Embedding l_p^m into l_1^n

by

WILLIAM B. JOHNSON(1) and GIDEON SCHECHTMAN(1)

Ohio State University Columbus, OH, U.S.A. Texas A&M University College Station, TX, U.S.A. Weizmann Institute of Science Rehovot, Israel Ohio State University

Columbus, OH, U.S.A.

1. Introduction

It is by now well-known that for any $1 \le s \le 2$, $L_1(0, 1)$ contains a subspace which is isometrically isomorphic to l_s . This of course implies that for any m=1, 2, ... and any $\varepsilon > 0$, l_s^m is $1+\varepsilon$ -isomorphic to a subspace of l_1^n if $n=n(\varepsilon, s, m)$ is sufficiently large. Theorem 1, the result of this paper, states that *n* can be of order *m*; i.e., that *n* can be chosen smaller than $\beta^{-1}m$ for some constant $\beta = \beta(\varepsilon, s) > 0$. This complements the theorem of Figiel, Lindenstrauss and Milman [4] (cf. also [2], [3] for a somewhat weaker result) which treated the case s=2.

Actually the proof of Theorem 1 yields more than the above-mentioned result. First, it shows for 0 < s < 2 and 0 < r < s with $r \le 1$, that for every $\varepsilon > 0$, l_s^m is $1 + \varepsilon$ isomorphic to a subspace of l_r^n if $m \le \beta n$, where $\beta = \beta(\varepsilon, s, r) > 0$ is a constant independent of *n*. Secondly, the condition that the range of the isomorphism be l_r^n can be relaxed. What is needed is that the range be an *r*-normed space which possesses a basis $(e_i)_{i=1}^n$ so that for all scalars $(b_i)_{i=1}^n$,

$$\operatorname{Av}_{\pm} \left\| \sum_{i=1}^{n} \pm b_{i} e_{i} \right\| \approx \left(\sum_{i=1}^{n} |b_{i}|^{r} \right)^{1/r}.$$

The proof of Theorem 1, like the earlier proof of the s=2 case in [4], [2], [3], [5] and [11], is probabilistic in nature. A schematic outline of the usual argument specialized to the case 1 < s < 2 and r=1 goes like this: For appropriate m and n, one defines a probability space (Ω, P) and a random linear operator or matrix $A=A_{\omega}$ ($\omega \in \Omega$) from l_s^m

⁽¹⁾ Supported in part by NSF MCS-7903042.

into L_1^n (= l_1^n with the L_1 -normalization). It is important that for each $x \in l_s^m$, $||Ax||_1$ is, on the average, close to $|x|_s$, the norm of x in l_s^m ; say,

$$|E||Ax||_1 - |x|_s| \le \varepsilon |x|_s.$$

Now it is a standard fact that for small $\varepsilon > 0$, if $|||Ax||_1 - |x|_s| \le \varepsilon$ for all x in an ε -net of the unit sphere of l_s^m , then $|||Ax||_1 - |x|_s| \le 3\varepsilon |x|_s$ for all $x \in l_s^m$ (see Lemma 3). Equally standard is the fact that the unit sphere of an *m*-dimensional normed space contains an ε -net of cardinality at most exp $(2m\varepsilon^{-1})$ (cf. Lemma 2). Thus, in order to conclude the proof of the embedding theorem, it is sufficient to prove (and this is the main step) a distributional inequality which guarantees that for $x \in l_s^m$,

$$P[|||Ax||_1 - E||Ax||_1] \ge \varepsilon |x|_s] < \exp(-2\varepsilon^{-1}m).$$

In [2], [3] and [11] the probability space is $\{-1, 1\}^{n \cdot m}$ with equal mass assigned to each point, and A_{ω} is defined for $x = \sum_{i=1}^{m} b_i e_i \in l_2^m$ and $\omega = \{\varepsilon_{i,i}\}_{i=1,j=1}^{n,m}$ by

$$A_{\omega} x = \sum_{i=1}^{n} \sum_{j=1}^{m} \varepsilon_{i,j} b_{j} e_{i}.$$

Notice that the entries in this random matrix are independent. Although we use a more complicated probability space and the random matrix we use does not have independent entries, the approach in [11] which uses a distributional inequality for general martingales also works in the present situation.

For the most part we use standard Banach space theory notation, as may be found in [6]. Since it is convenient for us to use the L_r -normalization in the range of the random matrix and the l_s -normalization in the domain of the random matrix, we define for

$$x = \sum_{i=1}^{n} \alpha_i e_i \in \mathbf{R}^n$$

(where $(e_i)_{i=1}^n$ are the unit vectors in \mathbf{R}^n) and for 0 ,

$$||x||_{p} = n^{-1/p} \left(\sum_{i=1}^{n} |\alpha_{i}|^{p} \right)^{1/p}$$
$$|x|_{p} = \left(\sum_{i=1}^{n} |\alpha_{i}|^{p} \right)^{1/p}$$

 $(\mathbf{R}^n, \|\cdot\|_p)$ is denoted by L_p^n and $(\mathbf{R}^n, |\cdot|_p)$ by l_p^n .

