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0. Introduction 

It is well known that the complex analytical properties of a real submanifold M in the 

complex space C n are most accessible through consideration of the complex tangents 

to M. The properties we have in mind are related to the behavior of holomorphic 

functions on or near M and to the behavior of M under biholomorphic transformation. 

The case in which M is a real hypersurface is most familiar, while much less is known 

for higher codimension. In this paper we consider the critical case of a real n- 

dimensional manifold M in C n, which we also assume to be real analytic. At a generic 

point M is locally equivalent to the standard R n in C n. However, near a complex 

tangent M may aquire a non-trivial local hull of holomorphy and other biholomorphic 

invariants. 

We begin with the simplest non-trivial case, which is a surface M2cC 2 with an 

isolated, suitably non-degenerate complex tangent. Here one already encounters a rich 

structure and non-trivial problems. In coordinates zj=xi+iy i, j= 1,2, M may be written 

locally as 

l ( z ,  Z) = - z 2 + q ( Z l ,  Zl) + . . .  = 0, 

q=yz~+z~.~+~,~.~, 0~<~,< oo. 

The zraxis is tangent to M at the origin. M, or more precisely, this complex tangent is 

said to be elliptic if 0~<~< 1/2, hyperbolic if 1/2<y, or parabolic if y= 1/2. We shall prove 

the following theorem. 

(t) Alfred P. Sloan Fellow. Partially supported by NSF, Grant No. MCS 8100793. 
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THEOREM 1. Let  M be a real analytic surface in C 2 with an elliptic complex 

tangent at a point  p with 0<),< 1/2. Then there exists a holomorphic coordinate system 

(zl,z2) in which p=0,  and M has locally the form 

X 2 = Z l Z I + I " ( X 2 )  ( Z ~ + Z ~ ) ,  Y2 = 0 ,  

where F = ~ + 6 ~ ,  6 = + l,  s E Z +, or F=V (s= o0). The quantities ~, 6, s form a complete 

system o f  biholomorphic inoariants for  M near p. 

A consequence of Theorem 1 is that the local hull of holomorphy of M near p is 

precisely the real analytic 3-manifold-with-boundary h~t: XE>~Z~ ~l+F(x2)(z~+z~), y2=0. 

~t is the union of a one-parameter family of ellipses, the boundaries of which are the 

curves on M gotten by setting x2=c>0. Another consequence is that such an M always 

admits the biholomorphic involution corresponding to (zl, z2),-~,(-zl, z2). It is interest- 

ing to note that M is locally equivalent to an algebraic surface. 

We also have the analogue of Theorem 1 in the n-dimensional case. This theorem 

will be reduced to a seemingly unrelated problem, namely that of a normal form for a 

pair of involutions rl, r2 which are holomorphic mappings in a neighborhood of a 

common fixed point p in C 2. They are subjected to biholomorphic mappings ~ keeping 

p fixed, by replacing rj by ~p-lrj~p. We ask for a classification of the pairs of (rl, rE), 

and more generally of the group generated by the rj, under the pseudo group of 

biholomorphic mappings near p. 

Taking ~, r/as coordinates in C 2, p as the origin and the linearized maps drjlo as 

drj:(~,r/)~(;tjr/,,~.f~O with ; t ~ = 2 ~ = 2 . 0  

we can state our result as follows: 

THEOREM 2. I f  [;tl. 1 then there exists a biholomorphic mapping v/ near the origin 

with lp(0)=0, taking the two given holomorphic inoolutions rj into 

~-~rj ~: (~, ,7)~ (A~(~,7),7, Aj(~,/)-~) 
where 

A~=A2t=A+6($r / )  s, 6 = l , 0 ,  s~>l. 

For our application we will have to consider these holomorphic involutions rj in 

conjunction with an antiholomorphic involution O describing the reality condition and 

satisfying 

rl 0 = Or2 �9 
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This leads to a finer classification of (r~, rE) under the group of biholomorphic map- 

pings ~p which commute with O. In particular, we will have I real or It1= 1 in corre- 

spondence to the elliptic or hyperbolic quadric. 

In Theorem 2 we had to rule out that i lies on the unit circle. Actually, if 121-- 1, ~. 

not a root of unity, one can still find a formal power series expansion for ~/,, but in 

general one has to expect divergence of these series. This is a "small divisor problem" 

as one encounters it in Celestial Mechanics. The product ~=r~ r2 is the crucial map 

which has to be normalized. Its linearization at the origin dtpl0 has the eigenvalues 
/ ] . 2 ,2 - -2  . 

However, in celestial mechanics one restricts oneself to area-preserving map- 

pings, and the analogous equivalence problem was studied by G. D. Birkhoff [3]. In our 

case the area-preserving property is replaced by the condition 

(p - I  = / .2 / .  I = T l l q g ~  

which corresponds to "reversible" systems of differential equations. Mappings of this 

nature which can be represented as a product of involutions actually also played a role 

in Birkhoff's study of the restricted three body problems [2]. 

In case 2 is not on the unit circle one has no difficulty of small divisors but the 

corresponding convergence proofs are not straightforward. We apply here a refinement 

of the majorant method as it was developed for area-preserving mappings in [12] and 

[11]. 

One may be led to the involutions "/'1, r2,~ of Theorem 2 by the problem of 

characterizing intrinsically the trace f on M of a function g holomorphic in a neighbor- 

hood of M. The key to this is to complexify M. Replacing ~ by independent complex 

variables w in the equation for M gives the complex analytic surface 

= {(z, w) E C4: R(z, w) = O, l~(w, z) = 0}. 

If the natural projections ~q(z, w)=z, 2~2(Z, /.O)=W are restricted to ~ ,  t h e n f a n d  g are 

related by f = g  o~q. For 7=1=0, ~tl and :t2 are two-fold branched coverings. The covering 

transformations r2, r~ are holomorphic involutions on ~R fixing the origin. The condi- 

tionfo l '2=fis an intrinsic characterization of the restriction of a function holomorphic 

in z. It is a discrete analogue of the local characterization [9] by H. Lewy of the 

restriction of a holomorphic function to a strongly pseudo-convex real hypersurface, r2 

corresponds to the tangential Cauchy-Riemann operator, and the mapping ~p is a 

discrete version of the Levi-form. In the elliptic case q0 can be embedded in a flow ~pt, t 



258 J. K. MOSER AND S. M. WEBSTER 

complex. The orbits of this flow intersect M precisely in the curves bounding the above 

mentioned analytic discs. 

If the surface M is elliptic, then 2 is real, 2:#+ 1, and the origin is a hyperbolic fixed 

point of q0 in the sense of mappings. In this case we have a satisfactory theory. If M is 

hyperbolic, r is elliptic. The subtleties of the theory of elliptic mappings, e.g. small 

divisors, make the theory of hyperbolic surfaces much more difficult. 

Previously it was known to Bishop [4] that ~ is a biholomorphic invariant. He also 

proved in the elliptic case the existence of a one-parameter family of analytic discs with 

boundaries on M2cC 2 near the complex tangent p. Hunt [7] investigated further the 

regularity of A~, the union of these discs. In [8] it was shown that M is a C ~ manifold- 

with-boundary for 0~<y<l/2, and that the discs are unique. In [I] Bedford and Gaveau 

consider hulls of  holomorphy from a global viewpoint. 

In section one of this paper we discuss the connection between surfaces and 

involutions. In fact, we show the equivalence of certain complex surfaces ~ff~ with 

suitable pairs of involutions r~, r2. We dicuss thoroughly in section 2 the quadric 

surfaces, which correspond to pairs of linear involutions. Here the basic phenomena 

are clearly revealed. Section 3 deals with pairs of non-linear involutions on a formal 

level, and section 4 contains the convergence proof for Theorem 2. In section 5 these 

results are applied to  derive the normal form for the manifold M. 

In section 6 we discuss hyperbolic surfaces. In particular, we show divergence of 

the transformation into normal form for an example, using ideas previously developed 

for area-preserving Cremona transformations [10]. 

1. Surfaces and involutions 

Let M be a smooth real analytic surface in C 2. It may be described locally by two 

independent real equations or by one complex equation, 

M:R(z,~.)=O, l~(Lz)=O, dRAdl~=t=O, (I.I) 

where R is a power series in z=(zl,z2) and L We wish to investigate the local 

properties of M under the pseudo-group of local biholomorphic transformations 

z'=f(z), Z'=f(Z). 

We assume that the point z=O lies on M. By interchanging R and/~ we may assume that 

the holomorphic linear term in R is non-zero. After introducing this linear function as a 
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new z2 variable, we may assume that M has the form Z2=PZl+qT.2+... and after a 

further transformation we achieve q=0, so that 

ZE=P~l+F(zl~O, F =  O(Izl]2). (1.2) 

If p#:0 we may introduce new coordinates z' by z2=pz~,+F(zi,z~,), z l=zi .  M then goes 

over into the totally real plane z~=~i. Hence, M has no invariants near such a point. 

We henceforth assume that p=0,  so that the zl-axis is a complex tangent to M at the 

origin. M is then given by z2=az~+bZt~l+C~+ .. . .  We make the non-degeneracy 

assumption that b#:0. Then by a quadratic change of z2 we may achieve b = l ,  a=~=y.  

A rotation of zl makes 0~<y. The surface M is now assumed to have the form 

z2 = F(zp zl) = q(zl, Zl)+H(Zl, Zl), 
M: (1.3) 

q = )'z~+zl zl +Y:~, 0 <~ ), < 0% H = O(Izll3). 

The non-negative number y is a biholomorphic invariant of M first considered by 

Bishop [4]. The complex tangent is elliptic if 0~<y< 1/2, parabolic if y= 1/2, or hyperbolic 

if 1/2<~<~. 

For our investigation it will be necessary to characterize those real analytic 

functions on the surface M which are the restrictions of functions holomorphic in some 

neighborhood of M. This is facilitated by complexifying M. We replace ~ by independ- 

ent variables w=(wl ,  w2) in (1.1) and define a smooth complex analytic surface ~ in 
C 4 by 

~R: R(z, w) = O, l~(w, z) = O. 

Complex conjugation (z, ~ )~ (L  z) goes over into the anti-hoiomorphic involution 

o(z, w) = (to, ~). 

More generally we consider a complex surface 

~R:R(z ,w)=O,  S ( z ,w)=O,  d R A d S 4 : 0 ,  

passing through the origin of C 4 under the wider group of transformations 

z' =f(z), w' = g(w). (1.4) 

Such an ~R comes from a real surface M c C  2 if and only if 0~=~9~, and such a 

transformation is induced by a holomorphic mapping of C 2 if and only i f f(z)=r (The 

bar indicates complex conjugation of the coefficients only in the series g.) 
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There are two invariant projections on C 4, :r~(z, w)=z, Zz(Z, w)=w. They are 

related by :r2=c:r~ Q, where c denotes complex conjugation. We denote the restrictions 

of :r~ and :r2 to ~ff~ by the same symbols. The real and imaginary parts of z~ may be 

taken as coordinates on M, and (z~, wt) as coordinates on ~ .  A real analytic function 

f=f(zi, zl) on M may be continued locally to a functionf=f(zl, wO holomorphic on ~3~. 

