On the model companion of the theory of *e*-fold ordered fields

by

MOSHE JARDEN⁽¹⁾

Tel-Aviv University, Tel-Aviv, Israel

0. Introduction

The present work is inspired by three papers, [11] of Van den Dries, [9] of Prestel and [5]. Van den Dries considers structures of the form $(K, P_1, ..., P_e)$, where K is a field and $P_1, ..., P_e$ are e orderings of the K. They are called, e-fold ordered fields. The appropriate first ordered language is denoted by \mathcal{L}_e . He proves that the theory of e-fold ordered fields in \mathcal{L}_e has a model companion \overline{OF}_e . The models $(K, P_1, ..., P_e)$ of \overline{OF}_e are characterized on one hand by being existentially closed in the family of e-fold, ordered fields, and by satisfying certain axioms of \mathcal{L}_e on the other hand.

In particular Van den Dries proves that the absolute Galois group G(K) of K is a pro-2-group generated by *e* involutions. If K is algebraic over Q and R is a real closure of Q, this implies that there exist $\sigma_1, \ldots, \sigma_e \in G(Q)$ such that $K = R^{\sigma_1} \cap \ldots \cap R^{\sigma_r}$. In general, if $\sigma_1, \ldots, \sigma_e \in G(Q)$, we write $Q_{\sigma} = R^{\sigma_1} \cap \ldots \cap R^{\sigma_r}$ and denote by P_{σ_i} the ordering of Q induced by the unique ordering of the real closed field R^{σ_i} . In this way we attain a family of *e*-fold ordered fields, $\mathcal{Q}_{\sigma} = (Q_{\sigma}, P_{\sigma_1}, \ldots, P_{\sigma_e})$, indexed by $G(Q)^e$.

Gever proves in [4] that for almost all $\sigma \in G(\mathbf{Q})^e$ (in the sense of the Haar measure of $G(\mathbf{Q})^e$), the group $G(\mathbf{Q}_{\sigma})$ is isomorphic to the free product, \hat{D}_e , of *e* copies of $\mathbf{Z}/2\mathbf{Z}$, in the category of profinite groups. This takes us away from the models of \overline{OF}_e and leads us in [5] to make the following

Definition. An e-fold ordered field $(K, P_1, ..., P_e)$ is said to be a Geyer-field of corank e if the following conditions hold:

(a) If V is an absolutely irreducible variety defined over K and if each of the orderings P_i extends to the function field of V, then V has a K-rational point.

- (β) The orderings P_1, \ldots, P_e induce distinct topologies on K.
- (γ) We have $G(K) \cong \hat{D}_e$.

^{(&}lt;sup>1</sup>) Partially supported by the fund for basic research administered by the Israel Academy of Sciences and Humanities.

The main result of [5] is that \mathcal{Q}_{σ} is a Geyer-field of corank e for almost all $\sigma \in G(K)^e$. It is also proved in [5] that the theory of Geyer-fields of corank e coincides with the theory of all sentences Θ of \mathcal{L}_e which are true in \mathcal{Q}_{σ} for almost all $\sigma \in G(\mathbb{Q})^e$. Finally, a (recursive) decision procedure is given for the theory of Geyer-fields of corank e.

As an atempt to return to the models of \overline{OF}_e , we call an *e*-fold ordered field $(K, P_1, ..., P_e)$ by the name Van den Dries-field if it satisfies (α) and (β) above and also:

(γ') The group G(K) is isomorphic to the free product, $\hat{D}_e(2)$, of e copies of $\mathbb{Z}/2\mathbb{Z}$, in the category of pro-2-groups.

The group $\hat{D}_e(2)$ is obviously the maximal pro-2 quotient of \hat{D}_e . Using this observation, it is not difficult to show that every Geyer-field $\mathcal{H}=(K, P_1, ..., P_e)$ has an algebraic extension $\mathcal{H}'=(K', P'_1, ..., P'_e)$ such that $G(K')\cong\hat{D}_e(2)$. One may therefore wonder whether \mathcal{H}' is a Van den Dries-field. The first obvious attempt to solve this problem fails, since as McKenna [8, p. 5.13] and Prestel [9, p. 2] point out, it is not true that if an *e*-fold ordered field $(K, P_1, ..., P_e)$ satisfies (α), then every algebraic extension $(L, Q_1, ..., Q_e)$ satisfies (α) too. The problem is that (α) implies, among others, that $P_1, ..., P_e$ are the only orderings of K, and it may happen that L has more than e orderings.

Prestel overcomes this difficulty by making the sight definition. He calls a field K PRC if it satisfies the following modification of condition (α):

(α') If V is an absolutely irreducible variety defined over K and if every ordering of K extends to the function field of V, the V has a K-rational point.