EMBEDDING l_p^m INTO l_1^n

We also need the "weak l_p " norm on \mathbf{R}^n , defined for $x = \sum_{i=1}^n \alpha_i e_i$ by

$$|x|_{p,\infty} = \max_{1 \le i \le n} \alpha_i^* i^{1/p},$$

where $(\alpha_i^*)_{i=1}^n$ is the decreasing rearrangement of $(|\alpha_i|)_{i=1}^n$. The space $(\mathbf{R}^n, |\cdot|_{p,\infty})$ is denoted by $l_{p,\infty}$.

For $0 < r \le 1$, an *r*-norm is a non-negatively valued function, $\|\cdot\|$, on a vector space which is 0 only at 0 and satisfies the axioms $\|ax\| = |a| \|x\|$, $\|x+y\|^r \le \|x\|^r + \|y\|^r$. The most basic example of an *r*-norm is, of course $\|\cdot\|_r$.

If f is a measurable function on a measure space, f^* is used to denote the decreasing rearrangement of |f|.

Finally, we would like to thank Gilles Pisier for a discussion which yielded the present version of Theorem 1. Originally we used only Azuma's inequality, Proposition 2(i), which led to a proof that for 1 < s < 2 and for all $\varepsilon > 0$, $l_s^m 1 + \varepsilon$ -embeds into $l_{s/2}^n$ (and hence uniformly embeds into l_1^n , by Maurey's theorem [8]) as long as $m \le \alpha n/\log n$ for a certain constant $\alpha(\varepsilon, s) > 0$. Pisier pointed out to us that by substituting the inequality of Proposition 2(ii) for Azuma's in our proof, we could uniformly embed l_s^m directly into l_1^n provided $m \le \beta n$ for a certain constant $\beta = \beta(s) > 0$.

2. The random matrix

Given positive integers n and m with $m \le n$, define $\Omega = \Omega(n, m)$ to be the space

$$\{-1,1\}^{nm} \times [S(n)]^m,$$
 (2.1)

where S(n) is the symmetric group on $\{1, ..., n\}$, and endow Ω with the probability measure P which assigns equal mass to each atom.

Given a fixed sequence $a_1 \ge a_2 \ge ... \ge a_n \ge 0$, the entries of the random $n \times m$ -matrix $A = A_{\omega}$ are defined for $1 \le i \le n$, $1 \le j \le m$, and for

 $\omega = ((\varepsilon_{i,j})_{i=1,j=1}^n, \pi_1, \pi_2, \dots, \pi_m) \in \Omega$

by

$$A_{\omega}(i,j) = \varepsilon_{i,j} a_{\pi,(i)}.$$
(2.2)

For fixed $0 \le r \le s \le 2$ with $r \le 1$, we want A_{ω} to be, for some $\omega \in \Omega$, a good isomorphism from l_s^m into L_r^n . Of course, the main case is r=1 and the reader may want to make this substitution on first reading in order to clean up messy-looking exponents

W. B. JOHNSON AND G. SCHECHTMAN

and constants. In fact, from Maurey's work [8] (which is based on Rosenthal's paper [10]), it follows formally that if l_s^m embeds uniformly into L_r^n for some fixed r < s < 2 (where m = m(n) for n = 1, 2, ...), then l_s^m embeds uniformly into L_r^n for all r < s. So for 1 < s < 2, r = 1 is, essentially, the general case. On the other hand, the direct embedding gives a stronger result than that which can be obtained by applying Maurey's theorem in that the embedding into L_r^n can be taken to be a $1 + \varepsilon$ -isomorphism and the range space need only be a "random L_r^n " space.

Notice that the columns of the random matrix A defined by (2.2) are independent, symmetric, and identically distributed, but entries in the same column of the matrix are not independent. The sequence $(a_i)_{i=1}^n$ is chosen so that the columns of A have approximately s-stable distribution; what we need is that m-independent functions with the same distribution as Ae_1 , are, in L_r , $1+\varepsilon$ -equivalent to the unit vector basis of l_s^m . That such a sequence $(a_i)_{i=1}^n$ exists is the content of our first lemma.

LEMMA 1. Let 0 < r < s < 2, $\varepsilon > 0$, and let g be a symmetric s-stable random variable on [0, 1] with $||g||_r = 1$. Then there exists $\alpha = \alpha(\varepsilon, r, s) > 0$ so that for all positive integers m and n with $m \le \alpha n$, if $y_1, y_2, ..., y_m$ is a sequence of independent, symmetric random variables such that each $|y_i|$ ($1 \le i \le m$) has the same distribution as that of

$$y = \sum_{i=1}^{n} a_i \mathbf{1}_{[(i-1)/n, i/n]}$$
(2.3)

where

$$a_i = g^*\left(\frac{i}{n}\right) \quad (1 \le i < n),$$

then for all scalars $(b_i)_{i=1}^m$ we have

$$(1-\varepsilon)\left(\sum_{j=1}^{m}|b_{j}|^{s}\right)^{1/s} \leq \left(E\left|\sum_{j=1}^{m}b_{j}y_{j}\right|^{r}\right)^{1/r} \leq (1+\varepsilon)\left(\sum_{j=1}^{m}|b_{j}|^{s}\right)^{1/s}$$
(2.5)