The original function is the restriction of a holomorphic function if and only if the 

extended function f satisfies f=gozl  for some function g=g(z) holomorphic in z. 

Similarlyfis the restriction of an anti-holomorphic function if and only if the ex tendedf  

satisfies f=g o ze2, g=g(w), f is real if and only iffoQ=cf. 
The possible linear structure of 93~ is more varied. To describe it let Pz={w=O) 

and Pw={z=0} denote the z and w coordinate planes, and P denote the tangent 

complex two-plane to ~ at the origin. There are four possibilities; 

(1) P is totally real: dimPNPz=dimPNPw=O, 
(2) P is partially holomorphic: dimPNPz>~l, 
(3) P is partially anti-holomorphic: dim P N Pw~ > 1, 

(4) P is complex: dimPnPz=dimPNP~=l. 

We shall study ~ only in a neighborhood of a point at which its tangent plane P is 

complex (type (4)). Generically through such a point there exist a curve C~ of points at 

which the tangent plane is of type (2) and a curve C2 of points at which it is of type (3). 

Locally ~ is given by 

Z2 = F(Zl, Wl) = (q+ H) (zl, w~) 

w2 = G(Z~, w,) = (p+ lO (z~, wp. 
(1.5) 

The quadratic terms q and p are both assumed to have a non-zero z~ w~-term, and so 

may be put into the form 

q=az~+z,w,+aw~, p=bz~+z,w,+bw~, 

via a transformation (1.4). The product ab is invariant under (1.4). If abaFO then by a 

substitution (z~, wl)~-->(az~, a-~wO we may achieve a=b=7 E C. ), is then invariant up 

to sign. 

We now assume that 

P=q= 7z~+zl w~+~,w~, y+O. (1.6) 
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In this case, when restricted to ~[R, the projections 

~I(Zl, Wl) = (Zi, F(Zl, Wl)), 7t2(Zl, Wl) = (Wl, G(Zl, Wl)) 

are locally two-fold branched coverings. The branch locus of :h is given by 

z2 = F(Zl, wO, Fw,(z p w l) = O, 

which is a smooth curve in the (zl,z2)-plane since Fw~wt(0,0)=2~,a~0. Likewise, the 

branch locus of .7~ 2 is a non-singular curve in the w-plane. The equation w=w'  or 

q(zl, w l ) -q (z l ,  wl) = K(Zl, wO-K(z l ,  Wl) 

together with (1.5) generally have a unique solution z'4:z. By the implicit function 

theorem they define a local self-mapping of ~IR 

, l 
z, = - z ~ -  7 w, +hl(Zl, w0 

rl:  p 

I = W l ,  W I 

(I .7) 

which is an involution, ~=id .  

mines a second involution 

r2: 

Similarly z '=z or F(zl, wl)=F(zl, wO and (1.5) deter- 

r 
Zl ~--- Zl 

, 1 
wl = - .  Zl-Wl +h2(zt, wl). 

7 '  
(1.8) 

rl and r2 are the covering transformations for .~r 2 and hi, .71~1 r2--~,Tt'l, 7t2rl=~2. The 

fixed point sets of r~ and r2 are the curves C~ and C2 mentioned above. If ~2 satisfies 

the reality condition, then rl 0=Qr2. 

We may now characterize the trace f on ~ of a function g(z) holomorphic in z. 

S ince f=gozq ,  we necessarily haveforE=f.  Conversely, supposef=f(z l ,wl)  is analyt- 

ic in (Zl,Wl) and invariant under r2. There then exists a single-valued function 

g=g(zl,  z2), defined and holomorphic on the base of the branched covering ~rl away 

from its branch locus, satisfying f = g o z q ,  or f(Zl,WO=g(zI,F(Zl,WO). Since g is 

bounded it extends to be holomorphic in a neighborhood of z=0 by the Riemann 

extension theorem. We may also say that the functions z~ and F(zl, wO generate the 

algebra of r2-invariants. The condition f o r l = f  characterizes the trace on ~ of a 

function holomorphic in w (anti-holomorphic in a neighborhood of M). 
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The mapping q0=r~ v2, 

z'l = -(1 __~-2) Zl _]_~-Iwl + . . .  
qg: (1.9) 

w'~ = - ~,-~z~-w~ + ... 

is also very important for the study of the surface M. It has the origin as an isolated 

fixed point. We shall see in section 2 that this fixed point is hyperbolic if M is elliptic 

and elliptic if M is hyperbolic. 

The condition f o  r z = f  is an analogue of the tangential Cauchy-Riemann equations 

on a real hypersurface in C n. In fact, such an analytic M 2 n - l c c  n yields, upon 

complexification, ~ 2 " - l c C Z " .  The two projections arl,~r2:~022"-l---~C" each have 

rank n and (n-l)-dimensional fibers. The tangents to the fibers of ar~ are spanned by 

the n - 1  independent complexified tangential Cauchy-Riemann operators. A function 

on ~y~z,,-~ annihilated by these operators is constant on the fibers of vr~ and so comes 

from a function holomorphic in z alone. In the case n=2, there is only one independent 

tangential vector field P of type (1,0). By complexification, (P, P) goes over to (P, Q) 

on ~3.  We consider the flows 

~pt 1 = exp ( tP) ,  ~0~ = exp (tQ) 

with t complex. They commute when [P, Q]=0, which implies that the Levi-form of M 

vanishes. Thus the commutator tpZ=r~ re r~ -~ r2 ~ may be thought of as a discrete ana- 

logue of the Levi-form. Under the assumption that the linear part of q0 is not nilpotent, 

we shall derive a normal form for M in section 3. This may be compared to the normal 

form in [5] for a non-degenerate real hypersurface. 

To further emphasize the importance of r~ and r2, we next wish to show that two 

suitable such involutions defined and holomorphic in a neighborhood of and fixing the 

origin of C 2 give rise to a surface ~ in C 4. Let the coordinates of C z be denoted by 

X=(x ,  y)t, and suppose 

r j :X '  = T j X + h j ( X ) ,  hj = O(~'12), ( 1 . I 0 )  

T f = l ,  h, o r j = - T j h j ,  j =  1,2. 

For each j  we assume that the 2 by 2 matrix Tj has a (-1)-eigenspace of dimension one, 

and consequently a one-dimensional (+ 1)-eigenspace. Let the eigenvectors be denoted 

by v +, v 7.  We further assume that each of the pairs of vectors (Ol, v2), (v~-, v~), (v~, v~) 

is linearly independent. After a linear change of coordinates (x, y), we may assume 

v~-=(1,0) t and v2=(0, 1) t, and so 
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TI = ( - ~  ~1), 72 : (Ic2 01)" (1.11) 

The other  two independence condit ions are equivalent to c!~:0, c 2 . 0 .  More  explicitly 

we now have 

X' = - - X + C l Y + f l ( x , y )  
r l : y  ' : - y + g l ( x , y  ) 

x '  = x + g2(x, y)  

r2: y,  = c 2 x - - Y + f l ( x  , y),  

(l .  12) 

where the fj., gj. are of  second order .  We define four new functions by 

Z I = y + y o r  2 = C2X+f2(x,y ) 

Z2 = Y "Y 0 75 2 - ~  CEXy--y2 +yf2(x, y) 

w 1 = x + x o r  I = c l y + f l ( x , y  ) 

W 2 = X 'X 0 r I = C 1 xy--xE+Xfl(X, y).  

(1.13) 

Clearly, (x, y ) ~ ( z ,  w) defines a map of  rank two. If  we use the first and third equation 

to eliminate x and y, then the image is seen to lie on a surface 

Z 2= ClIZl WI--CI2W~'4 - . . .  

W 2 = C21Zl W I-c22z~+ . . . .  

This can be put into the form (1.5), (1.6) by a transformation (I .4). It is clear that rl and 

r2, by fixing the functions w and z, respectively, are the involutions induced by this 

embedding. Since (wl, WE) and (zl, z2) generate the functions invariant under rl and rE, 

respectively,  it follows that any other  such regularly embedded surface realizing the rj 

is equivalent to this one via a t ransformation (1.4). We have proved the following. 

PROPOSITION 1. I. Every  ana ly t i c  sur face  (1.5, 1.6) gives rise to an intrinsic pair  o f  

involut ions  (1.12). Converse ly ,  every  such  pair  (1.12) are the intrinsic involut ions o f  

s o m e  sur face  (1.5, 1.6) in C 4. 

Note  that the two (+ 1)-eigenvectors (v~, v~) are dependent  precisely when cl c2=4. 

This is the parabolic case, corresponding to y =  + 1/2 in (1.6). 

An anti-holomorphic involution 0 fixing the origin in C 2 has the form 

o: x '  -- P~t+k(R), k = O(IXI z) 
P P  = I,  k ( o ( X ) )  = -P/?(X), (1.14) 
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the last two equations being equivalent to Q2=id. The fixed points of • are the solutions 

to the system X=Q(X), which in view of the conditions (I. 14), is equivalent to a single 

equation (1.2) with p*0.  If this surface is transformed into R2c C 2, then Q may be 

put into the form p(x,y)=(.r The change ( x , y ) ~ ( x + i y ,  x - i y )  gives the form 

0(x,y)=~,$) .  If the involutions (1.10) also satisfy z~p=Qr2 for Q in this form, then 

zoQ=t~, and (1.12) gives rise to a real surface (1.3) in C 2. 

Next, we consider a real analytic n-dimensional manifold in C n. Generically, such a 

manifold M is totally real and so locally equivalent to the standard R n in C n. We shall, 

however, study M near a point p at which it has a complex one-dimensional holomor- 

phic tangent space. We use the following coordinate notation 

z = (zl, z,~, z,,), za = x,~+iy,~, 2 <<. a <~ n -  I 

X = (X 2 . . . . .  Xn_l). (1.15) 

The Greek indices a, fl, tr will generally have the range from 2 to n -  1 throughout this 

paper. These coordinates are initially chosen so that p is the origin, the zl-axis is the 

holomorphic tangent space to M at p, the (z~,x)-space is the real tangent space Tp to M 

at 0, and z,,=0 is the complex envelope, Tv+iTv, of this real tangent space. We may 

then express M locally as a graph 

z~ = F(zl, zl, x) (1.16) 
Ya = fa(zl, Zl, x) = f~(zl, zl, x), 

where F,f~ begin with quadratic terms. Those in F have the form q+ql+q2, 

q = az~+bzl z l+c~ ,  

ql ---- ~ aaxaZl"l-baxazl, 

q2 = ~ C~ X a X#. 