Then he proves that every algebraic extension of a PRC field is a PRC field (Theorem 3.1 of [9]). Coming back to \mathcal{K}' we prove that P'_1, \ldots, P'_e are all the orderings of K' and therefore \mathcal{K}' is indeed a Van den Dries-field.

This result implies that for almost all $\sigma \in G(\mathbf{Q})^e$ we may choose an algebraic extension \mathcal{Q}'_{σ} of \mathcal{Q}_{σ} which is a Van den Dries-field of corank *e*. Then we prove that the following three theories coincide.

- (a) The theory of all sentences Θ of \mathscr{L}_e that hold in \mathscr{Q}'_{σ} for almost all $\sigma \in G(\mathbb{Q})^e$.
- (b) The theory of all Van den Dries-fields of corank e.
- (c) The theory \overline{OF}_e .

In particular it follows that if $(K, P_1, ..., P_e)$ is a model of \overline{OF}_e , the $G(K) \cong \hat{D}_e(2)$.

1. PRC fields

Let < be an ordering of a field K and let $P = \{x \in K | x > 0\}$ be the positive cone of <. We abuse our language and speak about P as "the ordering of K". The real closure of K with respect to P is denoted by \tilde{K}_P . Our intention is to consider the family of all orderings of K. A. Prestel proves with this respect the following proposition in [9, Theorem 1.2]:

PROPOSITION 1.1. The following two conditions on a field K are equivalent.

(a) If F is a regular extension of K and if every ordering of K extends to F, then K is existentially closed in F.

(b) If V is an absolutely irreducible variety defined over K and if V has a \bar{K}_{P} rational simple point, for every ordering P of K, then V has a K-rational point.

A field that satisfies the conditions of Proposition 1.1 is said to be pseudo-real-closed (abbreviated PRC). Note that this definition makes sense even if K has no orderings. In this case K turns out to be a PAC field (cf. Frey [2, p. 204]).

Prestel goes on and proves in [9, Proposition 1.4], the following properties of PRC fields:

PROPOSITION 1.2. Let K be a PRC field.

- (a) If P is an ordering of K, then K is P-dense in \tilde{K}_P .
- (b) Distinct orderings of K induce distinct topologies on K.
- (c) If L is an algebraic extension of K the L is also a PRC field.

We are mainly interested here in the case where K has only finitely many orderings. Thus we consider systems $\mathcal{H}=(K, P_1, ..., P_e)$ consisting of a field K and e orderings $P_1, ..., P_e$ and denote by $\bar{K_i}$ the real closure of K with respect to P_i . The corresponding language is denoted by $\mathcal{L}_e(K)$. It consists of the usual first order language for the theory of fields augmented by e predicate symbols for $P_1, ..., P_e$ and by constant symbols for the elements of K.

PROPOSITION 1.3. Let $\mathcal{H}=(K, P_1, \dots, P_e)$ be a field with e distinct orderings. The the following conditions are equivalent.

(a) The field K is PRC and $P_1, ..., P_e$ are all of its orderings.

(b) If C is an absolutely irreducible curve defined over K and C has a K_i -rational simple point, for i=1,...,e, then C has a K-rational point.

(c) If $\mathcal{F}=(F, Q_1, ..., Q_e)$ is an extension of $\mathcal{H}=(K, P_1, ..., P_e)$ such that F is regular over K, then \mathcal{H} is existentially closed in \mathcal{F} in the language $\mathcal{L}_e(K)$.

- (d) (i) If f∈K[T₁,...,T_r,X] is an absolutely irreducible polynomial for which there exist an a₀∈K^r such that f(a₀, X) changes sign on K with respect to each of the P_i's and if U_i is a P_i-neighbourhood of a₀, for i=1,...,e, then there exists an (a, b)∈K^{r+1} such that a∈U₁∩...∩U_e and f(a, b)=0.
 - (ii) The orderings P_1, \ldots, P_e induce distinct topologies on K.

Proof. The equivalence (a) \Leftrightarrow (b) is just a rephrasing of Theorem 2.1 of Prestel [9]. Similarly (a) \Leftrightarrow (c) is a repetition of Theorem 1.7 of [9]. Finally, the equivalence (a) \Leftrightarrow (d) follows from Proposition 1.2 (b) and from Lemmas 2.2 and 2.3 of [5]. Note that we have to use here the well-known fact that if V is an absolutely irreducible variety defined over a field K with an ordering P, then P extends to the function field of V if and only if V has a \bar{K}_P -rational simple point. Q.E.D.

