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I n t r o d u c t i o n  

The local solvability of a first-order linear partial differential equation depends on 

whether it satisfies the so-called Condition (P) (see [4]). Suppose that the differential 

operator under study is a complex vector field L, nowhere zero, in some open subset of  

R "+1. If  L is locally integrable, that is to say, if in the vicinity of every point the 

homogeneous equation Lh--O has n independent, and smooth, solutions, one can use 

them to formulate (P) (see [5]). In the case n = l ,  i.e., when L is defined in an open 

subset Q of  the plane, there is essentially only one such solution (if one exists at all), in 

the sense that the differential of  any other one is collinear to its differential. Call Z such 

a solution, and view it as a map f2---~C. Condition (P) is equivalent to the property that, 

locally speaking, the pre-images of  points under the mapping Z are connected.  

But it must be emphasized that the local integrability of  L is by no means 

automatic. In his "Lec tures  on linear partial differential equat ions"  (Reg. Conf. Series 

in Math., No 17 Amer.  Math. Soc. 1973). L. Nirenberg has given the example of  a 

(~) During this work the author was partly supported by NSF grant no. 7903545. 

1-838285 Acta Mathematica 151. Imprim6 le 25 octobre 1983 
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vector field in the plane that only annihilates the constant functions. It is a modification 

of the Mizohata operator 

a a 
L o - - iy 

ay Ox " 

Note that LoZ=0 if Z = x + i y 2 / 2 ,  and the pre-images of points under the mapping Z are 

the points (x0, +Y0). The Mizohata operator is the simplest differential operator that 

does not possess Property (P), and in a sense is the prototype of all nonlocally solvable 

operators. Nirenberg's construction was inspired by an argument of Grushin [2] 

describing right-hand sides f such that the inhomogeneous equation Lo u = f  cannot be 

solved. In [7] it was shown how Grushin's and Nirenberg's constructions were direct 

consequences of the fact that the "fibers" of the mapping Z (in the case of the 

Mizohata operator) are not connected. 

The present work is a generalization, and an amplification of the previous ones. It 

studies 'overdetermined systems" of vector fields in an open subset Q of R "§ ~, of the 

kind 

L j =  ~t  +2 j ( t , x )_~x ,  j = l ,  .... m, 

having analytic coefficients (the theory of analytic, semi-analytic and subanalytic sets 

is heavily relied upon; see [2] and the Appendix by B. Teissier). We assume throughout 

that the vector fields Lj satisfy the Frobenius (or bracket) condition, which, because of 

the special form of these vector fields, reads here 

[Lj, Lk]=0,  j , k =  l . . . . .  m.  (I) 

For this kind of vector fields the approximation and representation of solutions of the 

homogeneous equations 

L j h = O ,  j =  l . . . . .  m ,  (2) 

established in [l], are now available, and greatly facilitate the analysis. The present 

work uses them at every turn. 

Using then the unique analytic solution of the Cauchy problem 

L j Z = O , j =  I . . . . .  rn; Z l t = o = X  (3) 

(keep in mind that t=( t  I . . . . .  t m) is a set of m variables), we define Property (P) at a 

given point p by saying that p has a basis of neighborhoods in each one of which the 
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fibers of Z are connected. Such a formulation of (P) agrees with the generalizations of 

(P) (and of (qJ)) to the models of complexes of pseudodifferential equations introduced 

in [6]. 

The main results (Theorems 2.1 and 2.2) of this work are easy to describe: if (P) 

does not hold at some point P0 there are right-hand sides fl  . . . . .  fm, defined and C = 

near that point, which satisfy the so-called compatibility conditions, 

L j f k = L k f j ,  j , k =  1 . . . . .  m, (4) 

such that the inhomogeneous equations 

Lju  =fj., j = 1 . . . . .  m, (5) 

do not have any distribution solution. Furthermore, there are simple modifications of 

the vector fields Lj. that also commute pairwise and such that the homogeneous 

equations analogous to (2) do not have any C ~ solution h such that dh(po)~-O. 

Conversely, suppose that Condition (P) holds at every point of some neighborhood 

of Po. Then, for any choice of Coo right-hand sides fj, satisfying (4), in some open 

neighborhood V of p0, there is a C ~ solution u satisfying (5) in a possibly smaller open 

neighborhood W ofpo. This can be regarded as a generalization of the Poincar6 lemma 

(for one-forms). 

All proofs are by construction, and we obtain explicit integral representations of 

the solution u of (5). 

I am grateful to Bernard Teissier for having provided the proofs of some of the 

properties of analytic sets that were needed. The statements of those properties and 

their proofs can be found in the Appendix (in French) written by Teissier. 

1. Basic concepts and notation 

We suppose that we are given an analytic vector subbundle T' of the complex 

cotangent bundle CT*f2 of an analytic manifold f2. Throughout the work "analyt ic" 

will mean "real-analytic". When meaning "complex-analytic" we shall say "holomor- 

phic". We assume that the fibre dimension of T' is equal to one; so T' is a complex line 

bundle over f~. We shall call m + l  the dimension of f2. 

We assume that T' is locally integrable. This means that locally T' is generated by 

the differential of an analytic function. Let U be an open subset of ~ in which T' is 

generated by the differential dZ  of an analytic function Z. We select a point P0 in U (it 

will be the "central point" in the forthcoming study) and suppose that Z(po)=O. After 
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multiplication of Z by an appropriate complex number we may assume that d(Re Z)*0, 

d(ImZ)=0 at po. We can find local coordinates in U (after as many contractions of the 

latter as deemed useful), denoted by t t . . . . .  t " ,x ,  vanishing at p0, and such that 

Z = x+iep(t, x), (1.1) 

�9 real-valued, ~ (0 ,0 )=0 ,  dx~(0 ,0)=0,  (1.2) 

and, of course, �9 analytic in U. Actually we may even assume 

�9 (0, x) -= 0. (1.3) 

It is convenient to assume that 

U = BrxJ ,  (1.4) 

where Br is the open ball {tERm;Itl<r},  and J an open interval in the real line 

containing the origin (the equality in (1.4) actually stands for the isomorphism defined 

by the coordinates t J, x). We shall also assume that the closure of U in fl, CI U, is 

compact. 

We shall denote by Z the mapping (t, x )~Z( t ,  x) from U to C. Its image, Z(U), is 

easy to describe: it is the union of a collection of intervals 

{Xo)Xl(xo), XoEJ, (1.5) 

where l(xo) is the image of B, via the map t~ep(t,  Xo). Of course 1(Xo) is always an 

interval containing zero, but otherwise fairly arbitrary. In particular it is reduced to 

zero whenever ~(t, Xo)---0 (and only then!). 

We must now introduce the orthogonal T 'J- of T': it is a vector subbundle of the 

complex tangent bundle C/X2, analytic, whose fibres have dimension m (incidentally 

we always suppose m>~l). In U it is generated by in analytic vector fields Lj, 

j =  1 . . . . .  m, such that 

L j Z = 0 ,  j = l  . . . . .  m. (1.6) 

If we further require 

Lit  k = 6~ (Kronecker's index), j, k = 1 .... , m, (1.7) 

the Lj are uniquely determined, since dfl, ..., dt m, dZ obviously span the whole cotan- 

gent space CT~p if2 at every point p of U. We have 
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a +2~(t ,x)_~ x j =  1, m. L J  = ~ t  j . . . .  , 

2j = - Z j /Z x = - i~,j/(1 + i~,) ,  

where subscripts mean differentiation. Note 

LjZ=Lj(Z+ Z)=Lj(2x)=22j, i.e., 

that, by (1.6), 

It is also convenient to introduce the vector field 

Lo = Z21 0 . 
ax 

Of course we have 

(1.8) 

(1.9) 

we have 

(I.I0) 

(1.11) 

(1.14) 

We shall need the results of [l] relating to the solutions of the homogeneous 

equations 

Ljh=O,  j =  l . . . . .  m. (1.15) 

To help the reader we restate here the main theorems of [1]. Set U"=Br, XJ',  with 

0 < r ' < r ,  and J' an open interval whose compact closure is containted in J. By CI U' we 

denote the closure of U'. 

THEOREM I. Let  h be a continuous solution o f  (1.15) in some open neighborhood 

of  C! U'. Then h is the uniform limit, in CI U', o f  a sequence o f  polynomials, with 

complex coefficients, in Z(t, x). 

m 

dF = 2 LjFdtJ+Lo FdZ" 

Indeed, L j L k - L k L j  annihilates Z and all t I. 

If  F is a C ~ function in U, we have 

[Lj, Lk]=O, j , k = 0 ,  1 . . . .  ,m.  (1.13) 

L o f  =O, k = l  . . . . .  m, L o Z =  I. (1.12) 

Thus Lo, L1 . . . . .  Lm is the basis in CTp ~ (p E U) dual of the basis dZ, dt I . . . . .  dt m of 

CT'~p. We have, in U, 
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THEOREM II. Let  h be a distribution solution of(1.15) in some open neighborhood 

o f  Cl U'. There are, then, an integer q~O and a C 1 solution of ( l .15)  in a neighborhood 

o f  C I U ' , f ,  such that h = L ~ f  in U'. 

By combining Theorems  I and II we see that any distribution such as h, in 

Theorem II, is the limit, in the distribution sense, in U', o f  a sequence o f  polynomials in 

Z. Indeed, if P(Z) is such a polynomial so is Lo[P(Z)]. 

A remark we shall use is the following one: Le t  V be an open subset of  U' in which 

d t ~  does not vanish. Then in V the system L=(L j  . . . . .  L, ,)  is elliptic (its characterist ic 

set is void), and every distribution solution of  (1.15) in V is an analytic function. I f  then 

{P~(Z)} is a sequence o f  polynomials in Z, which converges to the distribution h o f  

Theorem H in ~ ' (U' ) ,  in V it necessarily converges to h in the C ~ sense. Indeed,  on the 

space of  solutions of  (1.15) in V, the topologies induced by 9 '  or  by C ~ are the same 

(and so are, of  course,  all the intermediary ones, such as that of  uniform convergence 

on compact  sets). 

Let  us stress an important  consequence  of  Th. I: 

COROLLARY. Let  h be a continuous solution o f  (1.15) in the neighborhood o f  

Cl U'. There is a continuous funct ion ~ on Z(C! U'), holomorphic in the interior o f  that 

set, such that h=fzo Z in Cl U'. 

In particular note that h is constant on the f ibers of  the m a p Z  in U'. If V is any 

subset of  U by a fiber of  Z in V we mean a set 

( t , x ) E V ;  Z ( t , x ) = z o  (z0EC). (1.16) 

Because of  the peculiar form of  the function Z (see (I. 1)), the fiber (1.16) is given by 

(t, x) E V; x = Xo, dP(t, Xo) = Yo (Zo = xo+iyo), (1.17) 

and can thus be identified to a subset of  the ball Br. 

2. Condition (P) and statement of the theorems 

We use the notation and concepts  introduced in Section 1. In particular, U will have the 

meaning given to it there. We shall reason as if ~ were an open subset of  Rm+l; then 

U is the product set (1.4). 

Definition 2. I. We shall say that the system L=(LI . . . . .  Lm) satisfies Condition (P) 
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at a point p of U if there is a basis of neighborhoods ofp  in U, in each one of which the 

fibers of Z are connected. 

We shall say that L satisfies Condition (P) in U if it satisfies Condition (P) at every 

point of U. 

In Definition 2.1 one may replace Z by any other smooth function whose differen- 

tial spans T' at each point of U (possibly after the latter set has been contracted about 

p). This is made evident by the Corollary in Section I. Thus the validity of (P) at p E U 

is truly a property of the system L or, more accurately, of the line bundle T' (or of T'• 

We shall be concerned with the inhomogeneous equations 

Lju  =fj., j =  I . . . . .  m, (2.1) 

where f~ . . . . .  f,~ are C = functions near po satisfying the compatibility conditions: 

L j f k = L k f j ,  j , k =  1 . . . . .  m. (2.2) 

We shall also construct a modification L 7 of Lj for each j,  and consider the homogene- 

ous equations 

L ~ h = O ,  j = l  . . . . .  m. (2.3) 

THEOREM 2.1. Suppose that the system L=(LI  . . . . .  Lm) does not satisfy Condition 

(P) at the point Po. 

