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w 1. Introduction 

Suppose /z is a iT-finite complex-valued measure on the upper half-plane 

R2+={z=x+iy:y>O}. Then/~ is called a Carleson measure if 

s u p ~  [u I (IX(0, [/]]) = IIF'IIc < o0, 

where the above supremum is taken over all intervals I,-R, and where [-[ denotes one- 

dimensional Lebesgue measure. Invoking a fundamental theorem due to Carleson [6], 

H6rmander [21] showed that the a problem aF=lu has a solution F satisfying 

IIFIIL-<R)--< c01~,llc 

where/~ is a Carleson measure. (Here and throughout the paper we denote by Co 

various universal constants.) The proof of this was based on the duality between H ! 

and L| ~ and the fact that 

where 

f * ( t ) =  sup If(x+iy)l. 
~-tl<y 

Here /./n, 0<p<oo, denotes the classical (holomorphic) Hardy space of functions 

holomorphic on R2+ and satisfying 

), sup [ f (x+iy) lP  d x  = I[fl[~ < oo. 
y>0  
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For p=oo we denote by /-F ~ the ring of bounded holomorphic functions on R 2 

endowed with the supremum norm.-We also denote by ~P(R") the (real variables) 

Hardy space of all complex-valued harmonic functions on R+ +l= {(x, y) : x E R ~ , y>O} 

satisfying f*  E LP(R~), where 

f*(t)= sup [f(x, y)l. 
[x-tl<y 

(Notice that by our definitions, ~|174 

L = estimates for the a problem play a fundamental role in the H p theory. They are 

present, either implicitly or explicitly, in the results of [8], [11], [18], [21], [22], [27], 

[36]. Our purpose in this paper is to find explicit solution operators for the a problem 

which yield L~~ solutions from Carleson measure data. It is not hard to see that such 

solution operators must be nonlinear. Indeed, the solution operators of Theorem 1 are 

not even continuous. Our solution operators are also highly one-dimensional in form; 

this reflects the fact that there exist, in the ball in C", ~ closed forms satisfying a 

Carleson condition but not admitting any L | solutions. (See Theorem 3.1.2 of [36].) 

The duality approach to finding solutions of aF=/z is sufficient for many problems 

arising in the/an' theory. In certain situations, however, one would like to obtain more 

information on the solutions than duality permits. We cite two examples of problems 

where the classical duality proof does not immediately give satisfactory answers. 

(i) Can one infer smoothness or L p behavior for F from the known properties of/z? 

(ii) If II ,llc <l can one construct a linear operator S solving a(S(w(z)p))=w(z)lz 
such that IIS(w(z) ,)IIL. R><<.ColIwlIL.? 

Our solution operators can be used to answer problems (i) and (ii). It should be 

pointed out that A. Uchiyama (unpublished) has recently found another method for 

solving (ii) which uses duality. A constructive proof of solving aF=l~ is presented in 

[22], where the solution F is given as (essentially) a convex combination of Blaschke 

products. This approach is attractive in certain contexts (e. g., problems related to the 

Chang-Marshall theorem [1 I], [27]) but the solutions are quite difficult to compute and 

give little more regularity than the L| estimate. We remark that problem (ii) above 

can also be solved by combining Lemma 2.1 of [22] with P. Beurling's interpolation 

theorem [7]. (P. Beurling's theorem is intimately connected with the construction of 

our solution operators - this is discussed in section 5.) On the other hand, the 

construction of our solution operators is extremely simple and flexible and should be 

useful in situations where neither duality nor the Blaschke product methods of [22] can 

be used. Using in part the ideas of this paper, Lennart Carleson [10] has recently been 
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able to solve the corona problem for a certain class of planar domains. (His method is 

necessarily much more complicated than ours.) 

For a measure o on R $ let 

and let 

K ( ~  f f ( 
- -  l. JJlmw<~im~ Z--~I3 

i )dlo[(w)} - i  +__~__~ 

2i Im Ko(o, z, O = --~ (~_~ ) K(a, z, O, 

Kl(O,z,O= exp ( i - l )  ~m~ + ~ K(o,z,O. 