As in the two dimensional case we make the non-degeneracy assumption that b~=0, and 

even that b= 1, a=c=~, 0<~y<~. 

Further simplification of F, fa is made as follows. To eliminate the second term in 

ql we make the change Zl,---,zl+EAaz,~. Consideration of q(zl+EA,~za) shows that 

we must solve 

2y,'~a+Aa = -b , ,  

A~+2yAa = -6~,  
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which is always possible if )'~=1/2. The remaining terms in q~ and q2 are eliminated by 

the change z~-~z~-E(a~z~z l+caaz~z#) .  Next we eliminate the quadratic terms in 

f~, which have the form qa+qla+qEa, 

qa =aaz~+baZlZl+dtaZ~' ba=~a, 

ql~ = 2Re E c~x#z l ,  

q2a = E Coq3oX# Xo' C~o = ('~o" 

The z~ ~r term in qa is removed by z ~ z ~ + i b a z n .  With this term zero, the remaining 

quadratic terms are removed by za ~ z~ + 2i s coa za zl + i s coa o z, zo+ 2iaa zn. 

From this point on we assume that M has the form (1.16) with 

F = q(zl, Z l ) + H ( Z l ,  7"1, X), H - -  O(Iz13), 

f~ = h~(Zl, Zl, x) = h~(21, Zl, x), h a = O(Iz13), (I. 17) 

2 - -2 1 
q =)'Zl+ZlZl+)'Zl, 0-.<)'<0% )'=1=-~-. 

Before continuing let us examine the locus N of  those points near the origin at which M 

has a complex tangent. We set r~  ra=f~-ya ,  and 

A - a(r~ r~' f0) 

a(zt, z~, z.) '  

the Jacobian determinant.  Then N is given by (I. 16) together with A=A=0. In view of  

(1.17) A=+(i/2)"-2(~t+2)'Z1)+ .. . .  The condition ) , .1 /2  allows us to solve A = A = 0  

explicitly for Zl and Zl: Zl=~O(x), Zl=~(x) .  Thus if)'=r 1/2, then N is a totally real (n-2)-  

dimensional manifold lying on M. 

Now we complexify the manifold M by replacing s by w in (1.13) to get a complex 

analytic n-dimensional submanifold ~ in C 2", 

z ,=F(Zl ,W~,X) ,  2xa=za+wa 

wn = ~'(Wl, Zl, x), (I. 18) 

z a -  w~= 2ifa(z I , w t , x) = 2/f~(w I , zt, x). 

We note that these equations imply 

za = x~+if~(zl, w~,x) 

wa =xa-ifo(z~, Wl,X). 
(1.19) 

18-838283 Acta Mathematica 150. lmprim6 le 15 aoOt 1983 
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The variables (zt, w l , x )  will be used as complex coordinates on ~ .  The two projec- 

tions :rl(Z, w ) = z  and zr2(z, w ) = w ,  when restricted to ~ have the form 

~zl(z I, w I, x) = (zl, xa +if~,(z,, w I , x),  F(zl ,  w j, x)), 

:~2(zl, wl ,  x) = ( w  l, xa-if,~(z I, w l, x),  l~(w I , zl,  x)). 

Since ~ comes from a real submanifold M, the reflection Q(z, w)=(w, s preserves 

and induces the anti-holomorphic involution p(zl, wl, X)=(a:1, s 

Again the case y=0 is exceptional, so we assume that 0<V<oo, ~,4:I/2. We define a 

holomorphic involution rl(z, w)=(z',  w') on ~ by w = w ' ,  which amounts to the equa- 

tions 

q(zl ,  w O - q ( z l ,  W l )  = ~ ' I ( W l ,  Z I , X ) - - [ S I ( W l ,  Z i ,  x t )  

x ' - i h a ( z i ,  w l ,  x ' )  = x a - i h a ( z t ,  w l ,  x). 

By the implicit function theorem we get 

, 1 
Z 1 = - - Z  I - -  - -~  W I + K + ( z  l, w I, x) 

rz: w I = w I (1 .20)  

x" = xa+L~(z  l, w I, x), 

for certain functions K, La of second order. The condition ~= id  gives K o r l = K ,  

L a o r l = - L ~ .  From r2=Qrtp, we have 

Z'  I = - - Z l  

, _  _ I  - w l + / ~ ( w l , z l , x )  (1 .21)  z2: w l -  7' zl 
s _ xa - xa+L~(w  I, zl, x). 

~1 is a two-fold branched covering with covering transformation ~'z. To find the branch 

locus consider the Jacobian determinant 

a(zl, z~, z,) 
A -  

a ( z l ,  x ,  w 0 ' 

where z~, zn are given by the first equations in (1.18) and (1.19). Since 

a( A, xo + ifo) 
(o) = Aw,(o) = 2~, O(w. x~) 
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A=0 and the first equation in (1.19) can be used to eliminate (w~, x) in the first equation 

of (1.18). This shows that the branch loci of zq and ~2--CZtlOp are smooth analytic 

hypersurfaces in z- and w-space, respectively. The same argument as in the two 

dimensional case shows that an analytic f u n c t i o n f = f ( z l ,  Wl,X) is the trace on ~ of a 

function holomorphic in z if and only i f f o r E = f .  Thus the study of the n-manifold M 

also leads to consideration of a triple of involutions (rl, rE, Q). 

2. Quadrics and linear involutions 

In this section we consider the case in which Mn~ - C n is the quadric Qe 

Z,, = q(zl ,  Zl) ~ qy(Zl, Zl), 

QY:y,~=0, 2 < ~ a < ~ n - 1 ,  

q= = Z~ + :~. 

(2.1) 

The coordinates are as in (1.15). This will be a prelude to the study of the general 

manifolds of section 1. The cases y=0, 1/2, oo are exceptional and enter the discussion 

only in a minor way. We also consider the complex quadrics 

~y:  Z. = w .  = q(zl ,  Wl) ,  

za wa, 2x~ = (z~+w~), (2.2) 

where q=q~, is of the same form, but with y complex. ~ may come from a Qy by 

complexification. 

The projections :rl(z, w )=z ,  :r2(z, w ) = w  restricted to ~e  are given by the quadrat- 

ic mappings 

:rl(z I, wp  x) = (zl, x, q(zl ,  wO), 

:r2(zl, w I, x) = ( wl , x, q(zl , w O ). 

If y=0, then :r~ collapses the lines z~=0, x=const, to points and is otherwise one-to- 

one. If y*0,  then :h and :r2 are two-fold branched coverings having as covering 

transformations two linear involutions r2 and r~. The w-planes cut s in the point- 

pairs of the involution r~, while the z-planes cut s in those of rE. Letting 

X=(Zl ,  w~,x)  t be a column coordinate vector we have, as in (1.20, 1.21), 

rj(X) = TjX, Tj 2 = I, j = I, 2, (2.3) 
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where 

I1 !1 I 1 ~ T l= 0 1 , T2= _y,1  - I  , 

0 0 0 0 

I = ln_ 2. (2.4) 

These formulas are also valid for ~= ~.  Each rj has a one-dimensional ( -  1)-eigenspace, 

so is a reflection in a hyperplane Ej. The cases ~,= + 1/2 correspond to El =E2. If  ~= oo 

then a ( - l ) -e igenvector  of  rl is a (+ l)-eigenvector of r2, and conversely. Aside from 

these exceptional cases E=EI hE2, the space of points fixed by both r~ and v2, has 

dimension n - 2 ,  and r~ and r2 have no other common eigenvectors. The plane F: x=0  is 

invariant under  both r~ and r2. I f  ~ ,  is the complexification of  Q~, then ~ y  carries the 

linear anti-holomorphic involution ~(zl ,wl,x)=(tb~,21,2) and QvI=r2Q. Q preserves 

both F and E, and E = N + i N  where N is pointwise fixed by Q. N is the locus of points at 

which Qr has a complex tangent. 

We now turn to the theory of a pair of  holomorphic involutions on C n, which we 

assume to be given in the form (2.3). First we consider the case n=2.  The complex 2 by 

2 matrices Tj are assumed to satisfy 

Tj2 = I, det Tj+I = tr Ty = 0. 

Also, we require that T! and/ '2  have no eigenvectors in common. The mapping q0=vl T2 

has the matrix form 

q0(X) = ~X,  �9 = T~/'2, det �9 = _ I. (2.5) 

LEMMA 2.1. Let  the linear transformations rl ,  ~2, q9 on C 2 be as just  described. 

Then q~ is diagonalizable with distinct eigenvalues Iz, l~ -I , Iz2~ 1. I f (e l ,  e2) is a basis for  

which 

then 

q0(e0 =/zel,  qo(e2) =/z- I  e2, 

vj(el)= Af'e2, vj(e2)= gje I 

where 2j 2~1=/z. The eigenvectors (el, e2) may be chosen so that 21=g21--A, A4=~l, and 

are determined up to (el,e2)~--~(ael, +ae2) or (el,e2)~-~(e2, eO. trq~=A2+2 -2 is an 

invariant o f  rl, r2. 

Proof. Let  v be an eigenvector of  q~ with eigenvalue/~. Then 

~(v) = r~ r2(v) =~v,  or r2(v) =/Z~l(V) =/zqn'z(v). 
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Thus r2(v) is also an eigenvector of  q0 with eigenvalue # -  1. ,t,x(V) and v are independent,  

since a relation cv=r2(v)=#rl(V) would imply that v is a common eigenvector of  both rl 

and r2. I f # = #  -1, then tp= +id,  or r2 = + r l ,  which again implies a common eigenvector. 

Relative to the basis el=v, e 2 = r 2 ( v ) ,  r l  and r2 satisfy the above relations with 2~=#, 

22=1. The change of eigenvectors of 9,(el,e2),--~(ael,fle2), results in 2j,--~fl2ja -1. 
Hence, we can arrange that 3. l =221 =2, 22=#. We must then restrict to a=_+fl. Q.E.D. 

Now suppose that rl and r2 satisfy Qrl=r2Q, for some linear anti-holomorphic 

involution Q, (92=id, 

o(X) = PX, P/~ = 1, P2rl = T2 P. 

Again let v be an eigenvector of  q0 with eigenvalue #. Then, since q0Oq0=r~ pr2=p, 

o(v)  = ~ o ( ~ v )  = f , r  

so that O(v) is an eigenvector of q0 with eigenvalue/i  - l .  Hence,  either 

(i) # = # ,  

o r  

(ii) # #  = I. 

Suppose # is real and let el, e2 be eigenvectors of q0 as in Lemma 2.1. Since/~-~ is 

the eigenvalue # - l  and o2=id, we have 

O(el) = ae2, 0(e2) = a - t e l .  

