On elliptic systems in \mathbf{R}^n

by

ROBERT B. LOCKHART(1) and

University of Notre Dame, Notre Dame, IN, U.S.A.

1. Statement of results

This paper studies elliptic $k \times k$ systems of partial differential operators in \mathbb{R}^n which may be written in the form

$$A = A_{\infty} + Q \tag{1.1}$$

where A_{∞} is an elliptic system of constant coefficient operators and Q is a variable coefficient perturbation with certain decay properties at $|x|=\infty$.

For the case k=1 such operators were studied in [6], [7] and [8] under the conditions

 A_{∞} is an elliptic constant coefficient

operator which is homogeneous of degree m (1.2)

and the coefficients of

$$Q = \sum_{|\alpha| \leq m} q_{\alpha}(x) \,\partial^{\alpha}$$

satisfy $q_{\alpha} \in C^{l}(\mathbb{R}^{n})$ and

$$\overline{\lim_{|x|\to\infty}} \left| \left\langle x \right\rangle^{m-|a|+|\beta|} \partial^{\beta} q_{a}(x) \right| = C_{a,\beta} < \infty$$
(1.3)

for all $|\beta| \le l \in \mathbb{N}$. (Here and throughout this paper we let Z denote the integers, N denote the nonnegative integers, $\langle x \rangle = (1+|x|^2)^{1/2}$, p' = p/(p-1), and use standard conventions for multi-indices $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^n$ and $\partial^{\alpha} = (\partial/\partial x_1)^{\alpha_1} ... (\partial/\partial x_n)^{\alpha_n}$.)

Northeastern University, Boston, MA, U.S.A.

ROBERT C. MCOWEN

⁽¹⁾ Research partially supported by NSF Grant MCS-80-02995

Such operators are bounded on certain weighted Sobolev space defined as follows: for $1 , <math>l \in \mathbb{N}$, and $\delta \in \mathbb{R}$ let $W_{l,\delta}^p$ denote the closure of $C_0^{\infty}(\mathbb{R}^n)$ in the norm

$$||u||_{W^{p}_{l,\delta}} = \sum_{|\alpha| \leq l} ||\langle x \rangle^{\delta + |\alpha|} \partial^{\alpha} u||_{L^{p}}$$

(We should mention that these spaces were denoted $M_{l,\delta}^p$ in [2], [3], [7], and [8], and $H_{l,\delta}^p$ in [4] and [6].) Clearly (1.2) and (1.3) imply that

$$A_{\infty}: W_{l+m,\delta}^{p} \to W_{l,\delta+m}^{p} \tag{(†)}_{\alpha}$$

$$A: W^{p}_{l+m,\delta} \to W^{p}_{l,\delta+m}$$
(†)

are bounded operators. In fact, if we let Poly(δ) denote the space of polynomials in x_1, \ldots, x_n of degree $\leq \delta$ and $d_P(\delta)$ its dimension (note that Poly(δ)= $\{0\}$ if $\delta < 0$) then the following theorems were proved in [6] and [8]:

THEOREM 1. If (1.2) holds then $(\dagger)_{\infty}$ is Fredholm if and only if

$$-\delta - \frac{n}{p} \notin \mathbb{N} \quad \text{if } \delta \leq -\frac{n}{p}$$

$$\delta + m - \frac{n}{p'} \notin \mathbb{N} \quad \text{if } \delta > -\frac{n}{p}.$$
(1.4)

Furthermore, the nullspace and cokernel of $(\dagger)_{\infty}$ consist of polynomials, and are of dimension

$$d_{P}\left(-\delta - \frac{n}{p}\right) - d_{P}\left(-\delta - m - \frac{n}{p}\right) \tag{1.5}$$

$$d_P\left(\delta + m - \frac{n}{p'}\right) - d_P\left(\delta - \frac{n}{p'}\right) \tag{1.6}$$

respectively.

THEOREM 2. If (1.2) and (1.3) hold with $C_{\alpha\beta}=0$ for all $|\alpha| \le m$ and $|\beta| \le l$, then (†) is Fredholm if and only if (1.4) holds, and the Fredholm index of (†) agrees with that of (†)_{∞}.