Proposition 1.3 implies that the present definition of a PRC field coincides with those that appear in [5] for e orderings, in McKenna [8] and in Basarab [1] for one ordering. An *e*-fold ordered field $(K, P_1, ..., P_e)$ is said to be PRC *e* if it satisfies the conditions of Proposition 1.3.

As an application we generalize Theorem 2.1 of McKenna [8] from PRC1 fields to arbitrary PRCe fields. In the proof of this generalization we use the following argument about a real closed field R. If a polynomial $f \in R[X]$ changes sign in an interval (a, b) of R, then it has a zero in (a, b). Therefore if a polynomial $g \in R[X]$ is close enough to f, it also changes sign in (a, b) and therefore has a zero in (a, b).

PROPOSITION 1.4. Let $(K, P_1, ..., P_e)$ be a PRCe field and let V be an absolutely irreducible variety defined over K. For every $1 \le i \le e$ let $q_i \in V(\tilde{K}_i)$ be a simple point. Then V has a K-rational point q, arbitrary P_i -close to q_i , for i=1, ..., e.

Proof. The assumption that the q_i are simple implies that there exists a hypersurface W and a birational map $\varphi: V \rightarrow W$, defined over K, such that φ is biregular at q_1, \ldots, q_e (cf. [3, Lemma 5.1]). We may therefore assume that V is defined by an absolutely irreducible polynomial $f \in K[T_1, \ldots, T_r, X]$ and that $q_i = (a_{i1}, \ldots, a_{ir}, b_i)$, for $i=1, \ldots, e$. We may also assume that $\partial f/\partial x \neq 0$, since one of the partial derivatives of f is not zero.

The assumption that q_i is a simple point of V means that $f(\mathbf{a}_i, b_i)=0$ and at least one of the partial derivatives of f does not vanish at q_i . If it is not $\partial f/\partial x$, then we may assume without loss that $(\partial f/\partial T_1)(\mathbf{a}_i, b_i) \neq 0$. In particular the polynomial

 $f(T_1, a_{i2}, ..., a_{ir}, b_i)$ changes sign on \bar{K}_i in a neighbourhood of a_{i1} . As $\partial f/\partial x \neq 0$, it is relatively prime to f in the ring $K(T_2, ..., T_r, X)[T_1]$. Therefore there exist polynomials $h_1, h_2 \in K[T_1, ..., T_r, X]$ and $0 \neq g \in K[T_2, ..., T_r, X]$ such that

$$h_1 f + h_2 \frac{\partial f}{\partial x} = g. \tag{1}$$

There exist now elements $a'_{i2}, ..., a'_{ir}, b'_i \in \tilde{K}_i$ which are P_i -close to $a_{i2}, ..., a_{ir}, b_i$ such that $g(a'_{i2}, ..., a'_{ir}, b'_i) \neq 0$. Then $f(T_1, a'_{i2}, ..., a'_{ir}, b'_i)$ changes sign on \tilde{K}_i in the neighbourhood of a_{i1} and therefore it has a zero $a'_{i1} \in \tilde{K}_i$ which is P_i -close to a_{i1} . Then (1) implies that $(\partial f/\partial x)(\mathbf{a}'_i, \mathbf{b}'_i) \neq 0$.

Thus, replacing (\mathbf{a}_i, b_i) by (\mathbf{a}'_i, b'_i) , if necessary, we may assume that

$$f(\mathbf{a}_i, b_i) = 0$$
 and $\frac{\partial f}{\partial x}(\mathbf{a}_i, b_i) \neq 0$ for $i = 1, ..., e$.

Let $t_1, ..., t_r$ be algebraically independent elements over K. For each $1 \le i \le e$ extend P_i to an ordering of $\vec{K}_i(t_1, ..., t_r)$ such that $t_1, ..., t_r$ are P_i -infinitesimally close to $a_{i1}, ..., a_{ir}$. Let R_i be a real closure of $\vec{K}_i(t_1, ..., t_r)$. Then the polynomial f(t, X) changes sign on R_i in the neighbourhood of b_i and therefore has a root $x_i \in R_i$ in this neighbourhood. Take also a root x of f(t, X) and let F = K(t, x). Then K is algebraically closed in F and the map $x \mapsto x_i$ can be extended to a K(t)-isomorphism of F into R_i . This isomorphism defines an extension of the ordering P_i to F such that (t, x) is P_r -close to (\mathbf{a}_i, b_i) .

Note that all the above neighbourhoods are already defined by elements of K, since, by Proposition 1.2, K is P_i -dense in \bar{K}_i , for i=1, ..., e. It follows from Proposition 1.3(c) that there exists a point $(\mathbf{a}, b) \in K^{r+1}$ which is P_i -close to (\mathbf{a}_i, b_i) for i=1, ..., e such that $f(\mathbf{a}, b)=0$. Q.E.D.