T H E O R E M  1. ! f  ,u i s  a Carleson measure, then 

--  ~ f Ko~,l~llc, z, ~ , ~ < ~ >  So(u ) (z) 
J 3a ,+ 

and 

satisfy 
x E R, the above integrals converge absolutely and 

f II , x,  ol ll , 

Sk(u)(z)EL~o r on R2+ and aSk(u)=Iz in the sense of distributions, k=O, 1. I f  

k=0 ,1 .  

In particular, 

[s~(u) r ~ ColLullc, k = o, 1. 

The solution operators So and S~ differ only in the way that So(u) and S~(u) decay 

when/z is compactly supported. In that case So(u) decays like Iz1-2, while SI(u) decays 

faster than any polynomial in Izl -~. 
Suppose O<po<p<pl<- ~ and fELP(R). For many purposes in analysis (e.g., 

Marcinkiewicz-type interpolation) one wants to be able to split f into fo+f~, where 

foe  L p~ fl E L p~, and where fo and fl  have certain good properties. Our solution 

operator S~ allows us to obtain a decomposition of Marcinkiewicz type for functions 
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fE/-P', where fo E/_f0 and fl  E/ . f l .  Since decompositions of this type are known when 

pl<oO (see [17]), our results are stated only for p~=~.  The proof we give, however, 

extends to the general case. 

THEOREM 2. Suppose 0<po<p<oo and suppose f E H  p. / f  a>0, there is a Marcin- 

kiewicz decomposition o f f ,  f=Fa + f  ~, where F~ E H p~ f~ E 1-if, and such that 

and 

If*( ~ IlFoll ,o < c ,  o >o) 

IIs Coa. 

Our results on the a problem yield some new results on interpolation of operators 

on Hardy spaces. We consider two methods of interpolation, namely the real method as 

described in [19], [32] and the complex method as described in Calder6n [3], In the real 

method the intermediate spaces are denoted by (.,.)o, q, where 0 < 0 < l  and 0<q~<oo. In 

the complex method the intermediate spaces are denoted by (., ,)o, where 0 < 0 <  1. A 

full account of both of these methods can be found in [2]. When interpolating between 

/-P' spaces where p <  1 in the complex method, some minor modifications of Calder6n's 

method are needed; these can be found in [25] and [30]. Le t /P"  q denote the class of all 

functionsfholomorphic on R2+ and such that f*  is in the Lorentz space LP'q(R). Also let 
n + l  ~,v, q(Rn) denote the class of all functionsfharmonic on R+ and such that f*  E L p" q(R0, 

It is known (see [17] and [20]) that 

~e~176 L| = (~~ BMO (R~))O,q = ~P~'q(Rn), 1 = ( 1 - 0 ) ,  0 < Po < oo. 
P Po 

These results imply the relations 

ff,,)o,q=m,q, 1 _ 0 - o )  + s ,  
P Po Pt 

For the complex method the known results are: 

' I _ 1 - o + o ,  

P Po Pl 

(~ ,o (R n ) ,  ~ , ,  (R~))o = ~ ( R n ) ,  1 = 1 - 0  + O ,  
P Po Pl 

(LP~ L| o = (LP~ BMO (n~))o = LP(R~), 

O < P o < p l <  ao. 

O < P o < P l  < ~176 

O < P o < p l <  oo; 

l 

P 

1--0 
m m  

Po 
1 < p o  ~ oo. 
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These last results can be found in respectively [33], [4], and [18]. Our next two theorems 

complete the classification of the intermediate spaces (in the real and complex meth- 

ods) between /_f0 a n d / f l  by allowing H ~ to be an endpoint space. Applying the 

reiteration theorem (see e.g. [2]), Theorems 3 and 4 yield as corollaries the one- 

dimensional versions of the results listed above. 

THEOREM 3. I f  O<Po< OO, then (H p~ l-l~)o.q=l-I v'q, 1/p=( l -O)/Po. 

THEOREM 4. I f  O<po<OO, then (I~ ~ I-F)o=H v, 1/p=(1-O)/p o. 

The methods of [17], [18], and [33] do not apply in the context of Theorems 3 and 4 

for two basic reasons. Firstly, f E R e  H v, 0<p<o0 if and only i f f*ELP;  this fails for 

Re/- /~.  Secondly, the Hilbert transform is bounded on L p, l<p<oo,  while it is not 

bounded on L | The proof of Theorem 3 follows almost immediately from Theorem 2. 