From orl(eO=r20(eO we get 

It follows that 

21,~2ad = 1. 

# =212~ -I = ad21~ I > 0 .  (2.6) 

in (a,2j)~--~(dafl-l,fl2ja-i). To make a = l ,  The change (el,e2)~,(ael,fle2) results 

2122 = 1 by such a change, we require 

f l m a a ,  a 2 ~ - 2 = 2 1 2 2 .  

The second condition is (a/d)2=a22~22=a22(dd2) -I. Since this last term has modulus 

one, such an a exists, with this normalization, 21=2f1=2=2.  We must now restrict to 
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fl=t~, tZ2=fl 2. I f  we arrange that 2>0,  then we must have fl=a=O. By interchanging el 

and e2 we may take 2 >  1. 

Now suppose ~/~=l,  so that tp has eigenvalues ~=/~-1 and/~-1. Then p(eO=ael, 

and similarly, Q(e2)=be2. From ~92=id we get a~t=btJ= I. The above change of eigen- 

vectors results in (a,b)~--~(aaa-l,flbfl-1). Therefore we can choose el,e2 so that 

a = b = l .  Now we must restrict to a and fl real. The relation Qrl(el)=r2Q(el) gives 

;[1=22. Hence by choice of  real a and fl, we can make 2122 = 1. Thus, 21 =221 =2, 2;[= 1. 

We can arrange that Re2>0 ,  then we must restrict to fl=a=O. By interchanging e;l and 

e2 we can make 0<arg2<~'t/2. 

We introduce coordinates (~,r/) by X=~el+rle2, where (el,e2) are the above 

chosen eigenvectors of  qo. We have proved the following. 

LEMMA 2.2. Let rl ,  r2, q~ be as in Lemma 2.1 and suppose that pl;l=r2o for some 

linear anti-holomorphic involution Q. Then there exist linear coordinates (~, r 1) in which 

rz(~, ,7) = (2r/, 2 -1~) ,  r2(~, r/) = (2 -1v ,  2~).  (2.7) 

Also, either 

(i) 0(~ , r / )=(# ,~)  and 2=;[> l, or (2.8) 

(ii) ~(~, 77) = (~, #) and 2;[ = 1, 0 < arg2 < ~/2. 

Such coordinates are determined up to (~, rl)~--~(a~, arl), a=O. 

Next we consider two linear holomorphic involutions rl,  r2 on C n. We assume that 

each rj is a reflection in a hyperplane Ej and that EI=~E2. Let E=EI hE2 and vj be a 

( -  l)-eigenvector of Tj, j =  1,2. We also assume that E, ul, v2 spanC n. 

LEMMA 2.3. (a) Let r l , r2 be involutions on C n as just described. There exist 

complex linear coordinates ~, ~l, ~=(~3 . . . . .  ~,,) in which 

Tj(~, 17, ~) = (2jl~, 2fil~, ~), j = I, 2. (2.9) 

They may be so chosen that 21 =221 =2 and are then determined up to replacement by 

(a~, +arl,B~), aEC,  B E G L ( n - 2 ,  C), or by (~, ~, ~). 

(b) I f  also Qrl =r2 Q for a linear anti-holomorphic involution ~, then these coordi- 

nates can be further specialized so that either 

(i) Q(~,r / ,~)=(#,~,~)  and 2 > 1 ,  or (2.10) 

(ii) ~(~,r / ,~)=(~,r  and 2;[= 1 , 0 < a r g 2 < z r / 2 .  
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They are then determined up to replacement by (at, arl, BE), a E R, B E GL(n-2 ,  R). 

Proof. (a) Let  F be the space spanned by vl and v2 so that C~=FGE. We claim 

that F is invariant under  both rl and r2. Since rl v~ = - v j ,  consider 

Tl  V 2 = av,+flv2+w, w E E .  

We must show w=0.  Since ~ = i d ,  

O 2 = --CtO 1 + f i r  I U 2 +  W = ( f l - -  1) CtO 1 + f l 2 U 2 + ( f l +  1) w .  

If  w4=0, then (v,, v2, w) are independent  so f l = -  1, and a = 0 .  This implies that 

~,(v2- �89 = - (v2-  �89 

hence U2--W/2=COI, which contradicts  independence.  Hence,  w=0,  and r j (F )=F .  A 

similar argument shows that r2(F)=F.  Let  rj be the restriction of  rj to F. Then 

d e t r ) = - l ,  and by the condit ion on v t ,o  2 and E, rl and r~ can have no common 

eigenvector.  Hence ,  we may apply Lem m a  2.1 to r~, r~, to get basis vectors el,  e2 o f F .  

We let e3 . . . . .  en be any basis of  E, and (~, r/, ~) coordinates relative to el . . . . .  en. 

(b) We first show that p leaves E invariant. If r jw=w,  then rip(w)=@(w) follows 

from r~Q=or2, hence Q(E)=E. Let  N be the totally real fixed point set of  @ on 

E,E- -N+iN.  Choose the coordinates  ~ on E so that Q: ~ - ,~ .  We next  show that F is 

invariant under  Q. To see this note that 

r, e(F) = @r2(F) = e(F) 

rE e(F) = er,(r'-3 = O(F). 

Hence ,  @(F) is invariant under  both r~ and r2. Relative to a basis compatible with the 

decomposi t ion Q(F)~E=0(F)~)Q(E)=C n it is easy to see that d e t r j = - l ,  where 

rj.'.=rjle(F ). So rj has a ( -1 ) -e igenvec tor  uj in Q(F). By the assumption made on r l ,  rz, 

we must have uj=cvj. It follows that Ul, u2 are independent and Q(F)=F. We now apply 

Lemma  2.2 to r l ,  r~. Q.E.D.  

Given involutions zl,r2,@ as in (2.7, 2.8) in canonical coordinates (r r/, ~) 

(2~=2~-1=2), we shall construct  a quadric Qy. For  this we must construct  the "holo-  

morphic"  coordinates z and the "an t i -ho lomorphic"  coordinates w. Linear  combina- 
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tions of  the Ca are invariant under  both rl and r2. Aside from these the most general 

linear functions invariant under  rE and rl ,  respectively,  are 

z~ = b(2~+r/) 

/Ol = a(~+~.r/), 

where a and b are complex  constants.  We should also choose z~ and w~ so that Q 

corresponds  to (Zl,Wl,X)~--~(t~l,s If  ; t=~ we need a=~ ,  while if ~ = 1  we need 

a 2 = &  Thus for the two cases in (2.10) we take 

Z I = b(2~+r/) 
(i) 

w~ = b(~+~,7)' 

zi = b(,;t~+q) 
(ii) 

w~ = b,~(~+2r/)" 

The quadratic functions invariant under  both rl and r2 are linear combinations of  ~r/ 

and r Ca. 

We want to choose  b so that q(z~, wl) is a multiple o f  ~r/, for  some q of  the form 

(2.1). In case (ii) this requires that 

b2~, 2 + 62~ 2 = b z + 62. 

Taking b/~= I, we get b4-- '2 -2 .  

Hence,  in both cases,  we arrive at 

z~ = i).-t/2(X~+r/), 

w~ = -i2-J/z(~+;tr/), 

Za= Wa=Xa=~a" 

(2.11) 

It follows that 

We define 

q = zl Wl+V(Z~+/O~) = Y - ' ( 1 - 4 7 2 )  ~r/, 

y =  (2+2-~) -~ > 0 .  
(2 .12)  

Zn =/On = ~ - 1 ( I  - - 4 y  2) ~r]. (2 .13)  
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r~,r2,O are the involutions induced on the surface (2.12, 2.13). We may write the 
relation between }, and 2 as 

~ , 2  ~ .~.~ = 0 .  (2.14) 

If 2=1=+I is real, (2.14) has two distinct real roots, k,2 -1. It follows that y<l /2  and the 

surface is elliptic. I f L ( = l  and 0 < R e 2 < l ,  then y=(I/2)(Rek)-l>l/2 and the surface is 

hyperbolic. 

Conversely, given rl and rE with the matrices (2.4), we can use (2.11) to define the 
canonical coordinates (~, r/, ~). We only have to find 2. ;tE=/a is an eigenvalue of 

(p---~'glT2=g'l~)rl0. In terms of matrices ~=TIT2=T1P]'I~fi=(-TIP) 2, where Ti a r e  

given by (2.4) and 

[ i  1 i ]  P =  0 . 
0 

The eigenvalues of -T !  P are given by (2.14) together with k = - 1 .  

The mapping (2.11), (2.13) has an interesting geometric interpretation. In the 

elliptic case the relation Wl=~l corresponds to ~=~. Under (2.11) the ellipses 

q(zl,gO=c>O are mapped to the circles ~ = c ' > 0 .  In fact (2.11, 2.13) maps Q~ to Q0. 

In the hyperbolic case the relation Wl=~l corresponds to ~=~, ~=0. The hyperbolas 
q(zl,~O=c are mapped to the standard hyperbolas ~=c'.  Q~ is mapped to Q~ by 

(2. l 1, 2.13). Of course, (2.11, 2.13) is not hoiomorphic in the usual sense. 

The linear map q~=r~ r2, 

~(~, ,7, ~) = (u~, ~ - ' r l ,  ~) 

leaves fixed the linear space ~=r/=0, i.e. ZI=WI=O. AS mentioned above this is the 

complexification of the space of those points on Qe having complex tangents. When 

n=2,  9 has an isolated fixed point which is hyperbolic (u>0) if Qe is elliptic, and elliptic 

(g#= 1) when Qr is hyperbolic. 9 may be interpolated by the flow 

9'(~, r/, r = (etV~, e-t~r/, ~), (2.15) 

where eV=kt, ~01=~0, and either 

(i)  v = ~  

o r  

( i i)  v + p  = 0.  
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q0 t preserves the family of  complex conics ~r/=const. ,  i.e. q(z~, wl)=c ,  on ~ r .  If  c is 

real the complex conic meets Qe in a real conic, which may be degenerate, tp does not 

preserve Qr since Q-lq0p=q~-z:gq~, if ~,.oo. If  we allow complex t, then q~tQ=Qq0-t in 

both cases. Thus q~t commutes with ~9 precisely when t+t-=0. The orbits of  q~t on Qe for 

t+t-=0 are the real conics. The infinitesimal generator is a vector field on Qr tangent to 

these curves. 

