On elliptic systems in \mathbf{R}^{n}

by
ROBERT B. LOCKHART $\left({ }^{1}\right)$ and ROBERT C. McOWEN
University of Notre Dame, Notre Dame, IN, U.S.A.
Northeastern University,
Boston, MA, U.S.A.

1. Statement of results

This paper studies elliptic $k \times k$ systems of partial differential operators in \mathbf{R}^{n} which may be written in the form

$$
\begin{equation*}
A=A_{\infty}+Q \tag{1.1}
\end{equation*}
$$

where A_{∞} is an elliptic system of constant coefficient operators and Q is a variable coefficient perturbation with certain decay properties at $|x|=\infty$.

For the case $k=1$ such operators were studied in [6], [7] and [8] under the conditions

$$
\begin{equation*}
A_{\infty} \text { is an elliptic constant coefficient } \tag{1.2}
\end{equation*}
$$

operator which is homogeneous of degree m
and the coefficients of

$$
Q=\sum_{|a| \leqslant m} q_{a}(x) \partial^{a}
$$

satisfy $q_{\alpha} \in C^{\prime}\left(\mathbf{R}^{n}\right)$ and

$$
\begin{equation*}
\varlimsup_{|x| \rightarrow \infty}\left|\langle x\rangle^{m-|a|+|\beta| \partial^{\beta}} q_{a}(x)\right|=C_{a, \beta}<\infty \tag{1.3}
\end{equation*}
$$

for all $|\beta| \leqslant l \in \mathbf{N}$. (Here and throughout this paper we let \mathbf{Z} denote the integers, \mathbf{N} denote the nonnegative integers, $\langle x\rangle=\left(1+|x|^{2}\right)^{1 / 2}, p^{\prime}=p /(p-1)$, and use standard conventions for multi-indices $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbf{N}^{n}$ and $\partial^{a}=\left(\partial / \partial x_{1}\right)^{a_{1}} \ldots\left(\partial / \partial x_{n}\right)^{a_{n}}$.)

[^0]Such operators are bounded on certain weighted Sobolev space defined as follows: for $1<p<\infty, l \in \mathbf{N}$, and $\delta \in \mathbf{R}$ let $W_{l, \delta}^{p}$ denote the closure of $C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ in the norm

$$
\|u\|_{w_{p, \delta}^{p}}=\sum_{|a| \leqslant l}\left\|\langle x\rangle^{\delta+|a|} \partial^{\alpha} u\right\|_{L^{p}}
$$

(We should mention that these spaces were denoted $M_{l, \delta}^{p}$ in [2], [3], [7], and [8], and $H_{l, \delta}^{p}$ in [4] and [6].) Clearly (1.2) and (1.3) imply that

$$
\begin{align*}
& A_{\infty}: W_{l+m, \delta}^{p} \rightarrow W_{l, \delta+m}^{p} \\
& A: W_{l+m, \delta}^{p} \rightarrow W_{l, \delta+m}^{p}
\end{align*}
$$

are bounded operators. In fact, if we let Poly (δ) denote the space of polynomials in x_{1}, \ldots, x_{n} of degree $\leqslant \delta$ and $d_{P}(\delta)$ its dimension (note that Poly $(\delta)=\{0\}$ if $\delta<0$) then the following theorems were proved in [6] and [8]:

THEOREM 1. If (1.2) holds then $(\dagger)_{\infty}$ is Fredholm if and only if

$$
\begin{array}{cc}
-\delta-\frac{n}{p} \notin \mathbf{N} & \text { if } \delta \leqslant-\frac{n}{p} \tag{1.4}\\
\delta+m-\frac{n}{p^{\prime}} \notin \mathbf{N} & \text { if } \delta>-\frac{n}{p} .
\end{array}
$$

Furthermore, the nullspace and cokernel of $(\dagger)_{\infty}$ consist of polynomials, and are of dimension

$$
\begin{gather*}
d_{P}\left(-\delta-\frac{n}{p}\right)-d_{P}\left(-\delta-m-\frac{n}{p}\right) \tag{1.5}\\
d_{P}\left(\delta+m-\frac{n}{p^{\prime}}\right)-d_{P}\left(\delta-\frac{n}{p^{\prime}}\right) \tag{1.6}
\end{gather*}
$$

respectively.

THEOREM 2. If (1.2) and (1.3) hold with $C_{\alpha \beta}=0$ for all $|\alpha| \leqslant m$ and $|\beta| \leqslant l$, then (\dagger) is Fredholm if and only if (1.4) holds, and the Fredholm index of (\dagger) agrees with that of $(\dagger)_{\infty}$.