2. Van den Dries-fields

Denote by D_e the free product of e copies of $\mathbb{Z}/2\mathbb{Z}$ in the category of groups. Consider its completion $\hat{D}_e = \lim_{t \to \infty} D_e/N$, where N runs over all normal subgroups of finite index. The maximal pro-2-quotient $\hat{D}_e(2)$ of \hat{D}_e can also be described as the inverse limit $\hat{D}_e(2) = \lim_{t \to \infty} D_e/N$, where N runs now over all normal subgroups of D_e such that D_e/N are 2-groups. The group \hat{D}_e (and also $\hat{D}_e(2)$) has a system of e-generators $\varepsilon_1, \ldots, \varepsilon_e$ satisfying $\varepsilon_1^2 = \ldots = \varepsilon_e^2 = 1$. If x_1, \ldots, x_e are involutions in a profinite (resp. pro-2) group, then the map $\varepsilon_i \to x_i$, $i=1, \ldots, e$ can be extended to a homomorphism of \hat{D}_e (resp. of $\hat{D}_e(2)$) into G. Indeed, every system of e involutions that generate \hat{D}_e (resp. $\hat{D}_e(2)$) has

this property. Thus \hat{D}_e (resp. $\hat{D}_e(2)$) is the free product in the category of profinite (resp. pro-2) groups of *e* copies of $\mathbb{Z}/2\mathbb{Z}$.

The group \hat{D}_e plays a central role in [5]. This role is now shifted to the group $\hat{D}_e(2)$. Analogously to \hat{D}_e , if $\varepsilon_1, \ldots, \varepsilon_e$ are involutions that generate $\hat{D}_e(2)$, then no two of them are conjugate, since a map of $\varepsilon_1, \ldots, \varepsilon_e$ onto a basis of $(\mathbb{Z}/2\mathbb{Z})^e$ can be extended to an epimorphism of \hat{D}_e onto $(\mathbb{Z}/2\mathbb{Z})^e$. We have the following characterization of $\hat{D}_e(2)$, similar to that of \hat{D}_e :

LEMMA 2.1. A pro-2-group G is isomorphic to $\hat{D}_e(2)$ if and only if its finite quotients are exactly the 2-groups which are generated by e involutions.

Proof. See e.g. Schuppar [10, Satz 2.1]. Q.E.D.

A PRCe field $(K, P_1, ..., P_e)$ for which $G(K) \cong \hat{D}_e$ is called in [5] a Geyer field of corank e. Similarly we say that a PRCe field $(L, Q_1, ..., Q_e)$ is a Van den Dries-field of corank e if $G(L) \cong \hat{D}_e(2)$. The condition on the absolute Galois group of L is responsible for the unique feature of the Van den Dries-fields among n the PRCe fields.

For example we have the following:

LEMMA 2.2. If L is a PRC field and $G(L) \cong \hat{D}_e(2)$, then L has exactly e orderings Q_1, \ldots, Q_e . They satisfy $Q_1 \cap \ldots \cap Q_e = L^{*2}$ and (L, Q_1, \ldots, Q_e) is a Van den Dries-field.

Proof. By assumption G(L) is generated by e involutions $\varepsilon_1, ..., \varepsilon_e$ which are not conjugate to each other. Hence they induce e distinct orderings $Q_1, ..., Q_e$ on L. By Proposition 1.2, $Q_1, ..., Q_e$ induce distinct topologies on L. If $x \in Q_1 \cap ... \cap Q_e$, then $\sqrt{x} \in \overline{L}_1 \cap ... \cap \overline{L}_e = \overline{L}(\varepsilon_1, ..., \varepsilon_e) = L$. Hence $Q_1 \cap ... \cap Q_e = L^{*2}$ and consequently every ordering of L contains $Q_1 \cap ... \cap Q_e$. It follows from Van den Dries [11, p. 90] that $Q_1, ..., Q_e$ are the only orderings of L.

The above lemma is also true for Geyer-fields if we replace $\hat{D}_e(2)$ by \hat{D}_e . However its following converse holds only for Van den Dries-fields.

LEMMA 2.3. Let $\mathscr{L}=(L, Q_1, ..., Q_e)$ be a Van den Dries-field. Then:

(a) The structure \mathcal{L} has no proper algebraic extensions.

(b) If $\varepsilon_1, ..., \varepsilon_e$ are involutions of G(L) that induce $Q_1, ..., Q_e$ on L, then they generate G(L).

(c) Conversely, if $\varepsilon_1, ..., \varepsilon_e$ are involutions that generate G(L), then they induce $Q_1, ..., Q_e$ on L (possibly after re-enumeration).

