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w 1. Introduction 

Let :r be an irreducible representation of a semisimple Lie group G. As has been known 

for some time, there exist connections between three types of invariants of zr: the 

asymptotic behavior of its "matrix coefficients", the character of :t, and the set of 

induced representations into which :t can be embedded. Most of the analytic arguments 

in the representation theory of G exploit these connections in some way. Harish- 

Chandra's construction of the discrete series, for instance, is based on a detailed 

analysis of the interaction between the growth rates of the character and of the matrix 

coefficients. To give a second example, Langlands classifies the irreducible representa- 

tions ~t by realizing them as subrepresentations of certain induced representations, 

which he describes in terms of the asymptotic behavior of the matrix coefficients of n. 

In this paper, we systematically explore the relationships between characters, asymp- 

totics, and embeddings into induced representations. 

Our main tool is a character identity that was conjectured by Osborne [33]. In 

order to explain the conjecture, we consider a parabolic subgroup P=LN, with unipo- 

tent radical N and Levi factor L. In the special case of a finite dimensional representa- 

tion ~, the group L operates naturally on the Lie algebra homology groups Hp(n, V) of 

the representation space V, with respect to the complexified Lie algebra n of N; this 

action is induced by the action of L on the standard complex of Lie algebra homology 
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V| via ~ on V and conjugation on n. As a general rule, if U is a module for a group 

H, we let On(U) denote the character. Then, for purely formal reasons, 

Oc(V) X ( -  1)POL (Apn) = X ( -  I)POL(Hp (n' V)) (1.1) 
p p 

is an equality on L. 

Properly interpreted, both sides of (1.1) still make sense if :r is an irreducible 

unitary representation or, more generally, an admissible (~) representation on a Fr~chet 

space, with a composition series of finite length. Let KcG be a maximal compact 

subgroup. The space V of all K-finite vectors corresponding to such a representation 

(i.e., the linear span of the finite dimensional, K-invariant subspaces) consists entirely 

of differentiable vectors, and the complexified Lie algebra g of G acts on V by 

differentiation. The resulting algebraic representation reflects all important properties 

of ~ except, loosely speaking, the choice of a topology [13]. We refer to V as the 

underlying Harish-Chandra module of ~. The global character of ~, as defined by 

Harish-Chandra [15], is an invariant of the Harish-Chandra module V; this justifies the 

notation Oc(V). Although the reductive group L no longer operates on the homology 

groups Hp(n, V), its complexified Lie algebra [ does act, and one can show that the 

groups Hp(rt, V) are Harish-Chandra modules of global representations of L. In particu- 

lar, the homology groups have well-defined characters OL(Hp(n, V)). Thus all ingredi- 

ents of the identity (1.1) retain their meaning. 

The two sides of (1.1) have different syui ~,etry properties unless V is finite 

dimensional. For this reason one cannot expect an equality on all of L. In the case of a 

minimal parabolic subgroup P, Osborne [33] conjectured that the identity (1.1) holds on 

a certain large subset of L. The conjecture was later refined and extended to arbitrary 

parabolic subgroups by Casselman, who also verified its p-adic analogue [6]. Our proof 

establishes the identity (l. 1) on a subset L - c  L, which contains the domain of validity 

predicted by Casselman, and which is " large",  in the following sense: 

(a) the G-conjugates of L -  contain a dense open subset of L; 

(b) the projection L ~-* Ad L maps L -  onto Ad L. 

Because of (a), 

(1.2) 

(b), the Euler characteristic of the n-homology groups determines 

(i) A technical hypothesis ,  which is satisfied in all known cases  [13, 29]. 
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e c ( v )  not only on L - ,  but on all of L, and conversely Oc(V) determines this Euler 

characteristic as a virtual Harish-Chandra module for L. 