Then there are two C ~ funct ions f ,  g in an open neighborhood V c U  o f  Po, 

vanishing o f  infinite order at Po such that the fol lowing facts  are true: 

the funct ions f j=2 j f ,  j=  I . . . . .  m (see (1.8)) satisfy the compatibility 
(2.4) 

conditions (2.2) in V; 

the vector f ields in V, L 7 = Lj-)~jgO/Ox, j = I . . . . .  m, 
(2.5) 

commute  pairwise. 

Furthermore, given any open neighborhood W c  V o f  po, the fol lowing is true: 

no distribution u in W satisfies (2.1); (2.6) 

the differential o f  every funct ion h E CI(W) that satisfies (2.3) 
(2.7) 

vanishes at Po. 
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THEOREM 2.2. Suppose that L satisfies Condition (P) in U. Then every open 

neighborhood V c  U o f  po contains another open neighborhood o f  Po, W, haoing the 

following property." 

Given any set o f  m C ~ functions fl  .... .  fm in V, satisfying the 

compatibility conditions (2.2) there is a C~ function u in W satisfying (2.8) 

(2.1) in W. 

The proofs of Theorems 2. I, 2.2, given in Sections 4, 5, 6, 7 are constructive: we 

shall give explicit representations of the functions f and g in Theorem 2. l, and of the 

solution u of (2.1), in Theorem 2.2. 

3. About condition (P) 

We restate Condition (P) (Definition 2. l) in the following manner: 

Every open neighborhood Vp~-U of p contains another open neigh- 

borhood Wp o f p  which intersects at most one connected component (3.1) 

of every fiber of Z in V~,. 

Indeed, suppose first that Vp contains a neighborhood Wp of p in which every fiber of 

Z is connected. Then we can take Wp in (3.1) to be the interior of W~. Conversely, 

suppose that (3.1) holds; call W~ the union of all the connected components of fibres of 

Z in Vp which intersect Wp. 

For a while we shall forget momentarily that the variable x is there: we shall reason 

in t-space R".  We denote by B,B' ,B"  three open balls centered at the origin in R m, 

such that 

B" ~ B' ~ B. (3.2) 

We shall look at a real-valued analytic function q~ in B. IfA is any subset of B and c any 

real number we write 

A+(c) = {tEA;cp(t)>c},  A - ( c ) =  {tEA;cp(t)<c},  (3.3) 

A~ = { t E A; q0(t) = c}. (3.4) 

In other words A~ +, A -  are the level, superlevel and sublevel sets, respectively, of 

the function q0 in A. 



LOCAL SOLVABILITY AND INTEGRABILITY OF VECTOR FIELDS SYSTEMS 

LEMMA 3.1. Suppose that 

for every real number c, B'~(c) is contained in a single connected 

component o f  B'~ (3.5) 

Then the following property holds: 

for every real c, B"+(c) is contained in a single connected component 

o f  B'+(c) and B"-(c) is contained in a single connected (3.6) 

component of  B'-(c). 

Proof. Suppose B" intersected two distinct connected components, Al and Az, of 

B'+(c) (c E R). Then for c*>c sufficiently close to c, B"n Aj (j= 1,2) would contain a 

point where q~=c*. But this means that Aj contains a connected component of B'~ *) 

which intersects B", for each j =  1,2, and thus (3.5) could not be true. Q.E.D. 

The converse of Lemma 3.1 is not true, in general, but the following partial 

converse will suffice for our needs: 

LEMMA 3.2. Suppose that Property (3.6) is valid. Then 

for every real c, B'~(c) is contained in a single connected component 

of (CIB')~ 

CIB' stands for the closure of B'. 

(3.7) 

Proof. Consider the singular set of q0 in the ball B: 

{t fiB; dcp(t) = 0}. (3.8) 

Only a finite number of its connected components intersect CIB'. On each of these 

components q0 is constant, therefore the number of critical values of ~0 in a neighbor- 

hood of CIB' is finite. 

Suppose first that c is not a critical value of q0 in such a neighborhood, and let tj 

(j=0, 1) be two points on the fibre B'~(c). The latter is equal to the intersection of B" 

with an analytic hypersurface in a neighborhood of CIB'; necessarily q9 changes sign 

across that hypersurface. For each j=0,  1, we can find two point t], tf in B", arbitrarily 

close to tj, such that cp(tf)<c<cp(t~). By virtue of (3.6) we can find a smooth curve ~+, 

entirely contained in B'+(c), joining t~" to t~" and, likewise, one f , -cB ' - (c) ,  joining 

t o to t~-. And by selecting tf close enough to tj. we can connect tf. to t~ by a smooth 
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arc crossing B'~ only at tj (j=O, 1), and there transversally. In such a way we obtain 

a continuous curve ~,cB', passing through to and tl, closed, such that the two 

components of V\((t0} U {h}), which we shall call V+ and ~,-, lie entirely in B'+(c) 
and B'-(c) respectively After smoothing we may suppose that ~, is C ~ and diffeo- 

morphic to the unit circle. We may arrange that the diffeomorphism maps ~+ onto the 

upper half-circle, ~,- onto the lower one, and maps the point to onto (-1,0) ,  and the 

point tl onto (1,0). Using coordinates (~, r/) in the plane and the parameter ~ on both V§ 

and ~,- (pulled back from the upper and lower semicircles), call l~ the straight-line 

segment (in t-space) joining t~ to t~-, the points on ~,- and V + respectively, corre- 

sponding to the value ~ (0<~< 1) of the parameter. After this we map linearly (and so as 

to preserve the orientation) onto each I t the vertical segment joining the point 

(~, - V ~ - - ~ )  to the point (~, ~ - r )  in the plane. This defines a continuous map- 

ping ~r of the open unit disk onto the subset 

~ =  U 1; 
0<~<I 

of t-space; the mapping ~ extends continuously as a mapping of the unit circumference 

onto the curve ), (which is the boundary of 6).  We may therefore pull-back the function 

from ~ U V to the closed unit disk/9. It will suffice to show that (I, 0) and ( - I ,  0) 

belong to one and the same connected component of the level curve of ~ o ~  that 

contains those two points. We note that the level curve in question (~ o~=c)  intersects 

the boundary o f / )  only at (I, 0) and (-1 ,0)  and, by virtue of Our construction, is the 

graph of a continuous function of ~ in the vicinity of both those points. If (I,0) and 

( - I ,  0) belonged to two different components, At and A_ j, of the level curve ~ o ~ = c  

in L), it would be possible to draw a smooth closed curve (without self-intersections) in 

the plane, winding around A I and not intersecting at all the set 

{(~, ~)~I); ~(~(~, 7))  = c ) .  

Such a curve per force would intersect the upper semicircumference, and also the 

lower one, and therefore one of its halves (the one lying in/5) would join a point on 

which ~ o ~ < r  to one on which ~ o ~ > c  without ~ o ~  ever equalling c on it, which is 

absurd. 

Assume now c to be a critical value of ~ in CIB', and that to and t~ lie on two 

disjoint connected components of the level set 9 = c  in CIB', Co and CI. Since Co and 

(CIB')~ are compact we can find two disjoint open subsets of B, W0 and W, 

containing each one of those sets respectively. Note that (CIB')\(W0U W) is a corn- 
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pact set K, and q~(t)+c for every t in K. We can find two points tj ( j=0,  I) on the 

straight-line segment joining to to tl, such that t6E Wo and tl E W, q~(t6)=q~(t~)=c ' not a 

critical value of q0 in C1B', and c' ~ q~(K). By the first part of the proof we know that 

there is a connected analytic hypersurface M ' c B ' ~  ') containing both t6 and t]. Since 

W0 and W are disjoint M'  must intersect K, contrary to the fact that c' ~ q~(K), whence a 

contradiction. Q.E.D. 

We relate now the properties (3.5), (3.6), (3.7) to the behavior of the function q~ 

along certain curves in B. By a piecewise  analyt ic  curve in B we mean a continuous 

map 

[0, 1] g s~--~ t ( s ) E B  

which is analytic, except possibly at a finite number of  points O<~so<s~<...<sv < - I. We 

shall say that the curve jo ins  t(O) to t(1). We shall make use of the following important 

result (for a proof, see [3]): 

any two points in a connected analytic subset A of R n can be joined 
(3.9) 

by a piecewise analytic curve entirely contained in A. 

LEMMA 3.3. Proper ty  (3.6) is equivalent  to the fo l lowing  one: 

any two poin ts  in B", to, tl, can be j o ined  by a p iecewise  analyt ic  
(3.10) 

curve in CIB' on which  cp is mono tone .  

Proof .  Let us first show that (3.6) implies (3.10). If  q~(tj)=c, j = 0 ,  I, (3.7) (Lemma 

3.2) tells us that to and tl belong to one and the same connected component of 

(CIB')~ Call S' the sphere in R m§ (where the variable is denoted by 

( t~ ~ . . . . .  tin)) centered at the origin and having the same radius as the ball B ' c R " .  

Regard q0 as a function defined (and analytic) on S ' - -which  happens not to depend on 

t ~ Call 6 the (unique) point in the upper hemisphere which projects onto tj (via the 

coordinate projection (t v, t I . . . . .  t m ) ~ ( t  ~ . . . . .  tm); j=0 ,  I). Obviously iv and ii belong to 

the same connected component of S'~ which is an analytic set. We apply (3.9) and 

thus get a piecewise analytic curve p, joining iv to i~ and entirely contained in S'~ 

Projecting ~ into C1B' provides a piecewise analytic curve joining to to t~ on which 

qg=c. 

Suppose (p(to)<qg(t0 and let I denote the straight-line segment joining to to t~. Call 

t6 the point on l closest to t~ such that q~(t6)=q0(to), and tl the point between t6 and t~ 

closest to t6 such that q0(tl)=cp(t0. By the first part of the proof we can join tj to tj by a 
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piecewise analytic curve on which q~ is constant. We may therefore assume tj=tj for 

j=0 ,  1. If  the derivative of  tp along l does not change sign our contention is trivial. 

Suppose it does and let So be the point closest to to where r reaches a local maximum. 

Note that So'to for the derivative of tp along l must be positive in some open interval 

]to, to+h[, and that cp(to)<q~(So)<qJ(tO, otherwise we could not have tj=tj for both 

j=0 ,  1. Of course it suffices to join So to tt by a piecewise analytic curve on which q0 is 

monotone. But we may repeat the reasoning just  described after substitution of So for 

to. Since q~lt has only a finite number of  extrema we reach the desired goal after a finite 

number of such repetitions. 

Let  us now prove that (3.10) implies (3.6). Let  to, tj be two points in B" such that 

cp(to)>~cp(tO>c. By (3.10) they are joined by a piecewise analytic curve ), in CIB' such 

that, for all t in y, 99(to)>~qD(t)~qJ(h). Of course y might have one or more arcs lying on 

the sphere 0/7'. But by performing (for instance) a contraction t ~ ( l - e )  t one can bring 

such arcs inside B' and connect  the end-points of the new arcs to portions o f y  inside B'  

in such a way as to obtain a piecewise analytic curve y'cB'+(c)joining to to h.  Q.E.D. 

At this stage we re-introduce the variable x. I fA  is any subset of  U=BrXJ and x, y 

any pair of  real numbers, we write 

A+(x, y) = (p EA; x(p) = x, ~(p) > y}, 
(3.11) 

A-(x,  y) = (pEA;  x(p)= x, ~(p) < y } .  

Of course, A+(x, y) or A-(x ,  y) might be empty,  as when x ~J .  

PROPOSITION 3.1. Property (3.1) is equivalent to each one o f  the following 

properties: 

Every open neighborhood Vpc U of  p contains another open 

neighborhood o f  p, Wp, such that, given any pair o f  real 
(3.12) 

numbers x, y, Wp intersects at most one connected component 

o f  V~(x, y), and at most one o f  V~(x, y). 

Every open neighborhood VpcU of  p contains another open 

neighborhood o f  p, Wp, such that any two points in Wp, of  the 
(3.13) 

kind (to, x), (h,  x) can be joined by a piecewise analytic 

curve in Vp on which x is constant and �9 monotone. 