We should note that the formulae (1.5) and (1.6) do not appear explicitly in [6] or [8] but follow from an easy analysis similar to that of Section 3 of this paper. We also note that in both [6] and [8] it was assumed that $q_{\alpha} \in C^{\infty}\left(\mathbf{R}_{n}\right)$ when $|\alpha|=m$, but this may be weakened by perturbation theory as in the proof of Theorem 4 below. For $|a|<m$ the
hypothesis $q_{\alpha} \in C^{l}$ may be weakened slightly to assume only bounded derivatives of order l satisfying (1.3), but we retain the above formulation for convenience. (More general coefficients are used in [4], but only for the special case $p=2, m<n$, and $-n / p<\delta<-m+n / p^{\prime}$.)

Now suppose that (1.1) is a system $A=\left(A_{i j}\right)$ so $A u$ has components

$$
(A u)_{i}=\sum_{j=1}^{k} A_{i j} u_{j}
$$

We shall use the generalized notion of ellipticity provided by Douglis \& Nirenberg [5]:

Definition 1. Two k-tuples, $\mathbf{t}=\left(t_{1}, \ldots, t_{k}\right)$ and $\mathrm{s}=\left(s_{1}, \ldots, s_{k}\right)$ of nonnegative integers form a system of orders for A if for each $1 \leqslant i, j \leqslant k$ we have order $\left(A_{i j}\right) \leqslant t_{j}-s_{i}$. (If $t_{j}-s_{i}<0$ then $A_{i j}=0$.) The (\mathbf{t}, s)-principal part of A is obtained by replacing each $A_{i j}$ by its terms which are exactly of order $t_{j}-s_{i}$, and the (\mathbf{t}, s)-principal symbol of A is obtained by replacing each ∂ in the ($t, s)$-principal part by the vector $\xi \in S^{n-1}$. We say A is elliptic with respect to (\mathbf{t}, s) if the (\mathbf{t}, s)-principal symbol of A has determinant bounded away from zero for $x \in \mathbf{R}^{n}$ and $\xi \in S^{n-1}$.

We now must replace (1.2) with the condition
A_{∞} is elliptic with respect to (\mathbf{t}, \mathbf{s}) and each operator $\left(A_{\infty}\right)_{i j}$ is either zero or constant coefficient

$$
\begin{equation*}
\text { and homogeneous of degree } t_{j}-s_{i} \tag{1.7}
\end{equation*}
$$

Similarly we must replace (1.3) with $b_{a}^{i j} \in C^{s_{i}}\left(\mathbf{R}^{n}\right)$ and

$$
\begin{equation*}
\varlimsup_{|x| \rightarrow \infty}\left|\langle x\rangle^{t_{j}-s_{i}-|a|+|\beta|} \partial^{\beta} q_{a}^{i j}(x)\right|=C_{a \beta}^{i j}<\infty \tag{1.8}
\end{equation*}
$$

for all $|\beta| \leqslant s_{i}$ where

$$
Q_{i j}=\sum_{|\alpha| \leqslant I_{j}-s_{i}} q_{\alpha}^{i j}(x) \partial^{a}
$$

With these conditions we then have

$$
\begin{align*}
& A_{\infty}: W_{\mathrm{t}, \delta-\mathrm{t}}^{p} \rightarrow W_{\mathrm{s}, \delta-\mathrm{s}}^{p} \\
& A: W_{\mathrm{t}, \delta-\mathrm{t}}^{p} \rightarrow W_{\mathrm{s}, \delta-\mathrm{s}}^{p}
\end{align*}
$$

are bounded operators where we have defined

$$
W_{\mathbf{t}, \delta-\mathbf{t}}^{p}=\prod_{j=1}^{k} W_{t_{j}, \delta-t_{j}}^{p}
$$

and $W_{s, \delta-\mathrm{s}}^{p}$ similarly. The purpose of this paper is to prove the following generalizations of Theorems 1 and 2:

THEOREM 3. If (1.7) holds then $(\dagger \dagger)_{\infty}$ is Fredholm if and only if δ satisfies

$$
\begin{array}{ll}
-\delta+t_{j}-\frac{n}{p} \notin \mathrm{~N} & \text { if } \delta-t_{j} \leqslant-\frac{n}{p} \tag{1.9}\\
\delta-s_{j}-\frac{n}{p^{\prime}} \notin \mathrm{N} & \text { if } \delta-t_{j}>-\frac{n}{p}
\end{array}
$$

for every $j=1, \ldots, k$. In fact, $\left(\dagger \dagger_{\infty}\right.$ is injective if $\delta-t_{j}>-n / p$ for all j, and has dense range if $\delta-s_{j}<n / p^{\prime}$ for all j. In general, the nullspace and cokernel of $(\dagger \dagger)_{\infty}$ consist of polynomials and are of dimension

$$
\begin{gather*}
\sum_{j=1}^{k} d_{P}\left(-\delta+t_{j}-\frac{n}{p}\right)-d_{P}\left(-\delta+s_{j}-\frac{n}{p}\right) \tag{1.10}\\
\sum_{j=1}^{k} d_{P}\left(\delta-s_{j}-\frac{n}{p^{\prime}}\right)-d_{P}\left(\delta-t_{j}-\frac{n}{p^{\prime}}\right) \tag{1.11}
\end{gather*}
$$

respectively.

