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1. Introduction 

L e t f  be a finely harmonic function defined on a finely open set V in the complex plane 

C. In this paper we investigate the problem: To what extent is fdifferentiable in V? 

There are of course several ways of interpreting the question. Debiard and Gaveau 

[4], [5] have proved the following: Let K c C  be compact and let H(K) denote the 

uniform closure on K of functions harmonic in a neighbourhood of K. Then H(K) 

coincides with the set of functions continuous on K and finely harmonic on the fine 

interior K' of K. And if g E H(K) is the uniform limit of functions gn harmonic in a 

neighbourhood of K, then Vgn converges in L2(m) to a limit Vg, which does not depend 

on the sequence chosen. Here and later m denotes planar Lebesgue measure. In the 

other direction they give an example of a compact set K and a point x0 E K' such that 

[Vgn (X0)I~ ~ as n--.o~. 

It was conjectured by T. J. Lyons (private communication) that {Vg, (x)} always 

converges outside a set of zero logarithmic capacity. In section 3 we prove that this 

conjecture fails: For any compact set E with zero analytic capacity, there exists a 

compact set K with E~_K' and functions gn harmonic in a neighbourhood of K such that 

g,---~0 uniformly on K and [Og,/O~[---~oo uniformly on E (Theorem 1). 

In section 4 we show that parts of the proof of Theorem 1 can be used to prove the 

following estimate for analytic capacity y (Theorem 2): If E, F are compact sets and 

0 < a <  1, then 

y(E) ~ A~[y(E\ F) + C a (F)'/a], 

where Ca is the capacity associated to the potential N -~ and Aa is a constant 

depending only on a. This result in turn implies that any compact set of Hausdorff 

dimension less than 1 is y-negligible, i.e. negligible with respect to approximation by 

bounded analytic functions (Theorem 3). 
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In section 5 we prove  a partial converse  of  Theorem 1. More precisely, we prove that 

if {fn} are functions harmonic in a neighbourhood of K converging uniformly to a 

f u n c t i o n f  such that ]fn - f l  <2-n  on K, then for any rectifiable arc J the sequence {Tfn} 

converges a.e. on JflK' w.r.t ,  arc length on J to a limit depending o n f b u t  not on the 

sequence {f,} (Theorem 4). We also prove that {Vf~} converges C r e v e r y w h e r e  on K' ,  

where C~ denotes Newtonian capacity (Theorem 5). 

In section 6 we consider  a different interpretation of the question above: Given a 

finely harmonic f u n c t i o n f o n  a finely open set, what can be said about the set of points 

w h e r e f i s  finely differentiable? Fuglede [8] has proved,  using a theorem of  Mizuta [16], 

that f is always finely differentiable outside a set G with C~(G)=0, where C~ is the 

outer  capacity associated to the kernel h(z)=]zl-llog(1/]z]). For  completeness we 

include a p roof  of  this result (Theorem 6). In the opposite direction, we prove tha t  

given any compact  set E with Cn(E)=0, then we can find a finely open set V~_E and a 

finely harmonic function f on V such that f is not finely differentiable at any point of  E 

(Theorem 7). 

2. Some preliminaries 

We refer  the reader  to Helms [11] for information about the fine topology, and to 

Fuglede [7] for  the theory of  finely harmonic functions; the latter is used only in section 

6. 

Le t  k(z) denote  one of  the kernels 

1 W(z) = log 

Ra(z) = Izl-a; where 0 < a ~< 1, 

h(z) = Izl-' logl  I. 

Then if G~_{z: Izl < ) is a Borel  set, the capacity of G (associated to the kernel k(z)) is 

defined by 

C k (G) = sup {p(E); p E F k (G)} 

where Fk(G) is the set of  positive measures ~t on G such that 

fk(x-y)d/u(y)<~ for all xCC.  1 
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If k= W, the corresponding capacity is the Wiener capacity,  which we denote by Cw. 
The logarithmic capacity,  cap, is connected to the Wiener capacity as follows: 

cap (G) = exp ( -  C w (G)-1). 

In particular, cap and Cw have the same null sets. If k(z)=R~(z) or k(z)=h(z), the 

corresponding capacities are denoted by Ca and Ch, respectively. If a =  1 we get the 

Newtonian capacity C~. We refer to Carleson [2] for more information about these 

capacities. 

Le t  g(t) be a continuous,  increasing function on [0,~) such that g(0)=0. Let  E be a 

bounded,  plane set. For  6>0  we consider all coverings of E with a countable number  of  

discs Aj with radii 0j~<d and define 

A6g(E)=inf{~g(oj)}, 

the inf being taken over  all such coverings. The limit 

A g ( E )  = l i m  A~g(E) 
6---~0 

is called the Hausdorffmeasure of E with respect  to the measure function g. If g(t)=U 
for some a > 0 ,  Ag is called a-dimensional Hausdorf f  measure and denoted by A a. The 

Hausdorff dimension of  the set E is the unique number r such that 

As(E ) = oo for all a < r  

and 

As(E) = 0 for all a > r. 