(A detailed proof would follow the lines of  the argument given at the end of [17].) The 

proof of Theorem 4 requires a separate argument. 

At this point it is perhaps appropriate to comment on an unfortunate typographical 

error in [18], which was pointed out to this author by E. M. Stein. It is mistakenly 

stated on page 157 of that paper that (~l(Rn), LP(Rn))o=Lq(R~), 1/q=l-O+O/p, 
l<p~<oo. The mistake lies in the statement l<p~<oo, which should read l<p<oo. In 

other words, the methods of  [18] do not identify (and the authors do not intend to) 

the intermediate spaces (~l(Rn), L| 0. The idea of [18] is that if l<p<oo,  

then by duality, (~~ LP(R~))o=Lq(R ~) if (BMO (R~), LV'(R"))o=Lr where 

1/p+l/p'=l/q+l/q'=l. Since the # function of [18] sends BMO to L ~ and L p' to L p', 
the # function must send (BMO (R~), LP'(R~))o to (L| LP'(R~))o=Lq'(Rn). An appli- 

cation of Theorem 5 of [18] now yields the result (BMO(R~), LP'(R~))o=Lq'(R~). The 

typographical error l < p ~  <oo is all the more unfortunate since it seems to have become 

"well known" and is stated, e.g., in [2] and [31]. Our Theorem 4 rectifies this situation 

in dimension one. 

THEOREM 5. Suppose Xo equals either ~I(R) or L1(R) and suppose Xi equals either 
/ - / ' + / ~ ,  L| or BMO(R). Then 

(Xo, X,)o = LP(R), ! = 1 - o .  
P 

Proof. The statement (LI(R), L| is classical. By Theorem 4, LP(R)= 

I-1 n ~ I:lV=(H I, I-I~)o ~D (I=I I, I:10~ ~- (~~ L| c (LI(R), L| and con- 
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sequently (~l(R), L| The same reasoning shows (~l(R), /-F~ and 

(LI(R),/'/~+/'~)0 equal LU(R). To calculate (~l(R), BMO(R))0, we first observe that 

LP(R)=(~I(R), L~(R))0 c (~'(R), BMO (R)) 0. Since Xal(R) functions integrate both 

functions in L| and BMO (R), functions in (~'(R), BMO (R)) 0 must integrate func- 

tions in (L~176 ~'(R))o=LP(R). Consequently, (~'(R), BMO (R)) o ~ LP(R). The same 

argument shows (L~(R), BMO(R))o=LP(R). We remark that one can use the above 

reasoning plus Theorem 3.1 of [4] to identify (~P~ X,) o as the appropriate Hardy 

space when 0<po<OO. In a future paper the author and S. Janson will give generaliza- 

tions of Theorem 5 to martingales and R n. This is done by carefully examining the 

stopping time argument presented in w 

The organization of the paper is as follows. Theorem 1 is proved in section 2. In 

section 3 we give two applications of Theorem 1 to the Fefferman-Stein decomposition 

of BMO (R). Theorems 2 and 4 are proved in section 4. In section 5 we discuss the 

relation o f / / ~  interpolation to the a problem. 

By conformal equivalence, analogues of all results contained in this paper hold on 

the unit disk. 

w 2. Proof of Theorem 1 
In this section we prove Theorem 1. Only the last claim of the theorem will be proved; 

the other two claims follow easily from the proof given below. Let us consider the 

solution operator So. By the form of So it is enough to prove the theorem for the  case 

where g~>0 and {I/zHc=l. We first note that if w, e E R2+ and Im w-<Im r then 

Re(~_t--~" )=Im~+Im~ ~ 
l -o l 

We also note that the function 

f(oJ) = 2 

is in H I and its norm is independent of ~. Consequently, 

Re{f f l  m r  !m~2d/~(c~ 
~,,,,, ~ j ., .,le+ ~-~ol 

Co .,l ll  -< 

-<co. 
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Fix a point x E R. Since 

the proof of Theorem 1 for the operator So will follow immediately from 

LEMMA 2.1. Suppose tr>~O is a sigma-finite measure on R 2, and suppose x E R. 