Theorem 4. If (1.7) and (1.8) hold with $C_{a \beta}^{j j}=0$ for all $|\alpha| \leqslant t_{j}-s_{i},|\beta| \leqslant s_{i}$, and i, $j=1, \ldots, k$, then $(\dagger \dagger)$ is Fredholm if and only if (1.9) holds, and the Fredholm index of $(\dagger \dagger)$ then agrees with that of $(\dagger \dagger)_{\infty}$.

As an immediate corollary we obtain the following generalization of the results in [9] on the nullspaces of systems which are "classically elliptic" ($\left.t_{j} \equiv l+m, s_{i} \equiv l\right)$.

COROLLARY 5. Under the hypotheses of Theorem 4, the nullspace of

$$
A: H_{\mathrm{t}}^{p} \rightarrow H_{\mathrm{s}}^{p}
$$

is finite dimensional, where $H_{t}^{p}=\Pi_{j=1}^{k} H_{t_{j}}^{p}, H_{t_{j}}^{p}$ denoting the classical L^{p}-Sobolev space of order $\boldsymbol{t}_{\boldsymbol{j}}$ in $\mathbf{R}^{\boldsymbol{n}}$.

2. Lemmas on convolution operators

We consider functions $E_{m}(x)$ of the form

$$
\begin{gather*}
E_{0}(x)=\Omega(x)|x|^{-n} \tag{2.1}\\
E_{m}(x)=\Gamma_{0}(x)+\Gamma_{1}(x) \log |x|, \quad m \geqslant 1
\end{gather*}
$$

where Ω, Γ_{0}, and Γ_{1} are all in $C^{\infty}\left(\mathbf{R}^{n} \backslash\{0\}\right) ; \Omega$ is homogeneous of degree 0 and has mean value 0 on the unit sphere; Γ_{0} is homogeneous of degree $m-n$; and Γ_{1} is a homogeneous polynomial of degree $m-n$ if n is even and $m-n \geqslant 0$, otherwise $\Gamma_{1}=0$. Let T be the convolution operator defined by

$$
T u=E_{m} * u
$$

The following lemma is a special case of Theorem 2.11 in [6]. (We should note here that there is a gap in the proof of that theorem; namely, it does not include the case $\beta>-n / p$ and $\beta+m-n / p \in \mathbf{Z} \backslash \mathbf{N}$. However, this gap can be filled with an easy application of standard interpolation theorems, and so the theorem is true as stated.)

Lemma 2.1. If $l \in \mathbf{N}$ and $\delta \in \mathbf{R}$ satisfies $m-n / p<\delta<n / p^{\prime}$, then

$$
T: W_{1, \delta}^{p} \rightarrow W_{l+m, \delta-m}^{p}
$$

is bounded.

We shall also require the following generalization.

Lemma 2.2. For $\alpha \in \mathbf{N}^{n}, l \in \mathbf{N}$, and $\gamma \in \mathbf{R}$ let $r=m-|\alpha|$ and suppose (i) $|\alpha|>0$, (ii) $l+r \geqslant 0$, and (iii) $r-n / p<\gamma<n / p^{\prime}$. Then

$$
\partial^{a} T: W_{l, \gamma}^{p} \rightarrow W_{l+r, \gamma-r}^{p}
$$

is bounded.
Proof. If $r \geqslant 0$ then $\partial^{a} T u=E_{r}^{\prime} * u$ where $E_{r}^{\prime}=\partial^{\alpha} E_{m}$ is of the form (2.1), so Lemma 2.1 may be applied. If $r<0$ write $\partial^{\alpha} T=\partial^{\tau_{1}} \partial^{\beta} T \partial^{\tau_{2}}$ where $\tau_{i} \in \mathbf{N}^{n}$ satisfy $\left|\tau_{1}\right|+\left|\tau_{2}\right|=-r$ and $-n / p<\gamma+\left|\tau_{2}\right|<n / p^{\prime}$. Then $|\beta|=m$ and by the $r=0$ case, $\partial^{\beta} T: W_{l\left|-\tau_{2}\right|, \gamma+\left|\tau_{2}\right|}^{p} \rightarrow W_{i-\left|\tau_{2}\right|, \gamma+\left|\tau_{2}\right|}^{p}$ is bounded, so obviously $\partial^{\tau_{1}} \partial^{\beta} T \partial^{\tau_{2}}: W_{l, \gamma}^{p} \rightarrow W_{l+r, \gamma-r}^{p}$ is bounded.