A set function related to Ag is the Hausdorff content 

Mg (E) = inf { Eg(oj) } , 

the inf being taken over  all coverings of E with a countable number of  discs Aj with radii 

0i. If  g(t)=t s we get the a-dimensional  Hausdorf f  content  Ms. Properties of Hausdorf f  

measure and Hausdor f f  content  can be found in Carleson [2] and Garnet t  [10]. 

Finally we recall the definition of analytic capacity: If K c C  is compact ,  the 

analytic capacity of K, 7(K), is defined by 
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~,(K) = sup  (If ' (o~)l ;  fEB(K)}, 

where B(K) is the set of functions f analytic outside K such that f (~ )=0 ,  If(z)l~<l 

outside K. 

For a general set E we define 

7(E) = sup {y(K); K compact, KcE}. 

The analytic capacity plays a crucial role in problems involving approximation by 

analytic functions. See Gamelin [9], Garnett [10] and Vitushkin [17]. Some of the metric 

properties of analytic capacity are: 

(I) If K is compact then y(K) ~< M,(K) ~< AI(K ). 
(2) There exists compact sets L such that 

7(L)=O and AI(L)>0.  

(3) For linear, Borel sets E we have 

~,(E) = l l ( E ) ,  

where I(E) is the length of E. 

(4) If E is a Borel set and Aa(E)>0 for some a >  1, then y(E)>0. Analytic capacity 

is related to logarithmic and Newtonian capacity by: 

(5) If K is compact CI(K)~<y(Kt~ < cap(K), with equality on the right hand side if K 

is also connected. 

3. Differentiation in terms of approximating sequences (I) 

Throughout this article we will let D={z; ]z[<~} a n d / )  the closure of D. If/~ is a 

measure on E we put 

P~,(z) = fel~ l~@zl d/~(~) 

and 

when the integrals converge. If K is compact, C(K) and Cn(K) denote the complex and 

real continuous functions on K respectively. 
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LEMMA 1. Let E be a compact subset of  D with v(E)=0. Then for any M > 0  we can 

find a real measure 0 on a compact subset of  l g - E  such that 

(i) PIeI(z) ~ 1; z E E, 

and 

(ii) IO(z)l>~M; zEE.  

Proof. Choose  e>0  with 

1 
e-1>2 �9 log dist (E, C \ D ) "  

Since 7(E)=0, we can find an open set V~E, with VcD,  such that y(V)<e 2 ([18], 

p. 16). Le t  F = D \ V ,  K=V. Let  f2 denote the set of real measures Q on F such that 

PIoI~<I on E. Assume the conclusion of  the lemma is false. Then the sets of  functions 

A={Re0(z) ;  QE~2} and B={fECR(E); f ~ M  on E} are disjoint convex subsets of  

CR(E), and the separation theorem for convex sets yields a real measure/~ on E with 

f gdl~<<,l for gEA,  

This implies that ,u is positive, and 

Reff dla(~)do(z)~-z 

Let  G be the set of  functions g E CR (F) such that 

dt~>~l for f E B .  

~<1 for q E f2. (3.1) 

n 

g(z) <<- ~ a i l o g  ~ on F, 
i=  1 I z -  ZiJ 

for some z~ . . . . .  znEE and a! . . . . .  an>0, Ei~ ~ a;---< 1. I f 0  is a real measure on F such that 

~(g) ~< 1 for all g E G, (3.2) 

then 0~>0 and Q E if2. Hence  by (3.1) we have 

Q(Re/2) ~< 1 and Q(-Re/2)  ~< 1. (3.3) 

So, by the separation theorem applied to the functions Re/2 and - R e / 2  separately, we 

can conclude that there must exist  z~ ..... zn EE  and a~ ..... an>0 with E;~ 1 a;~<4 and 
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IRe fi(z)l ~ ~p(z), z E F  

~ _ ! _ _ i  
~fl(Z) = 2 a i l o g  ]Z-Zil" 

i=1 

Define 

f ( z )=e xp  e ~ - /  , 

and extend f cont inuously to C so that 

z E C \ V  

(3.4) 

and put 

Then r is C ~ on C. 

Define 

1 ( f ( z )  din(z) 

h = f - g .  (3.6) 

By the choice of  e we have ~ < e  -~ outside D, so 

supp 
0 ~ . -  

Since gg=g~cp)-fgcp=rflgf, we see that g is analytic outside KN {~<2e  -1} and h is 

analytic outside KN {~>e-~} .  Moreover ,  g ( ~ ) = 0  and both g and h are continuous on 

C. (See Gamelin [9], L e m m a  II.1.7.) 

If(z)l ~< 1 +exp  [e~(z)] for z ED. 

Then f is analytic outside K, f (oo)=0 and 

If'(oo)l -- lim Izf(z)l -- ~IL"II/> •  (3.5) 
z--, ~ M " 

Let  0 be a C 1 function on R with 0~<0(x)~<l for x E R ,  0(x)=l  if x<~e -l ,  0(x)=0 for 

x>>-2e -~ and O'(x)<~4s for  x E R .  Put 

of(z) = o(~(z)) .  
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O~ <~4e 8~p <~4ei~l iz_zil for  a l lz ,  

]f(z)l ~< e 2+ 1, on supp 0cp. 