Proof. Notice that each one of the properties under consideration, (3. l), (3.12) and 
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(3.13), remains valid if we increase Vp or decrease Wp. We may therefore assume that 

Vp=B'xJ',  Wp=B"xJ", with B ' ,B"  open balls in R m centered at t(p), and J ' , J "  open 

intervals in R ~ centered at x(p). We introduce an additional open ball B, centered at 

t(p), with B'~B.  If  then Vp and Wp are as in (3.1) we derive from Lemma 3.1 that they 

satisfy the condition in (3.12). Conversely, if the latter is true, then, by Lemma 3.2, 

every fiber of Z in Wp is contained in a single connected component of a fiber of Z in 

(C1B")• (actually, in (CIB')xJ") ,  and therefore in a single component  of a fiber of Z 

in BxJ ' .  Since B' is arbitrarily small so is B, whence (3.1). The same argument, but 

based on Lemma 3.3 rather than 3.2, shows the equivalence of (3.12) and (3.13). Q.E.D. 

The version (3.12) of Condition (P) is of the same kind as the solvability condition 

in [6] (see p. 288). 

The version (3.13) of (P) generalizes the standard definition of (P) in the case of a 

single vector field (see [4], [5]), as we now show. 

Indeed separate the coefficients 21 in (1.9) into their real and imaginary parts: 

2 j=  aj+V' - 1  bj. (3.14) 

Note that, with this notation, (1.9) reads -ir whence 

m 

d,r - I / f~  bidti. 
j = l  

(3.15) 

- '~ b~dt i has a real-valued, analytic and nowhere This shows that the one-form b - E  j= I 

vanishing integrating factor. At any rate if makes sense to say that b does not change 

sign along a given piecewise analytic curve in t-space, and therefore also on any curve 

in U, of that nature, on which x=Constant :  it means of course that the scalar product 

between b and the oriented unit tangent vector to the curve does not change sign along 

it. It is of course equivalent to the property that the restriction of q~ to the curve is 

monotone. 

4. Proof  of  Theorem 2.1 

We use the notation of Sections I, 2, 3. Our starting point will be the hypothesis that 

Condition (P) is not satisfied at the origin (Definition 2.1). Actually it is convenient to 

make use of the version (3.12) of (P), or rather of its negation. Let us for instance 

assume that the following property holds: 
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There is an open neighborhood V c  U of  the origin, and a sequence of  

points in C, zv=x,,+iyv, v= 1,2 . . . . .  converging to zero, such that any 
(4.1) 

neighborhood of  the origin, W c  V, intersects two distinct connected 

components  of  V+(xv, Yv) (see (3. l 1)) for some v. 

Note that (4.1) remains valid if we decrease V. Thus we shall assume that V~U=Br•  

and that V=BroXJ o. Possibly after a change of  subscripts v = l , 2  . . . . .  we select a 

sequence of  open neighborhoods 

W =BrvXJv, (4.2) 

with r0>r~N+0,  J~=]-r~, r~[, such that, for each v, Wv intersects at least two distinct 

connected components  of  V+(x~, y~), C1~ and C2~. 

Fix Xo in J. Then the number  of  critical values of  the mapping Z(t, x) in CI V that lie 

on the vertical Re Z=Xo is finite. Indeed,  they are the values of  Z on the set of  points 

(t, x) in Cl V such that 

x = Xo, dt ~(t ,  Xo) = 0. (4.3) 

But in the neighborhood of  CI V the equations (4.3) define an analytic set, of  which only 

finitely many connected  components  intersect the compact  set CI V, and Z is constant  

on each of  these components .  This implies that, for each v, there is Y'>Yv such that the 

fibre of  Z in CI V, 

F(z') = {(t, x) E CI V; Z(t, x) = z" = x,,+iy'} (4.4) 

intersects both WvAC~ and W~NC2~, and such that z" is not a critical value of  Z in 

CI V. But then of  course W~ must intersect two distinct components  of F(z'). In other  

words, we may start from the following hypothesis:  

There  is a totally ordered basis of  open neighborhoods of the origin, 

Wvc V, and a sequence of  complex numbers z~, converging to zero,  
(4.5) 

none of  which is a critical value of  Z(t, x) in CI V, such that, for each 

v, W~ intersects two distinct connected components  of the fiber F(z~). 

For  each v =  1,2 . . . . .  we select a closed disk D~, centered at zv, with radius dr>0.  

In the argument below we shall decrease  d~ a finite number  of  times. First of  all we 

select d~ small enough that the following conditions are fulfilled: 
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for each v, Dv is entirely contained in the (open) set of noncritical 

values of Z( t ,x)  in CI V, and in the interior of the image Z(W~); 
(4.6) 

the projections into the real axis of the D~ are pairwise disjoint. (4.7) 

For each v, let C~ and C~- denote two distinct components of F(z~) which intersect 

W~. Possibly after decreasing d~ we may make the following assumption: 

there are two analytic submanifolds of dimension two, Y + and ZS, 

which intersect respectively C + and C~-, and whose closures are 

disjoint compact subsets of W~, each mapped diffeomorphically 

onto D~ by Z. 

(4.8) 

And possibly after some more decreasing of d~ we select two open neighborhoods of 

C + and C~- respectively, in U, f~+ and ~- ,  endowed with the following properties: 

(El (S +) fl (CI CS~-) = Q; (4.9) 

E v+ c ~  v§ Y ~ - ~ -  and the image via Z of(S~ +, as well as that of ~- ,  is 

exactly equal to IntDv; 
(4.1 O) 

any connected component of a fiber F(z) of Z in CI V which intersects 

(S~ is entirely contained in (S~; 
(4.1 I) 

no two distinct connected components of the same fiber F(z) intersect 

either ~S~ + or (S,S. (4.12) 

For each v = l , 2  . . . . .  let r" be a number such that r~<r'<r~_~ and set 

W ' - R  •  ' - -  ' ' v---6 -v, Jv - ] - rv ,  rv[. We consider a distribution u in W~ which is a solution of the 

inhomogeneous equations (2.1). We shall assume that the right-hand sides are continu- 

ous functions in V, and of course satisfy (2.2) in V. Furthermore we assume that 

+~ 

suppfjcZ-I(0)  U LI ~S~ +. (4.13) 
v = l  

The reader will easily check that the set at the right has an intersection with CI V that is 

closed. Note also that we have 

Lju=O,  j =  l . . . . .  m, (4.14) 
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in the set 

We introduce,  for  each v= 1,2 . . . . .  a closed disk D~,, also centered at zv, with 

radius d'>dv, such that the propert ies  analogous to (4.6), (4.7), (4.8) hold. We call A~ 

the annulus D;\D~.  

Notice that L=(L1 ... . .  L,,,) is an elliptic system in the pre-image of  D" via Z, and 

therefore u is an analytic function in the set 

9~= W~NZ-I(Av). 

The key to the proof  of  Theorem 2. I lies in the following assertion: 

u is constant  on the fibers of  Z in 92~. (4.16) 

Proof of(4.16): We note that (4.14) holds in the set 

{(t, x); I/I < r~, d~ < Ix-x~l < d'). (4. ! 7) 

We apply Theorems  I, II (Section I) taking U'=Br'• to have compact  closure 

contained in (4.17). According to the remarks at the end of  Section 1 we conclude that u 

is the distribution limit in (4.17) of  a sequence of  polynomials of  Z and that it is the C | 

limit of  that sequence in the intersection of  (4.17) with 92~. Thus u must be constant  on 

the fibres of  Z in that intersection. 

Let  us call �9 the interior of  the subset ~ of  Z ( ~ )  such that 

u is constant  on the fibres of  Z in Z - ~ ( ~ ) N ~ .  (4.18) 

We have just  shown that �9 contains the set 

z6In tA~,  IRez-xvl>d~. (4.19) 

Suppose now there is a point z* in the boundary of  �9 with respect to Av. We apply 

once again Theorem I, availing ourselves of  the fact that u is a solution of (4.14) in an 

open neighborhood of  S*=F(z*) N CI W~. There  is a number  6 >0  such that every point 

p* E S* is the center  of  an open ball with radius 6 in which u is the C ~ limit of  a 

sequence of  polynomials in Z. Note  that the sequence in question may change from 

point to point. We may suppose that the union of  all those balls is contained in a 

compact  subset K of  W'~(=DWO. The restriction of  Z to K is of  course open,  and 

therefore there is a closed disk D* centered at z* with the following property:  
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9A,,NZ-I(D *) ,- (pE Wv; dist (p, S*)<~6). (4.20) 

Let then pjEg.l~ be such that Z(pj)=~ED* ( j= l ,2 ) .  We can find p*ES* such that 

~oj*-pj.l~<6, and there is a continuous function as. in D* such that u=~joZ in the ball 

centered at p* with radius 6. Moreover, since the system L is elliptic in a full 

neighborhood of S*,/~j is holomorphic in an open disk D'*cD*, also centered at z*, and 

which can be selected independently of the point p* on S*. But since ~ =a2 in D'* N �9 

we must have al=ti2 in D'*, and therefore D ' * c � 9  which contradicts the fact that its 

center is a boundary point of �9 We must therefore have �9 Q.E.D. 

We draw right-away a consequence of (4.16). Because of the validity of (4.8) when 

D~, is substituted for D~, we see that 

Z(91v) = Av. 

Therefore there is a continuous function in A ,  t~, holomorphic in the interior of Av, 

such that u=~oZ in 92~. We contend that 

ti extends holomorphically to the interior of D~. (4.21) 

Indeed call ~z~- the analogue of E~- (see (4.8)) when D" is substituted for Dr. Since u is 

a solution of the system of equations (4.14) in some open neighborhood of Y.~, in 

which that system is elliptic, u is an analytic function there, and its restriction to ~z' v- is 

analytic. Let ~ be the push-forward of the restriction of u to X'v- via Z; it defines a real- 

analytic function in IntD' .  In some open neighborhood of each point of X'v- u is a 

uniform limit of polynomials with respect to Z, by Theorem I, as a consequence of 

which we see that ~ must be holomorphic in the interior of D'.  Since ~=~ in Av this 

proves our assertion. 

We can now proceed with the construction of the functionsfand g in Theorem 2.1. 

For each v we select arbitrarily a closed disk D* centered at z~ with radius d*<dv. 
Let t h e n f b e  a C | function in the plane, vanishing identically in the complement of the 

union of the disks D*, and such, moreover, that 

Then we define 

for every v = 1,2 .. . . .  f >  0 in Int D*. 

f = f o Z i n  Vfl (vt.Ii ~+ ) , =  f = 0  everywhere else. 

(4.22) 

(4.23) 

2-838285 Acta Mathematica 151. Imprimr le 25 octobre 1983 
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Clear ly f i s  a C ~ function in V'x,Z-~(0), and vanishes of infinite order on VnZ-~(0); 

thus f E  C**(V). 

We contend that the assertion (2.4) is correct. 

Proof. It suffices to check (2.2) in some neighborhood of an arbitrary point of 

V n (Uv ~+). There f = f o  Z and therefore 

L j f = ( ~ o Z ) L j 2 ,  j = l  . . . . .  m, 

since Lj Z=  0. Therefore, if we apply (1.10), and set fl  = 2(af/Og), fl  =fi o Z, we have: 

L j f =  2jfl. (4.24) 

On the other hand, the commutation relations (I. 13) are equivalent to 

LjAk = LkAj, j,  k = 1 .. . . .  m. (4.25) 

Combining (4.24) and (4.25) yields at once 

L~(,tk f )  = Lk(,tj f ) ,  j , k =  l . . . . .  m. (4.26) 

Q.E.D. 

Next we define the second function in Theorem 2.1, g. For this we need f to be 

small enough that the following condition be satisfied: 

Z x - f *  0 everywhere in V. (4.27) 

Since Zx= 1 +i~x this is easy to achieve. We take then 

f 
g - f _ Z x ,  (4.28) 

and let L~ he the vector fields so denoted in Theorem 2.1. 

We now prove that the assertion (2.5) is correct, that is, 

[L~, L~*] = 0 j,  k = 1 .. . . .  m. (4.29) 

Proof. By virtue of (4.24) we have: 

I_.j g = ~ ~o + fL~ Z J ( f  - Zx) 2, 

with q~=-Z,,f~/(f-Zx) 2. Differentiating the equation LjZ=O with respect to x yields: 

LjZ,~ = -Ai~Zx, (4.30) 
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and thus 

Ljg+,~jxg(g-  l) = Ajq~, 

On the other hand, where 

19 

j =  1 .. . . .  m. (4.31) 

q = Lk( .jg)--Lj(3,kg)+ .jg(, kg)x--3.kg( ,jg)x+AkgAjx-- ,jg3. 

=  iAk- kAj, 

j =  1 . . . . .  m, by (4.31). 

where 

Aj = Ljg+g2Ajx-gAjx = Ajtp, 

This means that q-=0. 