Proof. We first show that if $r \ge 1$ or if $s \le 1$ and r > s/(s+1) then $E|g^* - y|^r \le Kn^{r/s-1}$, where K = K(r, s) depends on r and s only. For $1 \le r < s$ we use the fact (cf. [7] or [14]) that for all t > 0

$$P(|g| \ge t) \le Ct^{-s} \tag{2.6}$$

for some constant C = C(r, s) to get

$$E|g^*-y|^r \le E(g^{*r}-y^r) \le \int_0^{1/n} g^{*r}$$
$$\le C^{r/s} \int_0^{1/n} t^{-r/s} dt = C^{r/s} (1-r/s)^{-1} n^{r/s-1}.$$

EMBEDDING l_p^m INTO l_1^n

For $s \le 1$, s/(s+1) < r < s we use the fact (cf. [14], p. 54) that the density function p of a symmetric s-stable random variable normalized in L_r satisfies the inequality

$$p(t) \ge D^{-1} t^{-s-1} \quad \text{for } |t| \ge D$$

for some constant D=D(r, s).

Let

$$F(u) = P(|g| \ge u)$$

then $g^* = F^{-1}$ and $g^{*'}(t) = -1/p(g^*(t)), \ 0 \le t \le 1$. Thus $|g^{*'}(t)| \le D(g^*(t))^{s+1} \le Dc^{(s+1)/s} t^{-(s+1)/s}$ as long as $g^*(t) \ge D$ and

$$\begin{split} E|g^*-y|^r &\leq \int_0^{1/n} g^*(t)^r + \int_{1/n}^{F(D)-1/n} \left(g^*(t) - g^*\left(t + \frac{1}{n}\right)\right)^r + \int_{F(D)-1/n}^1 \left(g^*(t) - g^*\left(t + \frac{1}{n}\right)\right)^r \\ &\leq C^{r/s} \left(1 - \frac{r}{s}\right)^{-1} n^{r/s-1} + n^{-r} D^r C^{r(s+1)/s} \int_{1/n}^\infty t^{-r(s+1)/s} + \left(\int_{F(D)-1/n}^1 g^*(t) - g^*\left(t + \frac{1}{n}\right)\right)^r \\ &\leq C^{r/s} \left(1 - \frac{r}{s}\right)^{-1} n^{r/s-1} + D^r C^{r(s+1)/s} (r(s+1)/s-1)^{-1} n^{r/s-1} + g^*\left(F(D) - \frac{1}{n}\right) n^{-r} \\ &\leq K n^{r/s-1}. \end{split}$$

Let $g_1, g_2, ..., g_m$ be independent, symmetric s-stables with $||g_i||_r = 1$ and set for $1 \le j \le m$

$$z_j = \sum_{i=1}^n a_i \operatorname{sign}(g_j) \mathbf{1}_{[a_i < |g_j| < a_{i-1}]}.$$

Now the z_j 's have the same distribution as the y_j 's and, by the fact that $(g_j - z_j)_{j=1}^m$ forms a 1-unconditional basic sequence in L_r and by Hölder's inequality, we get that if $1 \le r \le s \le 1$,

$$E\left|\sum_{j=1}^{m} b_{j}(g_{j}-z_{j})\right|^{r} \leq \sum_{j=1}^{m} |b_{j}|^{r} E|g_{j}-z_{j}|^{r}$$
$$= \sum_{j=1}^{m} |b_{j}|^{r} E|g^{*}-y|^{r} \leq Kn^{r/s-1} \sum_{j=1}^{m} |b_{j}|^{r}$$
$$\leq K\left(\frac{m}{n}\right)^{(s-r)/s} \left(\sum_{j=1}^{m} |b_{j}|^{s}\right)^{r/s}.$$

So for all $\delta > 0$ there exists an $\alpha > 0$ such that if $m/n < \alpha$

$$\left(E\left|\sum_{j=1}^{m}b_{j}(g_{j}-z_{j})\right|^{r}\right)^{1/r} \leq \delta\left(\sum |b_{j}|^{s}\right)^{1/s}.$$

The monotonicity of the function $\varphi(r) = (E|f|^r)^{1/r}$ implies that the same conclusion holds for all r, s, 0 < r < s < 2. The conclusion of the lemma follows now from the fact that

$$E\left|\sum_{j=1}^{m} b_j g_j\right|^r = \left(\sum_{j=1}^{m} |b_j|^s\right)^{r/s}.$$
 Q.E.D.