As mentioned in section 1, q92=[r~, r2]=id is a direct analogue of the vanishing of 

the Levi-form on a real hypersurface. Among the quadrics Qr this happens only when 

~,=~. Q~ is the intersection of  t w o  Levi-flat hypersurfaces R e ( z 2 - 2 z ~ ) = I m z 2 = O .  A 

weaker condition is that q7 should be nilpotent. This happens precisely when 2 is a root 

of unity and causes difficulties for the normal form in section 3. The eigenvalues of q~ 

are multiple precisely when /~=  + 1. It is an interesting fact that q0 is diagonalizable 

(q0=-/)  f o r / x = - l ,  i.e. y = ~ ,  while fo r /~=+1 ,  i.e. ~,=1/2, q0 is not diagonalizable. 

Finally, we make a remark on the automorphism group of Qr, ~,:~0, 1/2, oo. It is 

clear that the holomorphic map 

z~ = a(z  n, z~) zl ,  a = gt, b~ = [~, 

' - a2(zn, z~) z~, a �9 O, det b' a~ 0, (2.16) Z n - -  

z'~ = b~(z, ,  za), for z = 0, 

preserves Qr. Via the mapping (2.11) this corresponds to 

(~, r/, ~) ~ (a(~r/, ~) ~, a(~ l ,  ~) ~1, b~(~l ,  ~) ~ ) ,  

which is an automorphism of  the set of involutions rj,  r2, ~. In the next section we shall 

use this to show the most general self transformation of Q• is of the form (2.16) where a 

and ba are arbitrary real formal power series, if ~, is not exceptional. 

3. The formal theory of a pair of involutions 

The considerations of section I have led us to a pair of holomorphic involutions r~, z" 2 

defined in a neighborhood of  a fixed point on a complex manifold ~ .  In this and the 

following section we assume ~ = C  n, with coordinates x, y, z--(za), 2<~a<<.n-l, and that 

the origin is the fixed point. We now ask for a new coordinate system ~, r/, ~=(~a) in 

which rl ,  rE take a particularly simple form, a so-called normal form. We shall first 

discuss the normal form in the realm of formal power series on a purely algebraic level. 

Later,  in the next section, we discuss the question of convergence. The case in which 

rl and 't" 2 are intertwined by an anti-holomorphic involution 0 will also be considered. 
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One may proceed directly with the mappings rj; however, we shall base our analysis on 

the mapping q0=rl r2. As in the linear case (section 2) we shall normalize q~ and then 

show that this forces a normalization of r~ and r2. 

By the results of section 2 we may take rj of the form 

x' = )tjy+ pj(x, y, z) 

rj: y' = ) . j I x + q j ( x , y , z ) ,  j =  1,2. (3.1) 

Z'a = Za+rja( x, Y, Z) 

Then ~v has the form 

x' = I tx+f(x ,  y, Z) 

cp: y' = l z - ly+g(x ,  y, z) 

Z'a = za+ha(x, Y, z) 

(3.2) 

where /~=2~2~ 1. Here pj, qj, rj, f ,  g, h, are formal power series vanishing to second 

order at the origin. We subject these mappings to the group (~l of formal transforma- 

tions which agree with the identity to second order. Such a ~p E (~l has the form 

x = u ( ~ ,  r/, ~) = ~ + u ( ~ ,  r/, ~) 
~fl: y = V(~, r I, ~) = rl+v( ~, r 1, ~) (3.3) 

z = w ( ~ ,  ,7, ~) = ~ + w ( ~ ,  rl, ~), 

where z, w, W are (n-2)-vector valued and u, v, w begin with quadratic terms. We call 

normalized if the power series u ,v ,w do not contain terms of the form 

~J+l~lJ,~JrlJ+', or ~JqJ, respectively, for any j E Z  +. Any formal power series 

p =p(~, r/, ~) may be decomposed as 

p = ' ~  p,(~, ~, O, 
$m-oo i-j=s IKt=0 

We shall say that Ps has type s. The normalizing conditions on ~p may be expressed as 

ut=0, v_l=0,  Wo=0. (3.4) 

LEMMA 3.1. Any  ~p E (~6 t can be uniquely fac tored  into 

q' = q'o6, 

where ~0o is normalized and 8 has the f o rm  

6: (~, ~, 0 ~ ( a ~ , f l ~ ,  ~ + y ) ,  
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where a, fl, y are power  series in ~ and the product  ~r/. I f  ~o is convergent, so are ~0o 

and 6. 

Proof. We may define such a, fl, ~ by 

U1 =a(~r/, ~)~, V-1 =fl(~r/, ~)r/, Wo = r ~), (3.5) 

and form 6 as in the statement of the lemma. Since the transformation 

p ~ p ( a ~ ,  fir/, r commutes with the projections P~--~Ps it follows that g~o=~ o 6-1 is 

normalized. Conversely, any such decomposition ~0o, 6 forces (3.5) so 6 and ~o are 

unique. It is also clear that if ~0 converges, so does d and hence also Wo. Q.E.D. 

LEMMA 3.2. Let  rj, j=  1,2 be two formal  involutions given by (3.1) with/~=212~ -j 

not a root o f  unity. Then there exists a unique normalized transformation ~0 as in (3.3) 

such that relative to the coordinates (~, r/, ~) 

~0-~orjo~0: r/' A T l ~ , j  = 1,2; t0-1q)~: r/ '= -ir/; (3.6) 
~' ~ ~'= 

where M = A  I A~ l and the Aj=2j+ ... are formal  power  series in ~ and the product  ~r/. 

Proof. We proceed by induction on the homogeneous degree in all variables of the 

terms in ~0-1zj~0. We assume that rj has been transformed so as to have the form (3.6) 

modulo terms of order m and higher by a unique choice of the terms in ~0 of order less 

than m. It will suffice to show that the term of order m in ~ can be chosen uniquely so 

that ~0-~rjg, has the form (3.6) modulo terms of order m+l .  Thus assume r~ has the 

form 

x' = A j y + p j + . . .  

rj: Y' ATIx+qj+ .... j =  1,2 (3.7) 

Z' z+rj+ ... 

where Aj=Aj(xy, z) are polynomials of degree < m -  1, pj, cb., rj are homogeneous poly- 

nomials of degree m~>2, and the dots indicate higher order terms. Using ~= id  and 

noting Ajrj=Aj+O(m),  we get 

2jqj(x,y,z)+pj(2jy,  2f lx ,  z )=O,  j =  1,2, 

rj(x, y, z)+rj(2jy, ).;'x, z) = O, j = 1,2. (3.8) 
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It follows that q0 has the form 

where M = A  l A~ 1 

f x'  = M x + a +  o o o  

q~: ~y ,  = M - ~ y + b +  ... (3.9) 

I. z' = z + c +  ... 

and a, b, c are the homogeneous polynomials of degree m given by 

a(x, y, z) = 21 q2( x, Y, z) +P10.2 Y, ).~qx, z) 

b(x, y, z) = 2-(lp2(x, y, z)+ql(22 y, 2~lx, z) (3. I0) 

c(x, y, z) = rz(X, y, z)+rl(A2y, 221x, z). 

Now let ~p have the form (3.3, 3.4) in which u, v, w are homogeneous polynomials of 

degree m. We shall choose u, o, w so that ~=~-lq0~p has the form given in (3.6) modulo 

terms of order m+ 1, and then show that automatically the ~-lrj~p also have the form 

in (3.6) to the same order. Let q3 be as in (3.9) with ~ t = M  and ~, b, ~ homogeneous of 

degree m in (~, 7, r Since M(xy, z)=M(~7, ~)+O(m),  comparison of terms of degree m 

in ~/,q~=tp~/, gives 

u(/z~,/z-17, ~)-/~u(~, 7, ~) = (a-fi)(~, 7, ~) 
v(u~, ~-17, 0 -~- Iv(~ ,  7, r = (b-b)(~, 7, ~) (3.11) 

w(u~, ~,-'7, r  7, r = ( c - e ) ( ~ ,  ,1, r 

We wish to make fis=0, for s4= 1,/~s=0, for s * -  1, and ~s=0, for s4=0, where s indicates 

the type. This leads to the equations 

~ - I U )  us = a s, s 4= 1 

(Iz~-Iz-t)vs=b~, s * - I  

( I .d -1 )Ws=C s, s * O ,  

which clearly can be solved for us, v,, Ws since by our assumption no power of/z is 

unity. 

For the exceptions just made the left hand sides vanish, forcing 

a l = a l ,  ~ - l = b - i ,  Co=Co. 

The normalization (3.4) makes the solution unique. Hence, we can achieve that 

a = A ( x y ,  z )x ,  b = B ( x y ,  z )y ,  c = C ( x y ,  z) (3.12) 

by a unique choice of the terms of order m in ~p, if ~p is normalized. 
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temporarily stand for the linear parts of these mappings. 

Crl=Cr2=C. The third equation in (3. I0) is equivalent to 

We next show this actually implies c=0 and rj=0, j =  i, 2. To see this let rl, r2, q9 

By (3.12) we have 

o r  

Hence, 

r 2 - - r  I q9 = r l - r  2 = C 

r l - r ,  99 = 2C. 

Since # is not a root of unity, this last relation implies that the terms of type s4=0 in rl 

vanish. Therefore rl r l=r l .  By (3.8) r,=0. It follows that r2=-C is of type 0, so must 

also vanish. We next want to show that 

pj(x, y, z) = Pj(xy, z)y, qi(x, y, z) = Qj(xy, z)x. (3.13) 

To see this we write the first two equation of (3.10), taking into account (3.12), in the 

foITn 

)'l  q 2 + P l  z'2 = xA, 

We also write the first equation in (3.8) as 

ql = --2~-IPl rl, 

Eliminating ql and q2 we get 

where we have used 

(xA) o qg=/zxA, we get 

,U~lp2+ql r 2 = yB. 

q2 = --'~'21p2 "t'2" 

PI-IzP2 = ~,2Y A ,  P2-Pl cp = 21 yB, 

(xA)r2=AzyA. Eliminating first P2 and then p~ and using 

Pl-/zPl q0 = y(22A +/zAi B) 

P2-/.tP2 q~ = y(22/z- IA +21 B). 

(The second relation follows from an application of r2.) The second equation of (3.8) 

gives respectively f o r j = l ,  2, 

r 2 + r l r 2 = C ,  r l  +r2"~2 = C .  
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Again, since/z is not a root of  unity, these equations imply that p~ and P2 are of  type 

s = - I  in (x,y). Thus the first equation in (3.13) holds. Eliminating Pl and P2 via 

pj=--~.jqj Tj gives 

q~-/~-lq 1 q) = xf, u-12~-IA +3.~-IB), 

q2-1~-lq2 cp = x(2~-IA+2~-l/~B). 

These imply that qt and q2 are of  type s=  + I. Hence,  (3.13) is proved. 

Returning r/, q0 to their original meanings, we may write (3.7) as 

x' = (Aj+Pj)y+ ... 

zj: y '  = (A]-l+Qj)x+ ... 