~E / )  n {~p ~2e -1} .  

Ifr162 ~ e2+ 1 

fo dm(z) [g(~)l<~e2+l+ 4e(e2+l) a i 
= Jz-r Iz-z,} 

n 

~< N 1 + N 2 e ~  a i log 1 
,=, I~-z,I 

= N 1 + N :  e~p(~) ~< N 1 + 2 N  z = N 3, 

where N1, N2 . . . .  denote  constants.  

(The inequality 

fD dm(z) 1 
Iz-;I Iz-z,I ~<const. . log I~-zil  

can for exampel  be seen by splitting D into 4 parts: 

01 =O n (z, Iz-~l~ I~-zil), O2=D n (z; I z - z i l~  I~-zil), 

D 3 = ( D \ D  l) I3 {z; Iz-r O4=(O~D2) fl {z,lz-r 

Therefore  by the maximum principle 

[g(O[ ~< N3 on C, 

and therefore 

9 t -822906  Acta  Mathemat ica  149 
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Ig'(~)l <~ N 3 y(K)  ~ N3/?2. 

Also 

Ih'(~ = -7 7 7  din(z) 

Now if A is a disc of radius r, then 

SO 

dm(z) 
<~ 4/?(e2+l) E a  ~- ,  Iz-zil �9 

fa ~ l-7-~ dm(z) <- 2srr = 2Jr. M 1 (A) 
Iz-zil  

Ih'(~)l ~ 32e( e2+ 1) M, ({~0 I>/?-1}) ~< N4/?2, (3.8) 

by Corollary 1, p. 202 in Landkof  [12]. 

Combining (3.5)-(3.8) we get 

__e ~< if,(~)l ~< ig,(o~) I + [h,(o.) I ~< (N3+g4) /72 ,  
M 

which is a contradiction if/? is small enough. 

THEOREM 1. Le t  E be a compact  set with y(E)=O. Then we can f ind  a compact  set 

K with E ~ K '  and a sequence fn o f  real-valued functions,  each harmonic in a neigh- 

bourhood o f  K, such that f ,  ~ 0 uniformly on K and lafn/ogl --, o~ uniformly on E. 

Proof. We may assume E~_D. By Lemma 1 we can find a sequence of real 

measures ~)n, each supported on a compact subset o f / ) \ E ,  with 

PIo,I~<2 -n and 10.1>/3" o n E .  

We may also assume that Qn is a finite linear combination of point masses. Let  

and let 

K = {z ;P  e (z) <<- 2} fl/9. 
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Then, since Po is lower semicontinuous, K is compact. Moreover, KN supp (On)=0 for 

all n. Since PQ is finely continuous and Po~<I on E, we must have E~_K'. 

Now let 

fn = 2-nPe, " 

Thenfn is harmonic in a neighbourhood of K, Ifol <2'-n on K, and if z EE 

~(Z) I ~'2-n[On(Z)[~(3) n" 

That completes the proof of Theorem 1. 

Remark. For finely homomorphic functions the situation is different. T. J. Lyons 

([13], [14]) has proved that if rE C(K) is finely holomorphic in K' (i.e. fEAr (K) )  then 

f ' (z)  exists for all z E K ' ,  in the sense that if we choose any sequence of functions 

fn EAy(K) extending holomorphically to a neighbourhood of z and converging uniform- 

ly to f on K, then limn_,= f'n(z) exists and depends only on f ,  not on the sequence 

chosen. 

4. An estimate for analytic capacity 

Part of the proof of Lemma 1 can be adapted to yield the following estimate for analytic 

capacity. As mentioned in section 2 we let Ca denote the capacity associated to the 

potential Izl -~. 

THEOREM 2. Let E and F be compact, 0 < a <  1. Then 

7(E) ~< N(a) [7(E\F)+C~ (F)'/~], 

where N(a) is a constant depending only on a. 

Proof. We may assume that F has a smooth boundary, since in general we can find 

a set Fo~_F with smooth boundary and Ca(Fo)-Ca(F) as small as we wish. Then by 

Theorem 3, p. 17, in Carleson [2] there is a positive measure/z on F with I ll=Ca(F) 
and, writing 

W(z) = J I r  a 

~0(z) = 1 for z E F and ~p(z)~ < 1 everywhere. 
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Let 0 be a C 1 function on R with 0~<0~<l, 0(x)=l for x ~ ,  

[0'(x)[~<8 everywhere. Put 

Then q~ is C ~ on C. 

ce(z) = o(w(z)). 

0(x)=0 for x~  3 and 

L e t f b e  analytic outside E and satisfy 

Ill ~<1, f (~)  = 0 and f ' ( ~ )  = v(E). 

Define f to be 0 on E and put 

f O.~_dm(z) 

Then g is analytic outside En {~p~<3}, and therefore outside a compact subset of E \ F .  

Put 

h = f - g .  