Returning now to the random matrix A defined by (2.2) and (2.4), we check that $E ||Ax||_r \approx |x|_s$ for all $x \in l_s^m$. So suppose $\alpha = \alpha(\varepsilon, r, s) > 0$ satisfies the conclusion of Lemma 1 and $m \leq \alpha n$ and fix $x = \sum_{j=1}^m b_j e_j \in l_s^m$. Then

$$E ||Ax||_{r}^{r} = En^{-1} \sum_{i=1}^{n} \left| \sum_{j=1}^{m} b_{j} \varepsilon_{i,j} a_{\pi_{j}(i)} \right|^{r} = E \left| \sum_{j=1}^{m} b_{j} \varepsilon_{1,j} a_{\pi_{j}(1)} \right|^{r}.$$

The random variables $\varepsilon_{1,j} a_{\pi_j(1)} (1 \le j \le m)$ on Ω are independent and symmetric; moreover, the common distribution of their absolute values is the same as that of "y" in (2.3), thus from Lemma 1 we have

$$(1-\varepsilon)^r |x|_s^r \le E ||Ax||_r^r \le (1+\varepsilon)^r |x|_s^r.$$

$$(2.7)$$

We now state a distributional inequality, to be proved in Section 2, which allows us to select an $\omega \in \Omega$ for which $||A_{\omega}x||_r \approx |x|_s$ for all $x \in l_s^m$. (In the notation of Proposition 1, set $x = (b_j)_{j=1}^m$ and $|| \cdot || = || \cdot ||_r$. Then for $\omega = (\varepsilon, \pi) \in \Omega$,

$$||A_{\omega}x||_r^r = \left| \left| \sum_{j=1}^m b_j \sum_{i=1}^n \varepsilon_{i,j} a_{\pi_j(i)} e_i \right| \right|_r^r,$$

which is not the same as $f(\omega)$. Of course, f and $||Ax||_r^r$ have the same distribution, which is all that we need. We state Proposition 1 for f rather than for $||Ax||_r^r$ in order to simplify notation in its proof.)

PROPOSITION 1. Let $0 < r \le 1 < p < 2$, let m and n be positive integers, and let Ω be given by (2.1). Suppose that $\|\cdot\|$ is an r-norm on \mathbb{R}^n , $(b_j)_{j=1}^m \in \mathbb{R}^m$ and $a_1 \ge a_2 \ge ... \ge a_n \ge 0$. Define for $\omega = (\varepsilon, \pi) \in \Omega$

$$f(\omega) = \left| \left| \sum_{j=1}^{m} b_j \sum_{i=1}^{n} \varepsilon_{i,j} a_i e_{\pi_j(i)} \right| \right|^r.$$

Then for all t>0

$$P[|f - Ef| \ge t] \le 2 \exp\left[-4^{-q} \delta_p t^q |(a_i b_j)_{i=1,j=1}^n|_{rp,\infty}^{-rq} \cdot \max_{1 \le k \le n} ||e_k||^{-rq}\right]$$
(2.8)

where $p^{-1}+q^{-1}=1$ and $\delta_p>0$ depends only on p.

To apply Proposition 1, we need two standard lemmas involving δ -nets of the unit sphere. By a δ -net of a subset, U, of an *r*-normed space $(X, || \cdot ||)$ we mean a subset M of U such that for all $x \in U$,

$$\inf_{y \in M} \|x - y\|^r \leq \delta.$$

LEMMA 2. Let $(X, \|\cdot\|)$ be an r-normed space $(0 < r \le 1)$ of dimension m and suppose that $0 < \delta$. Then the unit sphere of X contains a δ -net of cardinality at most $\exp(2r^{-1}\delta^{-1}m)$.

Proof. Let M be a subset of the unit sphere of X maximal with respect to " $||x-y||^{r} \ge \delta$ for all distinct points x, y in M". M is obviously a δ -net of the unit sphere and the open balls (relative to the metric $||x-y||^{r}$) of radius $\delta/2$ around the points of M are pairwise disjoint and contained in $B(1+\delta/2)$, the open ball around the origin of radius $1+\delta/2$. Consequently,

$$\operatorname{card} M \cdot \operatorname{vol} B(\delta/2) \leq \operatorname{vol} B(1+\delta/2).$$

Since $B(ts)=t^{1/r}B(s)$ for any s, t>0 and dim X=m, we conclude

card
$$M \leq [2(1+\delta/2)/\delta]^{m/r} = (1+2/\delta)^{m/r} \leq \exp(2r^{-1}\delta^{-1}m).$$
 Q.E.D.

LEMMA 3. Suppose that $(X, \|\cdot\|)$ is an s-normed space $(0 < s \le 1)$, $(Y, \|\cdot\|)$ is an rnormed space $(0 < r \le 1)$ and $T: X \to Y$ is a continuous linear operator. Suppose that $0 < \varepsilon, \delta < 1$ are such that for some $\delta^{s/r}$ -net, M, of the unit sphere of X and all $x \in M$ we have

$$1-\varepsilon \leq |Tx|^r \leq 1+\varepsilon.$$

Then for all x in the unit sphere of X we have

$$\frac{1-2\delta-\varepsilon}{1-\delta} \le |Tx|^r \le \frac{1+\delta}{1-\delta}(1+\varepsilon).$$
(2.9)

Proof. Given x in the unit sphere of X, write

$$x = x_0 + \sum_{n=1}^{\infty} a_n x_n$$

with $(x_n)_{n=0}^{\infty} \subseteq M$ and $0 \le a_n^s \le \delta^{sn/r}$ for n=1, 2, Then

$$||Tx|^{r} - |Tx_{0}|^{r}| \leq |Tx - Tx_{0}|^{r} = \left| \sum_{n=1}^{\infty} a_{n} Tx_{n} \right|^{r} \leq \sum_{n=1}^{\infty} |a_{n}|^{r} |Tx_{n}|^{r} \leq \frac{\delta}{1 - \delta} (1 + \varepsilon).$$

A trivial computation now yields the desired conclusion.