Z '  = Z +  . . . ,  

where the dots indicate terms of  order m +  1 and higher. The relations (3.8) and (3.13) 

give 

which imply that 

V'P +;tJ Qj = 0, j = l ,  2, 

(Aj+P) (A 7 '  + Q) = 1 + O(m). 

If we replace Aj by Aj+Pj, then we have achieved (3.7) with the degree m replaced by 

m+ 1. By induction we can achieve the form (3.6) for ~p-lrj~p with a unique normalized 

~p. The form of  ~p-~cp~p follows, and the lemma is proved. Q.E.D.  

In view of the applications we wish to make to surfaces we consider the case in 

which r~ and ra are intertwined by one of  the linear anti-holomorphic involutions 

(i) O(x, y,  z) = (9, x, z), 

(ii) 0(x, y, z) = (~, Y, g). (3.14) 

We have the following lemma. 

LEMMA 3.3. Suppose that the rl, r2 o f  Lemma 3.2 also satisfy Qrt=rzQ, where Q 

is one o f  the anti-holomorphic involutions (3.14). Then the transformation ~p satisfies 

~pQ=p~p, and the factors Ai, A2 are related by 

(i) A~(~r/, r = A2(Sr], r 

(ii) A~(~r/, ~) = A2(~r/, ~). 
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Proof. Let r* denote the normal forms (3.6) so that ~prT=rj~, j = l , 2 .  We have 

(Q~Q) (Qr*p)=(0rj0)(~0~). By the special form (3.14) of ~ it is easy to see that Q~O also 

has the form (3.3) with the normalization (3.4). Also, ~r~*o is of the form (3.6). By the 

uniqueness part of Lemma 3.2 it follows that p~og=~p and consequently Qr*~=r~'. This 

gives the condition on A~ and A2. Q.E.D. 

THEOREM 3.4. Let rl and ~2 be two involutions as in Lemma 3.2. Then there 

exists a transformation ~ in ~61 taking rl and r2 into the form 

W-lr I ~0: (~, r/, ~)~--)(At/, A-I~, ~) 

~ - ' r 2  ~: (~, t/, ~) ~ (A- It/, A~, ~), 
(3.15) 

where A=~.+ .... ReA>0, is a formal power series in ~ and the product ~t I. The most 

general transformation o f  the rj into this normal form is ~poo where 

a: (~, ~/, r  (r(~r/, r r(~r/, r f(~r/, r (3.16) 

and r(0, 0)*0 and f is invertible. I f  in addition Qrl=r2Q, where Q is gioen by (3.14), then 

~e=O~ and r(~r 1, ~)=:(~r/, r f(~r/, ~)=f(~r/, ~). A satisfies 

(i) A(~er/, r = A(~r/, ~), 

(ii) Afar/, ~).,~(~t], ~) = 1, 

according to the form o f  p. 

Proof. 

mapping 

By the linear theory we may assume 2~=2~'=2, Re2>0.  Consider the 

(~, ,7, ~) ~ (v(~,7, ~)~, v(~,7, ~)-1,j, O, 

which preserves ~r/. It commutes with ~ if 

( i )  vO = 1, 

o r  

( i i )  v = P. 

Its effect is to preserve the form (3.6) while replacing Aj by A~v -2. We can make 

Ai Az = 1 by choosing 

1:4 = A I  A2.  (3.17) 
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IfQ is given by (3.14 i), then A I / ~ 2 =  1, SO there is a fourth root v satisfying v#=l .  I f0  is 

given by (3.14 ii), then A I = / ~  I and there is a real fourth root. Let ~p!E@ I be a 

transformation of the rj into normal form r*. We factor ~pl=WoO6 as in Lemma 3.1. It 

is easy to check that the transformation 6 takes normalized involutions into normalized 

involutions. So ~Po 6r* = rj lpo 6, or ~Po(6r*6- i) = rj lp0, implies ~Po= ~/' and 6r* = r*6 by the 

uniqueness statement in Lemma 3.2. This last relation gives 

Aj(afl~r/, ~+y)fl = aAj(~l, ~), j = 1,2. 

Since AIA2=I ,  we get a 2 = f l  2. The restriction Re3.>0 forces a=fl=-r, and we set 

f=r ~). If ~Pl ~ (~l its linear part has the form resulting from Lemma 2.3. This 

proves the theorem. Q.E.D. 

Let Q~ be one of the quadrics (2.1) with y*0,  1/2, oo. We shall say that Qe is an 

exceptional hyperboloid if2 given by (2.14) is a root of unity. Necessarily y>  1/2. If ~p is 

a formal automorphism of Q~, it induces on my a mapping ~ satisfying 

By the theorem ~, is of the form (3.16) with r andfreal .  Passing to z, w coordinates via 

(2.11), (2.13) we get a mapping of the form (2.16). Hence, we have 

COROLLARY 3.5. Suppose that y~:O, 1/2, oo and that Qy is not an exceptional 

hyperboloid. Then the most general formal automorphism of Qy is of  the form (2.16). 

The normal form for ~0 lends itself to showing that q~ can be embedded in a flow Ct 

with r  ~O=id; qjt+t2=qj, ocph. We discuss this question for n=2, since the varia- 

bles ~ are uninteresting for this problem. In the realm of formal power series a mapping 

, p : ( ~ , , 7 ) ~ +  .... ~-1,7+.. .)  

with /~ not a root of unity can always be embedded in such a flow; moreover if 

Oq~=~-Io we have o~ t=r  and the embedding is essentially unique. The freedom is 

determined by the choice of log/x alone. 

The existence of such an interpolation follows at once from the normal form 

~: (~, r/)~, (M~, M -  It/) 

by defining the formal power series 

N(~r/) = log u+log ~-~M) 

19-838283 Acta Mathematica 150. lmprim~ le 15 aofit 1983 
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where the second term is a series without constant term. Thus the embedding is given 

by 
qJ: (~, rl) ~ (etN~, e-tgrl).  

If/~ is real, and a posteriori positive, we have M=h~ and can define N as a real series. If 

~u I = 1 we have Mh~'= 1 and we have in N a series with purely imaginary coefficients, i.e. 

we have in the two cases 

(i) N = N ,  

(ii) N + N  = 0. 

This implies ~)(jot=(j0-t-~) in both cases. 

This flow is generated by the t-independent vectorfield 

= g ( ~ )  ~, ,~ = - N ( ~ )  

which preserves the function ~r/. 

We note that q9 t is holomorphic if the transformation into the normal form con- 

verges. This fact will be of importance in section 5 in the description of the boundaries 

of  analytic discs as orbits of  these flows. 

To establish that q0 t is uniquely determined by ~ and the choice of log/~ we note that 

~pt has to commute with q0 and therefore is of the form 

q)t: (~, rl ) ~ (at(~rt) ~, flt(~rl ) rl ) 

by our previous considerations. This corresponds to a differential equation of the form 

= A(~r/) ~, / /=  B(~r/) r/. (*) 

We claim that A+B=O. If  this were not the case we would have 

for some s~> I and therefore 

A + B = c ( ~ r l ) s +  .... c~:O 

(~rl)'= (A + B) ~rl = c(~rl) s+l+.  

By integration of  this formal differential equation we find 

( ~ )  ( t )  = ( ~ r D + c t ( ~ r D  " § ~ + . . . .  
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For t= 1 we see that q~ would not preserve ~r/, a contradiction. Hence A + B = 0  and ~r/is 

a constant for the differential equation (*) which can be integrated to 

~': (~, r]) ~ (eraS, e--tAl']), 

i.e. eA=M, A=logM,  proving our claim. 

There is another way to define ~t which goes back to G. D. Birkhoff [3]. If/z is not 

a root of unity one shows inductively that the iterates q0 j, j =  I, 2 .... of q0 can be written 

in form 

q~J:(~,~)~ ~s~+ fd(~,~,~J),~-J~+ gd(~,e,~O 
d=2 

where fd, gd, the homogeneous polynomials of degree d in ~, 7, have coefficients which 

are polynomials in ~i  and ~- i  of degree ~<d. By replacing ~J by ~t=etl~ one obtains 

the formal series for q)t. It was a fundamental observation of Birkhoff that--at least in 

the case of area preserving mappings--the series for q/will  in general diverge for non- 

integer t even if q) and hence q)J converges. In fact, in the case of area preserving 

mappings, the convergence of the transformation into normal form occurs precisely if 

this embedding can be achieved with convergent q:. The relation 

Qocpt = cp-roQ 

shows that 9'  commutes with Q precisely i f  t+t-=0, i.e. i f  t is purely imaginary. This wil l  

imply that q9 t for t+t-=0 gives rise to a flow on the real analytic manifold M n (see section 

5). 

4. Convergence 

In general the transformation ~0 of Lemma 3.2 taking the pair of involutions r~, r2 into 

the normal form (3.6) does not converge even if r~ and rE are given by convergent 

series. However, the following result gives a sufficient condition for convergence. It is 

proved by a majorant argument along the lines of the argument given in [12] and [1 l] for 

hyperbolic area preserving mappings. 

THEOREM 4.1. Let the involutions rt, r2 be given by (3.1), where pj, q.i, rj, j= 1,2, 

are convergent power series. I f  I;tt[*[~2l then the normalized transformation ~p and the 

factors An, A2 o f  Lemma 3.2 are given by convergent power series. 
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Proof. We make use of the following notations. Let f(x), g(x) . . . . .  h(y) be power 

series in some variables x and y. If f (x )=EaI  x~ (multi-index notation) then 

f*(x)=X [a,lx ~. Also, f < g  means that g has non-negative coefficients bl, and la~l<<.b~, 
for all I. Note that i f f /<gi  and hi<h2 then hl( f l , f2  .. . .  )<hz(gl,g2 . . . .  ), if f-, gi have no 

constant terms. 

Our argument will be based on the fact that ~, given by (3.3, 3.4), transforms 9, 

given by (3.2), into the normal form r given in (3.6). The relation ~p o r o 7: gives the 

functional equations 

U(M~, M- 'r  1, ~)-IaU(~, q, ~) = f (U,  V, I4/) 

V(M~, M-~rl, ~)-/u-~V(~, r 1, ~) = g(U, V, W) (4.1) 

Wa(M~,M-Jrl, r rl, r = h~fU, V, W). 

We decompose these equations by equating terms of the same type s, -oo < s <  + oo, (see 

the definition before (3.4)), 

(M'-Ia) Us = [f(U, V, W)], 

(M'-ix -~) V, = [g(U, V, W)], (4.2) 

(M'-I)(W~), = [hafU, V, W)],. 

By interchanging rl and r2 if necessary, we may assume that ]21]>[;t2[, i.e. lp]>l. M -I 

is a formal power series with constant term/~-1,~u-~[<l. Let P~ and 

P=~u[-l+P ~ so that M-I<P. 
We next prove the following relations. 