Next we prove Assertion (2.6). 

Q.E.D. 

We shall prove that, given an arbitrary integer v~>l, there is no distribution u 

satisfying (2. I) in W'. 

Observing that the function f u s e d  to define f has compact support, set 

0 =f-x-(1/2:rz), 

where * is the convolution of distributions in the plane. We have, in R 2, 

a0 =f/2.  (4.32) 
0~ 

Set v = O o Z  in V. We have, in a neighborhood 1I of (Cl~+)n V, 

L j v = ( O - ~ o Z ) L j Z = , ~ , f = f j ,  j = l  .....  m, 

by (1.10), and therefore, by (2.1), we have, in 11n W~, 

Lj (u -v )  = O, j = 1 . . . . .  m, (4.33) 

We have the right to take 11 such that it contains the surface X~ + analogous to X~+ in 

(4.8), when D" is substituted for Dr. Once again by ellipticity we know that u - v  is 

analytic in some neighborhood ofX~ +, and its restriction to Z~ + can be pushed forward 

via Z as a real analytic function t9 in Int D~. And again, by Theorem I, we know that the 

latter is a uniform limit of polynomials of z in the neighborhood of each point of Int D' ,  

therefore t~ is holomorphic in that set. Since t~ can be extended holomorphically to 

IntD~, the same is necessarily true of 0. This demands 
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fa 0, (4.34) Odz 
D v 

and therefore, by Stokes' theorem, 

f f d z  = 0, (4.35) A d~ 
D v 

which contradicts (4.22). 

Finally we prove the assertion (2.7). 

We choose f so small that Igl<l. Then, if v is large enough, the system 

L#=(L*~' .... L~) is elliptic in some neighborhood (in V) of Vn CI ~+. Fixing v thus we 

call 1t that neighborhood, and assume that it contains Z'~ § as we did above. Therefore, 

if h E CI(W ") satisfies the homogeneous equations (2.3) in W', h will be a C | function 

in Lt n W~,. We rewrite (2.3) as follows: 

Ljh =2jghx, j =  1 ..... m. (4.36) 

Thus we see that the right-hand sides are C ~ functions offZ-~(0). We are going to use 

the following property: 

gh x is locally constant on each fiber of Z in W'v n (~.  (4.37) 

Proof. The fibers of Z in ~+ are connected analytic submanifolds of dimension 

m - 1  on which d, ~ * 0 .  It suffices therefore to show that the differential of ghx along 

those submanifolds vanishes identically or, which is the same, that at each point in 
+ ~v, d,(gh~) is collinear to dt dp or, again equivalently, 

dt(ghx) A dt �9 = 0. (4.38) 

We derive from (4.36): 

0 = [Lj, Lk] h = LjQ.kghx)-Lk(2jghx) 

= (LjA~-Lk;~j) ghx+2 k Lj(ghx)-;tjLk(gh x) 

by (1.8) and (4.25). Applying then (1.9) yields at once (4.38). Q.E.D. 
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In particular, according to (4.37), ghx is constant on the fibers of Z in a suitably 
r+ small open neighborhood of Yv , ~ .  We shall call ~ the push-forward via Z of the 

restriction of ghx to ~3. Since g is a multiple of f ,  # vanishes identically in Z ( ~ ) \ D * .  

On the other hand, since Ljh=O,j= 1 .....  m, in the set (4.15), the conclusions (4.16) 

and (4.21) are valid when u=h. 

Thus we find ourselves in the same circumstances as in the proof of (2.6), but now 

with h playing the role of u and ~ that of f .  We may then introduce h~ =~7-x-(1/2~rz) and 

h~=l~oZ. The reasoning applied to u - u  in the remarks that follow (4.33) applies 

equally well to h - h i  (noting that we reason only in a neighborhood of '+ ~v ). We reach 

the conclusion analogous to (4.35): 

fD 4 dZ A d~ = O. (4.39) 
v 

Suppose we had hx*O at the origin. Since 

ghx = fhx / ( f  -Zx), 

we see that ~ is the product of f by a continuous function which is different from zero at 

the origin. As v---, + oo the argument of this function in Dv is arbitrarily close to its 

argument at the origin, while f~>0 everywhere and f > 0  in IntD*. This precludes that 

(4.39) be true, and therefore we must have hx=O at the origin. But then the equations 

(2.3) (or (4.36)), and the expressions (1.8) of the vector fields Lj, demand that dt h also 

be equal to zero at the origin, when.ce (2.7). 

The proof of Theorem 2.1 is complete. 

5. Geometric preliminaries to the proof of Theorem 2.2 

We shall take the neighborhood V, in the statement of Theorem 2.2, in the form B' •  

where B' is an open ball in R m, centered at the origin, and J '  an open interval in R 3 

(and V~U=B• 

We shall begin by applying the following result of [3]: 

The image Z(CI V) is a finite disjoint union of  connected analytic submanifolds o f  

R 2, Mi (l~<i~<v), having the following property: for each i, Z-I(Mi) is a finite disjoint 

union of  connected analytic submanifolds o f  CIV, Ni j  ( j= l  . . . . .  #i), such that the 

restriction o f  Z to Ni,j is an analytic map of  constant rank onto Mi, and such 

furthermore that every Ni,j is a subanalytic ([3], Definition 3.1) subset of  CI V. 
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Recalling that Z = x + X / - 1  do(t, x), and writing z=x+X / -1  y we apply the above 

to the boundary of Z(CI V). It consists of two vertical segments, to which we do not pay 

attention, and of  two pieces defined by piecewise analytic equations 

y=F• xEJ ' .  (5.1) 

Of course we have 

F+(x) = sup do(t, x), F-(x) = inf do(t, x). (5.2) 
tEB' tEB' 

In passing note that these are continuous functions o f x  (in addition to being piecewise 

analytic). 

We may and shall contract J '  about zero in such a way that F § and F -  are both 

analytic in CIJ '  for x=l=0. Then, still disregarding the vertical portions of the boundary 

of Z(Cl I0, and also the points in that boundary corresponding to x=0 (there are one or 

two such points), we are left with four analytic curves. If we call xl and x2 the 

boundary points of J', the curves on the left (i.e., for x<0) are 

C~::xl < x < 0 ,  y=Fa(x) ,  

and the ones on the right, 

C ' ~ : 0 < x < x  2, y=F•  

Again by the results of [3], quoted at the beginning, we can select four connected 

analytic submanifolds of CI V, which are also subanalytic in CI V, C~, C~, such that Z 

maps each one of them onto the corresponding t~. We select four points t~:, t~ in CIB', 

such that (t~:, 0) belongs to the closure of C~:, (t, ~, 0 ) to  that of C, ~. Then we apply 

Proposition 3.9 of [3]: 

There is an analytic map 

] -  I, 1 [ E s---* (t(s), x(s)) E R m +  i 

such that 

t(0) = t +, x(0) = 0, and (t(s), x(s)) E C + for s =1= 0. 

Necessarily X($)~--'s2k[co"~'O($)] for some integer k~>l and some c0>0. Therefore, for 

some r/>0, we have an inverse of the maps---~x(s), 
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[0, r/] E x ~ s = X(x 1/2/') E [0, 1 [, 

with X analytic in an open neighborhood of  the closed interval [0, ~7~/2k]. We may then 

define 

t+(x )  = t (x (x l /2k) ) ,  X E [0 ,  r / ] .  

Similar reasonings lead to the definitions of  t+(x) in [-r / ,  0], and of  t-(x) in [0, r/] and in 

+ and t~ may be [-r / ,  0], if necessary after a decrease of  r/. Note  that, as the points t, 

different, the limits of  t+(x) as x converges to zero from the right and from the left are 

not necessarily equal; same remark about  t-(x). At any rate we may state: 

There are two analytic maps from J ' \ 0  to C I B ' , x ~  t• such that, 

for all (t, x) in V, (5.3) 

�9 (t-(x),x) <. ~(t, x) <. ~(t+(x), x). (5.4) 

Furthermore,  there are points t~, t~ in CIB'  such that 

t~ = lim t+(x), t~ = lim t+-(x), (5.5) 
x-.-~ +0 x--~ - 0  

and there is an integer q~> 1 such that 

-~xt+-(x) ~< const. (5.6) ixl-,§ Oa~ x E J  '. 

Another property of  analytic sets we shall need is embodied in the following 

assertion (Corollary 1, Appendix,  w 1): 

There is an integer No ~> 0 such that, given any straight line in 

R m+ ~, l, on which x is constant,  the derivative of  �9 in the direction (5.7) 

of  I changes sign at most No times in l N CI V. 

This follows from the compactness  of  CI V and the analyticity of  ~ .  

Let  then I?=B' •  endowed with the following property: 

lY intersects at most  one connected component  of  each fiber of  Z in V. (5.8) 

We are now going to take up anew the proof  of  Lemma 3.3 and make it "metrical-  

ly"  more precise. Let  xoEJ ' ,  tjE/~' ( j=0 ,  1). For simplicity let us write ~p(t)=~(Xo, t). 

We assume that 
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q~(to) ~< qT(tl). (5.9) 

We denote by 7o the straight-line segment joining to to tt oriented from the former to 

the latter. Let  Jo=[to, So] be the largest interval of  this kind in 70 on which q~'~>0 

(primes will denote  derivation in the direction of  Yo). It might happen that So=to if q0 

starts decreasing right-away on starting from to. At any rate let s;  be the closest  point 

to tl on 70 such that q~(s~)=9(So). Clearly s~ must belong to an interval [s~, sl] with 

Sl>S~ (for the natural order on 70), on which qg'~>0. We take sl to be as close to tl as 

possible, and then repeat  the argument jus t  presented for sl in the place of  So. We 

determine thus a sequence of  intervals 

�9 ' ' ~  S v . . ~  v [to, SoI,[s;,sI] , [ j_I,Sj],.  [SN, tll (5.10) 

possibly with to=So and s~=h) on each one of  which cp'>~O, and such that q0(sj)=q0(sj) 

for every j=O, 1 . . . . .  N. A moment  of  thought will convince the reader that N - 1  ~<No, 

the number in (5.7). 

Now we avail ourselves of  (5.8). We shall use the following property (Proposition 

3, Appendix,  w 2): 

There is a constant M > 0  such that, ifpo,  pl are any two points 

in I? lying on the same fibre of  Z in V, F, there is a piecewise 
(5.11) 

analytic curve joining Po to p~, lying entirely in F, and whose 

length does not exceed M. 

For each j = 0 ,  1 . . . . .  N let 7.~ be a curve of  the kind above, joining sj to sj, lying entirely 

on a fiber of  Z in V and having length <~M. We shall then call Y the continuous 

(piecewise analytic) curve in/~' ,  

[t 0, So] +7 ;+  [s;, s~l +""  + [sj_,, sj] +Tj+... + [s' N, t,]. 

It is clear that 

length y ~< Ito-ttl+NoM, 

(5.12) 

(5.13) 

and also that q~ is monotone increasing along Y. 
Next  we parametrize the points on ),j by the arc-length normalized (that is, the 

total arc length of  y.~ is equal to one) and starting at sj. We parametrize in the same 

manner the straight-line segment [sj, sj]cTo and join by a straight-line segment the 

point in [sj, sj] to the one in 7j corresponding to the same values of the normalized arc- 
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lengths. As the latters vary from 0 to 1 these segments make up a two-chain cj. We call 

c the two-chain 

[to, s0] + C0+ [S~, Sl] + . . .  + [sj_l ,  Sj]+Cj+ ... + [s~v, t , ] .  (5.14) 

In (5.14) the segments are regarded as two-chains: they are identified to rectangles that 

are infinitely flat (and in what concerns the first and the last one, possibly reduced to a 

point). We give to the chain c the orientation that makes its boundary be equal to Y-Yo 

(both oriented from to to tO. By Corollary 2, w 2, Appendix, we have 

the area of r is bounded independently of to, t~, Xo. (5.15) 

6. Proof  o f  T h e o r e m  2.2: construct ion o f  L l solut ions 

We deal with m C ~ functions f l  . . . . .  fro, satisfying the compatibility conditions (2.2) in 

some open neighborhood V * = B * •  of CIV. It is convenient to introduce the 

following one-form in the open ball B * c R  m, depending smoothly on x E J*: 

m 

f ( t ,  x) = ~ f j ( t ,  x) dt 1. (6. 1) 
j ~ l  

Let 2j denote, as usual, the coefficients in Lj (see (1.8)), and set 

f2 = ~ ()~k f~-Aj f , )d t  J A dt*. (6.2) 
j<k 

We have, whatever the complex number ~, 

a 
dt(e-i~'~Zz x j~ = -~X (e-iCZzx f2)" 

Proof  of(6.3): Differentiation with respect to x of LjZ=O yields 

a (e_iCZzx)+_~x (e-i~Zzx ~'j) = O. 
ae 

If we combine this with (2.2) we get: 

O (e-ir.ZZxfk)+-~x (e-ir.ZZx~.jfk)=-~tk (e-i~ZZxfj)+-~x (e-ir 
at ~ 

(6.3) 

(6.4) 

which is precisely (6.3). 
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We are going to study quite extensively integrals of the following kind 

Let us explain what the ingredients are: first of all e is a number >0 which will 

eventually tend to zero; g E C*:(J') is a suitable cut-off function. The integration with 

respect to y is performed over R ~, That with respect to ~ is performed either over the 

half-line R§ ~>0, or else over R_. Mostly we shall reason over R+, and to stress this 

fact we write Q instead of ~. All the arguments in this case will have an obvious 

analogue when ~<0. The integrand in/~ is a one-form in s-space, which we integrate 

over a piecewise linear curve ! contained in CIB' and joining a certain point to to the 

variable point t. The point to and the curve I are chosen below. 