Q.E.D.

6-822906 Acta Mathematica 149

We can now prove the main result.

THEOREM 1. Let $\tau > 0$, and suppose that 0 < r < s < 2 with $r \le 1$. Then there exists $\beta = \beta(\tau, r, s) > 0$ so that if m and n are positive integers with $m \le \beta n$, then l_s^m is $1 + \tau$ -isomorphic to a subspace of L_r^n .

Proof. For a value of $\varepsilon = \varepsilon(\tau, r) > 0$ to be specified later, we take $\alpha = \alpha(\varepsilon, r, s)$ from Lemma 1 and let $0 < \beta \le \alpha$ be such that β also satisfies another numerical inequality which comes up later. Now fix $m \le \beta n$ and let $g, (a_i)_{i=1}^n, \Omega$, and A be as in Lemma 1, so that for all $x \in l_s^m$,

$$(1-\varepsilon)|x|_{s}^{r} \leq E||Ax||_{r}^{r} \leq (1+\varepsilon)|x|_{s}^{r}.$$

$$(2.10)$$

Now fix any $x = \sum_{i=1}^{m} b_i e_i \in l_s^m$ with $|x|_s = 1$. Recalling the distributional inequality for sstable variables mentioned at the beginning of the proof of Lemma 1, we see that the a_i 's defined by (2.4) satisfy

$$a_i \leq C^{1/s} n^{1/s} i^{-1/s}$$

For some constant C = C(r, s). Using this and the easy observation that

$$\left|\sum x_j\right|_{s,\infty}^s \leq \sum |x_j|_{s,\infty}^s$$

if the x_j 's are disjointly supported vectors in $l_{s,\infty}$, we get

$$|(a_i b_j)_{i=1,j=1}^n|_{s,\infty}^s \leq \sum_{j=1}^m |b_j|_{s,\infty}^s |(a_i)_{i=1}^n|_{s,\infty}^s \leq Cn|(i^{-1/s})_{i=1}^n|_{s,\infty}^s = Cn.$$

Assume that r > s/2 and set p = s/r so that $1 . Applying Proposition 1 we get for any <math>x \in l_s^m$, $|x|_s = 1$,

$$P[|||Ax||_{r}^{r}-E||Ax||_{r}^{r}| \ge \varepsilon] \le 2\exp(-\delta_{p}\varepsilon^{q}C^{-rq/s}n^{-rq(1/s-1/r)})$$
$$= 2\exp(-\delta_{p}\varepsilon^{q}C^{r/(r-s)}n)$$

so that (since $m \leq \beta n \leq \alpha n$; α from Lemma 1)

$$P[1-2\varepsilon \leq ||Ax||_r^r \leq 1+2\varepsilon] \geq 1-2\exp(-\delta_p \varepsilon^q C^{r/(r-s)}n).$$

Using Lemma 2, pick an $\varepsilon^{s/r}$ -net of the unit sphere of l_s^m with card $M \le \exp(2r^{-1}\varepsilon^{-s/r}m)$. Then

78

EMBEDDING l_p^m INTO l_1^m

 $P[1-2\varepsilon \le ||Ax||_r^r \le 1+2\varepsilon \quad \text{for all } x \in M] \ge 1-2\exp\left(2r^{-1}\varepsilon^{-s/r}m - \delta_p \varepsilon^q C^{r/(r-s)}n\right)$

hence, by Lemma 3,

$$P\left[\frac{1-4\varepsilon}{1-\varepsilon}|x|_{s}^{r} \leq ||Ax||_{r}^{r} \leq \frac{(1+\varepsilon)(1+2\varepsilon)}{1-\varepsilon}|x|_{s}^{r} \text{ for all } x \in l_{s}^{m}\right]$$

$$\geq 1-2\exp\left[\left(2r^{-1}\varepsilon^{-s/r}\beta - \delta_{p}\varepsilon^{q}C^{r/(r-s)}\right)n\right].$$

Thus if we choose $\varepsilon = \varepsilon(\tau, r) > 0$ and $\beta = \beta(\varepsilon, r, s) > 0$ sufficiently small, we get for $m \le \beta n$ that

$$P[(1-\tau)|x|_{s} \leq ||Ax||_{r} \leq (1+\tau)|x|_{s} \text{ for all } x \in l_{s}^{m}] > \frac{1}{2}.$$
(2.11)

This completes the proof in the case r > s/2.

The general case follows formally from the case r>s/2 by iteration. A more elegant way to finish (which yields a better estimate for β) is to use (2.11) for two different values r_1, r_2 with $s/2 < r_1, r_2 < s$ to select an $\omega \in \Omega$ so that A_{ω} is simultaneously a good isomorphism form l_s^m into $L_{r_1}^n$ and into $L_{r_2}^n$ and use a standard extrapolation argument to conclude that A_{ω} is also a good isomorphism from l_s^m into L_r^n . Q.E.D.