3. Proof of Theorem 3.

Let $m=\sum_{j=l}^{k} t_{j}-s_{j}$ and $\tilde{A}_{\infty}=\operatorname{det}\left(A_{\infty}\right)$ which is an elliptic constant coefficient differential operator, homogenous of degree m. Let ${ }^{\mathrm{co}} \boldsymbol{A}_{\infty}$ be the matrix formed by the cofactors of A_{∞} so that

$$
{ }^{c o} A_{\infty} \cdot A_{\infty}=A_{\infty} \cdot{ }^{c \infty} A_{\infty}=\tilde{A}_{\infty} I
$$

where I is the identity matrix. Note that $\left({ }^{c o} A_{\infty}\right)_{j i}$ is either zero or homogeneous of order $m-t_{j}+s_{j}$.

Now if $u=\left(u_{1}, \ldots, u_{k}\right)$ is in the nullspace of $(\dagger \dagger)_{\infty}$ then $\tilde{A}_{\infty} I u={ }^{\mathrm{co}} A_{\infty} \cdot A_{\infty} u=0$ so $\tilde{A}_{\infty} u_{j}=0$ for each j. Since $W_{t, \delta-t_{j}}^{p} \subset \mathscr{S}^{\prime}$ ' the space of 'tempered distributions," the Schwartz theory of distributions implies that u_{j} is a polynomial which must be of degree $<-\delta+t_{j}-n / p$ in order to be in $W_{t, \delta-t_{j}}^{p}$. Hence the nullspace of $(\dagger \dagger)_{\infty}$ is contained in

$$
\prod_{j=1}^{k} \operatorname{Poly}\left(-\delta+t_{j}-\frac{n}{p}\right)
$$

and so is finite dimensional. In particular, if $\delta-t_{j}>-n / p$ for all j then $(\dagger \dagger)_{\infty}$ is injective.
Similarly, the dual map to $(\dagger \dagger)_{\infty}$ is

$$
\begin{equation*}
A_{\infty}^{*}: W_{-s,-\delta+s}^{p^{\prime}} \rightarrow W_{-t,-\delta+t}^{p^{\prime}} \tag{*}
\end{equation*}
$$

where $W_{-s,-\delta+\mathrm{s}}^{p^{\prime}}$ and $W_{-t,-\delta+\mathrm{t}}^{p^{\prime}}$ denote the dual spaces of $W_{\mathrm{s}, \delta-\mathrm{s}}^{p}$ and $W_{\mathrm{t}, \delta-\mathrm{t}}^{p}$ respectively, and A_{∞}^{*} is a system of operators satisfying (1.7) for some system of orders ($\mathbf{t}^{*}, \mathbf{s}^{*}$). By duality, $W_{-s_{i},-\delta+s_{i}}^{p^{\prime}} \subset \mathscr{S}^{\prime}$. Thus the argument above shows that if $u=\left(u_{1}, \ldots, u_{k}\right)$ is in the nullspace of $(\dagger \dagger)_{\infty}^{*}$ then each u_{j} is a polynomial of degree $<\delta-s_{i}-n / p^{\prime}$. Hence the nullspace of $(\dagger \dagger)_{\infty}^{*}$ is contained in

$$
\prod_{j=1}^{k} \operatorname{Poly}\left(\delta-s_{i}-\frac{n}{p^{\prime}}\right)
$$

and so $(\dagger \dagger)_{\infty}$ has dense range if $\delta-s_{j}<n / p^{\prime}$ for all j.
Now to show $(\dagger \dagger)_{\infty}$ has closed range we may assume that the t_{j} and s_{i} are arranged so that $s_{1} \leqslant \ldots \leqslant s_{k}$ and $t_{1} \leqslant \ldots \leqslant t_{k}$. Ellipticity of A_{∞} then implies $t_{j} \geqslant s_{j}$ for every j. Hence we find that

$$
\begin{equation*}
m+s_{j} \geqslant t_{j} \text { for all } j \tag{3.1}
\end{equation*}
$$

We first control the range of $(\dagger \dagger)_{\infty}$ in the case of

$$
\begin{gather*}
-\delta+s_{i}+m-\frac{n}{p} \notin \mathrm{~N} \quad \text { if } \delta-s_{i}-m \leqslant-\frac{n}{p} \tag{3.2}\\
\delta-s_{i}-\frac{n}{p^{\prime}} \notin \mathrm{N} \text { if } \delta-s_{i}-m>-\frac{n}{p}
\end{gather*}
$$