We specify now how to select V* and V (W will be specified later). First of all, 

taking advantage of the fact that ~,,(0, 0)=0, we may assume that 

Ir y)l<~lx-yl, tEB*, x, yEJ*. (6.5) 

We shall require that the closure of J '  be contained in J*, but otherwise we shall keep J '  

unchanged. Recalling that J ' = ] - r / ,  ~/[ we shall require that B* be small enough that 

I~(t, x ) -  ~ ( s ,  x)l ~< r//8, s, t E B*, x E J*. (6.6) 

Next we avail ourselves of Property (P), specifically of the fact that (P) holds at 

every point p E U of the kind (0, x), x EJ. Because J '  is relatively compact in J* we can 

find an open ball B~ such that 

B','- Bi ~B*,  

and such that, if V~=B~ x J* (recalling that V=B' xJ ' ) ,  the following holds: 

Given any pair x, y E R, CI V intersects at most one connected 

component of V~(x, y) (see (3.11)), and at most one of V:(x, y). 
(6.7) 

We come now to the choice of to. When the integration with respect to ~ is 

performed over R+ we take to=t-(x), the point in (5.3). When that integration is 

performed over R_ we take to=t+(x). In both cases, we have, by virtue of (5.4): 

~ ( t o ,  x) ~< ~ ( t ,  x), (t, x) E V. (6.8) 
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We apply then the properties listed at the end of Section 5. For each (t, x) E V we 

select a piecewise analytic curve y=y(t, x), joining to to t, having the following proper- 

ties: 

y is entirely contained in CIBI, 

~ ( t ' ,  x) ~ ~cl,(t, x), Vt' E y, 

the length of  y is bounded independently of (t, x) E V. 

(6.9) 

(6.1 o) 

(6.11) 

Let us call yo=~o(t, x) the straight-line segment joining to to t. There is a two-chain 

c= c(t, x) whose boundary is equal to Y-Y0 and whose area is bounded independently of 

(t, x), entirely contained in CIBn. 

We then describe our choice of the path l: it consists of the straight-line segment 

joining to to the origin of t-space, followed by the straight-line segment joining 0 to t. 

Let us call ~ (resp., P~0 ) the same integral as I ~ except that the integration with 

respect ot s is performed over the curve ~ (resp., over the straight-line segment ?o) 

instead of the curve I. Until otherwise specified we limit our attention to the case 

~=O>0. The case ~ = - O < 0  is dealt with in a similar fashion. We apply Stokes' 

theorem: 

2~r~-~o) = f f f dozt"~'-'d g(y)d~[e-~Ozt~'Y'Zy(s, y) f(s, y)] dydo. 

We apply (6.3) and perform an integration by parts with respect to y: 

(6.14) 

Let us introduce the vector field L0 of (1.11). Note that 

P(Lo) (e icz) = P(i~) e iez , (6.15) 

whatever the polynomial with complex coefficients, in one variable, P, and the com- 

plex number ~. Denote by L~ the transpose of Lo: 

8 (Z~~ v). (6.16) L~ v = 8x 

Note that 

L~(Zx v) = -ZxLo v, (6.17) 
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and therefore 

P(L~) (Zx o) = ZxP(-Lo) v. (6.18) 

Thus we get, after an integration by parts, 

= f f f ( l + ip)-N e'Otz(t'x)-Z(s'Y)l-'e2 Zr(s, y) ( l +iZyl ~y ) N[g(y) f(s, y)] dy dQ. 

In this integral we write 

Z(t, x)-Z(s, y) = i[~(t, x)-d~(s, x)]+Z(s, x)-Z(s, y) 

= i[~(t, x)-d~(s, x)]+(x-y) [1 +i~l(s, x, y)], 

and we derive, from (6.5): 

(6.19) 

Re {i~[Z(t, x)-Z(s, y ) ] - t ~  2 } = -O{[~(t ,  x)-~(s,  x)] -  �89 ~t(s, x, y)} -~eQ 2. 

We derive from (6.10) and (6.21): 

Re { i~[Z(t, x)-Z(s, y)] -e~  2} ~< - ~lx-y I e-~eO z. (6.23) 

By applying (6.1 I) and taking N>~2 in (6.19) we obtain at once that 

if e---~ +0, I~(t, x) converges uniformly in B' x J '  (and a fortiori in B' •  (6.24) 

By taking N in (6.19) as large as needed we reach a similar conclusion for any 

derivative of l~ provided we restrict it to compact subsets of  B ' •  

Next we look at the second term, in the right-hand side of (6.14). But now we 

choose more carefully the cut-off function g. We require 

g(x) = 1 for Ixl < ~,7. (6.25) 

We have 

I~(s,x,y)l<~, sEB*, x, yEJ*. (6.21) 

We shall then deform the domain of  ~-integration from ~>0 to the one-chain in C, 

~ = 0  1+ 2 . , oER§ (6.22) 
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We shall now restrict the variation of x to the interval 

J ' ,  = 

Thus, in the integral under consideration, we have 

[x- y I >I �89 (6.26) 

We deform the ~-integration from R+ to the chain (6.22), but now we take advantage of 

(6.6), as well as of (6.21). We obtain here, in lieu of (6.23): 

Re {i~[Z(t, x ) -Z ( s ,  y)]-e~ 2} <~ - ~ lQ-  ]eO 2. (6.27) 

Using then the fact that ccCIB~ and that the area of c is bounded independently of 

(t, x), we conclude that 

~ - ~ 0  converges uniformly, in B' x J  I. (6.28) 

Next we make use of the analogue of (6.14) when I is substituted for y. In that case 

the two-chain c must be replaced by a two-chain Co whose boundary is equal t o / - y o  

and which can be taken piecewise "planar",  and with an area that is bounded 

independently of t and of to. The proof that has led us to (6.28) applies also here and we 

conclude that 

g-l~o converges uniformly, in B' xJ~. (6.29) 

By combining (6.24), (6.28) and (6.29) we obtain: 

When e---~ +0, It(t, x) converges uniformly, in B'xJ] ,  
(6.30) 

to a function l(t, x). 

In both (6.28) and (6.29), if we restrict to B' x(J~\ (0})  the convergence is valid in the 

C ~ sense (we are tacitly making use of (5.3)). Therefore, by the remark following 

(5.24), and by (5.5), the preceding argument shows: 

In B' x(J~\{0}) the convergence of 12 to I is valid in the C ~ sense; 

moreover, l(t, x) has finite limits l(t, +0) and l(t, -0) ,  as x--* +0 and (6.31) 

x---~ - 0  respectively. 

Next we compute LjI  ~. To do this it is convenient to introduce the integrals #~(t.), 
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t .  EB': It is the same integral as I " except that the path of s-integration is the straight- 

line segment joining 0 to t . .  In this notation, 

r = ,# '(t)-~(to).  (6.32) 

At first we focus on 5~(t). Let us write 

s=Ot, 0~<0~<1; f(s,y)=F(O,t,y)dO; 
m 

F(O, t, y) = E tkfk (Ot' Y)" 
k=l 

Thus 

a. F(O,t,y)=fj(Ot, y )+OE t k (Ot, y), 
atJ k= i ~ 

and therefore, on the straight-line segment joining 0 to t, 

0 : [ e_ i~Z( s , y ) z y ($  ' y)F(O, t, y)] 
Ot J 

m 

= e -i~z'''y' Zy(s, y) fj(s, y)+ 0 E t ' - ~ [  e-i~z{~'y) Zy(s, y)f,(s, y)l. 

We take (6.3) into account: the factor of 0, in the right-hand side of the preceding 

expression, is seen to be equal to 

~ tk-~sk [e--i~Z's'Y)Zy(s, y) f j(s, y) ] +-~y {e-i~Z(s'Y)Zy(s, y) ~ tk(Ak f j--2j fk) (s, y) } . 

Recalling that O/O0= Yk%l tk(O/ase) on the straight-line passing through 0 and t, we obtain 

a [e_i~zts,y)Zy(s,y)F(O ' t,y)] 
at j 

O0 [Oe-~"~ZY(s'Y)fP'Y)]+ e '~z~"~Zy(s,y r . 
k=! 

(6.33) 

It is convenient to introduce the following one-forms: 

m 

Fz(t,x)= E (Akf~-~.ifk)(t,x)dt ~, j= 1 ..... m. 
k = l  
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Once again we limit ourselves to the case ~=0>0.  We have: 

Ly[5"(t)] = ~ f f f eioZ~ a �9 [e-iOz("Y'Zr(s, Y)F(O, t, y)] dy do dO, 
.~n j j d  ae 

where the integration with respect to 0 is performed over [0, I]. I f  we take (6.33) into 

account we get: 

Lj[ )'( t) ] = ~ f +| f eiOiz(t'x)-z(t' y)l-EO2g(y) Zy( t, y) f j( t, y) dy do 
2;r Jo JyeR' 

l (6.34) 
2:r 

At this stage we start distinguishing more carefully between those integrals in 

which the ~-integration is carried out over R+ and those in which it is carried out over 

R_. We shall label them with superscripts + and - respectively. According to (6.34) 

we may thus write: 

Li[~+(tI+,,~-(t)]=--~ f f ei'lz(t.~)-z(t.Y)]-"2g(yIZr(t, yI g(t, yIdyd , 

2~ 

where the integrations with respect to y and to ~ are both performed over R ~. We have 

Iffe"lzt'.~'-zt,.,']-,,'g(y)Z,(t,y)fj(t,y)dyd, 2~ 

(4~re)- u2 J etZtt.~)-ztt.y)]2/4~ g(y) Zy(t, y) fj(t, y) dy, 

and it is well-known that the latter integral converges to g(x)fj(t, x) in the C | sense, as 

e--,+0. We also have: 

I ffe~,tz(,.~I-z(,.rIl-,,'g,(y)Z,(s,y)Fj(s,y)dyd, 
2~ 

=(4~e)-lnffe-tZ't.xI-zl,.yIl~/4,g,(y)Zr(t,y)Fj(t,y)dy" 

Note that 

Re [Z(t, x)-Z(s, y)]2 = ix_yl2_[C,( t, x)-Cffs, y)]2 

>~ Ix-yl2-2([C~(t, x)-C~(s, x)]2+ [r x)-C,(s, y)]2). 
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If we restrict the variation of x to J i ,  as we shall, (6.26) holds. So do (6.5) and (6.6). 

Consequently,  in the above integral, 

Re [Z(t, x)-Z(s ,  y)]2 I> T]2/8. 

that the preceding integral converges to zero in C=(B'xJ]). Thus we This shows 

conclude 

Lj[5~+(t)+5~'-(t)] converges to ~ in C~(B ' xJ~). (6.35) 

We wish now to find the limit of Lj~'(to) as e---~+0 (see (6.32)). Unlike ~ ( t )  it may 

have a discontinuity at x=0  originating from the discontinuity, if there is one, of 

to=t+-(x). We must therefore apply the well-known formula for the distribution deriva- 

tive of a function such as 5~(to): 

Lj[ 5~e(to)] = {Lj[5~e(to)]} + ~,jOe6(x), (6.36) 

where the first term in the right-hand side stands for the function (integrable, as we 

shall see) which is equal to Lj[F(to)] when x=t=0, and where 0" is the jump of  I'(to) at 

x=0,  and 6(x) is the Dirac distribution. 