Remarks. (1). It follows from a result of Maurey's [8] and Theorem 1 that for 0 < r < s < 2 and $m \le \beta n$, l_s^m is K(r, s)-isomorphic to a subspace of l_r^n , but we do not know whether K(r, s) can be taken close to one when r > 1.

(2) As is easily seen from the proof, the assumption in Theorem 1 that the range space is L_r^n can be relaxed a bit. It is enough to assume that the range is an *r*-normed space which contains vectors $(e_i)_{i=1}^n$ so that for all $(b_i)_{i=1}^n$,

$$\underset{\pm}{\mathbf{Av}} \left\| \sum_{i=1}^{n} \pm b_{i} e_{i} \right\|^{r} = \sum_{i=1}^{n} |b_{i}|^{r}.$$
 (2.12)

This perhaps explains why our proof breaks down when r approaches 2 (i.e. for r>1), because (2.12) is true for r=2 if the e_i 's are all the same unit vector in any Banach space.

3. The distributional inequality

The main tool for proving Proposition 1 is a martingale inequality which, along with its proof, was communicated to the authors by Gilles Pisier (part (ii) of Proposition 2). This inequality is in turn a consequence of Azuma's martingale inequality (part (i) of

Proposition 2) [1], [13]. Versions of Azuma's inequality have previously been used in Banach space theory [9], [11], [12].

PROPOSITION 2. Let $(d_k)_{k=1}^n$ be a uniformly bounded martingale difference sequence (i.e., $(\sum_{i=1}^k d_i)_{k=1}^n$ is an L_{∞} -bounded martingle which has mean zero).

(i) (Azuma) For all t > 0,

$$P\left[\left|\sum_{k=1}^{n} d_{k}\right| \ge t\right] \le 2 \exp\left[-t^{2} / 4 \sum_{k=1}^{n} ||d_{k}||_{\infty}^{2}\right].$$

(ii) For all $1 \le p \le 2$ and all $t \ge 0$,

$$P\left[\left|\sum_{k=1}^{n} d_{k}\right| \ge t\right] \le 2 \exp\left[-\delta_{p} t^{q} / |(||d_{k}||_{\infty})_{k=1}^{n}|_{p,\infty}^{q}\right]$$

where 1/p+1/q=1 and $\delta_p=(2-p)/8p(q+1)^q$.

Proof. (i) Let E_i ($1 \le i \le n$) be the conditional expectation with respect to the sigma field generated by $d_1, d_2, ..., d_i$, so that $E_i d_j = 0$ for $1 \le i \le j \le n$. Given any real λ , we have

$$\begin{split} E \exp\left(\lambda \sum_{i=1}^{n} d_{i}\right) &= E E_{n-1} \exp\left(\lambda \sum_{i=1}^{n} d_{i}\right) \\ &= E \exp\left(\lambda \sum_{i=1}^{n-1} d_{i}\right) E_{n-1} \exp\left(\lambda d_{n}\right) \\ &\leq E \exp\left(\lambda \sum_{i=1}^{n-1} d_{i}\right) E_{n-1} \left[\lambda d_{n} + \exp\left(\lambda^{2} d_{n}^{2}\right)\right] \quad (\text{since } e^{x} \leq x + e^{x^{2}}) \\ &= E \exp\left(\lambda \sum_{i=1}^{n-1} d_{i}\right) E_{n-1} \exp\left(\lambda^{2} d_{n}^{2}\right) \\ &\leq \exp\lambda^{2} ||d_{n}||_{\infty}^{2} E \exp\left(\lambda \sum_{i=1}^{n-1} d_{i}\right). \end{split}$$

By iterating the above we obtain

$$E\exp\left(\lambda\sum_{i=1}^{n-1}d_i\right) \leq \exp\left(\lambda^2\sum_{i=1}^n ||d_i||_{\infty}^2\right).$$

Hence for all t>0,

$$P\left[\sum_{i=1}^{n} d_{i} \ge t\right] = P\left[\exp\left(\lambda \sum_{i=1}^{n} d_{i}\right) \ge e^{\lambda t}\right]$$
$$\leq e^{-\lambda t} E \exp\left(\lambda \sum_{i=1}^{n} d_{i}\right) \le \exp\left(\lambda^{2} \sum_{i=1}^{n} ||d_{i}||_{\infty}^{2} - \lambda t\right).$$

Setting $\lambda = t/(2 \sum_{i=1}^{n} ||d_i||_{\infty}^2)$ we get

$$P\left[\sum_{i=1}^{n} d_{i} \ge t\right] \le \exp\left[-t^{2} \left/ \left(2\sum_{i=1}^{n} ||d_{i}||_{\infty}^{2}\right)\right].$$

Since also

$$P\left[-\sum_{i=1}^{n} d_{i} \ge t\right] \le \exp\left[-t^{2} / \left(2\sum_{i=1}^{n} ||d_{i}||_{\infty}^{2}\right)\right]$$

we get the desired result.