By Theorem 1

$$
\begin{equation*}
\tilde{A}_{\infty}: W_{s_{i}+m, \delta-s_{i}-m}^{p} \rightarrow W_{s_{i}, \delta-s_{i}}^{p} \tag{3.3}
\end{equation*}
$$

is Fredholm if and only if (3.2) holds, so let us fix δ satisfying (3.2) for all i. Let T_{i} be a Fredholm inverse for (3.3), and T the diagonal matrix with entries T_{i}. Then $A_{\infty} .{ }^{c o} A_{\infty} \cdot T=$ $\tilde{A}_{\infty} I \cdot T=I+P$ where P is a projection of $W_{\mathrm{s}, \delta-\mathrm{s}}^{p}$ onto a complement of the range of $\tilde{A}_{\infty} I$ in $W_{s, \delta-\mathrm{s}}^{p}$. Hence the range of $(\dagger \dagger)_{\infty}$ is closed and we have proven

Lemma 3.1. If δ satisfies (3.2) for all i, then $(\dagger \dagger)_{\infty}$ is Fredholm.
In comparing (3.2) with (1.9), note that if for some j we have $\delta-t_{j} \leqslant-n / p$ and $-\delta+t_{j}-n / p \notin \mathrm{~N}$, then $-\delta+t_{j}-n / p$ cannot be an integer so (3.2) will be satisfied for all i . Similarly, the first line of (3.2) holding for some i implies (1.9) for all j. On the other hand, if $\delta-s_{i}-m>-n / p$ and $\delta-s_{i}-n / p^{\prime} \notin \mathrm{N}$, then by (3.1) we have $\delta-t_{i}>-n / p$ so we have proved

LEMMA 3.2. If δ satisfies (3.2) for all i, then it satisfies (1.9) for all j.
By the above remarks, δ can satisfy (1.9) for all j but not (3.2) only if for all j

$$
\begin{equation*}
\delta-t_{j}>-\frac{n}{p} \text { and } \delta-s_{j}-\frac{n}{p^{\prime}} \nsubseteq \mathrm{N} \tag{3.4}
\end{equation*}
$$

and for some i

$$
\begin{equation*}
\delta-s_{i}-m \leqslant-\frac{n}{p} \text { and }-\delta+s_{i}-m-\frac{n}{p} \in \mathbf{N} \tag{3.5}
\end{equation*}
$$

But (3.4) and (3.5) imply $\delta-s_{j}-n / p^{\prime} \in \mathbf{Z} \backslash \mathbf{N}$ and in particular

$$
\begin{equation*}
\delta-s_{j}<\frac{n}{p^{\prime}} \tag{3.6}
\end{equation*}
$$

for all j. By monotonicity of the s_{i} we can find i_{0} such that (3.5) holds for all $i \geqslant i_{0}$. In fact, together with (3.4) we find

$$
\begin{align*}
& t_{j}<s_{i}+m \text { for all } i \geqslant i_{0} \text { and all } j \\
& \delta-s_{i}-m>-\frac{n}{p} \text { for all } i<i_{0} \tag{3.7}
\end{align*}
$$

Now let $T u=E_{m} * u$ where E_{m} is the fundamental solution of \tilde{A}_{∞} of the form (2.1). The operator ${ }^{c o} A_{\infty} \cdot T I$ is then a fundamental solution for A_{∞}. In fact, we claim that ${ }^{c o} A_{\infty} \cdot T I$ is the inverse for $(\dagger \dagger)_{\infty}$ when δ satisfies (3.4) and (3.5). We need only show that for every i and j

$$
\begin{equation*}
\left({ }^{c} A_{\infty}\right)_{j i} T: W_{s_{i}, \delta-s_{i}}^{p} \rightarrow W_{t_{j}, \delta-t_{j}}^{p} \tag{3.8}
\end{equation*}
$$

is bounded. If $i<i_{0}$ then (3.6) and (3.7) imply $m-n / p<\delta-s_{i}<n / p^{\prime}$, so by Lemma 2.1 $T: W_{s_{i}, \delta-s_{i}}^{p} \rightarrow W_{s_{i}+m, \delta-s_{i}-m}^{p}$ is bounded which obviously implies that (3.8) is bounded. On the other hand if $i \geqslant i_{0}$ then $|\alpha|=m-t_{j}+s_{i}, l=s_{i}$, and $\gamma=\delta-s_{i}$ satisfy the hypotheses of Lemma 2.2, so (3.8) is bounded. Thus we have proved

Lemma 3.3. If δ satisfies (1.9) for all j but not (3.2) for some i, then $(\dagger \dagger)_{\infty}$ is an isomorphism.