We should note that the formulae (1.5) and (1.6) do not appear explicitly in [6] or [8] but follow from an easy analysis similar to that of Section 3 of this paper. We also note that in both [6] and [8] it was assumed that $q_{\alpha} \in C^{\infty}(\mathbf{R}_n)$ when $|\alpha|=m$, but this may be weakened by perturbation theory as in the proof of Theorem 4 below. For |a| < m the hypothesis $q_{\alpha} \in C^{l}$ may be weakened slightly to assume only bounded derivatives of order l satisfying (1.3), but we retain the above formulation for convenience. (More general coefficients are used in [4], but only for the special case p=2, m < n, and $-n/p < \delta < -m+n/p'$.)

Now suppose that (1.1) is a system $A = (A_{ij})$ so Au has components

$$(Au)_i = \sum_{j=1}^k A_{ij} u_j.$$

We shall use the generalized notion of ellipticity provided by Douglis & Nirenberg [5]:

Definition 1. Two k-tuples, $\mathbf{t} = (t_1, ..., t_k)$ and $\mathbf{s} = (s_1, ..., s_k)$ of nonnegative integers form a system of orders for A if for each $1 \le i$, $j \le k$ we have order $(A_{ij}) \le t_j - s_i$. (If $t_j - s_i < 0$ then $A_{ij} = 0$.) The (\mathbf{t}, \mathbf{s}) -principal part of A is obtained by replacing each A_{ij} by its terms which are exactly of order $t_j - s_i$, and the (\mathbf{t}, \mathbf{s}) -principal symbol of A is obtained by replacing each ∂ in the (\mathbf{t}, \mathbf{s}) -principal part by the vector $\xi \in S^{n-1}$. We say A is elliptic with respect to (\mathbf{t}, \mathbf{s}) if the (\mathbf{t}, \mathbf{s}) -principal symbol of A has determinant bounded away from zero for $x \in \mathbf{R}^n$ and $\xi \in S^{n-1}$.

We now must replace (1.2) with the condition

$$A_{\infty}$$
 is elliptic with respect to (t, s) and each operator
 $(A_{\infty})_{ij}$ is either zero or constant coefficient (1.7)
and homogeneous of degree $t_i - s_i$.

Similarly we must replace (1.3) with $b_a^{ij} \in C^{s_i}(\mathbb{R}^n)$ and

$$\overline{\lim_{|x|\to\infty}} |\langle x \rangle^{t_j - s_i - |a| + |\beta|} \partial^{\beta} q_a^{ij}(x)| = C_{\alpha\beta}^{ij} < \infty$$
(1.8)

for all $|\beta| \leq s_i$ where

$$Q_{ij} = \sum_{|\alpha| \leq t_j - s_i} q_{\alpha}^{ij}(x) \,\partial^{\alpha}.$$

With these conditions we then have

$$A_{\infty}: W_{t,\delta-t}^{p} \to W_{s,\delta-s}^{p} \qquad (\dagger^{\dagger})_{\infty}$$

$$A: W^{p}_{\mathbf{t},\delta-\mathbf{t}} \to W^{p}_{\mathbf{s},\delta-\mathbf{s}}$$
(††)

are bounded operators where we have defined

$$W^p_{\mathbf{t},\,\delta-\mathbf{t}} = \prod_{j=1}^k W^p_{t_j,\,\delta-t_j}$$

and $W_{s,\delta-s}^p$ similarly. The purpose of this paper is to prove the following generalizations of Theorems 1 and 2:

THEOREM 3. If (1.7) holds then $(\dagger \dagger)_{\infty}$ is Fredholm if and only if δ satisfies

$$-\delta + t_j - \frac{n}{p} \notin \mathbf{N} \quad \text{if } \delta - t_j \leq -\frac{n}{p}$$

$$\delta - s_j - \frac{n}{p'} \notin \mathbf{N} \quad \text{if } \delta - t_j > -\frac{n}{p}$$
(1.9)

for every j=1,...,k. In fact, $(\dagger\dagger)_{\infty}$ is injective if $\delta-t_j > -n/p$ for all j, and has dense range if $\delta-s_j < n/p'$ for all j. In general, the nullspace and cokernel of $(\dagger\dagger)_{\infty}$ consist of polynomials and are of dimension

$$\sum_{j=1}^{k} d_{P}\left(-\delta + t_{j} - \frac{n}{p}\right) - d_{P}\left(-\delta + s_{j} - \frac{n}{p}\right)$$
(1.10)

$$\sum_{j=1}^{k} d_{P} \left(\delta - s_{j} - \frac{n}{p'} \right) - d_{P} \left(\delta - t_{j} - \frac{n}{p'} \right)$$
(1.11)

respectively.

THEOREM 4. If (1.7) and (1.8) hold with $C_{\alpha\beta}^{ij}=0$ for all $|\alpha| \leq t_j - s_i$, $|\beta| \leq s_i$, and i, j=1,...,k, then $(\dagger\dagger)$ is Fredholm if and only if (1.9) holds, and the Fredholm index of $(\dagger\dagger)$ then agrees with that of $(\dagger\dagger)_{\infty}$.

As an immediate corollary we obtain the following generalization of the results in [9] on the nullspaces of systems which are "classically elliptic" $(t_j \equiv l+m, s_i \equiv l)$.

COROLLARY 5. Under the hypotheses of Theorem 4, the nullspace of

 $A: H_t^p \to H_s^p$

is finite dimensional, where $H_t^p = \prod_{j=1}^k H_{t_j}^p$, $H_{t_j}^p$ denoting the classical L^p-Sobolev space of order t_j in \mathbb{R}^n .

ON ELLIPTIC SYSTEMS IN R"

2. Lemmas on convolution operators

We consider functions $E_m(x)$ of the form

$$E_0(x) = \Omega(x) |x|^{-n}$$

$$E_m(x) = \Gamma_0(x) + \Gamma_1(x) \log |x|, \quad m \ge 1$$
(2.1)

where Ω , Γ_0 , and Γ_1 are all in $C^{\infty}(\mathbb{R}^n \setminus \{0\})$; Ω is homogeneous of degree 0 and has mean value 0 on the unit sphere; Γ_0 is homogeneous of degree m-n; and Γ_1 is a homogeneous polynomial of degree m-n if n is even and $m-n \ge 0$, otherwise $\Gamma_1=0$. Let T be the convolution operator defined by

$$Tu = E_m \star u$$

The following lemma is a special case of Theorem 2.11 in [6]. (We should note here that there is a gap in the proof of that theorem; namely, it does not include the case $\beta > -n/p$ and $\beta + m - n/p \in \mathbb{Z} \setminus \mathbb{N}$. However, this gap can be filled with an easy application of standard interpolation theorems, and so the theorem is true as stated.)

LEMMA 2.1. If $l \in \mathbb{N}$ and $\delta \in \mathbb{R}$ satisfies $m - n/p < \delta < n/p'$, then

$$T: W^p_{l,\delta} \to W^p_{l+m,\delta-m}$$

is bounded.

We shall also require the following generalization.

LEMMA 2.2. For $\alpha \in \mathbb{N}^n$, $l \in \mathbb{N}$, and $\gamma \in \mathbb{R}$ let $r=m-|\alpha|$ and suppose (i) $|\alpha| > 0$, (ii) $l+r \ge 0$, and (iii) $r-n/p < \gamma < n/p'$. Then

$$\partial^{\alpha}T\colon W^{p}_{l,\gamma}\to W^{p}_{l+r,\gamma-r}$$

is bounded.