(ii) Assume, without loss of generality, that

$$|(||d_k||_{\infty})_{k=1}^n|_{p,\infty}=1$$

and choose a permutation π of $\{1, ..., n\}$ so that

$$||d_{\pi(k)}||_{\infty} = ||d_k||^* \quad (1 \le k \le n).$$

Thus we have for k=1, 2, ..., n,

$$||d_{\pi(k)}||_{\infty} \leq k^{-1/p}.$$

Given an integer $N \leq n$ we have

$$P\left[\left|\sum_{k=1}^{n} d_{k}\right| \ge (q+1)N^{1/q}\right] \le P\left[\left|\sum_{k=1}^{N} d_{\pi(k)}\right| \ge qN^{1/q}\right] + P\left[\left|\sum_{k=N+1}^{n} d_{\pi(k)}\right| \ge N^{1/q}\right].$$

But

$$\left|\sum_{k=1}^{N} d_{\pi(k)}\right| \leq \sum_{k=1}^{N} ||d_{\pi(k)}||_{\infty} \leq \sum_{k=1}^{N} k^{-1/p} < q N^{1/q},$$

so we get by Proposition 2(i),

$$P\left[\left|\sum_{k=1}^{n} d_{k}\right| \ge (q+1) N^{1/q}\right] \le 2 \exp\left[-N^{2/q} / \left(4 \sum_{k=N+1}^{n} ||d_{\pi(k)}||_{\infty}^{2}\right)\right]$$
$$\le 2 \exp\left[N^{2/q} (1-2/p) / (4N^{(1-2/p)})\right]$$
$$= 2 \exp\left[-(2-p) N/4p\right].$$

If $t \ge q+1$, set

$$N = \left[\left(\frac{t}{q+1} \right)^q \right],$$

so that

$$1 \le N \le \left(\frac{t}{q+1}\right)^q \le 2N.$$

Then

$$P\left[\left|\sum_{k=1}^{n} d_{k}\right| \ge t\right] \le P\left[\left|\sum_{k=1}^{n} d_{k}\right| \ge (q+1)N^{1/q}\right] \le 2\exp\left[-(2-p)N/4p\right]$$
$$\le 2\exp\left[-(2-p)t^{q}/8p(q+1)^{q}\right].$$

If $t \leq q+1$, then

$$2 \exp[-(2-p)t^{q}/8p(q+1)^{q}] \ge 2 \exp[-(2-p)/8p] \ge 2e^{-1/8} > 1.$$
 Q.E.D.

We turn to

Proof of Proposition 1. For the convenience of the reader, we recall that

$$\Omega = \{-1, 1\}^{n \cdot m} \times (S(n))^m$$

and for $\omega = (\varepsilon, \pi) \in \Omega$, we define

$$f(\varepsilon, \pi) = \left\| \sum_{j=1}^{m} b_j \sum_{i=1}^{n} \varepsilon_{i,j} a_i e_{\pi_j(i)} \right\|^r,$$

where $\|\cdot\|$ is an *r*-norm on \mathbb{R}^n , the b_j 's are reals,

$$a_1 \ge a_2 \ge ... \ge a_n \ge 0$$
, $0 < r \le 1 < p < 2$, and $1/p + 1/q = 1$.

In order to apply Proposition 2 we need to define a martingale difference sequence which sums to f-Ef.

Set $L = \{1, ..., n\} \times \{1, ..., m\}$ and linearly order $\{0\} \cup L$ by taking 0 as the first element and using the Hebrew dictionary order on L; i.e.,

$$0 < (1,1) < (2,1) < \dots < (n,1) < (1,2) < \dots < (n,2) < (1,3) < \dots$$

We let $\mathscr{F}_0 = \{ \emptyset, \Omega \}$ and for $(i, j) \in L$ we define a sigma field on Ω by saying that an atom of $\mathscr{F}_{(i,j)}$ is determined by specifying the values of $\varepsilon_{l,k}$ and $\pi_k(l)$ for all $(l,k) \leq (i,j)$. Then $\{\mathscr{F}_t: t \in \{0\} \cup L\}$ is an increasing sequence of sigma fields; the first field is trivial and the last is the collection of all subsets of Ω .

For $(i,j) \in L$ let (i,j)' be the immediate predecessor of (i,j) in $\{0\} \cup L$ and define

$$d_{i,j} = E(f|\mathscr{F}_{(i,j)}) - E(f|\mathscr{F}_{(i,j)'})$$

so that $(d_{(i,j)})_{(i,j)\in L}$ is a martingale difference sequence which sums to f-Ef. Thus the conclusion (1.8) of Proposition 1 is an immediate consequence of Proposition 2 (ii) and the following inequality, valid for all $(i,j)\in L$:

$$||d_{(i,j)}||_{\infty} \le 4|a_i b_j|^r \max_{1 \le k \le n} ||e_k||^r.$$
(3.1)

For any fixed $(i,j) \in L$, fix any atom A in $\mathscr{F}_{(i,j)'}$ and let \mathscr{A} be the collection of all atoms in $\mathscr{F}_{(i,j)}$ which are contained in A. On A, $E(f|\mathscr{F}_{(i,j)'})$ is the average value of f on A, and if B is an atom of $\mathscr{F}_{(i,j)}$, then $E(f|\mathscr{F}_{(i,j)})$ is on B the average value of f on B. Thus (3.1) will follow once we check that for all $B, C \in \mathscr{A}$

$$\left| \operatorname{Av}_{\omega \in B} f(\omega) - \operatorname{Av}_{\omega \in C} f(\omega) \right| \leq 4 |a_i b_j|^r \max_{1 \leq k \leq n} ||e_k||^r.$$