We conclude, therefore, that (1.9) is sufficient for $(\dagger \dagger)_{\infty}$ to be Fredholm.
Next we suppose δ satisfies (1.9) and compute the nullity of $(\dagger \dagger)_{\infty}$. Note that

$$
\begin{equation*}
A_{\infty}: \prod_{j=1}^{k} \operatorname{Poly}\left(-\delta+t_{j}-\frac{n}{p}\right) \rightarrow \prod_{i=1}^{k} \operatorname{Poly}\left(-\delta+s_{i}-\frac{n}{p}\right) \tag{3.9}
\end{equation*}
$$

We claim that (3.9) is surjective. Indeed, if $v=\left(v_{1}, \ldots, v_{k}\right) \in \prod_{i=1}^{k} \operatorname{Poly}\left(-\delta+s_{i}-n / p\right)$ then v is in the range of $(\dagger \dagger)_{\infty}$ if and only if $\sum_{i=1}^{k} \int w_{i} v_{i} d x=0$ for all $w=\left(w_{1}, \ldots, w_{k}\right)$ in the nullspace of $(\dagger \dagger)_{\infty}^{*}$. If $v_{i} \neq 0$ then $\delta-s_{i}<-n / p$, so Poly $\left(\delta-s_{i}-n / p^{\prime}\right)=\{0\}$ implying $w_{i}=0$. Thus we can always solve $A_{\infty} u=v$ for $u \in W_{t, \delta-i}^{p}$. For $\alpha \in \mathbf{N}^{n}$ with each α_{j} sufficiently large, $\left(\partial^{a} I\right) \cdot A_{\infty} u=\left(\partial^{a} I\right) v=0$ so u is a polynomial. Thus $u \in \Pi_{j=1}^{k} \operatorname{Poly}\left(-\delta+t_{j}-n / p\right)$ proving that (3.9) is surjective. Since we have already observed that the nullspace of $(\dagger \dagger)_{\infty}$ is contained in $\Pi_{j=1}^{k} \operatorname{Poly}\left(-\delta+t_{j}-n / p\right)$ this proves (1.10).

Similarly, we derive (1.11) from the surjectivity of

$$
A_{\infty}^{*}: \prod_{i=1}^{k} \operatorname{Poly}\left(\delta-s_{i}-\frac{n}{p^{\prime}}\right) \rightarrow \prod_{j=1}^{k} \operatorname{Poly}\left(\delta-t_{j}-\frac{n}{p^{\prime}}\right)
$$

To show that (1.9) is necessary for $(\dagger \dagger)_{\infty}$ to be Fredholm, suppose that for some j we have $-\delta+t_{j}-n / p \in N$ or $\delta-s_{j}-n / p^{\prime} \in N$. Consider the one-parameter family of operators

$$
\begin{equation*}
A_{\infty}(\tau)=\langle x\rangle^{\tau} A_{\infty}\langle x\rangle^{-\tau}: W_{t, \delta-1}^{p} \rightarrow W_{s, \delta-\mathrm{s}}^{p} \tag{3.10}
\end{equation*}
$$

defined for $-\varepsilon \leqslant \tau \leqslant \varepsilon$ where $0<\varepsilon<1$. Since $u \rightarrow\langle x\rangle^{\sigma} u$ is an isomorphism of $W_{l, \delta+\sigma}^{p}$ onto $W_{l, \delta}^{p}$ we conclude that (3.10) is Fredholm if and only if

$$
\begin{equation*}
A_{\infty}: W_{t, \delta+\tau-\mathbf{t}}^{p} \rightarrow W_{s, \delta+\tau-s}^{p} \tag{3.11}
\end{equation*}
$$

is Fredholm, and the index of (3.10) equals that of (3.11). We have seen that $A_{\infty}(\tau)$ is Fredholm for $\tau \neq 0$, and by (1.10) and (1.11) index $\left[A_{\infty}(\varepsilon)\right]<$ index $\left[A_{\infty}(-\varepsilon)\right]$. Hence $A_{\infty}(0)$ cannot be Fredholm, as to be shown.