Proof. If $r \ge 0$ then $\partial^{\alpha} T u = E'_r * u$ where $E'_r = \partial^{\alpha} E_m$ is of the form (2.1), so Lemma 2.1 may be applied. If r < 0 write $\partial^{\alpha} T = \partial^{\tau_1} \partial^{\beta} T \partial^{\tau_2}$ where $\tau_i \in \mathbb{N}^n$ satisfy $|\tau_1| + |\tau_2| = -r$ and $-n/p < \gamma + |\tau_2| < n/p'$. Then $|\beta| = m$ and by the r = 0 case, $\partial^{\beta} T$: $W^p_{l-|\tau_2|, \gamma+|\tau_2|} \to W^p_{l-|\tau_2|, \gamma+|\tau_2|}$ is bounded, so obviously $\partial^{\tau_1} \partial^{\beta} T \partial^{\tau_2}$: $W^p_{l,\gamma} \to W^p_{l+r,\gamma-r}$ is bounded.

⁹⁻⁸³⁸²⁸² Acta Mathematica 150. Imprimé le 30 Juin 1983

3. Proof of Theorem 3.

Let $m = \sum_{j=1}^{k} t_j - s_j$ and $\tilde{A}_{\infty} = \det(A_{\infty})$ which is an elliptic constant coefficient differential operator, homogenous of degree *m*. Let ${}^{co}A_{\infty}$ be the matrix formed by the cofactors of A_{∞} so that

$${}^{\rm co}A_{\infty}\cdot A_{\infty}=A_{\infty}\cdot {}^{\rm co}A_{\infty}=\tilde{A}_{\infty}I$$

where I is the identity matrix. Note that $({}^{co}A_{\infty})_{ji}$ is either zero or homogeneous of order $m-t_j+s_j$.

Now if $u=(u_1, ..., u_k)$ is in the nullspace of $(\dagger \dagger)_{\infty}$ then $\tilde{A}_{\infty}Iu={}^{co}A_{\infty} \cdot A_{\infty}u=0$ so $\tilde{A}_{\infty}u_j=0$ for each *j*. Since $W_{i_j,\delta-i_j}^p \subset \mathscr{G}'$ the space of "tempered distributions," the Schwartz theory of distributions implies that u_j is a polynomial which must be of degree $<-\delta+t_j-n/p$ in order to be in $W_{i_j,\delta-i_j}^p$. Hence the nullspace of $(\dagger \dagger)_{\infty}$ is contained in

$$\prod_{j=1}^{k} \operatorname{Poly}\left(-\delta + t_{j} - \frac{n}{p}\right)$$

and so is finite dimensional. In particular, if $\delta - t_j > -n/p$ for all j then $(\dagger \dagger)_{\infty}$ is injective.

Similarly, the dual map to $(\dagger \dagger)_{\infty}$ is

$$A^*_{\infty} \colon W^{p'}_{-s, -\delta+s} \to W^{p'}_{-t, -\delta+t} \tag{(\dagger\dagger)}^*_{\infty}$$

where $W_{-s,-\delta+s}^{p'}$ and $W_{-t,-\delta+t}^{p'}$ denote the dual spaces of $W_{s,\delta-s}^{p}$ and $W_{t,\delta-t}^{p}$ respectively, and A_{∞}^{∞} is a system of operators satisfying (1.7) for some system of orders (t^{*}, s^{*}). By duality, $W_{-s_{i},-\delta+s_{i}}^{p'} \subset \mathscr{S}'$. Thus the argument above shows that if $u=(u_{1},...,u_{k})$ is in the nullspace of $(\dagger\dagger)_{\infty}^{*}$ then each u_{j} is a polynomial of degree $<\delta-s_{i}-n/p'$. Hence the nullspace of $(\dagger\dagger)_{\infty}^{*}$ is contained in

$$\prod_{j=1}^{k} \operatorname{Poly}\left(\delta - s_i - \frac{n}{p'}\right)$$

and so $(\dagger \dagger)_{\infty}$ has dense range if $\delta - s_i < n/p'$ for all j.