So fix $B, C \in \mathcal{A}$. Since B and C are both contained in the same atom of $\mathcal{F}_{(i,j)'}$, we have that the values of $\varepsilon_{u,v}$ and $\pi_v(u)$ are specified and equal on B and C for all (u, v) < (i, j). Let us say that on $B, \varepsilon_{i,j}$ and $\pi_j(i)$ are specified by

$$\varepsilon_{i,j} = \varepsilon_B, \quad \pi_j(i) = s$$

while on C, $\varepsilon_{i,j}$ and $\pi_j(i)$ are specified by

$$\varepsilon_{i,j} = \varepsilon_C, \quad \pi_j(i) = t.$$

We define a one to one correspondence from B onto C by defining $(\varepsilon, \pi) \rightarrow (\varepsilon^*, \pi^*)$, where

W. B. JOHNSON AND G. SCHECHTMAN

$$\varepsilon_{u,v}^* = \begin{cases} \varepsilon_{u,v}, & \text{if } (u,v) \neq (i,j) \\ \varepsilon_C, & \text{if } (u,v) = (i,j) \end{cases}$$
$$\pi_w^*(y) = \begin{cases} t, & \text{if } (y,w) = (i,j) \\ s, & \text{if } w = j \text{ and } \pi_w(y) = i \\ \pi_w(y), & \text{otherwise.} \end{cases}$$

Given $(\varepsilon, \pi) \in B$, let z be the unique number in $\{1, ..., n\}$ such that $\pi_j(z)=t$. If t=s then of course z=i. If t=s then z>i because $\pi_j(y)=\pi_j^*(y)$ for all y<i and $t=\pi_j^*(i)$. Thus $|a_i|\ge |a_z|$ since $a_1\ge a_2\ge ...\ge a_n\ge 0$ and we have by the triangle inequality,

$$|f(\varepsilon, \pi) - f(\varepsilon^*, \pi^*)| \leq \left| \left| \sum_{w=1}^m \sum_{y=1}^n b_w \varepsilon_{y,w} a_y e_{\pi_w(y)} - b_w \varepsilon_{y,w}^* a_y e_{\pi_w^*(y)} \right| \right|^r$$

$$= ||b_j \varepsilon_B a_i e_s - b_j \varepsilon_C a_i e_t + b_j \varepsilon_{z,j} a_z e_t - b_j \varepsilon_{z,j} a_z e_s||^r$$

$$\leq 2|b_j|^r (|a_i| + |a_z|)^r \max_{1 \leq k \leq n} ||e_k||^r$$

$$\leq 2^{1+r} |b_j \cdot a_i|^r \max_{1 \leq k \leq n} ||e_k||^r.$$

The inequality (3.8) now follows by averaging over (ε, π) in B. Q.E.D.

References

- AZUMA, K., Weighted sums of certain dependent random variables. Tôhoku Math J., 19 (1967), 357-367.
- [2] BENNETT, G., DOR, L. E., GOODMAN, V., JOHNSON, W. B. & NEWMAN, C. M., On uncomplemented subspaces of L_p , 1 . Israel J. Math., 26 (1977), 178–187.
- [3] BENNETT, G., GOODMAN, V. & NEWMAN, C. M., Norms of random matrices. Pacific J. Math., 59 (1975), 359-365.
- [4] FIGIEL, T., LINDENSTRAUSS, J. & MILMAN, V., The dimension of almost spherical sections of convex sets. *Acta Math.*, 139 (1977), 53–94.
- [5] KASHIN, B. S., Diameter of some finite dimensional sets and of some classes of smooth functions. Izv. Akad. Nauk SSSR, Ser. Mat., 41 (1977), 334–351 (russian).
- [6] LINDENSTRAUSS, J. & TZAFRIRI, L., Classical Banach Spaces, I: Sequence Spaces. Springer-Verlag, 1977.
- [7] LOÉVE, M., Probability Theory I. Springer-Verlag, 1977.
- [8] MAUREY, B., Théorémes de factorisation pour les opérateurs linéaires à valeurs dans les espaces L^p. Astérisque No. 11, Société Math. de France, 1974.
- [9] Construction de suites symetriques. C.R. Acad. Sci. Paris, 228 (1979), 679–681.
- [10] ROSENTHAL, H. P., On subspaces of L^p. Ann. of Math., 97 (1973), 344-373.
- [11] SCHECHTMAN, G., Random embeddings of euclidean spaces in sequence spaces. Israel J. Math., 40 (1981), 187–192.

EMBEDDING l_p^m INTO l_1^n

- [12] Levy type inequality for a class of finite metric spaces. Proceedings of the NSF CBMS Conference on Martingale Theory in Harmonic Analysis and Banach Spaces 1981. To appear.
- [13] STOUT, W. F., Almost Sure Convergence. Academic Press, 1974.
 [14] IBRAGIMOV, I. A. & LINNIK, YU, V., Independent and stationary sequences of random variables. Wolters-Noordhoff Publishing, Groningen, 1971.

Received December 14, 1981