Then, 

i o _ f f , I m C _ e x p { f ~ m  - I m w  } ~ T ~  x - ~  , o ~ , r n ~ d c r ( t o )  do(~)~<l. 

Proof. The lemma follows from comparing Io with the integral J'o e-t dr. Sup- 

pose for example that 0=s a~ar is a finite weighted sum of Dirac measures, and 

suppose Im Ct~<Im r ~<...~<Im CN" Put flj=(aj Im ~/Ix-~jt2). Then since Ix-~l--Ix-~l, 
l,~<r.Jv_ l f l jexp{-X{=l  ilk} <1, because the last sum is a lower Riemann sum for 

fo e-t dt. Standard measure theoretic arguments now complete the proof. The author 

thanks Professors E. Gorin, S. Hruscev, and S. Vinogradov for pointing out the above 

argument, which replaces a slightly longer one due to the author. 

The proof of Theorem 1 for the operator Sl now follows from the inequality 

. , / x - R e r  + V " 2  <<-C O , R+. 
exp (i-1) V Im r Ix-el 

We remark that there is nothing special about the formulae for the kernels K, K0, and 

Kl of Theorem 1. Almost any reasonable kernels which look like K, Ko, K! will serve 

the desired purpose. The reason we have introduced the kernel K1 is because of the 

following lemma which will be needed in a later section. For a general box Q= 

Ix(0,  I/1], let xt denote the center of I. 

LEMMA 2.2. I f  l~ is a Carleson measure, ILullc=l, then 

for all xER .  



144 p.w. JONES 

The proof of Lemma 2.2 follows easily from Theorem 2 and the form of Ki. In the 

proof of Theorem 4 we will also need 

LEMMA 2.3. I f  l~ is a Carleson measure, [l/tile=l, and w is a bounded function, 

then 

for all xER .  

f Ig, , x, C)l Iw(r c0 IlwllL. 

Lemma 2.3 follows immediately from Theorem 1. 

w 3. Bounded mean oscillation 

Theorem 1 can be used to obtain constructively the Fefferman-Stein decomposition 

[18], [22] of  functions in BMO(R). (A constructive method was first presented in [22].) 

Let q0 E BMO be real-valued and have compact support. Carleson [9] and Varopoulos 

[36] have both found methods of producing a Carleson measure/z and an L ~~ function v, 

such that I llc, Ilvll,-( ) <c011 ~ and such that 

f_i f 
for all FEH l nl-l'. With /z and v as above, let uk(x)=2iSk(~)(X). Then uk6L| 

llukllL.<n) <Coll ll,, and (p=Re uk+H(Im uD+v, k=0, l, where H denotes the Hilbert 

transform. See [22] for details. 

The above approach to the Fefferman-Stein decomposition is a bit more attractive 

than the approach in [22] because it provides explicit formulae for u and v. We illustrate 

this with another example. Suppose e~: R2+ ~ C\ {0} is a conformal maping onto some 

planar domain. Baernstein [I] has shown that then ~ 6 BMO and llq~ll,~<c0. (That is to 

say, the boundary values of (p are in BMO.) Theorem 2 gives a formula for the 

Fefferman-Stein decomposition of ~. A simple argument using the classical distortion 

estimates for conformal mappings (see [23]) shows that cp'dxdy is a Carleson measure, 

and ll 'dxdyllc<-Co, Let~p=Re(p and let uk=2i Sk(a~), k=O, I. Then there are con- 

stants ck such that q~=Re uk+iH(Re uD+i(Im uk+iH(Im uk))+c~, k=O, I. Smoothness 

in q~ is clearly reflected in the smoothness of uk, k=O, 1. This argument also works when 

e ~ is merely quasiconformal, because it is still the case that IVepldxdy is a Carleson 

measure. See [23]. 
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w 4. Proofs of Theorems 2 and 4 

Our proof of Theorem 2 is in much the same spirit as Koosis' proof [24] of the 

Burkholder-Gundy-Silverstein theorem. For a>0,  let Oa={x:f*(x)>a}. Being open, 

Oa may be written as Uj ~ where the ( a r e  disjoint open intervals. For each 

let T 7 c R 2 denote the tent over ~ ,  i.e., I 7 is the open 45 ~ isosceles triangle lying in 