Now to show $(\dagger\dagger)_{\infty}$ has closed range we may assume that the t_j and s_i are arranged so that $s_1 \leq ... \leq s_k$ and $t_1 \leq ... \leq t_k$. Ellipticity of A_{∞} then implies $t_j \geq s_j$ for every j. Hence we find that

$$m+s_j \ge t_j$$
 for all j . (3.1)

We first control the range of $(\dagger \dagger)_{\infty}$ in the case of

$$-\delta + s_i + m - \frac{n}{p} \notin \mathbb{N} \quad \text{if } \delta - s_i - m \leq -\frac{n}{p}$$

$$\delta - s_i - \frac{n}{p'} \notin \mathbb{N} \quad \text{if } \delta - s_i - m > -\frac{n}{p}.$$
(3.2)

By Theorem 1

$$\tilde{A}_{\infty}: W^{p}_{s_{i}+m, \,\delta-s_{i}-m} \to W^{p}_{s_{i}, \,\delta-s_{i}}$$

$$(3.3)$$

is Fredholm if and only if (3.2) holds, so let us fix δ satisfying (3.2) for all *i*. Let T_i be a Fredholm inverse for (3.3), and *T* the diagonal matrix with entries T_i . Then $A_{\infty} \cdot {}^{co}A_{\infty} \cdot T = \tilde{A}_{\infty}I \cdot T = I + P$ where *P* is a projection of $W_{s,\delta-s}^{p}$ onto a complement of the range of $\tilde{A}_{\infty}I$ in $W_{s,\delta-s}^{p}$. Hence the range of $(\dagger^{\dagger})_{\infty}$ is closed and we have proven

LEMMA 3.1. If δ satisfies (3.2) for all *i*, then $(\dagger \dagger)_{\infty}$ is Fredholm.

In comparing (3.2) with (1.9), note that if for some j we have $\delta - t_j \leq -n/p$ and $-\delta + t_j - n/p \notin \mathbb{N}$, then $-\delta + t_j - n/p$ cannot be an integer so (3.2) will be satisfied for all i. Similarly, the first line of (3.2) holding for some i implies (1.9) for all j. On the other hand, if $\delta - s_i - m > -n/p$ and $\delta - s_i - n/p' \notin \mathbb{N}$, then by (3.1) we have $\delta - t_i > -n/p$ so we have proved

LEMMA 3.2. If δ satisfies (3.2) for all *i*, then it satisfies (1.9) for all *j*.

By the above remarks, δ can satisfy (1.9) for all j but not (3.2) only if for all j

$$\delta - t_j > -\frac{n}{p} \text{ and } \delta - s_j - \frac{n}{p'} \notin \mathbb{N}$$
 (3.4)

and for some i

$$\delta - s_i - m \leq -\frac{n}{p} \text{ and } -\delta + s_i - m - \frac{n}{p} \in \mathbb{N}$$
 (3.5)

But (3.4) and (3.5) imply $\delta - s_j - n/p' \in \mathbb{Z} \setminus \mathbb{N}$ and in particular

$$\delta - s_j < \frac{n}{p'} \tag{3.6}$$

for all j. By monotonicity of the s_i we can find i_0 such that (3.5) holds for all $i \ge i_0$. In fact, together with (3.4) we find

$$t_{j} < s_{i} + m \text{ for all } i \ge i_{0} \text{ and all } j$$

$$\delta - s_{i} - m > -\frac{n}{p} \text{ for all } i < i_{0}.$$
(3.7)

Now let $Tu = E_m * u$ where E_m is the fundamental solution of \tilde{A}_{∞} of the form (2.1). The operator ${}^{co}A_{\infty} \cdot TI$ is then a fundamental solution for A_{∞} . In fact, we claim that ${}^{co}A_{\infty} \cdot TI$ is the inverse for $(\dagger \dagger)_{\infty}$ when δ satisfies (3.4) and (3.5). We need only show that for every *i* and *j*

$$({}^{co}A_{\infty})_{ji}T \colon W^{p}_{s_{ji},\delta-s_{i}} \to W^{p}_{t_{ji},\delta-t_{i}}$$

$$(3.8)$$

is bounded. If $i < i_0$ then (3.6) and (3.7) imply $m - n/p < \delta - s_i < n/p'$, so by Lemma 2.1 $T: W^p_{s_i, \delta - s_i} \rightarrow W^p_{s_i+m, \delta - s_i-m}$ is bounded which obviously implies that (3.8) is bounded. On the other hand if $i \ge i_0$ then $|\alpha| = m - t_j + s_i$, $l = s_i$, and $\gamma = \delta - s_i$ satisfy the hypotheses of Lemma 2.2, so (3.8) is bounded. Thus we have proved

LEMMA 3.3. If δ satisfies (1.9) for all j but not (3.2) for some i, then $(\dagger \dagger)_{\infty}$ is an isomorphism.