There are two important reasons for studying the n-homology of Harish-Chandra 

modules. In principle, at least, the n-homology groups in dimension zero contain 

complete information about intertwining operators into induced representations: the 

Frobenius reciprocity theorem [7] provides a natural isomorphism 

Homa (V, f i ( U ) ) =  Homt. (H0(n, V), U); (1.3) 

here f i(U) denotes the Harish-Chandra module induced from P=LN to G by a Harish- 

Chandra module U for L, and Hom6(  .. . . . . .  ) refers to the homomorphisms in the 

category of  Harish-Chandra modules.(2) The rate of growth of the (K-finite) matrix 

coefficients of a global representation :r is an invariant of the underlying Harish- 

Chandra module V. According to a result of Mili~i~ [31], this rate of growth is 

controlled by the action of the noncompact part of the center of L on H0(n, V), for any 

particular minimal parabolic subgroup P=LN. In both instances the homology groups 

in dimension zero turn out to be the objects of interest. Nevertheless, the higher 

homology groups play a role, since they measure the obstruction to the exactness of the 

functor Vvv--*H0(n, V). We should add that all of the homology groups Hp(n, V) are 

related to Ext groups in an appropriate category; this follows from (1.3) by a derived 

functor argument [3]. 

If the alternating sum formula (1.1) is to give information about H0(n, V) mand 

hence about asymptotics and intertwining operators into induced representations--, it 

must be coupled with a vanishing theorem. To state the result, we write the Levi factor 

of P as a direct product L=MA, of a reductive group M with compact center and a 

central vector subgroup A. The homology groups Hp(n, V) have finite composition 

series, which makes it possible to put the action of the complexified Lie algebra a into 

Jordan canonical form, 

Hp(n, V)= E) Hp(n, V L, 0.4) 
v E o* 

with Hp(n, V)v=generalized (v+oe)-eigenspace(3) of a. We call v a homology expo- 

nent if Hp(n, V)v*0 for some p. A leading homology exponent is one that cannot be 

(e) The notation is merely symbolic, since G itself does not act on the modules in question. 
(3) The shift by Op, which denotes one-half of the trace of ad n on n, makes the labeling compatible 

with Harish-Chandra's parametrization of the characters of the center of the universal enveloping algebra. 
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expressed as a sum v'+S, of another homology exponent v', plus a non-zero sum S of 

positive restricted roots. The vanishing theorem asserts: 

Hp(n, V)v = 0 if v is a leading homology exponent and p > 0. (1.5) 

In particular, there can be no cancellation in the identity (1. I) among terms correspond- 

ing to a leading homology exponent v. 

Now let P = L N = M A N  be a minimal parabolic subgroup and V the Harish-Chandra 

module attached to a global representation :r. The K-finite matrix coefficients of~r have 

asymptotic expansions on the various Weyl chambers in A--on the negative chamber 

A - c A ,  for example. Since G=KA-K,  these expansions on A-  bound the growth of 

the matrix coefficients in all directions. The result of Mili~i6 which was alluded to 

before describes the leading terms in the asymptotic expansions on A-  as the exponen- 
v+Op 

tials e , with v ranging over the leading homology exponents. Because of the 

character identity (1.1) and the vanishing theorem (1.5), the leading homology expo- 

nents also measure the growth of Oo--(V) on A-:  the character and the matrix coeffi- 

cients have exactly the same asymptotic behavior on A- ;  similar arguments, based on 

the identity (1.1) for other choices of P, show that the growth of the character on A-  

dominates its growth on every Cartan subgroup. This very precise relationship between 

characters and asymptotics contains various estimates of Harish-Chandra, Trombi- 

Varadarajan and Mili~i6. 

The passage from characters to intertwining operators into induced representa- 

tions is a more delicate matter. The character O6(V), which determines the composi- 

tion factors of V rather than V itself, cannot possibly give information about all 

intertwining operators. One can even argue heuristically that if there is no simple, 

explicit relationship in general, one should not expect it in the irreducible case. On the 

other hand, the existence of intertwining operators corresponding to leading homology 

exponents is an immediate consequence of the identity (1.1), the reciprocity theorem 