Proof. (a) (Van den Dries [11, p. 77].) Let $\mathscr{L}' = (L', Q'_1, ..., Q'_e)$ be a proper algebraic extension of \mathscr{L} . Without loss of generality we may assume that $[L':L] < \infty$. Let N be a finite normal extension of L that contains L'. Then $\mathscr{G}(N/L)$ is a 2-group. Hence L has a quadratic extension $L(\sqrt{x})$ which is contained in L'. It follows, by Lemma 2.2, that $x = (\sqrt{x})^2 = Q_1 \cap ... \cap Q_e = L^{*2}$, a contradiction.

(b) $Q_1, ..., Q_e$ can be extended to $\tilde{L}(\varepsilon_1, ..., \varepsilon_e)$. Hence, by (a), $\tilde{L}(\varepsilon_1, ..., \varepsilon_e) = L$.

(c) The involutions $\varepsilon_1, ..., \varepsilon_e$ are "free" generators of G(L) and as such they are not conjugate to each other. Hence they induce *e* distinct orderings on *L*, which are exactly $Q_1, ..., Q_e$, by Lemma 2.2. Q.E.D.

3. The elementary equivalence theorem for Van den Dries-fields

Proposition 1.3 (d) gives an elementary characterisation of PRC*e* fields in the language \mathscr{L}_e of *e*-fold ordered fields. Lemma 2.1 provides an elementary characterisation of fields *L* with $G(L) \cong \hat{D}_e(2)$. Together we have:

LEMMA 3.1. There is an explicit (primitive recursive) set Δ_e of sentences of \mathcal{L}_e such that an e-fold ordered field $(E, P_1, ..., P_e)$ is a Van den Dries-field if and only if it satisfies Δ_e .

If $\mathscr{C}=(E, P_1, ..., P_e)$ is an *e*-fold ordered field and *L* is a subfield of *E*, then $\tilde{L} \cap \mathscr{C}=(\tilde{L} \cap E, \tilde{L} \cap P_1, ..., \tilde{L} \cap P_e)$ is a substructure of *E*. Similar to Geyer-fields we have the following theorem for Van den Dries-fields.

THEOREM 3.2. Let $\mathscr{C}=(E, P_1, ..., P_e)$ and $\mathscr{F}=(F, Q_1, ..., Q_e)$ be two Van den Dries-fields and let L be a common subfield of E and F. If $\tilde{L} \cap \mathscr{C}\cong_L \tilde{L} \cap \mathscr{F}$, then $\mathscr{C}\equiv_L \mathscr{F}$.

Proof. Without loss of generality we may assume that $\tilde{L} \cap \mathscr{E} = \tilde{L} \cap \mathscr{F} = (M, S_1, ..., S_e)$. By Lemma 2.3 there exist involutions $\varepsilon_1, ..., \varepsilon_e$ that generate G(E) and induce P_1, \ldots, P_e on E, respectively. Let $\gamma_i = \operatorname{Res}_{\check{M}} \varepsilon_i$, for $i=1, \ldots, e$. Then $\gamma_1, \ldots, \gamma_e$ are involutions that generate G(M) and induce S_1, \ldots, S_e on M, respectively. For each $1 \le i \le e$, the fields $\tilde{M}(\sigma_i)$ and F are linearly disjoint over M, hence Q_i can be extended to an ordering of $M(\sigma_i)F$. Choose an involution ζ_i that induces this ordering. Then $\operatorname{Res}_{\dot{M}} \zeta_i = \gamma_i$. By Lemma 2.3, ζ_1, \ldots, ζ_e generate G(F). The map $\zeta_i \mapsto \varepsilon_i$ for $i=1,\ldots,e$ can be extended to an isomorphism $\varphi:G(F)\to G(E)$ such that $\operatorname{Res}_{\dot{M}} \varphi(\sigma) = \operatorname{Res}_{\dot{M}} \sigma$, since both G(E) and G(F) are isomorphic to $\dot{D}_{e}(2)$. If follows from Theorem 3.2 of [5] that $\mathscr{E} \equiv_M \mathscr{F}$. Q.E.D.

17-838283 Acta Mathematica 150. Imprimé le 15 août 1983

Remark. Note that the proof of Theorem 3.2 is easier than the proof of the corresponding theorem for Geyer-fields (Theorem 5.4 of [5]), since Lemma 2.3 makes the use of the Gaschütz-type Lemma 5.3 of [5] redundant.

