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0. Introduction 

The present work is inspired by three papers, [! I] of Van den Dries, [9] of Prestel and 

[5]. Van den Dries considers structures of the form (K, Pl . . . . .  Pe) ,  where K is a field 

and P1 ... . .  Pe are e orderings of the K. They are called, e-fold ordered fields. The 

appropriate first ordered language is denoted by ~e. He proves that the theory of e-fold 

ordered fields in ~e has a model companion O F  e. The models (K, PI . . . . .  Pe) of OFe 

are characterized on one hand by being existentially closed in the family of e-fold, 

ordered fields, and by satisfying certain axioms of LP~ on the other hand. 

In particular Van den Dries proves that the absolute Galois group G(K) of K is a 

pro-2-group generated by e involutions. If K is algebraic over Q and R is a real closure 

of Q, this implies that there exist ol . . . . .  oeEG(Q) such that K = R ~  ~ In 

general, if o~ . . . . .  oe E G(Q), we write Qo=R ~ N... n R ~ and denote by Poi the ordering 

of Q induced by the unique ordering of the real closed field R ~ In this way we attain a 

family of e-fold ordered fields, ~o=(Qo, Pol .. . . .  Po~), indexed by G(Q) e. 

Geyer proves in [4] that for almost all aE G(Q) e (in the sense of the Haar measure 

of G(Q)~), the group G(Qo) is isomorphic to the free product,/)~, of e copies of Z/2Z, 

in the category of profinite groups. This takes us away from the models of OFe and 

leads us in [5] to make the following 

Definition. An e-fold ordered field (K, Pl .. . .  ,P~) is said to be a Geyer-field o f  

corank e if the following conditions hold: 

(a) If V is an absolutely irreducible variety defined over K and if each of the 

orderings Pi extends to the function field of V, then V has a K-rational point. 

(13) The orderings Pi . . . . .  e e  induce distinct topologies on K. 

(~,) We have G(K)-------/)~. 

(~) Partially supported by the fund for basic research administered by the Israel Academy of Sciences 
and Humanities. 
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The main result of [5] is that 9"~ is a Geyer-field of  corank e for almost all 

o E G(K) e. It is also proved in [5] that the theory of Geyer-fields of corank e coincides 

with the theory of  all sentences O of ~e which are true in 9"~ for almost all o E G(Q) e. 

Finally, a (recursive) decision procedure is given for the theory of Geyer-fields of 

corank e. 

As an atempt to return to the models of OFe, we call an e-fold ordered field 

(K, Pl . . . . .  Pe) by the name Van den Dries-field if it satisfies (ct) and (13) above and also: 

(y') The group G(hO is isomorphic to the free product,  be(2), of e copies of Z/2Z, 

in the category of  pro-2-groups. 

The group/9~(2) is obviously the maximal pro-2 quotient of/ge. Using this observation, 

it is not difficult to show that every Geyer-field Y(=(K,P~ ... . .  P~) has an algebraic 

extension Yf'=(K',P~ .. . . .  P')  such that G(K')-~I~e(2). One may therefore wonder 

whether Y(' is a Van den Dries-field. The first obvious attempt to solve this problem 

fails, since as McKenna  [8, p. 5.13] and Prestel [9, p. 2] point out, it is not true that if an 

e-fold ordered field (K, Pi . . . . .  P~) satisfies (ct), then every algebraic extension 

(L, Qi . . . . .  Q~) satisfies (c0 too. The problem is that (a) implies, among others, that 

P~ . . . . .  P~ are the only orderings of  K, and it may happen that L has more than e 

orderings. 

Prestel overcomes this difficulty by making the ,  ight definition. He calls a field K 

PRC if it satisfies the following modificaiton of condition (ct): 

(et') If  V is an absolutely irreducible variety defined over K and if every ordering 

of K extends to the function field of  V, the V has a K-rational point. 

Then he proves that every algebraic extension of a PRC field is a PRC field (Theorem 

3.1 of  [9]). Coming back to X '  we prove that Pi . . . . .  P~ are all the orderings of  K'  and 

therefore Yf' is indeed a Van den Dries-field. 