Then h is analytic outside EN {~p~>�89 (See Gamelin [9], Lemma I. 1.7.) 

Note that 

-~-  ~<8 -~-  ~ 1 6 a  iw_zl~+,. 

Thus for ~ E C we have 

]g(~)]~<l+ 16a f f dm(z)d/u(w) 
[z-C[ [w-z[ ~+' 

<~ 1 +N,(et) f dkt(w~) - 1 + N  1 (a) ~p(~) <~ 1 + N  1 (a). 
) Iw-CI ~ 

(N, (a), N2 (a) . . . . .  denote constants depending only on a). Therefore 

tg'(oo) I ~< [t +N,  (a)] 7(E~F).  

Also, for ~ E C we have 

Ih(~)l ~ 2+Nl  (a), 

(4.2) 

SO 
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Ih'(~)l ~< [2+N, (a)] ~,((W I> �89 

),({~fl I> ~) <~ M, {W 1> -~}) ~< N 2 (a) C a ({~ I> _1 })l/a 2 
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(4.3) 

(4.4) 

(The last inequality follows from the existence of a positive measure tt on E such that 

kt(A(z, r))<.r for all z E C, r>0  and kt(E)>-N. M1 (E), where N is a constant.) 

Moreover,  by Lemma 2.4, p. 149 in Landkof  [12] 

C a ({~ >I �89 ~< 4C a (F). (4.5) 

So, by combining (4.1)-(4.5) we conclude that 

y(E) = f ' ( ~ )  ~< Ih'(~)l+lg'(~)l ~ N 3 (a) [y(E\F)+Ca(F)'/a], 

and the proof is complete. Theorem 2 is an improvement on Theorem 6. l of Davie [3]. 

One application of  Theorem 2 is the following: 

A subset G of  the extended complex plane S z is called y-negligible if for some 

constant M > 0  w h e n e v e r f i s  a bounded Borel function on S 2, analytic on some open set 

V, we can find bounded Borel functions on S 2 analytic on an open set containing V U G 

such that [f,l<~M~ on S 2 and f,,-->f pointwise on V. In other words, the y-negligible 

sets are the negligible sets in connection with bounded pointwise approximation by 

analytic functions. A bounded, plane set G is 7-negligible if and only if 

7(TU G) ~< M),(T), (4.6) 

for some constant  M > 0  and all plane sets T (see Davie [3]). Using Theorem 2 we get: 

THEOREM 3. Let  K be a compact set o f  Hausdorff  dimension less than 1. Then K 

is y-negligible. 

Proof.Let L be a compact  subset of T. Then by Theorem 2 

7(L U IO <~ A(a) [ y ( L \ K ) +  C a (K)l/a]. 

By assumption there exists a < l  such that Aa(K)=0,  and this implies that C,~ (K)=0 

(see Theorem 1, p. 28 in Carleson [2]), so the result follows from (4.6). 

10-822906 Acta  Mathemat ica  149 
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5. Differentiation in terms of approximating sequences (II) 

We now set out to prove a converse  of  Theorem 1 in section 3. To get a more general 

result we will use the following theorem of  Calderon [1]: 

There  exists a > 0  such that if q0 is a real function on R with I~'l~>a and z(t)= t+i~(t), 
then, writing 

Qf(t) = sup 
e>0 

Is-tl~* f(s) ds 
Z(S)-Z(t) J 

we have 

[{t; Qf(t) >2}1 ~< N.llfl[, 
2 

for a l l f E L  1 (R), h E R .  

Here  [ [ denotes  1-dimensional Lebesgue measure and, as before,  NI,  N2 . . . .  denote  

constants.  

We require the following corollary: 

COROLLARY 1. Let qg, z be as above. Let a > 0  and write 

f f~s) ds 
Tf(t) = l 

) ia+z(s)-z(t) 

Then 

[{t;lTf(t) I > 4}[ ~ Nzll0ql, for a l l f E L '  (R) , ) ,>0 .  

Proof. 

Izf(t)l ~ ( As)Ms 
_tl<.~ ia+ z(s)-z(t) 

+a fs f(s)ds + f~ f(s)ds 
_,l>~a {ia+z(s)--z(t)} {Z(S)--z(t)} -tl>~a Z(S)--z(t) 

N3 fs fs lf(s)l d s+l f s  f(s)ds �9 <- If(s)lds+N 4 a 
a -riga -tl>>-~ ( s-t)z -tl>-a Z(S)--z(t) 

The first two terms have L!-norms bounded by N5 IlJ]ll, so the result follows from 

Calderon's  theorem. 
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COROLLARY 2. Let cp, z be as above, let a > 0  and let 0 be a (complex) measure on 

R. Then 

i{t lf do s, 
ia+z(s)-z( t )  

N~ II011 
;t ' 

2 > 0 .  

Proof. This follows from Corollary 1 by approximating Q by absolutely continuous 

measures.  

LEMMA 2. Let cp, z be as above. Then there is a constant N6 such that for any 

compact subset E o f  R with IEI>0, there is a positive measure I~ on z(E) with 

ILulI~>N61EI and I~(z)l<l, zCC\z(e).  