When x=t=0 we have 
m 

Lj[SC(to)]=;Lj ~ 04 0 
= ax atko F(t~ (6.37) 

We note that (6.33) holds if we replace everywhere t by to (and thus read s=Oto). We 

obtain 

0 1~ f + o o  fV io[Z(t,x)-Z(to, Y)]-tO 2 . . . . . . . . . .  

0ff 0 5r176 = 2:rt J0 ~ rt' e gtY) ,~y[tO, Y) J'kl.to, Y) dy do 

l fffeiolzl"x)-z(s'Y)l-tO2g'(y)Zy(s,y)Fk(s,y)dydo, (6.38) 
2zt 

where the s-integration is now performed over the straight-line segment joining 0 to to. 

In (6.38) we take to=t-(x) (see (5.3)). It is then possible to prove that the right- 

hand side converges uniformly, in B'xJ] ,  exactly in the same manner as (6.24) and 

(6.28) were established. Call Q[(t, x) its limit as e---~+0. Likewise call Q-~(t, x) the limit 

of  the similar integral when 0 is replaced by -~) and t -  by t § It is clear that Q~ have 

the property analogous to (6.31). On the other hand notice that the right-hand side in 

(6.38) is a function of  Z(t, x) and to=t+-(x) only, and therefore is constant on the fibres 

of the mapZ.  The same is true of its limit. If we take advantage of (5.6) we may state: 
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When e---~ +0 the restriction of L~[.f~+(t-(x))+.~-(t+(x))] to 
(6.39) 

B ' x ( J i \ { 0 } )  converges, both in L 1 and in C | to 2jQ ~ where 

m a(t_)k ,,3+ , c3(t+) k 
Q 0 = ~ ~ k _  r ax Q~- 

k = l  

is constant  on the fibres of the mapping Z: B' x ( J ~ \ ( 0 ) ) ~  C. 

Returning to (6.36) we want now to find the limits of the jumps Or. Once again let 

us look at the case where the ~-integration is performed over R+. We have 

,+ 'fffe,o, ,,o, Z(sy)] tQ2g(y) Zy 
' - -  ' - -  y) f(s, y) dy d~o, 

2~ 

where the integration is performed over the curve ! o defined as follows: 1 o consists of 

the straight-line segment joining t[=t-(-O) to the origin followed by the straight-line 

segment joining the origin to t,=t-(+O). In other words it is similar to the integral/~ 

where we have put x=0  and to=t [, t=t- 7, except that we still have Z(t, 0) where we 

ought to have Z(t-, 0). However the argument that led to (6.24) works equally well 

here. This is due to the fact that ~(s ,  0)~<~(t, 0) for all s on any curve joining t[  to t 7 

which is entirely contained in the level set of ~ ( , ,  0) in CIBI (in which those two points 

lie). For this reason the inequalities (6.23) and (6.27) have analogues here. Note also 

that O t+ is independent of  x (and thus we do not have to deal with discontinuities) and 

that 0 t+ depends on t solely through Z(t, 0). As a matter of  fact (and this is quite 

important in what follows), by the analogue of  (6.19) we can see that 

Ot+(t) = ~t+(z( t ,  o)), 

where v ~t+ is a C ~ function on the (imaginary) interval /~' which is the image of B' 

under the map t~-~Z(t, 0). Note that/~'  might be open, closed or only contain one of  its 

boundary points. In any case v ~t+ is C | up to any point of the boundary of/~ '  when 

that point belongs to/~ ' .  This is seen by differentiation under the integral signs in the 

integrals analogous to (6.19) and to the second term in (6.14). Moreover, as e-- ,+0,  v~+ 

converges to a C ~ function v ~§ in the C ~~ sense specified above. 

By combining what we just  said with (6.32), (6.35), (6.39), and by calling I § (resp., 

I - )  the limit of  I t§ (resp., I t - ;  see (6.30) and (6.31)), we reach the conclusion that, in 

B' xJ~, 

Lj(I + +I-) = fj+2j Q0 +~,j. 08(x), (6.40) 

3-838285 Acta Mathematica 151. Imprim~ le 25 octobre 1983 
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where 

0 = O(t) = 6(Z(t, 0)), 

with v ~ a C = function on the interval/~' (in the sense specified above). Let then BI be an 

open ball centered at the origin in t-space, whose closure is contained in B' , / t~ the 

image of B] under the mapping t---,Z(t, 0). The function ~q is C = in the closed interval 

CIB~ and can be extended as a C = function (also denoted by ~) in the whole complex 

plane. Set then 

Z(t, x) = t~(Z(t, x)) a(x), 

where tr(x)=�89 when x#~0. We have 

and 

LjZ = Ls(o~o Z) o(x)+ 2joa(Z(t, 0)) ~(x), 

L/(v~o Z) = (v~ oZ) LjZ = 22j(v~ o Z). 

Thus, by (6.40), we see that, now in Wl=Bi xJ[, 

L: l+ + t - - z )  = fJ+ sQ, 

where 

(6.41) 

Q = Q0_ 2(0~ o z) o(x). (6.42) 

We know that QO is constant on the fibres of Z in W~ and therefore the same is true 

of Q. By push forward via Z we obtain a function Q in z ( w o  such that Q = Q o Z  in Wl. 

Furthermore we have, by (5.6), 

10(z)l Clxl (z = x +iy). (6.43) 

We shall assume, below, that 0 has been extended by zero in C I \ Z ( W 0 ,  and thus 

0 E L j . We define 

O J = O ~ (  l---L--eZZ), w = l h o Z .  
\ 2~tz / 

We have (cf. equation following (4.32)): 

Ljw=2jQ,  j =  l . . . . .  m, (6.44) 
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in the distribution sense, in W~. Let  us show that wEL2(WI). 
Availing ourselves of (6.43) we obtain 

1 f f z  etZ..x)-z',2 Q(z') dx,dy, Iw(t. x)l = ~ (w,) Z(t. x)-z '  

fxfye_ly,lZ dx'dy' 
<~C' '~1 'eR' Ix'lH/'~lx-x'+iY'[ 

(f,, ~C" y,.., +lx_x,lZ) ix,ll_l/q 

<~ C" f dx' 
ix_x,i,/21x,i,-,/~ ~ L~(W,). 

(We have applied the Cauchy-Schwarz inequality to the integration with respect to y '  to 

go from the second to the third line.) 

Define now 

v = I + + I - - z - w .  

By (6.41) and (6.44) we have, in Wl, 

Ljv=fj, j= 1 ..... m. (6.45) 

By (6.31) and the obvious properties of Z, I++I--x  is an L 2 function. We have just 

seen that the same is true of w, and thus v E L E ( w I ) .  In the next section we construct a 

C | solution u in a perhaps smaller neighborhood of the origin. 

7. End of proof of Theorem 2.2: construction of C | solutions 

Let N be an arbitrary integer I>1. We solve, in W~ =B~ xJ~, 

LjON=L~fj, j =  1 . . . . .  m, VNEL2(WO, (7.1) 

where L0 is the vector field ( l . l  1). Note that Lofl ..... Lofm satisfy the compatibility 

conditions (2.2), since LoLj=LjLo for all j .  Let  J~ an open interval centered at zero, 

whose closure is contained in J~. And let ~0 E C~(J' 0 be equal to one in J~. We have, in 

B~, 

Lj[V/(X)VN(t,x)]=~p(x)L~fj(t,x)+2j(t,x)~p'(X)ON(t,x), j= l ..... m. (7.2) 
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Let us denote by Ea the space of  locally-L ~ functions of x in the real line whose 

support is contained in the half-line x>-a. We shall make use of the following linear 

operator on Ea, depending smoothly on t EB: 

(Lo 1 f )  (t, x) = fx  Zy(t, y) f (y )  dy. (7.3) 
J-| 

Evidently we have 

LoLo  I = L o' L 0 = Identity of E a, (7.4) 

and, as a consequence,  when acting on Ea, 

[Lj, Lo l] = O, j = 1 . . . . .  m, (7.5) 

since [Lj, Lo]=0. 

Let  us now rewrite (7.2) in the form 

Lj(~ oH) = L~(~ofj) + Sj, (7.6) 

where S;=0 if x EJ'~. Applying Lo W to both sides, and availing ourselves of  (7.4), (7.5), 

yields: 

Observe then that 

This implies that, in B I xJ~, 

But in the same set we have 

LjLf f s (Wvs )  = Vjs (7.7) 

L~(LoNSj) = 0 in B[xJ.~. (7.8) 

N - I  

LoU Sj(t, x) = E aj. k(t) Z(t, x) k. 
k = 0  

LgS sj = LjLgS(Wvs)%, 

hence 

Lj,(LffN Sj) = Lj(Lffs Sj,), j ,  j '  = 1 . . . . .  m. 

This implies at once that there is a distribution Ok in B~ such that 

0 
= - - a  k, j =  1 m .  ~ k at j . . . . .  

(7.9) 

(7. lO) 

(7.11) 

(7.12) 
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Actually one derives from (7.9) and (7. I0) that oj, k are sums of derivatives of  locally-L l 

functions; the same is therefore true of  Ok. This property will be used below. Let  us 

then set 

N - I  

TN= E Ok (t)Z(t'x)k" (7.13) 
K=0 

We have 

LjTN=LoNSj ,  j =  1 . . . . .  m, (7.I4) 

and therefore, by (7.7), in B' l x J6, 

where 

LjUN=fj,  j =  1 . . . . .  m, (7.15) 

u N = LoN(~OON) - T N. (7.16) 

Of course the action of  Lo ~ increases the regularity with respect to x (and does not 

modify that with respect to t). Thus we see that LoN(~OVN) is an L I function of t in B~, 

valued in the space of C N-l  functions of x (in R). On the other hand, TN is a sum of 

derivatives o f L  ~ functions of  t in B~, valued in the space of C ~ functions o f x  in J. This 

means that UN is a sum of  derivatives of L t functions of t in B~ valued in the space of 

C N-~ functions of x in J~. At this point we use the equations (7.15) to trade 

differentiability with respect to x for differentiability with respect to t. Indeed, in the 

notation of one-forms (see (6.1)), (7.15) reads (in B' I •  

dt UN = f - i (Lo UN) dt O~. (7.17) 

(By (1.9) and (1.11) we have Lj=a/atJ- i~sLo. )  We reach easily the conclusion that, 

given any integer v~>0, we can find N large enough that u N E C~(BI xJ~). 

In what follows we suppose that the subscripts N have been selected in such a way 

that the solution u N of (7.15) belongs to CN(B'I xJ~). 

At last we select W=B"xJ".  We simply require that B" be an open ball centered at 

the origin with closure contained in B~, and J" an open interval centered at zero with 

closure contained in J~. We apply the C N version of Theorem I (Section 1): 

Eoery solution h E CN(B'I xJ~) of  the homogeneous equations Ljh=O ( j=  I . . . . .  m) is 

the limit, in cN(CI W), of  a sequence o f  polynomials with respect to Z(t, x). 
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(We leave the proof  of  this assertion to the reader: apply Theorem I to L0 k h instead 

of  h, for k=0,  l . . . . .  N,  use cut-off  functions and the operator  Lo I.) 

Let  us denote  by I f  IN the natural norm in cN(cI  W). For  each N = 0 ,  1 . . . . .  we 

select a polynomial  PNE C[z] such that 

We set then 

lUu+ j -UN-P,v(Z)I ,v  <~ 2 -N. (7.18) 

U(O) = UO, U(N) = U N - P o ( Z ) - . . . - P N - I ( Z )  for N ~  > I. 

We derive from (7.18): 

]ur l)-u~mlN <~ 2 -u. (7.19) 

This shows that the sequence (u(~),v~v converges to an element of  C~(CI W), of  

course independent  of  v, and therefore  belonging to C~176 W). Since all utu) satisfy 

(2.1) in W so does their limit. 

The proof  of  Theorem 2.2 is complete.  
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Appendice: Sur trois questions de finitude en 
g6om6trie analytique r6elle 
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Introduction 

Soient tp: Y-->X un morphisme (sous-)analytique r6el entre espaces analytiques r6els (cf. 

[H1] et [Hal]) et K un sous-ensemble sous-analytique (cf. loc. cit.) compact de Y. 