We conclude, therefore, that (1.9) is sufficient for $(\dagger \dagger)_{\infty}$ to be Fredholm.

Next we suppose δ satisfies (1.9) and compute the nullity of $(\dagger \dagger)_{\infty}$. Note that

$$A_{\infty}: \prod_{j=1}^{k} \operatorname{Poly}\left(-\delta + t_{j} - \frac{n}{p}\right) \to \prod_{i=1}^{k} \operatorname{Poly}\left(-\delta + s_{i} - \frac{n}{p}\right).$$
(3.9)

We claim that (3.9) is surjective. Indeed, if $v = (v_1, ..., v_k) \in \prod_{i=1}^k \text{Poly}(-\delta + s_i - n/p)$ then vis in the range of $(\dagger \dagger)_{\infty}$ if and only if $\sum_{i=1}^k \int w_i v_i dx = 0$ for all $w = (w_1, ..., w_k)$ in the nullspace of $(\dagger \dagger)_{\infty}^*$. If $v_i \neq 0$ then $\delta - s_i < -n/p$, so Poly $(\delta - s_i - n/p') = \{0\}$ implying $w_i = 0$. Thus we can always solve $A_{\infty}u = v$ for $u \in W_{t, \delta - t}^p$. For $a \in \mathbb{N}^n$ with each a_j sufficiently large, $(\partial^a I) \cdot A_{\infty}u = (\partial^a I)v = 0$ so u is a polynomial. Thus $u \in \prod_{j=1}^k \text{Poly}(-\delta + t_j - n/p)$ proving that (3.9) is surjective. Since we have already observed that the nullspace of $(\dagger \dagger)_{\infty}$ is contained in $\prod_{i=1}^k \text{Poly}(-\delta + t_i - n/p)$ this proves (1.10).

Similarly, we derive (1.11) from the surjectivity of

$$A_{\infty}^{*}:\prod_{i=1}^{k}\operatorname{Poly}\left(\delta-s_{i}-\frac{n}{p'}\right)\to\prod_{j=1}^{k}\operatorname{Poly}\left(\delta-t_{j}-\frac{n}{p'}\right).$$

To show that (1.9) is necessary for $(\dagger^{\dagger})_{\infty}$ to be Fredholm, suppose that for some *j* we have $-\delta + t_j - n/p \in \mathbb{N}$ or $\delta - s_j - n/p' \in \mathbb{N}$. Consider the one-parameter family of operators

$$A_{\infty}(\tau) = \langle x \rangle^{\tau} A_{\infty} \langle x \rangle^{-\tau} \colon W^{p}_{t,\,\delta-t} \to W^{p}_{s,\,\delta-s}$$
(3.10)

defined for $-\varepsilon \le \tau \le \varepsilon$ where $0 \le \varepsilon \le 1$. Since $u \to \langle x \rangle^{\sigma} u$ is an isomorphism of $W_{l,\delta+\sigma}^{p}$ onto $W_{l,\delta+\sigma}^{p}$ we conclude that (3.10) is Fredholm if and only if

$$A_{\infty}: W^{p}_{\mathbf{t},\,\delta+\tau-\mathbf{t}} \to W^{p}_{\mathbf{s},\,\delta+\tau-\mathbf{s}}$$
(3.11)

is Fredholm, and the index of (3.10) equals that of (3.11). We have seen that $A_{\infty}(\tau)$ is Fredholm for $\tau \neq 0$, and by (1.10) and (1.11) index $[A_{\infty}(\varepsilon)] < \text{ index } [A_{\infty}(-\varepsilon)]$. Hence $A_{\infty}(0)$ cannot be Fredholm, as to be shown.