4. Proof of Theorem 4.

First note that (1.8) with $C_{\alpha \beta}^{i j}=0$ implies

$$
\sum_{|a|<t_{j}-s_{i}} q_{a}^{i j}(x) \partial^{\alpha}: W_{t_{j}, \delta-t_{j}}^{p} \rightarrow W_{s_{i}, \delta-s_{i}}^{p}
$$

is compact by Theorem 5.2 of [6] or Lemma 4.1 of [8]. Therefore we may assume

$$
Q_{i j}=\sum_{|a|=t_{j}-s_{i}} q_{a}^{i j}(x) \partial^{a}
$$

Now let $\varphi \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ satisfy $\varphi(x) \equiv 1$ for $|x| \leqslant 1$ and $\varphi(x) \equiv 0$ for $|x| \geqslant 2$, and define $\varphi_{R}(x)=\varphi(x / R)$ for $R>1$. From (1.8) with $C_{a \beta}^{i j}=0$ we can find $R>1$ such that for every i, j and $|\beta| \leqslant s_{i}$ and $|\alpha|=t_{j}-s_{i}$

$$
\left|\langle x\rangle^{|\beta|} \partial^{\beta} q_{a}^{i j}(x)\right|<\varepsilon
$$

whenever $|x|>R$. Thus there is a constant C which depends only on φ, s_{i}, and n for which

$$
\left|\langle x\rangle^{|\beta|} \partial^{\beta}\left(\left(1-\varphi_{R}(x)\right) q_{a}^{i j}(x)\right)\right|<C \cdot \varepsilon
$$

holds for all $x \in \mathbf{R}^{n},|\beta| \leqslant s_{i},|\alpha|=t_{j}-s_{i}$, and all i, j. Hence by choosing R sufficiently large, the norm of

$$
\left(1-\varphi_{R}\right) Q=\left(1-\varphi_{R}\right) I \cdot Q: W_{\mathrm{t}, \delta-\mathrm{t}}^{p} \rightarrow W_{\mathrm{s}, \delta-\mathrm{s}}^{p}
$$

may be made arbitrarily small. Therefore, if δ satsifies (1.9) for all j, then we may choose R_{0} so that

$$
A_{\infty}^{\prime}=A_{\infty}+\left(1-\varphi_{R}\right) Q: W_{\mathbf{t}, \delta-\mathbf{t}}^{p} \rightarrow W_{\mathbf{s}, \delta-\mathrm{s}}^{p}
$$

is Fredholm whenever $R \geqslant R_{0}$.
In terms of à priori inequalities this means that

$$
\begin{equation*}
|u|_{\mathrm{t}} \leqslant C\left(\left|A_{\infty}^{\prime} u\right|_{\mathrm{s}}+|\pi u|_{\mathrm{t}}\right) \tag{4.1}
\end{equation*}
$$

for $u \in W_{t, \delta-\mathrm{t}}^{p}$, where we have abbreviated the norms in $W_{\mathrm{t}, \delta-\mathrm{t}}^{p}$ and $W_{\mathrm{s}, \delta-\mathrm{s}}^{p}$ by $|\cdot|_{\mathrm{t}}$ and $|\cdot|_{\mathrm{s}}$ respectively, and where π is a projection of $W_{t, \delta-t}^{p}$ onto the kernel of A_{∞}^{\prime} and thus is compact. We shall apply (4.1) to $\left(1-\varphi_{3 R}\right) u$ and use $A_{\infty}^{\prime}=A$ in the support of $\left(1-\varphi_{3 R}\right)$ to conclude

$$
\begin{equation*}
\left|\left(1-\varphi_{3 R}\right) u\right|_{\mathrm{t}} \leqslant C\left(\left|A\left(1-\varphi_{3 R}\right) u\right|_{\mathrm{s}}+\left|\pi\left(1-\varphi_{3 R}\right) u\right|_{\mathrm{t}}\right) \tag{4.2}
\end{equation*}
$$

On the other hand, since $\varphi_{3 R} u$ has compact support, standard elliptic estimates [1] imply

$$
\begin{equation*}
\left|\varphi_{3 R} u\right|_{\mathrm{t}} \leqslant C\left(\left|A \varphi_{3 R} u\right|_{\mathrm{s}}+\left|\varphi_{3 R} u\right|_{0}\right) \tag{4.3}
\end{equation*}
$$

Combining (4.2) and (4.3) yields

$$
\begin{align*}
& |u|_{\mathrm{t}} \leqslant C\left(\left|A\left(1-\varphi_{3 R}\right) u\right|_{\mathrm{s}}+\left|A \varphi_{3 R} u\right|_{\mathrm{s}}+\left|\pi\left(1-\varphi_{3 R}\right) u\right|_{\mathrm{t}}+\left|\varphi_{3 R} u\right|_{0}\right) \\
& \leqslant C\left(\left|\left(1-\varphi_{3 R}\right) A u\right|_{\mathrm{s}}+\left|\varphi_{3 R} A u\right|_{\mathrm{t}}\right. \\
& \quad+\left|\left[A,\left(1-\varphi_{3 R}\right)\right] u\right|_{\mathrm{s}}+\left|\left[A, \varphi_{3 R}\right] u\right|_{\mathrm{s}} \tag{4.4}\\
& \left.\quad+\left|\pi\left(1-\varphi_{3 R}\right) u\right|_{\mathrm{t}}+\left|\varphi_{3 R} u\right|_{0}\right)
\end{align*}
$$