Proof. It suffices to show that,  given a>0 ,  there is a positive measure/~ on z(E) 

with 

ILulI~N61EI and ~(z)l<~l for z= t+iy ,  ly-qg(t)l>a. (5.1) 

Then we can take a sequence an---~0 and a weak-star  d u s t e r  point of the corresponding 

/~'s. So suppose there is an a > 0  such that (5.1) does not hold for any positive measure/z  

on z(E). Then there is no positive measure o on E with 

f do(s) 1~<1 f o r t C R ,  e = + l .  
I 

Ilcrll I>N 61El and eia+z(s)-z(t)  I 
Let  Co (R) be the continuous functions on R vanishing at ~ .  Consider the space 

S=Co(R)+Co(R),  with norm ll(x, y)lt=max(tlxll, llyll). Apply the separation theorem f o r  

convex sets to the unit ball B and the  set K={(f~ol,f~ol); o positive measure on 

E, Iloll~>N6 IEI}, where  

f~(t) = ( do(s) ; e +_1. 
eia + z ( s ) -  z( t) 3 

Then we get complex measures O, r on R such that II011+llrll~l and 

If de(s) +f d~(s) 
Re ia+z(s)-z( t )  - i a+z ( s ) - z ( t )  

> ( N 6 I E ] ) - '  for tEE. 

But this contradicts Corollary 2 if N6= 1/3A 2. 
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We will also need the following result, which is an adaptation of  Theorem 9.9 in 

Fuglede [7]: 

LEMMA 3. Let K be compact and let Zo ~ K'. Then we can find a fine neighbour- 

hood L~_K of  Zo and M > 0  such that whenever f is a real harmonic function in a 

neighbourhood o f  K with L]7<~l there, we can find a measure p supported on a compact 

subset o f  C \ L ,  with ILuII~<M and 

Pl, = f on L. 

Proof. Let  U, Vbe  open sets with Kc_V, ~'~U, We may assume U~_D={Iz[<~}. Let  

~0 be a C 2 function with compact  support  in U, with q0= 1 on V. Choose a bounded C 2 

superharmonic function p on U with p ( z )> l  for  z E U and 

Sp dv < p(zo), 

where v is the Keldysh measure for Zo w . r . t . K .  (This is possible since Zo E K' . )  

Le t  Un be a decreasing sequence of  open sets with smooth boundary,  such that 

ao 

O n_~V and I'1 U ~ = K .  
n = l  

Define p~ on U by 

p on U \  U n 
P"= plOUn on U, 

where PiaU,, is the harmonic extension of  p[OUn to Un. Then p~ is continuous,  

superharmonic and p~ 1' q, where q is superharmonic on U. Moreover ,  

fpdv<p(Zo)  and q(z)<~p(z) for z E U .  q(z0) = 

Choose 2>(p(Zo)-q(Zo)) -1 and let 

L = {z E U;2(p(z)-q(z)) > 1}. 

Then L ~ K  and L is a fine neighbourhood of  Zo. 

Also let 

Ln = ( z E U; 2(p(z)-pn(z) )> 1}. 
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Then L,, is open and L~L~=_ Un. 

Now l e t f b e  a real harmonic function on an open set W~_K, with ~ < 1 .  Choose n 

so that (Jn~W. Define u on U by 

~min{2p, f+(,~+l)p,}  on W 

"=L p on U\O. 

The two definitions agree on W \  On, since p=p,, there. The function u is superhar- 

monic in U and 

f =  u - ( ; t + l ) p n  in L~. 

Since u and Pn are harmonic in Ln, so is u. 

Since u and pn are superharmonic,  V2u and V2pn are positive measures on U. Let  

o=Vz(qgu), r=V2(qOpn) a n d / ~ = 0 - ( 2 +  l)pn. Then 0 and r have no mass on Ln, Po=q~u 

and Pr=cpp,,. So P~,=f. 

Now oIV is positive, so Polv(Z)>~log2 �9 I[olVll, zE u (using U~_D). Outside aco rn -  

pact subset of  V we have VZ(q~u)=2V2(qgp). Hence  IIoIU\VH<~NI and 

[P,,w\v(Z)I<.N 2, z E U ( N , ,  N z . . . .  denote  constants independent  of jO. So IlalVIl~< 

(log2) -1 [sup [cPul+Nz]=N3 and IIolI<~NI+N3. Similarly Ilrll~<N4. That  completes the 

proof. 

We are now ready for a partial converse  of  Theorem 1. A weaker  form of  this 

result (with straight line segments instead of  rectifiable arcs) could be proved without 

the use of  Calderon 's  theorem,  but using the weak-type (1,1) estimate for  the Hilbert 

t ransform instead. 

THEOREM 4. Let K c C  be compact and J ~ C  a rectifiable arc. Let fn be real 

functions harmonic in a neighbourhood o f  K such that fn---~f uniformly on K, with 

If.(z)-f(z)l<2-" for zEK.  Then Vfn converges a.e. on JNK'  with respect to arc length 

on J to a limit depending on f but not on the sequence {fn}. 