(M,_/uk)- l < c______c___ 
I - c P  0, sEZ,  k = 0 ,  + l , s ~ k ,  (4.3) 

where the constant c is independent of s. We first take c~>(l-/xk) -~ and assume s~=0. 

We also note that Lul/as~<v:-~[ whenever s~k  and s4=0. For s~> 1, we have 

(M s_pk)- i = M-S( 1 -/z~M -s)- i 

= M-S ~ ~kM-S)i 
j = 0  

< (1-  P)- ' .  
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Thus (4.3) hold for s ~ l  with c~>Lul (V~-~-I) -l .  Now let s=-t<~ - 1. Then 

(M ~_/zk)- I = -/z-k(1 --/z-kM~)- l 
oo 

= --It-k Z Q't-kMS)J 
j=o 

< Lul -k ~ (~I-K/'P) ~ 

< t~l ~ (v~l e) ~ = t~l ( 1 - v ~  e)-'. 
a=O 

Hence,  (4.3) holds for s~<- 1 if c~ul3/2(LulV2- l) -1. 
From (4.2), (4.3), and (3.4) we get 

u-~= ~ u,= ~ (M'-.)-'t:(v, v. ,ol.  
s ~ l  s # + l  

< - -  c ~ [ : ( v . v . " 0 ] :  
1-cP~  s 

c [f(u,  v, "0]*. 
l - c e  ~ 

This gives the first o f  the three relations 

u = U - ~  < 1_--_~ f*(U*,  V*, W*), 

v = V-r l  < c g*(U*, V*, W*), 
1 - c P  ~ 

- < ~  h~U*, V*, W*). wa= W~ ~ 1-cP o 

(4.4) 

The second two are proved similarly. If  we set s = -  1 in the second equation of  (4.2), 

we get 

( M - ' - l u - ' ) r  ! = [g(U, V, W)]_,, 

from which follows 

P~ I < [g(U, V, 14/)]* < g*(U*, V*, W*). (4.5) 

Since f, g, ha converge and begin with quadratic terms we have a relation 

f ,  g, h a < G x+y+ za , G(t) = l_cl------- f 
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for some c1>0. Now we set r /=~a=~ and define the power series W(~) by 

n - I  
= 

a = 2  

Note that W(0)=0. F rom (4.4), (4.5), (4.6) we get 

where 

n r  

r =  w* 

E , =n~+u*+v*+ w~ 

Hence,  

< ~(n + I4"). 

c 2 c I ~(n+ W) 2 
W < - -  

1--C 2 W 1--C I ~(n+W) '  

for a suitable constant  c2. It follows that the series W(~) is majorized by the solution 

X=X(O,  X(0)=0,  of  the cubic equation 

X(1 - c 2 X )  (1 - c a  ~(n+X)) = cl c2 ~(n+X) 2, 

which is analytic near  ~=0.  It follows that u, v, w converge when ~=rl=~a have some 

non-zero value, and hence in a neighborhood of  the origin. From the convergence of  

the map 7) it follows that A~ and A2 converge.  

It is clear that the v given by (3.17) converges if r~ and 32 are given by convergent  

power series. 

COROLLARY 4.2. Let the holomorphic involutions l~l,I" 2 be as in the above 

theorem. Then the transformation 7) and the factor A in (3.15) are holomorphic. 

5. Normal form for surfaces 

In this section we use the results of  section 3, 4 on the normalization of  the involutions 

rl ,  32, O to t ransform the surface M " c C  n into a normal form near a suitable complex 
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tangent. Let (~,,r/, ,  r be the normal coordinates on the complexified surface 
~ffPcC 2~. Then we have 

f ~ ,  = A,  r/, 
TI: l r ] *  A z l ~ * ,  

f ~ ,  = A;Ir], 

l ~ ,  = ~ ,  

where A , = A , ( ~ ,  r/,, r  and in the two cases 

(i) e(~, ,  r/,, r  = (0., ~., ~.), A ,  = A ,  

or  

(ii) e(~, ,  r/,, ~,)  = (~,,  0 , ,  ~,) ,  A ,  A ,  = 1. 

We still have the freedom to replace (~., rl., ~.) by 

~ , = r ~ ,  r / ,=rr/ ,  ~ , = ~ ,  (5.1) 

r=r(~rl, ~), leading to A(~r/, r  z, r 

Of course, also ~. can be reparametrized, but we will not make use of this fact, and 

determine r in such a way that the surface is in a simple normal form. 

THEOREM 5.1. Assume  that M n is a real analytic surface in C ~ given by (1.16, 

1.17) with 0<7<1/2,  i.e. in the elliptic case. Then there exists a biholomorphic transfor- 

mation near the origin taking M n into the implicit form 

x.  = z~ ~ +r'(x.,  xo) (z~+~)  
y. = 0 

y a = 0  ( a =  2,3 .... n - l )  

(5.2) 

where F = F = 7 +  .... 

Proof. As in the linear case (section 2) we introduce 

Zl = i A - I / 2 ( A ~ + r / )  

wl = - iA-In(~+Ar/)  

Za = Wet = X a  = ~a .  

These are equations on ~r~. The third equation means that za is the extension of ~,~ 

holomorphic in the original z's, and wa is the extension of ~a holomorphic in the 
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original w's. Hence, the (za, w~) are independent functions in the ambient space C 2n. 

The same computation as in section 2 gives 

where 

We set 

z, w, + r , ( r  C)(z~+w~) = A(~,~, C) 

r I = ( A + A - I )  - !  

A - (A-A-I)2 ~ / =  (F~q-4F0 ~/. 
A + A  -1 

z,, = w,, = A($,l, 0 .  

Note zj are r2-invariant, while wj are zrinvariant and therefore they are holomor- 

phically or antiholomorphically related to the original coordinates z ~ Because of the 

choice of the linear terms we have in 

= z o + . . .  

wj  = g , (w ~ = w ~ + . . .  

a biholomorphic change of coordinates in C 2#. Because of the reality conditions we 

have WI=CZIO0 and gj(z~176 Hence z~  defines a holomorphic coordinate 

change in C ~. 

Now if we eliminate ~/, ~ from 

x .  = a(~,7, O;  xo = Ca 

and set 

I ' (x. ,  xa) = r,(r C), 

In the hyperbolic case, ifp is not a root of unity we find the same normal form if we 

admit coordinate transformations given only by formal series, since, in general, we 

have to expect divergence. 

Assuming convergence we read off several important facts about M. First M 

admits the holomorphic involution (Zl, Za, Zn)b')'(--Zl, Za, Zn). Also, M lies in the linear 

space Imza=Imz,=O. An (n-D-real  parameter family of complex lines cut M in a 

family of disjoint real analytic curves. In the elliptic case, where convergence is 

we obtain (5.2). Q.E.D. 
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guaranteed, these are closed real curves bounding linear analytic discs on za=ca=e,~, 

z,,=c,,=O,,>O, bounded by the ellipses 

c~ = Zl s  ca)(z~+s 

These discs sweep out a (n+ 1)-dimensional real analytic manifold M with boundary M. 

This .M is the local holomorphic hull of M. There are no other analytic discs ~ in C n 

with boundaries on M near 0. Indeed, the functions Imz~, Imzn vanish on the 

boundary of ~, hence identically on ft. Thus z~, z, are real constants on ~, and so 

lies on the discs given by za=ca, z,,=c,,. 

In the hyperbolic case, provided we have a convergent transformation V' into 

normal form, this argument shows that there exists no analytic disc with boundary on 

M ~ near 0. 

Next we make use of the transformation (5.1) to further simplify the factor F. We 

distinguish two cases: In the first F ,  is independent of ~, r/,, hence F is independent of 

xn; in this case no further simplification is achieved. In the second case we write 

r , ( ~ ,  r  r  = e ( r  r~(r r 
k~$ 

where ~,s(r ~,(0)=?. The integer s is a biholomorphic invariant. Since there are 

points r with ~,(r near 0 we may assume that ~,s(0)*0 and will choose 

r=r(~, r/,, ~,) in (5.1) so that F has the form 

r = e (xo)+6~,  ~ = _+l. (5.3) 

Indeed, since F(x~, x.) is obtained by elimination of ~r/from 

x~ = A(~r r = (r? ' -4FI)~T/  

r(xa, x.) = r,(~rl, xa) = r.(~,/r z, xa) 

we have to solve the equation 

r , ( ~ r  ~, xa) = y (xa )+6a  s 

or with Ca=xa 

[ r . ~ ( ~ r  ~ , o - 4 r . ( ~ r L  ~)]~ = ~ - ' ( r . ( ~ r  2, ~)-~(~)) = ~ - ' r  2~ ~ Ys+, r ~ ( ~ )  ~" 
s~,o 
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We choose 6 = +  1 so that t~y-s(1-4),2)sys(O)-l>O; recall that the coefficients of F ,  are 

real. Taking the (2s) th root of  both sides we can solve for a real r by the implicit 

function theorem. The function r is determined up to sign. Thus we have achieved the 

form (5.3) for F. 

We may still apply a real invertible transformation r162 f(r  f (0 )=0  to 

simplify ),(~). For  example, if r  is a regular point we could achieve ~'(~)=Y+~2, or 

~(x~)=y+x2. Thus, generically M ~ has the form 

Xn=Zl~l+(Y+x2+xS~)(Z~+~), y a = y n = O ,  for n~>3 

x 2 = z l ~ l + ( ~ + ~ ) ( z ~ + ~ ) ,  Y2=O, for n = 2 .  (5.4) 

For  n=2  the automorphism group of M 2 consists only of  (Zl,Z2)t-'-~(+Zl,Z2) 
provided that 2 is not a root of  unity and 7's*0, i.e. in case that the normal form does 

not represent a quadric. This follows readily from our formal considerations. 

We recall that the involutions rj map 93~ into itself, hence also q0 and q0 t, defined in 

section 3 map ~R into itself. However, in order that q~t maps M, the fixed point set o f p ,  

into itself, we need that Q and 9t commute.  As was shown at the end of section 3 this is 

the case for purely imaginary t=ie.  In the elliptic case the orbits of q0 '~ o real, are the 

closed curves which bound the analytic discs. 

It suffices to prove this in the normal form. Since cp i~ preserves ~r/as well as ~a it 

follows that the orbits lie on 

~a = Ca; ~rl = Cn, 

where ca, cn are real constants,  cn>0. Hence we have 

Za = Ca = Wa; Zn = constant 

which proves the claim. 