This result implies that for almost all o~  G(Q) e we may choose an algebraic 

extension 9"0 of  9.0 which is a Van den Dries-field of corank e. Then we prove that the 

following three theories coincide. 

(a) The theory of  all sentences O of ~e that hold in 9"~ for almost all o E G(Q) e. 

(b) The theory of all Van den Dries-fields of corank e. 

(c) The theory OF~. 

In particular it follows that if (K, P~ . . . . .  e e )  is a model of O7~, the G(K)~/~(2) .  
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1. PRC fields 

Let < be an ordering of a field K and let P-- (x • K I x>0} be the positive cone of <.  We 

abuse our language and speak about P as "the ordering of K".  The real closure of K 

with respect to P is denoted by /~e. Our intention is to consider the family of all 

orderings of K. A. Prestel proves with this respect the following proposition in [9, 

Theorem 1.2]: 

PROPOSITION 1.1. The following two conditions on afield K are equivalent. 

(a) I f  F is a regular extension of  K and if every ordering of K extends to F, then K 

is existentially closed in F. 

(b) I f  V is an absolutely irreducible variety defined over K and if V has a I~t,- 

rational simple point, for every ordering P of  K, then V has a K-rational point. 

A field that satisfies the conditions of Proposition I. 1 is said to be pseudo-real-closed 

(abbreviated PRC). Note that this definition makes sense even if K has no orderings. In 

this case K turns out to be a PAC field (cf. Frey [2, p. 204]). 

Prestel goes on and proves in [9, Proposition 1.4], the following properties of PRC 

fields: 

PROPOSITION 1.2. Let K be a PRC field. 

(a) l f  P is an ordering of  K, then K is P-dense in lile. 

(b) Distinct orderings o f  K induce distinct topologies on K. 

(c) I f  L is an algebraic extension of  K the L is also a PRC field. 

We are mainly interested here in the case where K has only finitely many 

orderings. Thus we consider systems ~r=(K, PI . . . . .  Pe) consisting of a field K and e 

orderings Pi . . . . .  Pe and denote by /~i the real closure of K with respect to Pi. The 

corresponding language is denoted by Lf~(K). It consists of the usual first order 

language for the theory of fields augmented by e predicate symbols for Pi . . . . .  Pe and 

by constant symbols for the elements of K. 

PROPOSITION 1.3. Let ~=(K,  P~ . . . . .  Pe) be a field with e distinct orderings. The 

the following conditions are equivalent. 

(a) The field K is PRC and PI . . . . .  P~ are all of  its orderings. 

(b) I f  C is an absolutely irreducible curve defined over K and C has a I(rrational 

simple point, for i= 1 . . . . .  e, then C has a K-rational point. 
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(c) I f  ~=(F ,  QI . . . . .  Qe) is an extension o f  ~= (K ,  P1 . . . . .  Pe) such that F is regular 

over K, then ~ is existentially closed in 3; in the language ~e(K). 

(d) (i) I f  f E  K[T1 . . . . .  Tr, X] is an absolutely irreducible polynomial  for  which there 

exist an ao E K r such that f(ao, X)  changes sign on K with respect to each o f  

the Pi' s and i f  Ui is a Prneighbourhood o f  ao, for  i= I  . . . . .  e, then there exists 

an (a, b) E K r+ l such that a E U1N ... N Ue and f(a,  b)=0. 

(ii) The orderings P1 . . . . .  Pe induce distinct topologies on K. 

Proof. The equivalence (a)<:~(b) is just  a rephrasing of Theorem 2. I of  Prestel [9]. 

Similarly (a)<:~(c) is a repetition of  Theorem 1.7 of [9]. Finally, the equivalence (a)c,.(d) 

follows from Proposition 1.2 (b) and from Lemmas  2.2 and 2.3 of [5]. Note that we have 

to use here the well-known fact that if V is an absolutely irreducible variety defined 

over a field K with an ordering P, then P extends to the function field of V if and only if 

V has a/~e-rational simple point. Q.E.D. 