R 2 with base ~ .  Also let t~ denote a(~j.) Iq R 2, i.e., t~ consists of the two sides of T 7 

not lying on R. Now put Ha(z)=finside Uj T 7 and put H~(z)-O outside of Uj T 7. Then 

aH~ exists as a distribution and [laHallc ~<VTa. This is because aH~ is supported on 

Ujt~ and Ifl<.a on u i t  7. Let Ga=Sl(aHa). We treat f a s  if its boundary values were a 

locally integrable function, ignoring the (merely technical) problems arising whenf(x) is 

a distribution. Since IGa(x)l<~Coa, x ER, the function fa-f-Ha+G,~ satisfies faEH | 
and [Ifalltr~<Co a. Since Fa--Ha-G,~ is analytic, we need only estimate its L p~ norm. 

We present the argument only for the case where p0~<l; the case where po>l follows 

by interpolation between the estimates we give for [[Gallt:(R) and IIG~IIL| 

For each interval ( ,  let 

--ff,, K,(aH, Jl'aHa'lc, z'~)aHa(~)" g gz) 

Then Ga=Zjga, j and by Lemma 2.2, 

f _l oro x -2ff,,o,,ro x 
-< E 

J 

o foolf*r~ 

Consequently, 

f: IF r~ dx 

<- c, o foo r~ 
and the theorem is proved. 
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We remark that the above procedure can be used to provide atomic type decompo- 

sitions of functions in/-P', 0<p~< 1. Such atomic decompositions were first caried out by 

Coifman [12] and since have been studied by many authors. See e.g., [13] and [26]. Let 

f E H  p, 0<p~<l, and with Fa as in the proof of Theorem 2 write 

f =  ~ (FE~-F2.+,). 

Each term in the sum can be easily decomposed into Ej ; t , j  q,,,j. Each q,,,jEH ~176 and 

satisfies 

Iq,,j(x)l <- l/I- j/p exp { -I/I-J/~lx-x,I 1/~ }, 

where xt is the center of some interval I associated to q,,,j. The constants 2,, j  satisfy 

E,,,jl2,,,jg'<~Cpllfl[~. As a consequence, one sees that the same "a toms"  can be used to 

build all/am functions, 0<p~<l. this should be compared with [12] where the definition 

of atoms is different for different ranges of p. That an atomic decomposition of/-P' 

should follow from Theorems 3-5 becomes clear upon the reading of [12], [17], [26], 

and [28]. 

We now turn to the proof of Theorem 4. By the reiteration theorem it is only 

necessary to treat the case where 0<po ~< 1. We will give the proof for the case when 

po=l ,  the proof for 0<po<l  is virtualy identical. Select 0E(0,1), pE(1,  oo), such that 

Up=l-O, and let fE / -F  be continuous on R 2, of rapid decrease at oo, and have norm 

I l f l l f f= l .  Let N be a large positive number and let 10=( -N,N) ,  Q0=loX(0,2N]. 

Suppose o is a Carleson measure, Ilollc~<100, and suppose a-y~>0, where 7 is arc- 

length measure on OQo. (For a set f~cR 2 we define 0f2=(af~)nR2.) Let 

Fo(z)=f(z)Xo.o(Z) and let 

Go(z)=ffK,(o/llollc, 
Then by Theorem I and Lemma 2.4, Fo-GoE/~ and Ilf-(Vo-Go)ll <  if N is large 

enough. By a translation and a change of scale we may assume the above properties 

hold f o r f w i t h  Io=(0, 1), Qo=IoX(0, 1]. 

We now run a stopping time argument. For a cube Q=Ix(O,[l[] let T(Q)=Ix 
([/[/2,[I[] denote the top half of Q. Let no be the integer satisfying 2n~ sup aQo)[f(z)[ 
~<2 n~ We retain the notation used in the proof of Theorem 3 with the exception that 

we use the (equivalent) maximal function f*(t)= supk_,l<,0y [f(x+iy)[. 
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Let mo~no+ 1 be the smallest integer such that 

I{x e I0: f*(x) > 2m~ = II 0 n oc01 <- ill01. 