4. Proof of Theorem 4.

First note that (1.8) with $C_{\alpha\beta}^{ij}=0$ implies

$$\sum_{|\alpha| < t_j - s_i} q_a^{ij}(x) \,\partial^{\alpha} \colon W^p_{t_j, \,\delta - t_j} \to W^p_{s_i, \,\delta - s_i}$$

is compact by Theorem 5.2 of [6] or Lemma 4.1 of [8]. Therefore we may assume

$$Q_{ij} = \sum_{|\alpha|=t_j-s_i} q_{\alpha}^{ij}(x) \,\partial^{\alpha}.$$

Now let $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ satisfy $\varphi(x) \equiv 1$ for $|x| \leq 1$ and $\varphi(x) \equiv 0$ for $|x| \geq 2$, and define $\varphi_R(x) = \varphi(x/R)$ for R > 1. From (1.8) with $C_{\alpha\beta}^{ij} = 0$ we can find R > 1 such that for every i, j and $|\beta| \leq s_i$ and $|\alpha| = t_j - s_i$

$$\left|\langle x\rangle^{|\beta|}\partial^{\beta}q_{a}^{ij}(x)\right|<\varepsilon$$

whenever |x| > R. Thus there is a constant C which depends only on φ , s_i , and n for which

$$\left| \langle x \rangle^{|\beta|} \partial^{\beta} \big((1 - \varphi_{R}(x)) q_{\alpha}^{ij}(x) \big) \right| < C \cdot \varepsilon$$

holds for all $x \in \mathbb{R}^n$, $|\beta| \le s_i$, $|\alpha| = t_j - s_i$, and all *i*, *j*. Hence by choosing R sufficiently large, the norm of

$$(1-\varphi_R) Q = (1-\varphi_R) I \cdot Q : W_{t,\delta-t}^p \to W_{s,\delta-s}^p$$

may be made arbitrarily small. Therefore, if δ satsifies (1.9) for all *j*, then we may choose R_0 so that

$$A'_{\infty} = A_{\infty} + (1 - \varphi_R) Q : W^p_{\mathfrak{t}, \delta - \mathfrak{t}} \to W^p_{\mathfrak{s}, \delta - \mathfrak{s}}$$

is Fredholm whenever $R \ge R_0$.

In terms of à priori inequalities this means that

$$|u|_{t} \leq C(|A_{\infty}'u|_{s} + |\pi u|_{t}) \tag{4.1}$$

for $u \in W_{t,\delta-t}^p$, where we have abbreviated the norms in $W_{t,\delta-t}^p$ and $W_{s,\delta-s}^p$ by $|\cdot|_t$ and $|\cdot|_s$ respectively, and where π is a projection of $W_{t,\delta-t}^p$ onto the kernel of A'_{∞} and thus is compact. We shall apply (4.1) to $(1-\varphi_{3R})u$ and use $A'_{\infty}=A$ in the support of $(1-\varphi_{3R})$ to conclude

$$|(1-\varphi_{3R})u|_{t} \leq C(|A(1-\varphi_{3R})u|_{s}+|\pi(1-\varphi_{3R})u|_{t}).$$
(4.2)

On the other hand, since $\varphi_{3R} u$ has compact support, standard elliptic estimates [1] imply

$$|\varphi_{3R} u|_{t} \leq C(|A\varphi_{3R} u|_{s} + |\varphi_{3R} u|_{0}).$$
(4.3)