6. Further remarks 

(a) Exceptional hyperbolic surfaces. We consider a surface M in C 2 given by (I .3) with 

y>l /2 ,  H=h+ik .  We assume that the associated mapping r on ~ is such that q0'(0) is 

nilpotent, 

,~2m= 1, 2 2J4= 1, j <  m. 
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We shall show that M can be holomorphically flattenend to order rn and in general to no 

higher order. For this it suffices to consider transformations of the form 

Zl ----'El, Z2=Z2-I-B(Zl,Z2), (6.1) 

where B(Zl, z2) is polynomial without constant or linear terms. Restriction to M yields 

z2 = q+ H + B(zt,  q+ H) =- q+ fI,  

so that ImB(zt, q + H ) = k - k .  Suppose that k and k begin with terms of degree n<m.  We 

shall choose a holomorphic polynomial B(zt,  z2) of weight n (weight of zj=j, j =  1,2) so 

as to annihilate the terms of degree n in/~. This amounts to solving an equation of the 

form 

ImB(zl, q) = k, (6.2) 

where k is a real homogeneous polynomial of degree n. This is a problem on the quadric 

Qe. 

Complexifying gives 

1 - 
B(Zl, q(zl, wt))--~tB(wl, q(zl, wl)) = k(zl, wl), 

which implies that k can be decomposed into the sum of a homogeneous polynomial of 

degree n invariant under r2 and one invariant under rl. We pass to the (~, r/)-coordinate 

system by the linear change (2. I 1). The most general such polynomials invariant under 

rl and r2 are 

and 

j<~ni2 

j~n/2 

respectively. The real polynomial k has the form 

k= cj n-J,7 , cj= ej, 
j=O 
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so that ft  +f2 =k reduces to 

aj+b  = q,  

An- aj+A -nbj = cn_j, 

0 <~j <. n/2, 

0 <.j <~ n/2. 
(6.3) 

For 2j<n these equations have a unique solution aj, bj since the determinant does 

not vanish because of22(n-~=l. Conjugating (6.3) we find bs.=a j since cj=~j, 2 (=  1. For 

2j=n the two equations agree with the single equation 

aj+ bj = cj. 

We choose the solution 

a j =  b j =  1 TcJ 

so that again bj=dj holds, since cj is real. Thus fl=f2 is the trace of a function (1/2i)B 

holomorphic in zl, z2 which gives the solution of (6.2). 

The first instance in which (6.3) may not be solvable is n=m, j=0 .  If A " = - 1 ,  we 

have the compatibility condition Cm=-C o. For example, k=koo=~'~+rlm cannot be 

written as such a sum fl+f2. We set 2m=e imm, and by (2.14) ym=(1/2)sec(:z/m). In 

particular ~3= 1, ~4 = I/X/-2-. The corresponding surface is (via (2.11)) 

= 2 - -2 "m+l m/2 2 l ) -m{(_AmZl_~l)m+(Zl+Am~l)m}.  ( 6 . 4 )  Z 2 ~mZI"~-Zl Zl+~mZl"l-! (Am) (A m -  

The imaginary part of the right hand side cannot be made to vanish to higher order. 

I f ; tm=+l ,  we may take k=~ ' - r /m.  

For y=~3 = 1, a simpler example of a surface which cannot be flattened to third 

order is 

Z2 = Z~ + ZI Z l + Z ~ + Z l  Z I ( Z l - - Z l  )" (6.5) 

This can be seen by examining (6.2) directly in (Zl, [0-coordinates. 

(b) Divergence in the normal form. When ?>1/2 is not exceptional, the results of 

section 5 show that the surface M can be formally transformed into a real hyperplane. 

However, as mentioned before the transformation will in general diverge. Rather than 
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prove a general theorem to this effect, we shall give an example of a surface in C 2 

which cannot be holomorphically flattened. This surface will be of the form 

Z 2 = (k(zi)+2,20 zl 
M: k(zO = z I+kO(zO, (6.6) 

where ko is a holomorphic polynomial in z~ beginning with a term of order I>2. 

If M could be transformed into the hyperplane Im22=0, then this could be 

accomplished by means of a transformation of the form (6. l) with B=2'z~+O(jzl3). Let 

G ( z l , 2 0 = q ( z l , 2 0 + . . .  be the restriction of ZE-FB to M. Then G(Zl,;~I) is also the 

restriction to M of 22+/~. Consequently, the complex function G=G(z l ,  wl)  on ~ is 

invariant under both rn and 32, and so Goq~=G. Furthermore, 

dG = qzt dzs +qw t dwl + ... 

is non-zero in a deleted neighborhood of z~=w~=0. We shall show that if 1/2<2,<oo, 

2,~ 1/V~--, then k can be chosen so that Q admits no such (non-trivial) invariant function 

G in any neighborhood of the origin. 

One readily sees that 

r,: (Zl, wO ~ ( - z , - 2 ' - ' k ( w 0 ,  w,),  

r2: (z~, w~) ~ (z,, - w ~ - y - ~ k ( z 0 ) ,  

z', = - z , - r - ' k ( w ' O  z, = - z ' ~ - r - ' l i ( w ' , )  
r - ,  , ~ l :  

' = - w R - y  k(zl) w t = - w i - y - t k ( z l ) "  Wl 
(6.7) 

In particular both q0 and q0-~ are polynomial mappings (so called Cremona transforma- 

tions) of the form 

, 26 . f Z  I = 0 - b  . . .  ~ Z I = cz I + .. 

q~: [ w ;  = 0 + . . .  ' ~-': ~[w, = ew;2~+.. . '  

where 6=degk  and the dots indicate terms of lower degree in (zl, wO or (z~, w]). The 

n-fold iterates of q0 and q~-* are of the form 

(fin: ~ Z'I = Cn Z~ 2tj)nd- " "" n 
f z, --o+... 

, 

lw,,=0+... 

where cn=l=0. A fixed point p of q~2n satisfies ~(p)=q~-n(p), so is a solution to the pair 

of polynomial equation 

c~ z~26r+ ... = ~ w~2~)~ ... = o. 
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The leading terms show that these two polynomials have no common factor. By 

Bezout 's  theorem q~2~ can have at most  (26) 2n fixed points. 

From (6.7) we see that dz1Adw[=-dzlAdw~=dzlAdwt, so that the Jacobian 

determinant of  q0 is identically one. Consider the holomorphic vector field 

X ~ =  G w ~ - G  z a . 
aZl  ~ aW 1 

If  Goq0=G, then X~ is invariant under ~0: dq~(X6)=Xc. This follows from the chain rule 

and the fact that q0 is area-preserving. Therefore, i f p  is a fixed point of  q02" then so is 

every point on the orbit through p of  the flow exp tX6. If  dG(p)~=O, then this orbit is 

locally a smooth holomorphic curve, q02n would then have a continuum of fixed points, 

which is impossible. It follows that if we can choose k(Zl) so that every deleted 

neighborhood of  the origin contains a fixed point of ~n, for some n, then M cannot be 

holomorphically flattened. 

To achieve this last property we shall appeal to the Birkhoff fixed point theorem. 

This theorem applies to area-preserving transformations of the real plane. We must 

therefore choose a k with real coefficients so that q0 leaves invariant the plane of  real 

zl, wl. We shall, in fact, take k(zl)=zl+Tz~+.., a polynomial with real coefficients so 

that 

q~: 
z'l = (7 -2-1)  zl +7-1w+f + 0(4) 

w'~ = -7-1z,-w~ +g, 

where 

-1 3 - I  3 - -Z~.  f = 7  Zl+(wl+7 Zl), g= 

where 

If we subject this to the coordinate change (2.1 I), we get 

qg: 
~' = 22~_ iV"~--(22 - 1)- 1 (A f +  g) + 0(4) 

r/' = 2-2r/+iV'-2-(22-1) -I ( f+2g)+  O(4), 

2f+g = 624(i/V'-2-)s~2r/+... 

f+2g = 6(i/V'~--)3~r/2+ . . . .  
(6.8) 

Here the dots indicate the other cubic terms. If22#:+1,  +i, i.e. 7=1=1/2, l/X/-2-, ~ ,  then 

these other terms can be removed by a further coordinate change which does not alter 
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the two coefficients shown in (6.8). (See [11] 

transformed into 

~' = 22(1 +ia~r 1) ~+ O(4) 
tp: 

r/' = ~.-2(I -ia~r 1) r/+ O(4)' 

w (18), p. 

6), a -  

158.) Hence, q0 can be 

>0 .  

Actually, the case ;t2=+i i.e. ),=l/X/2- does not have to be excluded since the 

relevant terms r/3, ~3 in ,~f+g, f+Ag, respectively, have zero coefficients. 

By Birkhoff's theorem [11], p. 174, for each sufficiently small neighborhood U of 

the origin in the plane of real z~, w~ there exists an integer n such that (p2n fixes a point 

different from O in U. In particular, we have proved the following proposition. 

PROPOSITION 6.1. I f  I/2<y<oo, then the hyperbolic surface 

- -2 3 -  
Z 2 = Z I Z l d - ) ' Z l - t - ) ' Z l  Z 1 

cannot be transformed into a real hyperplane by means of a (convergent) biholomor- 
phic transformation. 

This shows that the formal transformations, which for ~. not a root of unity, I).1= 1, 
exist, must be divergent. This example shows also that divergence can not be avoided 

by inequalities of the type 12j- l l~>c l j l  - v  for all j~>l. Incidentally, the periodic orbits of 

tp, as well as its invariant curves, do not have any geometrically significance since they 

do not lie on M but only on its complexification ~rd. 

(c) The case y=0. Here one can apply the formal theory of [5], section 2. We state 

without proof some of the results of this theory for surfaces in C 2. M has the form 

M: 
z2 = zl zl +Re h(zl)+Zl zl H(zl, Zl) 

h(z l )=~ciz~,  k =  3,4,5 ..... oo. 
j ~ k  

The integer k, which is the degree of the lowest pure ~l-term, is a biholomorphic 

invariant. M is formally equivalent to the quadric Qo:z2=zl~j if and only if k=oo. 

Otherwise, M may be formally transformed into the form 

z2-- z, ajzJ. 
j>k  

The complex numbers aj. are not absolute invariants, since this normal form is still 
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subject to the act ion of  the (formal) au tomorph i sm group of  Q0. This group can be 

shown to be made  up precise ly  of  those t ransformat ions  of  the form 

z~ = G(x 2) z l -x2  b(x2) 
1 - -  ~ ( X 2 )  Z I 

x~ = G(x2) G(x2) x2, 

where G and b are arbi t rary  complex  formal  power  series with G(0)*0.  There  are 

probably  infinitely m a n y  real valued invariants in the case  y=0 .  

One still has the project ions  ~rl and er2 on the complexif ied surface ~ .  The case in 

which M is formal ly  equivalent  to Q0 is character ized by ~rl (or ~r2) being locally one- 

to-one except  for  collapsing an analytic curve to a point.  Otherwise  ( k < ~ )  each zt; is a 

k-fold branched covering. 
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