(1.3) and the vanishing theorem (1.5). Such leading intertwining operators play an 

important role in classification problems and irreducibility criteria. To give a concrete 

example, we consider a module V=~(U)  of the unitary principal series. Because of 

restrictions imposed by the action of the center of the universal enveloping algebra, 

every homology exponent v, relative to the minimal parabolic subgroup P, is a leading 

homology exponent. Bruhat's irreducibility theorem follows readily: because of (1.1) 

and (1.5), the multiplicity of the inducing module U in H0(n, V) can be extracted from 

the character formula for the principal series, and this multiplicity bounds the dimen- 

sion of 
Home(V,  V)= HomMA (Ho(n, V), U). 
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Similar arguments prove Harish-Chandra's generalization of Bruhat's theorem, results 

of Harish-Chandra and Trombi about tempered representations, and Langlands' classi- 

fication of irreducible Harish-Chandra modules. 

This paper was conceived several years ago, when we first saw how to deduce 

Osborne's conjecture from Langlands' classification and Harish-Chandra's estimates 

of tempered characters. As we put our argument into writing, we realized that the 

conjecture provides a unified, conceptual explanation of several important results-- 

Langlands' classification and Harish-Chandra's estimates among them. For this reason 

we have chosen to prove the conjecture ab initio, and to include proofs of a number of 

known results for the convenience of the reader. W e  do assume basic facts about 

semisimple Lie groups and their representations, such as Harish-Chandra's definition 

of the character, his regularity theorem and the existence of asymptotic expansions of 

matrix coefficients. The latter is again due to Harish-Chandra, but was never published 

by him in its entirety; a very readable account has just become available [8]. Self- 

contained, efficient expositions exist also for the remaining ingredients of our proof: 

two algebraic lemmas of Casselman-Osborne [9, 10], the Artin-Rees lemma for U(rt) 

[32, 30], the formula for induced characters [25, 42]. Finally, we should mention the 

result that every irreducible Harish-Chandra module lifts to a representation of G [29, 

I1]; although our proof is logically independent of it, we use it in order to avoid 

convoluted statements and hypotheses. 

As for the organization of this paper, section 2 begins with a general discussion of 

Lie algebra homology. We go on to show that the homology groups Hp(n, V) are 

Harish-Chandra modules for the Levi factor, and we deduce the vanishing theorem 

(1.5) from a lemma of Casselman-Osborne and the Artin-Rees lemma for U(rt). We 

state Osborne's conjecture in w 3. We then reduce it to a very special case: it suffices to 

equate the contributions of certain extreme exponential terms on the two sides of (I. I). 

The mechanism is the process of coherent continuation, which we develop in the form 

most suited to our purposes. Section 4 reviews the Frobenius reciprocity theorem, the 

existence of asymptotic expansions and Mili~i6's characterization of the leading expo- 

nents; we use these ideas to construct the Langlands embedding of an arbitrarY 

irreducible Harish-Chandra module into a module induced from a tempered Harish- 

Chandra module, with a negative inducing parameter. The induced character formula, 

which plays an important role both in the proof and the applications of Osborne's 

conjecture, is discussed in w 5. All threads run together in w 6, where we prove the 

identity (1.1) in the case of a minimal parabolic subgroup. After the earlier prepara- 

tions, the proof is essentially formal, except for two analytic tools: a lemma of Mili~i6, 
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which asserts that certain induced modules have unique irreducible submodules, and 

an estimate for the global character in terms of the leading exponents. This estimate is 

based on the Langlands embedding constructed in w 4; its proof takes up most of w 6. 

For the sake of completeness, we verify Mili~iCs lemma in an appendix, at the end of 

the paper. Some modifications are necessary to adapt the arguments of w 6 to the case 

of a general parabolic subgroup, which is treated in w 7; instead of the lemma of Mili~iC 

we appeal to a corollary of the special case of Osborne's conjecture proved in w 6. 

Section 7 also contains a reformulation of the identity (1. I) that relates the character to 

the homology groups with respect to certain maximal nilpotent subalgebras of g. Vogan 

[41] uses this version of our results in his work on the generalized Kazhdan-Lusztig 

conjectures. Various applications of Osborne's conjecture are described in w 8: the 

relationship between characters and asymptotics, Harish-Chandra's irreducibility theo- 

r em,  the Langlands classification and basic properties of tempered Harish-Chandra 

modules. 