COROLLARY 3.3. If $(E, P_1, ..., P_e) \subseteq (F, Q_1, ..., Q_e)$ are two Van den Dries-fields, then $(E, P_1, ..., P_e) \prec (F, Q_1, ..., Q_e)$; in other words, the theory of Van den Dries-fields of corank e is model complete.

4. On the existence of Van den Dries-fields

We have the following connection between the two types of fields.

PROPOSITION 4.1. Every Geyer-field $(K, P_1, ..., P_e)$ has an algebraic extension $(K', P'_1, ..., P'_e)$ which is a Van den Dries-field.

Proof. By Lemma 4.3 of [5], the group G(K) is generated by e involutions $\varepsilon_1, ..., \varepsilon_e$ that induce $P_1, ..., P_e$ on K. Denote by N the maximal 2-extension of K. Then $\mathcal{G}(N/K)$ is the maximal 2-quotient of G(K). Therefore $\mathcal{G}(N/K) \cong \hat{D}_e(2)$ and $\bar{\varepsilon}_i = \operatorname{Res}_N \varepsilon_i$, i=1, ..., e, generate $\mathcal{G}(N/K)$. Denote by \tilde{Q}_i the ordering of $N(\tilde{\varepsilon}_i) = N \cap \tilde{K}(\varepsilon_i)$ which is induced by ε_i . Let D be a 2-sylow subgroup of G(K). Its fixed field $\tilde{K}(D)$ has an odd degree over K and therefore it is linearly disjoint from N, hence from $N(\tilde{\varepsilon}_i)$, over K. It follows that $N(\tilde{\varepsilon}_i) \tilde{K}(D)$ has an odd degree over $N(\tilde{\varepsilon}_i)$, hence \tilde{Q}_i extends to an ordering \tilde{Q}'_i of $N(\varepsilon_i) \tilde{K}(D)$. Let ε'_i be an involution of D that induces \tilde{Q}'_i on $N(\varepsilon_i) \tilde{K}(D)$. The map $\tilde{\varepsilon}_i \mapsto \varepsilon'_i$, for i=1, ..., e, can be extended to a homomorphism of $\mathcal{G}(N/K)$ into D and the map Res: $\langle \varepsilon'_1, ..., \varepsilon'_e \rangle \to \mathcal{G}(N/K)$ is its inverse. It follows that $\langle \varepsilon'_1, ..., \varepsilon'_e \rangle \cong D_e(2)$.

If we write $K' = \hat{K}(\varepsilon'_1, ..., \varepsilon'_e)$ and denote by P'_i the ordering of K' induced by ε'_i , then $K' = (K', P'_1, ..., P'_e)$ is an *e*-fold ordered field that extends $\mathcal{H} = (K, P_1, ..., P_e)$ and $G(K) \cong \hat{D}_e(2)$. By Proposition 1.2(c), K' is a PRC field. Hence, by Lemma 2.2, \mathcal{H}' is a Van den Dries field. Q.E.D.

5. The identification of Van den Dries-fields

Van den Dries considers in his thesis [11] the theory OF_e of *e*-fold ordered fields in the language \mathcal{L}_e . He proves that OF_e has a unique model companion \overline{OF}_e , which is, by definition, a theory in \mathcal{L}_e such that (i) each model of \overline{OF}_e , is a model of OF_e , (ii) each model of \overline{OF}_e can be embedded in a model of \overline{OF}_e , and (iii) \overline{OF}_e is model complete. He

shows that an *e*-fold ordered field $\mathscr{E}=(E, P_1, ..., P_e)$ is a model of \overline{OF}_e if and only if it has the following two properties:

(a) For every irreducible polynomial $f \in E[T, X]$ and every $a_0 \in E$ such that $f(a_0, X)$ changes sign on E with respect to each of the P_i , there exist $a, b \in E$ such that f(a, b)=0.

(β) P_1, \ldots, P_e are independent.

A. Prestel identifies the models of \overline{OF}_e as those PRCe fields which have no proper algebraic extensions (see [9, Theorem 2.4]).

While we are unable to prove directly that (α) and (β) are equivalent to our axioms of Van den Dries-fields, nor can we do it for Prestel's characterization, we can still prove it using a model theoretic criterion.

THEOREM 5.1. The theory of Van den Dries-fields is the model companion of OF_e . In other words, an e-fold ordered field \mathscr{E} is a model of \overline{OF}_e if and only if it is a Van den Dries-field.