Proposition 1.3 implies that the present definition of a PRC field coincides with 

those that appear in [5] for e orderings, in McKenna  [8] and in Basarab [1] for one 

ordering. An e-fold ordered field (K, Pl . . . . .  ee) is said to be PRC e if it satisfies the 

conditions of  Proposition 1.3. 

As an application we generalize Theorem 2.1 of  McKenna  [8] from PRC1 fields to 

arbitrary PRCe fields. In the proof of  this generalization we use the following argument 

about a real closed field R. If  a polynomial fER[X]  changes sign in an interval (a, b) of  

R, then it has a zero in (a, b). Therefore if a polynomial g E R[X] is close enough to f ,  it 

also changes sign in (a, b) and therefore has a zero in (a, b). 

PROPOSITION 1.4. Let  (K, Pl . . . . .  P~) be a PRCe f ield and let V be an absolutely 

irreducible variety def ined over K. For every 1 <.i<~e let qi E V(I(i) be a simple point.  

Then V has a K-rational point  q, arbitrary Prclose to qi, for  i= 1 . . . . .  e. 

Proof. The assumption that the qi are simple implies that there exists a hypersur- 

face W and a birational mapq0: V---~W, defined over K, such that q0 is biregular at 

ql . . . . .  qe (cf. [3, L e m m a  5.1]). We may therefore assume that V is defined by an 

absolutely irreducible polynomial f E K [ T I ,  ..., Tr, X] and that qi=(a i l  . . . . .  air, bi), for 

i= 1 . . . . .  e. We may also assume that Of/Ox*O, since one of the partial derivatives of f is 

not zero. 

The assumption that qi is a simple point of V means thatf(ai ,  b,.)=0 and at least one 

of the partial derivatives o f f  does not vanish at q;. If  it is not Of/ax, then we may 

assume without loss that (Of/OTl) (a;, bi)~:O. In particular the polynomial 
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f ( T l ,  a,~ . . . . .  air, bi)  changes sign on /~i in a neighbourhood of all. As af /ax .O,  it is 

relatively prime to f i n  the ring K(T2 . . . . .  Tr, X)[T1]. Therefore there exist polynomials 

hl,hE E g[  Tl . . . . .  Tr, X] and O* g E K[ T2 . . . . .  Tr, X] such that 

h l f + h 2 9 ~ f = g .  (1) 
~ x  

There exist now elements a~ . . . . .  ai' r, b~ E Iil i which are Prc lose  to a,~ . . . . .  air, b i such that 

g(a'i2 . . . . .  air ,  b~)*O. Then f(T1, a~ . . . . .  ai' r, b;) changes sign o n / ( i  in the neighbourhood 

of ai~ and therefore it has a zero a~l E/~i which is Prc lose  to all. Then (1) implies that 

(Of/Ox) (a', b~)*0. 

Thus, replacing (ai, bi) by (a~, b) ,  if necessary, we may assume that 

f (a  i, bi) = 0 and a f  (ai, bi) :~ 0 for i = 1 . . . . .  e. 
ax 

Let  Ii . . . . .  lr be algebraically independent elements over K. For each l<~i<.e extend P; 

to an ordering of  /~i(t~ . . . . .  tr) such that t~ . . . . .  tr are Prinfinitesimally close to 

ai~ . . . . .  air. Let Ri be a real closure of  Iiii(q . . . . .  tr). Then the polynomialf ( t ,  X) changes 

sign on Ri in the neighbourhood of  bi and therefore has a root x; E Ri in this neighbour- 

hood. Take also a root x of f ( t ,  X) and let F--K(t,  x). Then K is algebraically closed in F 

and the mapx~-,xi can be extended to a K(t)-isomorphism of  F into Ri. This isomor- 

phism defines an extension of  the ordering Pi to F such that (t, x) is Prc lose  to (ai, bi). 

Note that all the above neighbourhoods are already defined by elements of K, 

since, by Proposition 1.2, K is P rdense  in/~i, for i= 1 . . . . .  e. It follows from Proposition 

1.3(c) that there exists a point (a, b ) E K  r+l which is Prc lose  to (ai, bi) for i = l  . . . . .  e 

such that f (a ,  b)--0. Q.E.D. 