Then 

I,o %oll> 1 2 I ~ 

Let W~= {J~k ~ be the dyadic Whitney decomposition of O Then if J E W,,,o either 2m0" 

Jclo or Jnlo=O. Let {I~9}={JEWmo:Jclo} and let Q~ l~[], ~o-=Qo\{Oj{~~ 
Because of the way we have defined f* ,  If(z)l~<2 ~ on a~o and consequently 

If(z)l<~2 m~ zE ~o. Let ,#o = {QO} be the cubes so formed at stage zero. At stage one, 
consider the individual cubes QjEo~o. For such a cube Qj=ljx(O,Iljl] let ny be that 

~r . ~ n j + l  integer satisfying 2~J< SUPr~Q)y(Z)~.z and let mj>~nj+l be the smallest integer 

satisfying [/j n o2,jl~<�89 Then I/j n o2,~_,l>�89 and since lj=O2,~ o, it must be that mi>mo. 

Let Wm={J~k j} be the dyadic Whitney decomposition of O2,jand let { I{}=  

{JE Wmj:J'-'lj}. For each such I~ let ~ = l ~ x ( 0 ,  Ilgl] and let 9 ~ F Q i \ { U k ~ } .  Then 

If(z)l<.2 m~, zE~tj. Let ~j={Q~} be the collection of all such cubes formed at stage 

one. Proceeding in this manner we decompose Qo into ug~j. Each ~j is contained in a 
cube aj=ljx(O, Iljl], and If(z)l<~2 mj, z E 9~j. Furthermore 

and 

mk>m j if Ik~/ j ,  

~u 1,1~-I~I: 

Since ag~j has arclength/(0~j)~<6lljI, our last inequality and an iteration argument show 

that if o is arclength measure on Ufi09~j), then o is a Carleson measure and Ilollc-<10o. 
Now let fj(z)=f(z)x~j(z). Since it is a telescoping series, Ejafj=aFo. Let 

g~z)=Lfg,~o/llollc, z, Ogs Then by Theorem 1 and Lemmas 2.2 and 2.3, 

f~ -g jEHlnH | and IlyFgsll~<-Co2% Ilfj-gjllH,--<C02m%l. Now define the Banach 

space (H ! n/-/~) valued function hi, ~ on S={~:0~<Re~<I} by 

hs, ~(z) = (2m0 atO ~--gj)  (Z), 
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where a (~)=p(1-~) -1 .  We consider the (holomorphic) function Hr Ejhj, r ~ E S. If 

r  then hj ,r  | II hj, dl..~<c0, and by Lemma 2.3, 

sup C O . II Hell . .  -< ~R X I hj,r I -< 
J 

(This is where we really use the measure e.) Now consider the case where ~=O+it. 

Then for each j, hi, ~ E H l and 

II h~. r ~< c0 mJl l 

Recall that i f / j  ~ Ik, then mj>m k. Consequently, 

II Hell., ~< ~ II hj.r 
J 

J 

-<Co ~ 2PnlOnl 
z -  

Coy/ <- ~l'ax 
| 

<~ C o. 

At the point ~= 0 we have 

Ho = ~ hj = Fo- f f x,(,~/ll oll c, z, ~) gFo(O, 
J 

because Yjafj.=aFo. By a previous comment, Ilf-Uollm<e. Standard arguments now 

complete the proof of Theorem 4. 

w 5./-F* interpolation 

Our Theorem 1 is closely related to the study of H** interpolating sequences. A 

sequence {zj} of points in R~ is called an (H ~) interpolating sequence if whenever 
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{aj) El | there is FEH** such that F(zj)=aj.  By a theorem due to Carleson [5], (zj} is 

an interpolating sequence if and only if 

i~. I- [ 
J k 

k*j  

~ -  z.__.._.~k 

Zj- -Z  k 
= 6 >0.  (5.1) 

In [22] the interplay between Carleson measures and interpolating sequences is exploit- 

ed to find L| - solutions of aF=/a. The purpose of this section is to show that our 

Theorem 1 is equivalent to finding explicit solutions for the H ~176 interpolation problem. 

To demonstrate this we first fix our attention on a remarkable result due to P. Beurling 

[7]. For an interpolating sequence {zj} let 

M= sup inf {llFll~:F(zj)=%). 
I}{aj}llf, ~ 1 FE/-/** 

P. Beurling has shown that for {zj} and M as above there are functions FiE/F* such 

that Fj(zD=6j.k and EjlF,<z)l<~M for all zERO. Here 6j, k denotes the Kronecker 

delta. Our next result is an explicit formula for P. Beurling type functions. Let 

z-zj  
B(z) = aj . 