D'apr~s le premier th~or~me d'isotopie de Thom (cf. [Ma]) et l 'existence de stratifica- 

tions de morphismes propres (cf. loc. cit.), il existe un sous-ensemble sous-analytique 

Z de tp(K), de dimension strictement inf6rieure ~ celle de tp(K), tel que tout point 

Xo E q~(K)\Z possc3de un voisinage ouvert U tel que 9- l (U)  A K--~U soit une fibration 

topologique localement triviale. R. M. Hardt a m6me prouv6 (cf. [Ha2]) le remarquable 

r6sultat selon lequel on peut choisir Z de telle mani~re que l'on puisse prendre pour U 

la composante connexe de q0(K)\Z qui contient Xo, et l'on a un hom6omorphisme/~ 

graphe sous-analytique (9-1(Xo)NK)x U:~,fp-I(U)NK. M~me si au-dessus des points 

de Z la g6om6trie des fibres tp-I(x)flK, et en particulier leur dimension, saute, on 

s'attend du fait de l'analyticit6 ~t ce que ces changements de g6om6trie se fassent d'une 

mani~,re non-sauvage. Voici des fa~;ons de pr6ciser cette id6e inspir6es par les ques- 

tions de Tr~.ves qui ont motiv6 cette r6daction. Dans ce qui suit on suppose fix~ un 

piongement YcR".  

(1) Tout point XoEtp(K) poss~,de un voisinage ouvert U dans Y tel qu'ii existe un 

entier N tel que pour tout xE U, l'ensemble sous-analytique qg-I(x)AK puisse 6tre 

triangul~ avec moins de N simplexes (cf. [H2] et [Ha3] pour la triangulation des sous- 

analytiques). 

(2) La condition I) est r6alis6e et de plus ies triangulations sont telles qu'il existe 

une constante V telle que la somme des volumes i-dimensionnels dans R"  des i- 

simplexes de la triangulation de tp-I(x)fl K soit inf6rieure ~ V pour chaque i et chaque 

xEU. 

(3) Tout point x0 E tp(K) poss~de un voisinage ouvert U dans Y tel qu'il existe une 

constante ~>0 telle que, pour tout x E U et tout couple (a, b) de points appartenant ~ ia 
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m6me composante connexe de cp-~(x)NK, il existe un chemin sous-analytique (i.e. 

analytique par morceaux) contenu dans q~-I(x)NK, joignant a et b e t  de longueur 

inf6rieure ~t ),. 

Pour prouver que (1) est toujours r6alis6e, il suffit de se souvenir que d'apr6s 

([H1], 8.2) l 'ensemble q0(K)\Z n'a qu'un nombre fini de composantes connexes, 

d'invoquer le th6or6me de Goresky sur la triangulation des ensembles stratifi6s ([G]) et 

le th6or6me de Hardt, pour trouver des triangulations simultan6es de toutes les fibres 

q~-l(x) O K, pour x E U, ofl U est une composante connexe de (p(K)\Z.  On conclut par 

restriction de tp ~ tp-l(Z) et r6currence sur la dimension de q0(K). Je ne sais prouver ni 

(2) ni (3) en g6n6ral (mais voir [B1] et [B2] pour (2)). Je vais m'int6resser ici /~ des 

r6sultats qui sont cons6quences de (1) et (3) respectivement. 

w 1. Finitude de changements de signe 

PROPOSITION 1. Soit p: E--*X un morphisme analytique rdel entre espaces analy- 

tiques r~els, dont toutes les fibres sont de dimension alg~brique ~gale d un. Soit 

f'. E---)R une fonction analytique r~elle. 

Dans ces conditions, pour tout compact K ICX  et tout compact K2cE  il existe un 

entier N=N(KI ,  K2) tel que, pour tout x E Ki, la restriction de f ~ p- l (x)  change de 

signe au plus N fois dans p-t(x)NK2. 

D~monstration. Posons Y=f-t(0), (p=plY: Y---)X et K=K2cE.  Puisque Kt est 

compact et que les changements de signe correspondent ~ des z6ros isol6s de fL o-I(x), 

il suffit de prouver que tout point x E K~ poss6de un voisinage ouvert U tel qu'il existe 

une constante N v  ayant la propri6t6 que pour tout x E U le nombre des points de 

(p-I(x) n K qui sont isol6s dans tp-t(x) est inf~rieur ~t Nv. Ceci est une cons6quence 

imm6diate de (1) ci-dessus appliqu6 ~t qg. On recouvre ensuite Kg par un nombre fini de 

tels ouverts, disons K~=LI; U,. et l'on prend N=Sup~Nu. Q.E.D. 

On peut donner de la Proposition 1 une autre d6monstration, qui a l'avantage de 

contenir un lemme de finitude qui semble pouvoir s'6tendre ~t la g60m6trie analytique p- 

adique oi~ des r6sultats de cette sorte sont aussi utiles. Cette d6monstration est presque 

identique b, celle de D. Barlet (cf. [BI], [B2]) pour des r6sultats du type du (2) de 

l'introduction, dans le cas analytique complexe propre. Nous devons utiliser ici le 

th60r6me d'aplatissement local parce que le complexifi6 d'un morphisme analytique 

r6el propre n'est pas propre en g6n6ral. 
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Avant de donner cette autre d6monstration de la Proposition 1 nous rappellons 

quelques d6finitions et r6sultats. 

Soit Q: Z---~ W un morphisme d'espaces analytiques complexes, et soit r/: W'---~ W un 

6clatement local, c'est-h-dire le morphisme compos5 de l'6clatement d'un sous-espace 

analytique ferm6 B d'un ouvert U de W e t  de l'inclusion (U, ~Tw[v)~(W, ~?w) d'e- 

spaces analytiques. I1 existe un sous-espace analytique ferm6 Z ' c W '  X wZ  tel que, 

dans le diagramme naturel 

W' X w Z ~ Z '  ---, Z 

W' ---" W 

le morphisme r/' soit l'6clatement de Q-J(B) dans p-I(U) compos6 avec l'inclusion 

~-~(U)~Z,  et Q' soit l'unique morphisme dO h la propri6t6 universelle de l'6clatement. 

On peut aussi d6finir Z' comme 6tant le sous-espace ferm6 de W' • v Z  d6fini par 

l'id6al coh6rent engendr6 par les 616ments annul6s par le compos6 avec la premiere 

projection d'une puissance de l'id6al d6finissant le diviseur exceptionnel r / - l (B)cW '. 

L e  morphisme Q':Z'---,W' est appel6 transform~ strict de ~ par r/. On peut ensuite 

d6finir le transform6 strict d'un morphisme Q par une suite finie d'6clatement iocaux. 

On a alors : 

THI~ORI~ME (Hironaka, Lejeune et Teissier, cf. [HI], [H2]). Soient Q: Z ~ W  un 

morphisme d' espaces analytiques complexes, w un point de W e t  L un sous-ensemble 

compact de Q-I(w). II existe un nombre fini de suites finies (Sa)~eA d'~clatements 

locaux de W telles que les ~nonc~s suioants soient orais : 

(1) Pour chaque a, le centre de chacun des ~clatements locaux apparaissant dans 

S,~ est rare dans son espace ambiant. 

(2) Notant :r~: Wa---~W le morphisme compos~ des ~clatements locaux de S~, ii 

existe un voisinage ouvert U de w dans W tel que, pour tout compact K c  U, il existe 

pour chaque a un compact Kac  Wa de telle mani~re que 

K c-- LI ~r~(K~). 
aEA 

(3) Pour chaque aEA,  le morphisme transform~ strict Qa:Za---~W~ de Q par zta 

(i.e., par Sa) est plat en tout point de Z~ dont l'image par le morphisme naturel Za---~Z 

appartient it L. 
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D~monstration de la Proposition 1. Posons encore Y=f-l(0),  ~v=pl Y: Y--->X. No- 

tons :~: F---~W le morphisme complexifi6 de p. D'apr~s l 'hypoth~se les fibres de :~ sont 

encore de dimension 1, et un z6ro de fLo-l(x) isol6 dans p-I(x) donne un z6ro de la 

restriction/~ :~-~(x) de la fonction r/: F ~ C  complexifi6e de f ,  qui est encore isol6 dans 

n-l(x). 
D'apr~s la remarque d6j~ faite, pour prouver la Proposition 1, il suffit de v6rifier 

que : 

(~-) Tout point xoEX poss~de un voisinage ouvert U tel qu'il existe un entier nv  

tel que pour tout x E U, notant Is (x) l 'ensemble des points de q0-~(x)N K qui sont isol6s 

dans p-~(x), on a l'in6galit6 

Z dimn('~p-ttx),r/(fy)) ~< nv 
y E Is (z) 

ot~ ~_,t~).y d6signe l'alg6bre des germes en y de fonctions analytiques r6elles sur 

p-l(x) e t fy  le germe en y de fLo-I(x). Nous allons donc nous placer au voisinage d 'un  

point xoEX fix6. Remarquons que pour prouver l '6nonc6 (-x-), il suffit de le prouver 

pour le morphisme complexifi6, en rempla~ant M par i'alg~bre des fonctions analyti- 

ques complexes et f par son compl6xifi6 r/, c'est-/~-dire de prouver l '6nonc6 suivant : 

LEMME. (-X--X-) Soient Q: Z---,W un morphisme analytique complexe ~ fibres de 

dimension <.1, et K ~ Z  un sous-ensemble compact. Tout point WoE W possdde un 

ooisinage ouvert U tel qu'il existe un entier n~ lO  tel que pour tout w E U, notant Is (w) 

i'ensemble des points z E ~- I(w) N K teis que dim z p -  I(w)=0, on ait l'in~galit~ 

Z dimc~-'lw).~ ~<nv(K)" 
z E Is (w) 

ou ~ d~signe l'algdbre des fonctions holomorphes. En effet, dans notre cas, nous 

aurons ~_~tw).z=~_,cw),z/(r/~) oti Q: Z---,W est le complexifi~ du morphisme q~, et donc 

Z=r / -  I(0)cF. 

D~monstration du lemme. On se place au voisinage de Wo E W. En examinant la 

d~composition en composantes irr6ductibles de Z au voisinage de K, on se ram~ne 

aussit6t au cas o0 il existe un ouvert analytique dense de W, tel que [Q-~(w)NK I soit 

fini pour tout w appartenant ~ cet ouvert. 

On applique alors le Th6or~me ci-dessus en un point Wo avec L=~-l(Wo)NK. On 

obtient des diagrammes commutatifs  : 
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WaXwZ~-- ,Z~  ~ Z 

pri x~ ~Q~ ~ 

W~ - ~ U ~  W 
7 t  a 

o0 Q~ est plat en tout point de q~-I(L). Par cons6quent le morphisme Qa est fini et plat; 

soit n~ son degr6. Nous allons d6montrer le Lemme par r6currence sur la dimension de 

W. Le r6sultat est 6vident si dim W--0. Soit D~=W~ le sous-espace analytique ferm6 

de codimension 1 r6union des images inverses dans W~ des centres 6clatements locaux 

constituant la suite Sa. Nous avons 

O-~l(W~\D,~) ~-- ( W ~ \ D a )  x w Z, 

et par consequent les seuls points w~ tels que 

o~J(wo) * {w~} xe-'(xo(w2) 

sont les points w= ED=. D'aprb, s l'hypothSse de r~currence, pour tout compact K et 

tout systeme {K=} comme dans la partie (2) du Theor~me, le morphisme induit 

DaXwZ--->D,~ satisfait le Lemme relativement au compact K = X w K 2  et donc, en 

utilisant un recouvrement fini de /Ca, pour tout point w,~EDanK,~, puisque 

W a X w Z = Z  a Upr~-t(D=), on a l'inegalite 

dim ~vo, zo<~na+N ~, 
zaE is(Wa ) C 

o0 N~ est le supremum sur les ouverts U~a d'un recouvrement de 

nv~(K ~ • associ6s au morphisme Da • w Z - * D a .  

Puisque Va=p-l(:r~(wa)) on en d6duit que pour tout w E:r~(K~) on a 

g 2 d e s  

dim ~-~<w),~ <~ na+Na" 
zE Is(w) C 

Puisque KcUa:ta(Ka) on a l e  r~sultat cherch~ avec Nx=supa (n~+N~) .  Q.E.D. 