2. Van den Dries-fields 

Denote by De the free product of  e copies of  Z/2Z in the category of groups. Consider 

its completion/)e=lirn D i N ,  where N runs over all normal subgroups of finite index. 

The maximal pro-2-quotient /)e(2) o f / ) e  can also be described as the inverse limit 

b e ( 2 ) = ~ D e / N ,  where N runs now over all normal subgroups of  De such that De/N 

are 2-groups. The group /)e (and also De(2)) has a system of e-generators el . . . . .  ee 
satisfying 2 2 el=. . .=ee=l .  If x~ . . . . .  xe are involutions in a profinite (resp. pro-2) group, 

then the map e,+--*xi, i= 1 . . . . .  e can be extended to a homomorphism o f / ) e  (resp. of  

/)e(2)) into G. Indeed, every system of e involutions that generate b e (resp./)e(2)) has 
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this property, Thus /)e (resp. /)e(2)) is the free product in the category of profinite 

(resp. pro-2) groups of e copies of Z/2Z. 

The group/)~ plays a central role in [5]. This role is now shifted to the group/)e(2). 

Analogously to/)e,  if el . . . . .  e e are involutions that generate/~e(2), then no two of them 

are conjugate, since a map of el . . . . .  e e onto a basis of (Z/2Z) ~ can be extended to an 

epimorphism of /~e onto (Z/2Z) e. We have the following characterization of/)e(2), 

similar to that of/)e: 

LEMMA 2.1. A pro-2-group G is isomorphic to /~e(2) i f  and only i f  its finite 

quotients are exactly the 2-groups which are generated by e involutions. 

Proof. See e.g. Schuppar [10, Satz 2.1]. Q.E.D. 

A PRCe field (K, PI . . . . .  P e )  for which G(K)-~I~ e is called in [5] a Geyer field of 

corank e. Similarly we say that a PRCe field (L, Ql . . . . .  Q~) is a Van den Dries-field o f  

corank e if G(L)~-I~)e(2). The condition on the absolute Galois group of L is responsible 

for the unique feature of the Van den Dries-fields among n the PRCe fields. 

For example we have the following: 

LEMMA 2.2. I f  L is a PRC f ield and G(L)---/)e(2), then L has exactly e orderings 

QI . . . . .  Q~. They satisfy Q! N ... A Qe=L .2 and (L, Q! . . . . .  Q~) is a Van den Dries-field. 

Proof. By assumption G(L) is generated by e involutions e~ . . . . .  e~ which are not 

conjugate to each other. Hence they induce e distinct orderings Q~ . . . . .  Qe on L. By 

Proposition 1.2, QR . . . . .  Qe induce distinct topologies on L. If xEQIA . . .OQe ,  then 

V--~x EL~ n... nL,=L(e~ . . . . .  ee)=L. Hence Qi A... AQe=L .2 and consequently every 

ordering of L contains QIfl . . .NQe.  It follows from Van den Dries [11, p. 90] that 

Q1 . . . . .  Q~ are the only orderings of L. Q.E.D. 

The above lemma is also true for Geyer-fields if we replace/)e(2) by/)~. However 

its following converse holds only for Van den Dries-fields. 

LEMMA 2.3. Let  ~=(L,  Qt . . . . .  Qe) be a Van den Dries-field. Then: 

(a) The structure ~ has no proper algebraic extensions. 

(b) I f  el, ..., ee are involutions o f  G(L) that induce Qi . . . . .  Qe on L, then they 

generate G(L). 

(c) Conversely, i f  el . . . . .  ee are involutions that generate G(L), then they induce 

QI . . . . .  Qr on L (possibly after re-enumeration). 
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Proof. (a) (Van den Dries [11, p. 77].) Let  ~ ' = ( L ' ,  Qi . . . . .  Q') be a proper 

algebraic extension of  ~ .  Without loss of generality we may assume that [ L ' : L ] < ~ .  

Let  N be a finite normal extension of L that contains L ' .  Then ~(N/L) is a 2-group. 

Hence L has a quadratic extension L(V"x--) which is contained in L ' .  It follows, by 

Lemma 2.2, that x=(V'-x)Z=Ql A ... O Qe=L .2, a contradiction. 