Proof. The theory of Van den Dries-fields is model complete, by Corollary 3.3. Hence it suffices to prove that every *e*-fold ordered field $\mathcal{L}=(L, Q_1, ..., Q_e)$ is contained in a Van den Dries-field. Using the diagram of \mathcal{L} , and a compactness argument one sees that it suffices to consider the case where L is countable. Let t be a trancendental element over L, and extend $Q_1, ..., Q_e$ to orderings $Q'_1, ..., Q'_e$ of L(t). Note that L(t) is a Hilbertian field (cf. Lang [7, p. 155]). Hence, by Theorem 6.7 of [5], $(L(t), Q'_1, ..., Q'_e)$ has an extension \mathcal{E} which is a Geyer-field. By Proposition 4.1, \mathcal{E} has an extension \mathcal{E}' which is a Van den Dries-field. \mathcal{E}' is the desired extension of \mathcal{L} .

COROLLARY 5.2. If $(E, P_1, ..., P_e)$ is a model of \overline{OF}_e , then $G(E) \cong \hat{D}_e(2)$.

Remark. Corollary 5.2 is a special case of Theorem 3.13 stated in [11] without a proof.

6. The theory of almost all \mathscr{K}'_{σ}

Suppose now that K is a countable Hilbertian field equipped with e orderings $P_1, ..., P_e$. Let $\bar{K}_1, ..., \bar{K}_e$ be some fixed real closures of K that induce the orderings $P_1, ..., P_e$, respectively. For every $\sigma_1, ..., \sigma_e \in G(K)$ let $K_{\sigma} = \bar{K}_1^{\sigma_1} \cap ... \cap \bar{K}_e^{\sigma_e}$ and denote by $P_{\sigma_1}, ..., P_{\sigma_e}$ the orderings of K induced by $\bar{K}_1^{\sigma_1}, ..., \bar{K}_e^{\sigma_e}$, respectively. Then $\mathcal{H}_{\sigma} = (K_{\sigma}, P_{\sigma_1}, ..., P_{\sigma_e})$ is an e-fold ordered field that extend $\mathcal{H} = (K, P_1, ..., P_e)$.

The group $G(K)^e$ is equipped with a unique normalized Harr measure. With respect to this measure we have proved in [5, Theorem 6.7] that \mathcal{H}_0 is a Geyer-field for almost all $\sigma \in G(K)^e$. Let N_{σ} be the maximal 2-extension of K_{σ} . By proposition 4.1, \mathcal{H}_{σ} has an algebraic Van den Dries extension $\mathcal{H}'_{\sigma}=(K'_{\sigma}, P'_{\sigma 1}, \dots, P'_{\sigma e})$ such that $N_{\sigma} \cap \bar{K}_{\sigma i}=N_{\sigma} \cap \bar{K}'_{\sigma i}$, for $i=1, \dots, e$. For those σ 's such that \mathcal{H}_{σ} is not a Geyer-field we let $\mathcal{H}'_{\sigma}=\mathcal{H}_{\sigma}$.

Recall that an ultrafilter \mathcal{D} of $G(K)^e$ is said to be regular if \mathcal{D} contains all subsets of $G(K)^e$ of measure 1 (cf. [6, p. 288]).

LEMMA 6.1. Let $\tau \in G(K)^e$ be an e-tuple such that $G(K_{\tau})$ is a pro-2-group. Then $G(K)^e$ has a regular ultrafilter \mathcal{D} such that $\mathcal{K}_{\tau} = \tilde{K} \cap \prod K_{\sigma} / \mathcal{D}$.

Proof. Let L be a finite Galois extension of K and consider the non-empty open subset of $G(K)^e$,

$$S(L) = \{ \sigma \in G(K)^e | \operatorname{Res}_L \sigma_i = \operatorname{Res}_L \tau_i \quad \text{for } i = 1, \dots, e \}.$$

If L' is a finite Galois extension of K that contains L, then $S(L') \subseteq S(L)$. It follows that the intersection of finitely many sets of the form S(L) is a non-empty open set. By [6, Lemma 6.1] there exists a regular ultrafilter \mathcal{D} of $G(K)^e$ that contains all sets S(L).

Let $F = K'_{\sigma}/\mathcal{D}$, $Q_i = \prod P'_{\sigma i}/\mathcal{D}$ and $\bar{F}_i = F \cap \prod \bar{K}'_{\sigma i}/\mathcal{D}$. Then $\mathcal{F} = (F, Q_1, ..., Q_n) = \prod K'_{\sigma}/\mathcal{D}$ and \bar{F}_i is the real closure of F with respect to Q_i .

