(i, j)^{\prime}}\right)
$$

so that $\left(d_{(i, j)}\right)_{(i, j) \in L}$ is a martingale difference sequence which sums to $f-E f$. Thus the conclusion (1.8) of Proposition 1 is an immediate consequence of Proposition 2 (ii) and the following inequality, valid for all $(i, j) \in L$:

$$
\begin{equation*}
\left\|d_{(i, j)}\right\|_{\infty} \leqslant 4\left|a_{i} b_{j}\right|_{1 \leqslant k \leqslant n}^{r} \max _{1 \leqslant k} \|\left. e_{k}\right|^{r} . \tag{3.1}
\end{equation*}
$$

For any fixed $(i, j) \in L$, fix any atom A in $\mathscr{H}_{(i, j)^{\prime}}$ and let \mathscr{A} be the collection of all atoms in $\mathscr{F}_{(i, j)}$ which are contained in A. On $A, E\left(f \mid \mathscr{F}_{(i, j)^{\prime}}\right)$ is the average value of f on A, and if B is an atom of $\mathscr{F}_{(i, j)}$, then $E\left(f \mid \mathscr{F}_{(i, j)}\right)$ is on B the average value of f on B. Thus (3.1) will follow once we check that for all $B, C \in \mathscr{A}$

$$
\left|\operatorname{Av}_{\omega \in B} f(\omega)-\operatorname{Av}_{\omega \in C} f(\omega)\right| \leqslant 4\left|a_{i} b_{j}\right|^{r} \max _{1 \leqslant k \leqslant n} \|\left. e_{k}\right|^{r}
$$

So fix $B, C \in \mathscr{A}$. Since B and C are both contained in the same atom of $\mathscr{F}_{(i, j)^{\prime}}$, we have that the values of $\varepsilon_{u, v}$ and $\pi_{v}(u)$ are specified and equal on B and C for all $(u, v)<(i, j)$. Let us say that on $B, \varepsilon_{i, j}$ and $\pi_{j}(i)$ are specified by

$$
\varepsilon_{i, j}=\varepsilon_{B}, \quad \pi_{j}(i)=s
$$

while on $C, \varepsilon_{i, j}$ and $\pi_{j}(i)$ are specified by

$$
\varepsilon_{i, j}=\varepsilon_{C}, \quad \pi_{j}(i)=t
$$

We define a one to one correspondence from B onto C by defining $(\varepsilon, \pi) \rightarrow\left(\varepsilon^{*}, \pi^{*}\right)$, where

$$
\begin{gathered}
\varepsilon_{u, v}^{*}= \begin{cases}\varepsilon_{u, v}, & \text { if }(u, v) \neq(i, j) \\
\varepsilon_{C}, & \text { if }(u, v)=(i, j)\end{cases} \\
\pi_{w}^{*}(y)= \begin{cases}t, & \text { if }(y, w)=(i, j) \\
s, & \text { if } w=j \text { and } \pi_{w}(y)=t \\
\pi_{w}(y), & \text { otherwise. }\end{cases}
\end{gathered}
$$

Given $(\varepsilon, \pi) \in B$, let z be the unique number in $\{1, \ldots, n\}$ such that $\pi_{j}(z)=t$. If $t=s$ then of course $z=i$. If $t \neq s$ then $z>i$ because $\pi_{j}(y)=\pi_{j}^{*}(y)$ for all $y<i$ and $t=\pi_{j}^{*}(i)$. Thus $\left|a_{i}\right| \geqslant\left|a_{z}\right|$ since $a_{1} \geqslant a_{2} \geqslant \ldots \geqslant a_{n} \geqslant 0$ and we have by the triangle inequality,

$$
\begin{aligned}
\left|f(\varepsilon, \pi)-f\left(\varepsilon^{*}, \pi^{*}\right)\right| & \leqslant\left\|\sum_{w=1}^{m} \sum_{y=1}^{n} b_{w} \varepsilon_{y, w} a_{y} e_{\pi_{n}(y)}-b_{w} \varepsilon_{y, w}^{*} a_{y} e_{\pi_{k}^{*}(y)}\right\|^{r} \\
& =\left\|b_{j} \varepsilon_{B} a_{i} e_{s}-b_{j} \varepsilon_{C} a_{i} e_{t}+b_{j} \varepsilon_{z, j} a_{z} e_{t}-b_{j} \varepsilon_{z, j} a_{z} e_{s}\right\|^{r} \\
& \leqslant 2\left|b_{j}\right|^{r}\left(\left|a_{i}\right|+\left|a_{z}\right|\right)^{r} \max _{1 \leqslant k \leqslant n}\left\|e_{k}\right\|^{r} \\
& \leqslant 2^{1+r}\left|b_{j} \cdot a_{i}\right|^{r} \max _{1 \leqslant k \leqslant n} \| e_{k}| |^{r}
\end{aligned}
$$

The inequality (3.8) now follows by averaging over (ε, π) in B.
Q.E.D.

References

[1] Azuma, K., Weighted sums of certain dependent random variables. Tôhoku Math J., 19 (1967), 357-367.
[2] Bennett, G., Dor, L. E., Goodman, V., Johnson, W. B. \& Newman, C. M., On uncomplemented subspaces of $L_{p}, 1<p<2$. Israel J. Math., 26 (1977), 178-187.
[3] Bennett, G., Goodman, V. \& Newman, C. M., Norms of random matrices. Pacific J. Math., 59 (1975), 359-365.
[4] Figiel, T., Lindenstrauss, J. \& Milman, V., The dimension of almost spherical sections of convex sets. Acta Math., 139 (1977), 53-94.
[5] Kashin, B. S., Diameter of some finite dimensional sets and of some classes of smooth functions. Izv. Akad. Nauk SSSR, Ser. Mat., 41 (1977), 334-351 (russian).
[6] Lindenstrauss, J. \& Tzafriri, L., Classical Banach Spaces, I: Sequence Spaces. Springer-Verlag, 1977.
[7] Loéve, M., Probability Theory I. Springer-Verlag, 1977.
[8] Maurey, B., Théorémes de factorisation pour les opérateurs linéaires á valeurs dans les espaces L^{p}. Astérisque No. 11, Société Math. de France, 1974.
[9] - Construction de suites symetriques. C.R. Acad. Sci. Paris, 228 (1979), 679-681.
[10] Rosenthal, H. P., On subspaces of L^{p}. Ann. of Math., 97 (1973), 344-373.
[11] Schechtman, G., Random embeddings of euclidean spaces in sequence spaces. Israel J. Math., 40 (1981), 187-192.
[12] - Levy type inequality for a class of finite metric spaces. Proceedings of the NSF CBMS Conference on Martingale Theory in Harmonic Analysis and Banach Spaces 1981. To appear.
[13] Stout, W. F., Almost Sure Convergence. Academic Press, 1974.
[14] Ibragimov, I. A. \& Linnik, Yu, V., Independent and stationary sequences of random variables. Wolters-Noordhoff Publishing, Groningen, 1971.

Received December 14, 1981

[^0]: (${ }^{1}$) Supported in part by NSF MCS-7903042.