Proof.Suppose Vfn does not converge a.e. on JN K' .  Let  F be a compact  subset of  

JN K'  of  positive length such that Vfn(z) does not converge for any z E F. Parametr ize J 

by z=O(s), s = a r c  length, O<~s<~S. Then 0' exists a.e. and 10'1--1 a.e. By Egoroff ' s  

theorem there is a compact  set Eo_~[0, S] such that lEvi>0, q~(Eo)~_F and 

O(s+t)-O(s) ~ O'(s) as t--*0, uniformly for sEEo. 
t 



142 A. M. DAVIE AND B. ~)KSENDAL 

Then one can readily find, after rotating the coordinates if necessary,  a function z(t) as 

in Calderon 's  theorem and a compact  set E~_R such that IEI>0 and z(E)~_Fo. 
Let  to be a point of  density of  E w.r.t .  Lebesgue measure on R. Since Z(to)EK', 

there exists, by L e m m a  3, a fine neighbourhood L~K of  Z(to) and a constant M such 

that for every  function g harmonic in a neighbourhood of  K we can find a measure 

with support  in C \ L  such that 

g(z) = P,(z) in L, [~t[ l~M- suplg I 
K 

Since L is a fine neighbourhood of  Z(to) and to is a point of density for  E, there exists a 

compact  set Q~_E with IQI>0 and z(Q)~_L. For  each n let ~r~ be a measure with support  

in C N L  such that 

Write 

and let 

L-L+,=Po; IGll ~M.2'-n. 

hdz) = -~z (fo(z)-fn+ ~(z)) = 6n(z), 

an = (tEQ; Ihn(z(t))l> 2 -n/2} 

We can find a compact  set Rn~_Qn and a wnEC such that 

I w n l -  - 1, IRnl~-~-lanl and Re[whn(z(t))]> 2 -(n/2)-' 

By Lemma  2 there is a positive measure pn o n  z(gn) with 

I~ul l> t~ lQn[  and 

Combining (5.2) and (5.5) we get 

N63 "2-n/2-'lQnl <~ f hn dpn 

SO 

[fin(Z) I ~< l, zECNz(Rn). 

IQnl ~N7 "2-n/2. 

(5.2) 

(5.3) 

on R n. (5.4) 

(5.5) 

 llooll M 2 '-n 
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Therefore 

so for a.a. tE Q there exists m with t~ I.Jn~,~ Q,. 

For such a t we have, for r>~m and k>~O, 

- CYs  j=r 

so that {Of~/as converges a.e. on Q. 

r + k -  1 

]hJ(z(t))] <" E 2-J/Z<~Z2-r/2' 
j=r 

This contradiction shows that {Vfn) converges a.e. on J N K'. 

I f f=O then the same argument applied to f,, instead offn-f ,+l  shows that Vf,,-,O 

a.e. on JN K'. So the limit is independent of the choice off,, (up to sets of zero length). 

That completes the proof. 

Basically the same proof also gives the following: 

THEOREM 5. Let K c C  be compact and let fn be real functions, harmonic in a 

neighbourhood o f  K, such that f,,---~f uniformly on K, with supK If, -fl<2-". Then Vfn 

converges Cl-everywhere on K' to a limit depending on f but not on the sequence {f,,}. 

(C1 is the Newtonian capacity, defined in the introduction.) 

Proof. Suppose there exists a Borel set G with C~(G)>0 and such that Vf,, does not 

converge for any z E G. By Doob's quasi Lindel6f principle for the fine topology (see 

Doob [6]) and the subadditivity of C1 (see Carleson [2], p. 24) we conclude that there 

exists a point z0 E G such that 

C~(Gn U ) > 0  

for all finely open sets U with z0 E U. 

As in the proof of Theorem 4 we find a fine neighbourhood L of z0, L c K ,  a 

constant M and measures on with support in C \ L  with 

f.-L+,=Po, onL, IIo.ll M-2'-". 

So we put 

0 
hn(z) = -~z (fn(z)-f~+l(z)) = O,(z), 
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Q.= {z6GnL;  Ih,(z)l > 2-"n}. 

Then we can find a compact set Rn~_Qn and w, EC with [w,[=l, such that 

> ~ l c l ( o .  ) and Re[whn(z) ] > 2  -n/2-1 on R.. CI(Rn) 

Choose a positive measure/~,, on R ,  such that 

lu~(Rn)~Ic , (R. )  and f d/~,(~)< 1 for zr  

Then 

Therefore 

2-'2-4c,(On) lfhnd n 
CI(Q.) <~ 32M-2 "/2, 

and we conclude that {af,,/Os converge Cv-everywhere on GNL. 
This contradiction proves the theorem. 

If we combine Theorem 1 and Theorem 4 we get the following: 

COROLLARY 3. Let J be a rectifiable arc and E a Borel subset of  J of  positive 
length. Then ~(E)>0. 

Corollary 3 was conjectured by Denjoy and recently proved by Marshall [15], also 

using Calderon's theorem. 