(b) Q1 . . . . .  Q~ can be extended to L(eb. . . ,  ee). Hence,  by (a), L(el . . . . .  ee)=L. 

(c) The involutions el . . . . .  ee are " f r e e "  generators of  G(L) and as such they are 

not conjugate to each other. Hence they induce e distinct orderings on L, which are 

exactly Q1 . . . . .  Q~, by L e m m a  2.2. Q.E.D. 

3. The elementary equivalence theorem for Van den Dries-fields 

Proposition 1.3 (d) gives an elementary characterisation of PRCe fields in the language 

&Pc of e-fold ordered fields. Lemma 2.1 provides an elementary characterisation of 

fields L with G(L)=I)e(2). Together we have: 

LEMMA 3.1. There is an explicit (primitive recursive) set A e of  sentences o f  .5~ 

such that an e-fold ordered field (E, PI . . . . .  P,) is a Van den Dries-fieM if  and only i f  it 

satisfies Ae. 

If ~g=(E, PI ... . .  Pc) is an e-fold ordered field and L is a subfield of  E, then 

L A ~= (L A E, L fl Pi . . . . .  L 13 Pc) is a substructure of  E. Similar to Geyer-fields we have 

the following theorem for Van den Dries-fields. 

THEOREM 3.2. Let ~=(E, P1 .. . . .  P,) and ~=(F, QI .. . . .  Qe) be two Van den 

Dries-fields and let L be a common subfield o f  E and F. I f  L A ~g----L L A ~;, then ~gmt. ~. 

Proof. Without loss of  generality we may assume that 

L A ~f=/. A ~ = ( M ,  $1 . . . . .  Se). By Lemma 2.3 there exist involutions e~ . . . . .  ee that gen- 

erate G(E) and induce P1 . . . . .  P~ on E, respectively. Let  yi=ResMei, for i=1 . . . . .  e. 

Then ~'l . . . . .  ?e are involutions that generate G(M) and induce Sj . . . . .  S,  on M, respec- 

tively. For each l<~i<~e, the fields h~t(tr;) and F are linearly disjoint over M, hence Q,. 

can be extended to an ordering of  ,(l(o~)F. Choose an involution ~ that induces this 

ordering. Then ResM~i=Ti. By Lemma 2.3, r . . . . .  ~e generate G(F). The map ~i~-~ei for 

i= 1 . . . . .  e can be extended to an isomorphism q0: G( F)--> G( E) such that 

Res~tp(cr)=Rest~cr, since both G(E) and G(F) are isomorphic to/)~(2). If follows from 

Theorem 3.2 of  [5] that fg -M~.  Q.E.D. 

17-838283 Acta  Mathemat ica  150. lmprim6 le 15 aoQt 1983 
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Remark. Note that the proof of Theorem 3.2 is easier than the proof of the 

corresponding theorem for Geyer-fields (Theorem 5.4 of [5]), since Lemma 2.3 makes 

the use of the Gasch0tz-type Lemma 5.3 of [5] redundant. 

COROLLARY 3.3. I f  (E,P! . . . . .  Pe)~-(F, QI . . . . .  ae) are two Van den Dries-fields, 

then (E, PI, ...,Pe)<(F, QI, ..., ae); in other words, the theory o f  Van den Dries-fields 

o f  corank e is model complete. 

4. On the existence of Van den Dries-fields 

We have the following connection between the two types of fields. 

PROPOSITION 4.1. Every Geyer-field (K, Pi . . . . .  Pe) has an algebraic extension 

(K', P~ . . . . .  P') which is a Van den Dries-field. 