Consider a finite Galois extension L of K. If $\sigma \in S(L)$, then $L \cap \bar{K}_{\sigma i} = L \cap \bar{K}_{\tau i}$ and $L \cap K_{\sigma} = L \cap K_{\tau}$. The group $G(L/L \cap K_{\tau})$ is a 2-group. Therefore LK_{σ} is a 2-extension of K_{σ} , hence it is contained in the maximal 2-extension N_{σ} of K_{σ} . It follows that

$$L \cap \tilde{K}'_{\sigma i} = L \cap N_{\sigma} \cap \tilde{K}'_{\sigma i} = L \cap N_{\sigma} \cap \tilde{K}_{\sigma i} = L \cap \tilde{K}_{\sigma i} = L \cap \tilde{K}_{\sigma i}$$

As $S(L) \in \mathcal{D}$, we conclude that $L \cap \overline{F}_i = L \cap \overline{K}_{\tau i}$ for i = 1, ..., e.

We let L run over all finite Galois extensions of K and have that $\tilde{K} \cap \bar{F}_i = \bar{K}_{\tau i}$ for i=1, ..., e. Hence $\tilde{K} \cap \mathcal{F} = \mathcal{K}_{\tau}$. Q.E.D.

THEOREM 6.2. Let K be a countable and Hilbertian field, and let $\mathcal{H}=(K, P_1, ..., P_e)$ be an e-fold ordered field. Then a sentence Θ of $\mathcal{L}_e(K)$ is true in all Van den Dries-fields of corank e that extends \mathcal{H} if and only if Θ is true in \mathcal{H}'_{σ} for almost all $\sigma \in G(K)^e$.

Proof. Almost all the structures \mathcal{K}' are Van den Dries-fields of corank *e*. This provides one direction of the theorem.

253

Suppose in the other direction that Θ is true in \mathscr{X}'_{σ} for almost all $\sigma \in G(K)^{e}$ and let $\mathscr{E}=(E, Q_{1}, ..., Q_{e})$ be a Van den Dries-field that extends \mathscr{K} . Then $\tilde{K} \cap \mathscr{E}=\mathscr{K}_{\tau}$ for some $\tau \in G(K)^{e}$ and $G(K_{\tau})$ is a pro-2-group. By Lemma 6.1, there exists a regular ultrafilter \mathscr{D} of $G(K)^{e}$ such that $\tilde{K} \cap \prod \mathscr{K}'_{\sigma}/\mathscr{D}=\mathscr{K}_{\tau}$. It follows from Theorem 3.2, that $\prod \mathscr{K}'/\mathscr{D}=_{K}\mathscr{E}$. The sentence Θ is true in $\prod \mathscr{K}'_{\sigma}/\mathscr{D}$, since \mathscr{D} is regular, hence it is also true in \mathscr{E} . Q.ED.

The special case where K=Q and $P_1=\ldots=P_e$ = the unique ordering of Q provides our final characterisation of the theory of Van den Dries-field of corank e.

COROLLARY 6.3. A sentence Θ of \mathcal{L}_e is true in all Van den Dries-fields of corank e if and only if it is true in \mathcal{Q}'_{σ} for almost all $\sigma \in G(\mathbf{Q})^e$.

Remark. Van den Dries proves in [11, p. 74] that the theory \overline{OF}_e is decidable. In [5] we show that the theory of Geyer-fields of corank e is decidable. It is not difficult to modify the proof of [5] and to get a second proof for the decidability of \overline{OF}_e which is based on Corollary 6.3 and Theorem 5.1.

References

- [1] BASARAB, S. A., Definite functions on algebraic varieties over ordered fields. Rev. Roumaine Math. Pures Appl.
- [2] FREY, G., Pseudo algebraically closed fields with non-archimedean real valuations. J. Algebra, 26 (1973), 202-207.
- [3] FREY, G. & JARDEN, M., Approximation theory and the rank of abelian varieties over large algebraic fields. *Proc. London Math. Soc.*, 28 (1974), 112-128.
- [4] GEYER, W.-D., Galois groups of intersections of local fields. Israel J. Math., 30 (1978), 382-396.
- [5] JARDEN, M., The elementary theory of large *e*-fold ordered fields. Acta Math., 149 (1982), 239-260.
- [6] JARDEN, M. & KIEHNE, U., The elementary theory of algebraic fields of finite corank. Invent. Math., 30 (1975), 275-294.
- [7] LANG, S., Diophantine geometry. Intersience Publishers, New York, 1962.
- [8] MCKENNA, K., Pseudo-Henselian and pseudo real closed fields. Manuscript.
- [9] PRESTEL, A., Pseudo real closed fields, set theory and model theory. Springer Lecture Notes 872, Berlin, 1982.
- [10] SCHUPPAR, B., Elementare Aussagen zur Arithmethik und Galoistheorie von Funktionenkörpern. Crelles Journal, 313 (1980), 59-71.
- [11] VAN DEN DRIES, L. P. D., Model theory of fields. Ph.D. thesis, Utrecht, 1978.

Received January 4, 1982