Combining (4.2) and (4.3) yields

$$|u|_{t} \leq C(|A(1-\varphi_{3R})u|_{s}+|A\varphi_{3R}u|_{s}+|\pi(1-\varphi_{3R})u|_{t}+|\varphi_{3R}u|_{0})$$

$$\leq C(|(1-\varphi_{3R})Au|_{s}+|\varphi_{3R}Au|_{s}$$

$$+|[A,(1-\varphi_{3R})]u|_{s}+|[A,\varphi_{3R}]u|_{s}$$

$$+|\pi(1-\varphi_{3R})u|_{t}+|\varphi_{3R}u|_{0})$$
(4.4)

where [,] denotes the commutator. By Rellich's compactness theorem, $[A, (1-\varphi_{3R})], [A, \varphi_{3R}]: W_{1,\delta-t}^p \rightarrow W_{s,\delta-s}^p$ and $\varphi_{3R}: W_{1,\delta-t}^p \rightarrow W_{0,\delta}^p$ are all compact, so the à priori inequality (4.4) shows that $A: W_{1,\delta-t}^p \rightarrow W_{s,\delta-s}^p$ has a finite dimensional nullspace and closed range, hence is "semi-Fredholm". Furthermore, we may find R_1 large so that $A_{\infty} + \varphi_R Q$ is an elliptic system which is semi-Fredholm and

$$\operatorname{index} \left(A_{\infty} + \varphi_R Q \right) = \operatorname{index} \left(A \right) \tag{4.5}$$

whenever $R \ge R_1$, although we do not as yet know that (4.5) is finite.

134

Now for $R \ge \max(R_0, R_1)$ and $0 \le \tau \le 1$ let $(\varphi_R Q)_\tau$ be the matrix with entries

$$\varphi_{R}(\tau x)\sum_{|\alpha|=t_{j}-s_{i}}q_{\alpha}^{ij}(\tau x)\,\partial^{\alpha}.$$

For each τ , $A_{\tau}=A_{\infty}+(\varphi_R Q)_{\tau}$ is an elliptic system of the form (1.1) with coefficients satisfying (1.8) (since A_0 has constant coefficients and A_{τ} for $\tau>0$ has coefficients constant for $|x|\ge 2/\tau$). Thus we have a one-parameter family of semi-Fredholm operators, and so

$$index (A_0) = index (A_1). \tag{4.6}$$

But $A_1 = A_{\infty} + \varphi_R Q$ so (4.5) and (4.6) imply that index (A)=index (A_0). However, the index of A_0 is given by Theorem 3: index (A_0)=index (A_{∞}) is finite. Hence A is indeed Fredholm.

In other words, we have shown that if δ satisfies (1.9) then (\dagger †) is Fredholm and has the same index as (\dagger †)_{∞}. Conversely, we can show that (\dagger †) is not Fredholm where its index changes (i.e., where (1.9) fails for some *j*) by the same method as used for (\dagger †)_{∞} in Section 3.

References

- AGMON, S., DOUGLIS, A. & NIRENBERG, L., Estimates near the boundary for solutions of elliptic differential equations satisfying general boundary conditions II. Comm. Pure Appl. Math., 17 (1964), 35-92.
- [2] CANTOR, M., Elliptic operators and the decomposition of vector fields. Bull. Amer. Math. Soc., 5 (1981), 235-262.
- [3] CANTOR, M., Spaces of functions with asymptotic conditions on Rⁿ. Indiana J. Math., 24 (1975), 897-902.
- [4] CHOQUET-BRUHAT, Y. & CHRISTODOULOU, D., Elliptic systems in H_{s, δ} spaces on manifolds which are euclidean at infinity. Acta Math., 146 (1981), 129–150.
- [5] DOUGLIS, A. & NIRENBERG, L., Interior estimates for elliptic systems of partial differential equations. Comm. Pure Appl. Math., 8 (1955), 503-538.
- [6] LOCKHART, R., Fredholm properties of a class of elliptic operators on non-compact manifolds. Duke Math. J., 48 (1981), 289-312.
- [7] MCOWEN, R., Behavior of the Laplacian on weighted Sobolev spaces. Comm. Pure Appl. Math., 32 (1979), 783-795.
- [8] MCOWEN, R., On elliptic operators in Rⁿ. Comm. Partial Differential Equations, 5 (1980), 913-933.
- [9] NIRENBERG, L. & WALKER, H., Nullspaces of elliptic partial differential operators in Rⁿ. J. Math. Anal. Appl., 42 (1973), 271-301.

Received December 22, 1981