Proof. By Lemma 4.3 of [5], the group G(K) is generated by e involutions el, ..., e~ 

that induce Pi . . . . .  Pe on K. Denote by N the maximal 2-extension of K. Then ~(N/K) 

is the maximal 2-quotient of G(K). Therefore ~d(N/K)~/)~(2) and gi=ResNei, 

i = l , . . . , e ,  generate ~(N/K). Denote by Qi the ordering of N(s which is 

induced by el. Let D be a 2-sylow subgroup of G(K). Its fixed field/~(D) has an odd 

degree over K and therefore it is linearly disjoint from N, hence from N(~;), over K. It 

follows that N(~i)I~(D) has an odd degree over N(gi), hence Qi extends to an ordering 

Q' of N(ei)I~(D). Let e~ be an involution of D that induces Q~ on N(ei)I~(D). The 

map ~i~e', for i= 1,..., e, can be extended to a homomorphism of ~(N/K) into D and 

the map Res: (e~ . . . . .  e'~)---~(~(N/K) is its inverse. It follows that (e~ .. . . .  e~)-----D~(2). 

If we write K'=K(e~ . . . . .  e') and denote by P: the ordering of K' induced by e~, 

then K'=(K' ,P~ . . . . .  P'~) is an e-fold ordered field that extends X=(K,P~ . . . . .  P~) and 

G(K)------/)~(2). By Proposition 1.2(c), K' is a PRC field. Hence, by Lemma 2.2, X'  is a 

Van den Dries field. Q.E.D. 

5. The identification of Van den Dries-fields 

Van den Dries considers in his thesis [11] the theory OFe of e-fold ordered fields in the 

language ~e. He proves that OFe has a unique model companion OFe, which is, by 

definition, a theory in ~ ,  such that (i) each model of O~,, is a model of OFe, (ii) each 

model of OFe can be embedded in a model of OF~, and (iii) OFe is model complete. He 
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m 

shows that an e-fold ordered field ~=(E, Px . . . . .  P~) is a model of  OFe if and only if it 

has the following two properties: 

(et) For  every irreducible polynomial f E  E[T, X] and every ao fi E such that f(ao, X) 

changes sign on E with respect to each of the Pi, there exist a, b E E such that f (a ,  b)=0. 

(13) PI .... , Pe are independent.  

A. Prestel identifies the models of O~e as those PRCe fields which have no proper 

algebraic extensions (see [9, Theorem 2.4]). 

While we are unable to prove directly that (~) and (13) are equivalent to our  axioms 

of  Van den Dries-fields, nor can we do it for Prestel 's characterization, we can still 

prove it using a model theoretic criterion. 

THEOREM 5.1. The theory o f  Van den Dries-fields is the model companion o f  OFe. 

In other words, an e-fold ordered field ~ is a model o f  OFe if and only if  it is a Van den 

Dries-field. 

Proof. The theory of  Van den Dries-fields is model complete, by Corollary 3.3. 

Hence it suffices to prove that every e-fold ordered field ~ = ( L ,  QI, -.-, Qe) is contained 

in a Van den Dries-field. Using the diagram of  ~ ,  and a compactness argument one sees 

that it suffices to consider the case where L is countable. Let  t be a trancendental  

element over L, and extend Ql . . . . .  Q~ to orderings Q~ . . . . .  Q" of L(t). Note that L(t) is 

a Hilbertian field (cf. Lang [7, p. 155]). Hence,  by Theorem 6.7 of [5], (L(t), Q~ .... .  Q'~) 

has an extension ~ which is a Geyer-field. By Proposition 4.1, ~ has an extension ~' 

which is a Van den Dries-field. ~' is the desired extension of ~ .  Q.E.D. 

COROLLARY 5.2. I f (E,  Pt . . . . .  P,) is a model o f  O"ff e, then G(E)=-b~(2). 

Remark. Corollary 5.2 is a special case of  Theorem 3.13 stated in [11] without a 

proof. 

6. The theory of almost all X~ 

Suppose now that K is a countable Hilbertian field equipped with e orderings 

P1 . . . . .  Pe. L e t / ( i  . . . . .  /(e be some fixed real closures of K that induce the orderings 

PI . . . . .  Pe, respectively. For  every ol . . . . .  tl~ E G(K) let Ko=l~t I n... n I~" and denote by 

Pol . . . . .  Pae the orderings of  K induced by /~lt , . . . , /~e e, respectively. Then 