In the light of Theorem 1 and Theorem 4 it is natural to conjecture that, in the 

circumstances of Theorem 4, {Vfn} converges on K', except on a set of zero analytic 

capacity. One could prove this by the method of proof of Theorem 4 provided one 

could show that 

(a) analytic capacity is subadditive, i.e. 

~(S 13 T) ~< y(S)+),(T), 

for all Borel sets S, T. (See Davie [3].) 

(b) Any compact set E with y(E)>0 admits a non-zero positive measure/.t with 
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~(z)l ~< 1 for all z ~ C \ E .  

(See Zalcman [18], p. 20.) 

(The proof actually requires I~u[I~>A~,(E) where A>0 is independent of E, but one 

can in fact show that (b) implies this.) The validity of (a) and (b) is open. 

6. Fine differentiability 

Let f be a real function defined on a finely open, plane set V. We say that f is finely 

differentiable at a point ZoE V if there exists a vector Vf(zo)E R 2 (called the fine 

gradient o f f  at Zo) such that 

V(z)-S(Zo)- <z-z0, VS(z0) 0 
Iz-z01 

when z converge finely to Zo. (If z=a+ib, w=u+iv then (z, w)=au+bv.) 

If f is finely harmonic in V, to what extent is f finely differentiable in V? As 

mentioned in the introduction, Fuglede [8] has proved, using a result of Mizuta [16], 

that f is finely differentiable outside a C~-null set where C$ is the outer capacity 

associated to the kernel h(z)--Izl -~ log I/Izl. For completeness we first give a proof of 

Fuglede's result (Theorem 6), and then we proceed to prove that this result is the best 

possible (Theorem 7). 

THEOREM 6. (Fuglede). Let f be finely harmonic on a finely open set V. Then f is 

finely differentiable at each point, except on a C~-null set. 

Proof. Suppose not. We may assume VcD.  Then there is a set E~  V with C~ (E)>0 

such that f is not finely differentiable at any point of E. By Doob's quasi-Lindel6f 

principle ([6]) we can find zoEE such that C~ (EN W)>0 for every finely open set W 

containing z0. By Theorem 9.9 in Fuglede [7], there is a finely open set U containing Zo, 

with Uc_ V, and a real measure p such that 

f = P~ o n U .  

Since C~ (UNE)>0 we can find z ~ UNE such that S h(~-z)d~l(~)<~176 We shall obtain 

a contradiction by showing that P~, is differentiable at z: 

Fix e>0 and write p = e + r ,  where J" h(~-z)dlal(~)<e and z ~ supp r. 

Let an={r162 Then 
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Let an=alA n and put 

Then 

o o  

E n2n IoI(A.) < N, e, 
n = l  

Q = (~;2-"-2<1~-zJ<2 -"+' 

where N] is a constant. 

and P}0.1(~)>te2-"}. 

Cw(Q.) <~ 2"lal(A.), 
g 

where Cw is the Wiener capacity defined in the introduction. 

Therefore 

n 

so if we put L = V ~ U  n ~"2n, L is a fine neighbourhood of z0 by Wiener's criterion. 

Now let EEL. Then ~EAn for some n. 

Writing Bn=An_ I UA. UAn+ 1 we have 

e~176 ~1----~ ( l o g - -  

~-~ ? Ir Jc-,B~ 

The first term is bounded by 

and the second by 

1 l o g - ~ l  ~ dial(w) 
Iw-r Iw-zl 

+l__L_ 

(dial(w) ~< N3 e 
N2 j Iw-zl 

[PIo ~ d+lo~162 1)IoI(BD] 2 "+' ~< N 4 e. 

since ~ Q . - I  UQ,, UQn+l. 

So 

I eo!~)-Po(z) 
~-z I <~NSe' 

and since P~ is differentiable at z we conclude that P~ is finely differentiable at z. 
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Nex t  we turn to the converse  of  Theo rem 6. We need the following lemma: 

LEMMA 4. Let E~_D be compact such that Ch(E)=0. Then there is a positive 
measure p on D consisting of  a countable sum of  point masses such that 

h(~-z)d~(~)= ~ and - ~  I, for all zEE. 

Proof. It  suffices to construct ,  for a given M > 0 ,  a posit ive measure  cr on a compac t  

subset  of  D \ E  such that  

~ 1, for zEE. 

For  then we can modify  o so that  it is a finite sum of point masses .  

Then  we can take a sequence  Mn=3 n with corresponding on and define 

/ t=  22-no,,.  

So let M be given. Choose  e>0.  Le t  F be a compac t  neighbourhood of  E such that 

F~D, Ch(F)<e and F has smooth  boundary .  By Theorem 3 of Car leson [2], p. 17, there 

is a posit ive measure  v on F with 

Ilvll=Ch(F) and ( h ( ~ - z ) d v ( ~ ) = l ,  zEF. (6.1) 
J 

Choose  6<d i s t  (E, C \ F )  and let 

~p(z) - z;~2" _< dv(~). 
Ir ~6 

Then 

~p(z) _ < e for z E C ,  
"< :r6~ 

f W(z)dm(z)=- p fF(f dm(z))dv(~)=Ch(F) 
-z~ ~ 

and for zEE we have,  by (6.1), 

S h(w-z)  ~p(w) dm(w) = 1. 