�9 Z- -Zj  

be the Blaschke product with simple zeros at {zj} and let 

E z) = I-I ak z-z_  
k Z--Zk 

k*j  

be the Blaschke product with simple zeros at {zk:k~:j}. The ak are unimodular 

coefficients chosen so as to make the products converge. 

THEOREM 6. Suppose  {zj} satisfies (5.1). Let  

F~(z)=cjB~(z) (  yJ ~ 2 e x p { . - i  y~yj Yk } 
log Z-- k 

where 

{i yk 1 cj = -4(B~(zj))  -I exp log2/fi Zj--~k " 
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Then Fj(zk)=dtj, k and 

for all z E 1~. 

 lF (z)l Co Io /d  
J 

Theorem 6 provides for the first time a formula for H | interpolation. For other 

proofs of Beurling's theorem see Earl [16] and Varopoulos' proof on page 298 of [19]. 

(Varopoulos' theorem yields a slightly weaker estimate, but the result holds in a more 

general setting.) The bound Co6-11og(2/6) in Theorem 6 is known to be of optimal 

ordermsee page 293 of [19]. Before proceeding to its proof, we observe that Theorem 6 

is also related to Theorems 3 and 4. Suppose that {flj} E I 1 and put F(z)=Efljyf I Fj(z), 
where the Fj are as in Theorem 6. Then F(zj)=fljyfl, F E H  l, and 

II,~l,,,~<r4~jlVllle~ll,,,~<c(~)r~l~jI. By interpolating between the case where p=  1 (above) 

and p=oo (Theorem 6) we see that if l~<p<oo and {flj}El p, then for 

F(z)=r~fljyj-~/PFj(z) one has F(zj)=fljy) -~/p, FEI-P', and IIFIl,~<C(p,~)ll {tb}llr This 

is the interpolation theorem of Shapiro and Shields [34]. 

Proof of  Theorem 6. We first estimate the quantities cj. By condition (5.1), 

IBj<zj)I-I~<~ - ' .  Since IIr~yj~z~llc<~Co log 2/6 (see pp. 287-290 of [19]), the proof of 

inequality (2.1) shows 

zj_~k ~ C01og-~-. 

Consequently, cj~C0d -I .  To finish the proof of Theorem 6 we need therefore only 

demonstrate that for x E R, 

Ix-  l 2 �9 y ~ y j  

because then the maximum principle can be invoked. This last inequality follows from 

Lemma 2. I with 

As a final remark, it should be noted that the author was led to Theorem 1 by first 

proving Theorem 6. 



L | ESTIMATES FOR THE 6 PROBLEM IN A HALF-PLANE 151 

References 

[1] BAERNSTEIN, A., Univalence and bounded mean oscillation. Michigan Math. J., 23 (2976), 
217-223. 

[2] BERGH, J. & LOFSTROM, J., Interpolation spaces. Springer Verlag, Berlin Heidelberg, New 
York, 1976. 

[3] CALDERON, A. P., Intermediate spaces and interpolation, the complex method. Studia 
Math., 24 (1964), 113-190. 

[4] CALDERON, A. P. & TORCHINSKY, A., Parabolic maximal functions associated with a 
distribution, II. Adv. in Math., 24 (1977), 101-171. 

[51 CARLESON, L., An interpolation problem for bounded analytic functions. Amer. J. Math., 
80 (1958), 921-930. 

[6] - -  Interpolation by bounded analytic functions and the corona problem. Ann. of  Math., 76 
(1962), 547-549. 

[7] - -  Interpolation by bounded analytic functions and the corona problem. Proc. Internat. 
Congr. Mathematicians (Stockholm, 1962), pp. 314-316. Inst. Mittag-Leffler, Djurs- 
holm, 1963. 

[8] - -  The corona theorem. Proceedings of  15th Scandanavian Congress (Oslo, 1968). Springer 
Verlag, Lecture Notes in Math., No. 118. 