where $[$,] denotes the commutator. By Rellich's compactness theorem, $\left[A,\left(1-\varphi_{3 R}\right)\right],\left[A, \varphi_{3 R}\right]: W_{\mathrm{t}, \delta-\mathrm{t}}^{p} \rightarrow W_{\mathrm{s}, \delta-\mathrm{s}}^{p}$ and $\varphi_{3 R}: W_{\mathrm{t}, \delta-\mathrm{t}}^{p} \rightarrow W_{0, \delta}^{p}$ are all compact, so the à priori inequality (4.4) shows that $A: W_{t, \delta-t}^{p} \rightarrow W_{s, \delta-\mathrm{s}}^{p}$ has a finite dimensional nullspace and closed range, hence is "semi-Fredholm'". Furthermore, we may find R_{1} large so that $A_{\infty}+\varphi_{R} Q$ is an elliptic system which is semi-Fredholm and

$$
\begin{equation*}
\text { index }\left(A_{\infty}+\varphi_{R} Q\right)=\operatorname{index}(A) \tag{4.5}
\end{equation*}
$$

whenever $R \geqslant R_{1}$, although we do not as yet know that (4.5) is finite.

Now for $R \geqslant \max \left(R_{0}, R_{1}\right)$ and $0 \leqslant \tau \leqslant 1$ let $\left(\varphi_{R} Q\right)_{\tau}$ be the matrix with entries

$$
\varphi_{R}(\tau x) \sum_{|\alpha|=t_{j}-s_{i}} q_{a}^{i j}(\tau x) \partial^{\alpha}
$$

For each $\tau, A_{\tau}=A_{\infty}+\left(\varphi_{R} Q\right)_{\tau}$ is an elliptic system of the form (1.1) with coefficients satisfying (1.8) (since A_{0} has constant coefficients and A_{τ} for $\tau>0$ has coefficients constant for $|x| \geqslant 2 / \tau$). Thus we have a one-parameter family of semi-Fredholm operators, and so

$$
\begin{equation*}
\text { index }\left(A_{0}\right)=\operatorname{index}\left(A_{1}\right) \tag{4.6}
\end{equation*}
$$

But $A_{1}=A_{\infty}+\varphi_{R} Q$ so (4.5) and (4.6) imply that index $(A)=$ index $\left(A_{0}\right)$. However, the index of A_{0} is given by Theorem 3: index $\left(A_{0}\right)=\operatorname{index}\left(A_{\infty}\right)$ is finite. Hence A is indeed Fredholm.

In other words, we have shown that if δ satisfies (1.9) then ($\dagger \dagger$) is Fredholm and has the same index as $(\dagger \dagger)_{\infty}$. Conversely, we can show that ($\dagger \dagger$) is not Fredholm where its index changes (i.e., where (1.9) fails for some j) by the same method as used for $(\dagger \dagger)_{\infty}$ in Section 3.

References

[1] Agmon, S., Douglis, A. \& Nirenberg, L., Estimates near the boundary for solutions of elliptic differential equations satisfying general boundary conditions II. Comm. Pure Appl. Math., 17 (1964), 35-92.
[2] Cantor, M., Elliptic operators and the decomposition of vector fields. Bull. Amer. Math. Soc., 5 (1981), 235-262.
[3] CANTOR, M., Spaces of functions with asymptotic conditions on \mathbf{R}^{n}. Indiana J. Math., 24 (1975), 897-902.
[4] Choquet-Bruhat, Y. \& Christodoulou, D., Elliptic systems in $\boldsymbol{H}_{s, \delta}$ spaces on manifolds which are euclidean at infinity. Acta Math., 146 (1981), 129-150.
[5] Douglis, A. \& Nirenberg, L., Interior estimates for elliptic systems of partial differential equations. Comm. Pure Appl. Math., 8 (1955), 503-538.
[6] Lockhart, R., Fredholm properties of a class of elliptic operators on non-compact manifolds. Duke Math. J., 48 (1981), 289-312.
[7] McOwen, R., Behavior of the Laplacian on weighted Sobolev spaces. Comm. Pure Appl. Math., 32 (1979), 783-795.
[8] MCOwEN, R., On elliptic operators in \mathbf{R}^{n}. Comm. Partial Differential Equations, 5 (1980), 913-933.
[9] Nirenberg, L. \& Walker, H., Nullspaces of elliptic partial differential operators in $\mathbf{R}^{\boldsymbol{n}}$. J. Math. Anal. Appl., 42 (1973), 271-301.
Received December 22, 1981

[^0]: (${ }^{1}$) Research partially supported by NSF Grant MCS-80-02995