(6.2) 

(6.3) 

(6.4) 
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(To see this, note that f rom (6.1) we have,  for zEE 

~d2 = fa(z.o) ( fch(r dv(r )dm(w) = fc ( fw_ zl~ h(r dm(w) ) dv(~) 

Substituting w'=r in the inner integral we get 

~o2= fc (fr h(w'-z)dm(w')) dv(r fc(fr dv(r h(w'-z)dm(w')" 

Hence  

l J~p(w')h(w'-z)dm(w') = I for zEE.) 

Since Ch(F)<e, it follows that if we choose e small enough (e< 1/30MZe M will do), we 

have 

f qff~)dm(~) I for all zCE. (6.5) 
I -zl 2M 

Let  U be open,  E~U~_D, with M(U) so small that 

fv Jrd2 h(~-z)dm(~)<~--~e, for z E C .  

Then 

ft h(~-z)~P(~)dm(~)<~2, using (6.3). 

Now put o=2Mq~mlc\v.  Then a has the desired properties.  

For  the proof  of  our  last result, we will need the following lemma: 

LEMMA 5. Let I~ be a positive measure on D and let a>0 .  Put 

A = {z ED;P~,(z) > a). 

Then 

(i) Cw(A) ~ a-'lLull. 

If in addition It has no mass outside A, then 
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Proof. Let  o be any positive measure on A, P,,~< I. Then 

Ilall < a-l f P,,do = a-l f Pod/ < a-'lLull, 

which proves (i). 

I f p  has no mass outside A, we obtain, since Pa_~ ~<I outside A, 

Cw(A) = sup {a(A); (x positive measure on A, P,, ~< 1 outside A} 

>I a-lp(A) = a- ' lLul l  , 

which proves (ii). 

THEOREM 7. Let  E be a compact set with Ch(E)=0. Then we can f ind a finely open 

set V ~ E  and a finely harmonic function f on V such that f is not finely differentiable at 

any point o f  E. 

Proof. Assume E ~ D .  Let/~ be as given by Lemma 4. Then P~,< 1 on E, because 

log t<t  for all t>0.  

Let  

and put 

V = {z E D; P~,(z) < 1 } 

f=e . .  

Then V is finely open, E ~  V and f is finely harmonic on V. 

Fix z E E. We show t h a t f i s  not finely differentiable at z; in fact we show that if L is 

a fine neighbourhood of  z with L_~ V then ( f (O- f ( z ) ) / (~ - z )  cannot be bounded for ~ E L. 

Suppose on the contrary that 

I f ( O - f  (z) I <<- M for r E L. (6.6) 
~ - z  I 

Let An, B~ be as in the proof of  Theorem 6. If  CEAn we have 
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I -zl -,B. Iw- l 

~2n~ log ~-~ d ~ ( w ) - X  1 n2n~.,~(nn)-N2 , 
A n 

(6.7) 

using the fact that fd/u(w)/Iw-zl<~l. 
Let 

~ .  = {~; Pula. (~) > 2-"(M+N, n2nl.t(Bn)+N2) } �9 

Then Q,~B~ if we choose Nl~>3 log 2. Since/~ is a sum of point masses,/tlA~ has no 

mass outside g2~ and therefore 

using Lemma 5. 

Cw(Q.) = 
2n/t(A.) 

M + N  1 n2"/t(B.) + N  2 

Since En2"/~(A.)=~ and Z2"/~(A.)<~ it follows that ZnCw(~2n)=~. This can be 

seen as follows: Let an=nZ"lu(A.), C.=nCw(ff2.), n>~3, b = N ~ ( M + N 2 ) .  

Then Ea~=~,  En- la , ,<~.  Suppose 2 C . < ~ .  Then there exists no such that 

n>n o :~ C. <(b+9) - lN~  1. 

So for n>no, 

(b+9) a,, ~ 3a,,_ 1 +an+an+ 1 +b. 

Hence if n>no and a~>l ,  

3a n_ l k  an+ l ~ 8 a n .  

So either 

an+ I ~ 2a n o r  an_ 1 ~ 2a n. 

In the former case repeated application gives 
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an+ k ~ 2kan for all k I> 1, 

which contradicts  E n - t a n < ~ .  

In the latter case  we get an_~2kan as long as n-k>-no . So 

"~no--n 
a n-~,. an0 i f n > n  o a n d a  n~>l 

This implies that an<  1 for  n large enough,  and therefore  

a n 
C n >I 

(5+b)  N l 

for n large enough,  which contradicts  ECn<oo. But by (6.6) and (6.7) we 

see that AnNLng2n=~) ,  hence Anng2n~__An~L. Since ZnCw(Bnnff2n) =oo, we have 

~..nfw(Anfl~'2n)=~176 and therefore  Z n C w ( A n \ L ) = o o ,  contradicting the assumpt ion  

that L is a fine ne ighbourhood of  z. 
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