[9] - -  Two remarks on H I and BMO. Adv. in Math., 22 (1976), 269-277. 
[10] - -  On H ~ in multiply connected domains. Institut Mittag-Leffler report No. 14, 1981. 
[11] CHANG, S. Y., A characterization of Douglas subalgebras. Acta Math., 137 (1976), 81-89. 
[12] COIFMAN, R. R., A real variable characterization of H p. Studia Math., 51 (1974), 269-274. 
[13] COIFMAN, R. R. & WEISS, G., Extensions of Hardy spaces and their use in analysis. Bull. 

Amer. Math. Soc., 83 (1977), 569--646. 
[14] DUREN P., ROMBERG, B. W. & SHIELDS, A. L., Linear functionals on /-F spaces with 

0<p<l .  J. Reine Angew. Math., 238 (1969), 32--60. 
[15] EARL, J. P., On the interpolation of bounded sequences by bounded functions. J. London 

Math, Soc., 2 (1970), 544-548. 
[16] - -  A note on bounded interpolation in the unit disk. J. London Math. Soc., 13 (1976) 

419-423. 
[17] FEFFERMAN C., RIVII~RE, N. M. R, SAGHER, Y., Interpolation between H p spaces: The real 

method. Trans. Amer. Math. Soc., 191 (1974), 75-81. 
[18] FEFFERMAN, C. & STEIN, E. M., /-P' spaces of several variables. Acta Math., 129 (1972), 

137-193. 
[19] GARNETT, J., Bounded analytic functions. Academic Press, 1981. 
[20] HANKS, R., Interpolation by the real method between BMO, L a (0<a<~)  and Ha 

(0<a<oo). Indiana Univ. Math. J., 26 (1977), 679--690. 
[21] HORMANDER, L., Generators for some rings of analytic functions. Bull. Amer. Math. Soc., 

73 (1967), 943-949. 
[22] JONES, P. W., Carleson measures and the Fefferman-Stein decomposition of BMO(R). Ann. 

of  Math., 111 (1980), 197-208. 
[23] - -  Extension theorems for BMO. Indiana Univ. Math. J., 29 (1980), 41-66. 
[24] KOOSIS, P., Sommabilit6 de la fonction maximale et appartenance ~t Hi. C. R. Acad. Sci. 

Paris S~r. A, 286 (1978), 1041-1043. 
[25] KRI~E, P., Interpolation d'espaces vectoriels qui ne sont ni norm6s, ni complets. Ann. Inst. 

Fourier, 17 (1967), 137-174. 
[26] LATTER, R. H., A characterization of/-F(R n) in terms of atoms. Studia Math., 62 (1978), 

93-101. 
[27] MARSHALL, D. E., Subalgebras of L | containing H | Acta Math., 137 (1976), 91-98. 



152 P.w. JONES 

[28] PEETRE, J., Two observations on a theorem of Coifman. Studia Math., 64 (1979), 191-194. 
[29] PEETRE, J., & SPARR, G., Interpolation of normed Abelian groups. Ann. Mat. Pura. Appl., 

92 (1972), 217-262. 
[30] RIVII~RE, N. M., Interpolation theory in s-Banach spaces. Ph.D. Thesis, University of 

Chicago, 1966. 
[31] RIVII~RE, N. M., & SAGHER, Y., Interpolation between L | and H l, the real method. J. 

Funct. Anal., 14 (1973), 401-409. 
[32] SAGHER, Y., Interpolation of r-Banach spaces. Studia Math., 41 (1972), 45-70. 
[33] SALEM, R., • ZYGMUND, A., A convexity theorem. Proc. Nat. Acad. Sci. USA., 34 (1948), 

443--447. 
[34] SHAPIRO, H. S., & SHIELDS, A. L., On some interpolation problems for analytic functions. 

Amer. J. Math., 83 (1961), 513-532. 
[35] VAROPOULOS, N. Th., Sur la r6union de deux ensembles d'interpolation d'une alg6bra 

uniform. C. R. Acad, Sci. Paris S~r. A, 171 (1971), 950-952. 
[36] - -  BMO functions and the 0 equation. Pacific J. Math., 71 (1977), 221-273. 
[37] ZYGMUND, A., Trigonometric Series, Vols. 1, 2. 2nd ed Cambridge University Press, 

Cambridge, 1977. 

Received December 22, 1980 