Yfa=(Ko, Pol . . . . .  Po,) is an e-fold ordered field that extend ~ = ( K ,  Pl . . . . .  P,).  
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The group G(KY is equipped with a unique normalized Harr measure. With 

respect to this measure we have proved in [5, Theorem 6.7] that ~0 is a Geyer-field for 

almost all trE G(Ky.  Let  No be the maximal 2-extension of  Ko. By proposition 4.1, ~o 

has an algebraic Van den Dries extension . . . . .  ~r~-(K~,Pcrl,...,Poe) such that 

N~NKo~=NoNIii~, for i= I  . . . . .  e. For  those tr's such that :~o is not a Geyer-field we let 

Recall that an ultrafilter @ of  G(KY is said to be regular if ~ contains all subsets of  

G(Ky  of measure 1 (cf. [6, p. 288]). 

LEMMA 6.1. Let �9 E G(K) e be an e-tuple such that G(KO is a pro-2-group. Then 

G(K) ~ has a regular ultrafilter ~ such that ~ = / ~ N  FI Ko/@. 

Proof. Let  L be a finite Galois extension of K and consider the non-empty open 

subset of  G(K) e, 

S(L) = {oEG(K)eiResLoi=ResLri  for i =  1 . . . . .  e}. 

If L '  is a finite Galois extension of  K that contains L, then S(L')~S(L).  It follows that 

the intersection of  finitely many sets of the form S(L) is a non-empty open set. By [6, 

Lemma 6.1] there exists a regular ultrafilter ~ of  G ( K y  that contains all sets S(L). 

Let  F=K~,/~, Qi=l-IP~i/~ and Fi=FAI1/~ ' ; /~ .  Then J;=(F, QI . . . . .  Qn)=IIK ' /~  

and/el  is the real closure of  F with respect to Q,.. 

Consider a finite Galois extension L of K. If  oES(L) ,  then Lfl/~o;=LA/~,~ and 

L fl Ko=L fl K~. The group G(L/L fl KO is a 2-group. Therefore LKo is a 2-extension of 

Ko, hence it is contained in the maximal 2-extension No of Ko. It follows that 

L n l~'~, = L n N~, n I~'~i = L n No n I~o, = L n I~o,= L n I~,,. 

As S(L) E ~,  we conclude that L A l~i=L n I(a for i= I . . . . .  e. 

We let L run over all finite Galois extensions of K and have that/~A~r for 

i=I  . . . . .  e. Hence / ( ' f i  ~:=K~. Q.E.D. 

THEOREM 6.2. Let K be a countable and Hilbertian field, and let 

~ = ( K ,  Pi .. . . .  P~) be an e-fold ordered field. Then a sentence 0 o f  Sfe(K) is true in all 

Van den Dries-fields o f  corank e that extends ~ i f  and only i f  O is true in X"  for almost 

all o E G(KY. 

Proof. Almost all the structures ~f' are Van den Dries-fields of corank e. This 

provides one direction of  the theorem. 
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Suppose in the other  direction that O is true in X"  for almost all o E  G(K) e and let 

~=(E,  Ql . . . . .  Oe) be a Van den Dries-field that extends ~ .  Then Kfl * = ~  for some 

r E G(K) e and G(KO is a pro-2-group. By Lem m a  6.1, there exists a regular ultrafilter 

of  G(IO e such that KNI/X~,/~=5~,.  It follows from Theorem 3.2, that I - IX' /~--K~.  

The sentence O is true in 11 ~ o / ~ ,  since ~ is regular, hence it is also true in ~. Q.ED.  

The special case where K = Q  and Pt  = . . .  = P ,  = the unique ordering of  Q provides 

our final characterisat ion of  the theory of  Van den Dries-field of  corank e. 

COROLLARY 6.3. A sentence (9 o f  .Sff~ is true in all Van den Dries-fields o f  corank 

e i f  and only i f  it is true in ~o for almost  all o E G(Q) *. 

Remark.  Van den Dries proves in [11, p. 74] that the theory OFe is decidable. In 

[5] we show that the theory of  Geyer-fields of  corank e is decidable. It is not difficult to 

modify the p roof  of  [5] and to get a second proof  for  the decidability o f  OFe which is 

based on Corollary 6.3 and Theorem 5.1. 
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