La Proposition 1 nous permet de d~montrer l'gnonc~ (5.7) de [T]: 

COROLLAIRE 1. Soit  ~P: f~---~R une fonct ion  analytique r~eile d~finie sur un ouvert 

if2 de R n, et soit B u n  sous-ensemble  convexe compact  de R ~ contenu dans if2. I! existe 
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un entier N tel que, pour  tout segment  de droite l contenu dans B, la d~riv~e de la 

restriction de �9 d, l change de signe au plus N fois.  

D~monstration. Consid6rons le fibr~ en droites affines Ee-~f2xS ~-1 dont les 

fibres sont p - t ( x ,  o)={x+to;  tER}.  La  d6riv6e de �9 dans la direction v au point x+tv  

d6finit clairement une fonction analytique r6elle f:E---,R, et il suffit d'appliquer la 

Proposition 1 avec K I = B •  ~-1 et K 2 = ( x + t v E E ; x ~ B , x + t v ~ B } .  Q.E.D. 

w 2. Distance entre deux points sur une hypersurface de niveau 

La proposition suivante, qui est un cas particulier du (3) de l 'Introduction, entraine 

l'6nonc6 (5.1 I) dans IT]: 

PROPOSITION 3. Soit  ~:  f2---~R une fonct ion analytique r~elle d~finie sur un ouvert 

f2 de R n, et soit K un sous-ensemble compact  de f2. On suppose que les f ibres 

dP- l ( t )nK sont connexes.  I1 existe un nombre r~el C>0  tel que, pour tout tEdP(K), 

chaque couple de points x, y E ~ - l ( t ) N K  puisse ~tre reli~ par un arc, analytique par 

morceaux, contenu dans dP-l(t)N K et de longueur <.C. 

D~monstration. Remarquons d 'abord que la question est locale sur R, en ce sens 

qu'il suffit de v~rifier qu 'un point arbitraire de ~(K) poss~de un voisinage V tel que tout 

couple de points x, y E ~ - I ( t ) N K ,  t E V ,  peut ~tre reli6 par un arc contenu dans 

�9 -I(t) NK et de longueur ~<Cv. 

Remarquons ensuite que la questions est aussi locale ,, en haut ,, : il suffit de 

montrer que tout point x E K  poss~de un voisinage ouvert U c K  tel que deux points 

quelconques de U appartenant ~t la m6me fibre de �9 puissent ~tre joints par un arc 

contenu dans ~ - t ( t ) N U  et de longueur ~<Cu. Soit aiors V un voisinage ferm6 d 'un 

point arbitraire de ~(K).  On recouvre ~ - I ( V ) N K  par un nombre fini d 'ouverts du 

genre de U, U~ . . . . .  Ur. Par l 'hypoth~se de connexit6 des fibres ~ - i ( t ) N K  on aura la 

propri6t6 suivante : si x, y E ~-~(V)NK appartiennent ~t la m6me fibre de ~ ,  il existe 

une suite finie x=ul ,  u2 . . . . .  us=y de points de cette m6me fibre, tels que deux points 

successifs uj, Uj§ appartiennent ii l 'un des ouverts U,.. D'autre part, si uj et uj+v avec 

v~>2, appartiennent au m6me ouvert on peut supprimer tous les points interm6diaires 

dans la suite et de cette fagon se ramener au cas ot3 la longueur de la suite ne d6passe 

pas r. On peut alors prendre Cv=E~i~_rCj. 

Enfin, rappelons le th6or~me de d6singularisation suivant : 

TH 1~ ORI~ ME (Hironaka, cf. [H 1 ]). Soit X un espace analytique r~el non singulier et 

soit ~ un fa isceau coherent d'id~aux du faisceau structural ~dx. Pour tout point  x E X,  
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il existe un ooisinage ouvert U de x dans X et un morphisme zt:X'---~U entre espaces 

analytiques r~els, ayant les propri~t~s suivantes : 

(1) Le morphisme ~t est propre, surjectif  et alg(brique, en ce sens qu'il existe un 

diagramme commuta t i f  : 

i 
X '  --~ U •  N 
~t x, dp r l  

U 

of 4 i est une immersion ferrule et i(X') est d(fini  par un ideal engendr~ par des 

polyn~mes en les coordonn~es de R N, ~ coefficients analytiques sur U. 

(2) L'espace  analytique X '  est non singulier. 

(3) Si Y est le sous-espace de X d(fini  par ~r, l' ouvert X ' \ z t - I ( Y )  est dense dans 

X ' ,  et rc induit un isomorphisme 

X ' \ ~ r - l ( Y ) - - ~  X \  Y. 

(4) Pour tout point  x'  EX ' ,  il existe un systdme de coordonn~es locales (z~ . . . . .  z ' )  

dans X ' ,  centr~ en x', tel que l'ideal ft. MX',x' soit engendr~, dans 

Mx,,x,=R{z~ . . . . .  z ' ) ,  par  des mon~mes 

Z t l l  , ~  tan tl Z, , a =  (a I . . . . .  a , )EZ+ .  

Revenons-en ~ la d6monstrat ion de la Proposit ion 3. Soit Xo E K; posons to=~(Xo) 

et soit ~ l'id6al de Mu engendr~ par D - t o .  D'apr6s le th6or/~me pr6c~dent il existe un 

voisinage ouvert  U de Xo dans K, un morphisme propre :r: X ' - ~ U  tel que X' soit non 

singulier et que, pour  tout point x'  de X' ,  il existe un syst~me de coordonn~es locales 

x~ . . . . .  x" tel que, dans un voisinage ouvert  U' de x ' ,  on ait 

t i t a l  t a n  
( ~ l , - t o )  o (:rl  u ' )  = u ( x l  . . . . .  x n )  x ~ . . .  x ~ , 

avec a E Z n et u * 0  dans U'. + 

Puisque le morphisme : r e s t  propre,  on voit, par le m~me raisonnement  de 

localisation que plus haut, qu'il suffit de montrer  que tout point x' EX' poss~.de un 

voisinage ouvert  W' tel que deux points de W' appartenant ~ la m6me fibre de ~o ~r  

puissent 6tre joints par un arc contenu dans y t - l ( ( I ) - l ( t ) f ) g ) f ) W '  e t  de longueur 

<-Cw,. En effet, on recouvrira  7 t - i ( ( 1 ) - I ( t o ) N g )  par un nombre fini r de tels ouverts,  

dont la r~union contient  ~r-1(~-I(V)NK) (V : voisinage de to dans R). On saura 
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joindre deux points x'  et y '  de X-l (d~-I ( to)nK)  par la r6union d 'un  nombre d 'arcs  ne 

d6passant pas r, dont  la longueur totale est ~<E~j~ r Cwj. La  r6union des images par n de 

ces arcs fournira un chemin joignant x(x ' )  ~ et(y'), de longueur <~A E l ~ r  C W Ici A est 

une constante,  puisqu'il  s'agit de borner  la longueur d 'arcs  images par zr d 'arcs  de 

longueur born6e dans X'.  On peut  prendre pour  A n fois le supremum sur 

X - I ( ~ - l ( V )  N K) des valeurs absolues des d6riv6es partielles des fonctions d6crivant ~t 

dans des cartes locales. 

Finalement on est ramen6 b~ prouver  : 

a I a n LEMME. Soit  ~ = u ( z l  . . . . .  zn)zl ... z n aoec aEZ~+ et ua~O dans un voisinage ouoert 

U' de 0 dans R n. II existe un ooisinage ouoert W' ~ U '  de 0 et une constante Cw,>O tels 

que deux points  quelconques  de W'  appartenant  d la m~me composante  connexe d 'une  

f ibre  de �9 puissent  ~tre jo in ts  par  un arc contenu dans U' sur lequel �9 est constante,  

de longueur <-Cw,. 

D~monstrat ion.  Apr6s contract ion de U' et changement  de variables on peut 

supposer que ~=z~ ' . . .  z~ n. On supposera d6sormais que U' est une boule ouverte 

contr6e ~ l 'origine, de rayon Q. I1 est clair aussi qu 'on peut se ramener  au cas oO tous 

les aj sont ~<I. En effet, admettons que certains de ces exposants  soient nuls; apr6s un 

changement  d ' indices des variables on peut supposer  que O=z~' ... z~ v avec aj~>l pour  

j = l  . . . . .  v. Les arcs recherch6s pourront  6tre alors r6union d 'un  arc sur lequel ~ et 

z"=(zv§ . . . . .  zn) sont constants ,  et d 'un  segment de droite dans l 'espace z", sur iequel 

z'=(z~ . . . . .  zv) et d o n c � 9  sont constants.  

Soient alors x=(x~ . . . . .  x~), Y=(Ym . . . . .  Yn) deux points de U' appartenant  ~ la m6me 

composante  connexe d 'une  fibre de ~ .  On supposera ~ ( x ) = ~ ( y ) * 0 ,  et m6me que pour  

chaque i= 1 . . . . .  n, x,. et y; aient le m6me signe (puisque ies aj sont tout non nuls il e n e s t  

de m6me des xj et des yj). Posons alors, pour  0~<t~<l, 

zj = xjlxjl-'lyjl', J = 1 . . . . .  n. 

I1 est clair que ~ ( Z ) = ~ ( x ) = ~ ( y ) .  De plus, 
n 

II/ll = (z~+... + z z S  2 ~< ~ Ixjl'-' lyjl t<<- no.  
i = 1  

I1 suffira d6sormais de faire varier x et y dans une boule W' centr6e ~ l 'origine, de rayon 

p'<<-o/n, pour  6tre stir que Z reste dans U'. Lorsque  t varie de 0 ~ 1 le point Z(t) parcourt  

un chemin de x & y. La  longueur de de chemin est major6e par 
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n 

' [Zj(t) I dt <~ Z Ixj-YJ[ <~ 2nQ'. 
j=l  j=l 

Puisque cette majoration est uniforme, et que par ailleurs deux points de ~-~(0)n U' 

peuvent 6tre joints par un arc de longueur ~<2Q, le lemme est demontr6. 

Remarque : L'hypoth~se de connexit6 les fibres de ~-~(t)fl K est superflue : au vu 

de la propriet6 (1) de l'introduction, le nombre des composantes connexes des 

�9 -~(t) OK est uniformement borne, et nous demontrons en fait ci-dessus qu'il existe 

C>0 tel que pour t E ~ - l ( K ) ,  deux points x ,y  appartenant ~t la meme composante 

connexe de ~-~(t)fl K puissent 6tre joints par un chemin contenu dans ~-~(t)fl K et 

de longueur ~<C. 

Nous pouvons deduire de la Proposition 3 l'6nonc6 (5.15) de [T]. Notons 7(x, y) la 

courbe qui joint x ~ y dans ~ -  ~(t) fl K et qui a 6t6 construite dans la demonstration de la 

Proposition 3. Supposons K convexe et notons l(x, y) le segment de droite qui joint x 

y. Parametrons ces deux courbes de fagon qu'elles aient la meme longueur (et qu'elles 

soient toutes deux orientees de x ~ y). Soit alors S(x, y) la surface reglee engendree par 

les segments de droite joignant les points sur 7(x, y) et l(x,y) qui correspondent ~ la 

meme valeur du parametre. 

COROLLAIRE 2./ /existe une constante C'>0 qui majore l'aire de S(x, y) quels que 

soient x, y E K. 

Le Corollaire 2 resulte de la Proposition 3 et de l'6nonc6 suivant : 

LEMME DU LIMON(I ) .  L' aire de S(x, y) est major~e par le produit de la longueur 

de chemin y(x, y) et de la longueur maximum des segments de droite qui engendrent 

S(x, y). 

La preuve de ce lemme est un exercice de calcul differentiel. On pourra prendre la 

constante C' dans le Corollaire 2 6gale ~ C diam K, o0 C est la constante obtenue dans 

la Proposition 3. 

Ajout~ sur ~preuves. Recemment, R. Hardt a repondu affirmativement ~ la question (2) 

de l'introduction; voir ,, Some analytic bounds for subanalytic sets ,~ in ,, Differential- 

geometric control theory ,,, Progress in Math., n ~ 27, Birkh~iuser. 

(t) On appelle ~ limon ,} ia courbe engendrge par le bord extreme des marches dans un escalier ~ vis. 
Le lemme du limon ~nonce donc que la surface d'un escalier ~. vis esI major~e par la longueur du limon que 
multiplie la longueur de la plus Iongue marche. La terminologie et l'~noncg sont dus ~ Douady. 
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