Our methods have further applications; we intend to pursue them in a future 

publication. 

w 2. A vanishing theorem for n-homology 

Although we are primarily interested in representations of connected, semisimple Lie 

groups, our arguments can be carried out most efficiently in a slightly wider context. 

Throughout this paper, G will denote a reductive Lie group, subject to the following 

conditions, first introduced by Harish-Chandra [21]: 

(a) G has finitely many connected components; 

(b) the derived group [G, G] has finite center; (2.1) 

(c) Adg,  for g E G, is an inner automorphism of the complexified Lie 

algebra ~. 

Once and for all, we fix a maximal compact subgroup KcG; it is unique up to 

conjugation and meets every connected component of G. 

By a Harish-Chandra module(t) for G, we shall mean a module V over the 

universal enveloping algebra U(~;), equipped with an action of K, such that 

(a) V is finitely generated as U(g)-module; 

(t) This terminology is not completely standard. Dixmier [I 1], for example,  uses it in a different sense.  
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(b) every vE V lies in a finite dimensional, f-invariant subspace; 

(c) the actions of g and K are compatible; and (2.2) 

(d) each irreducible K-module occurs only finitely often in V 

(f=complexified Lie algebra of K). Explicitly, the compatibility condition (c) means 

that the f-action is the differential of the K-action, and that 

k(Xv) = Ad k(X) (kv), 

for kEK,  X E ~ ,  vEV.  The space of K-finite vectors in an irreducible, admissible 

representation of G on a Banach space is the prototypical example of a Harish-Chandra 

module [13]. Because of (2.2 c, d), 

every v E V lies in a finite dimensional, Z(g)-invariant subspace (2.3) 

(Z(g)=center of U(g)). Conversely, if the module V satisfies (2.3), in addition to 

(2.2a-c), it also satisfies (2.2d) and consequently is a Harish-Chandra module [13]. 

The Z(g)-finiteness property (2.3) makes it possible to decompose V under the 

action of Z(g): 

V = ~ V  x, (2.4) 
X 

with X ranging over the set of characters of Z(~), and 

V x = largest submodule on which Z-~c(Z) acts nilpotently, 

for every Z E Z ( ~ ) .  (2.5) 

In particular, if V happens to be irreducible, Z(g) acts according to a character. As a 

finitely generated U(9)-module, V is Noetherian, and hence has a decreasing filtration 

with irreducible quotients. Up to isomorphism, there exist only finitely many irreduci- 

ble Harish-Chandra modules on which Z(~) acts according to any given character [13]. 

Thus, in view of (2.2d), the filtration must break off after finitely many steps. This 

shows: 

Harish-Chandra modules have finite composition series. (2.6) 

Every irreducible Harish-Chandra module V lifts(2) to an irreducible, admissible 

representation :r of G on a Hilbert space V,~, in the sense that V is (isomorphic to) the 

(~) Our arguments can be made logically independent of this fact, which is not so easy to prove. 
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U(~)-module of K-finite vectors in the representation space V~ [29, 11]. The distribu- 

tion character O of z, as defined by Harish-Chandra, depends only on the infinitesimal 

equivalence class of ~r [15]--in other words, O may be regarded as an invariant of the 

Harish-Chandra module V. More generally, (2.6) allows us to define the characters O of 

an arbitrary Harish-Chandra module V, as the sum of the characters of the composition 

factors of V. The characters corresponding to any finite set of irreducible, pairwise 

non-isomorphic Harish-Chandra modules are linearly independent [15]. In particular, 

the character O of a Harish-Chandra module V completely determines 

the composition factors of V. (2.7) 

Like every invariant, Z(~)-finite distribution, the character O is a locally L~-function, 

real analytic on the set of regular semisimple elements [18]. 

Let P be a parabolic subgroup of  G, with Langlands factorization 

P = MAN.  (2.8) 

Thus N is the unipotent radical of P, A the largest connected, central, R-split subgroup 

of the Levi factor MA, and M is reductive, with compact center. On the level of the 

complexified Lie algebras, (2.8) corresponds to 

V = m O ) a ~ n .  (2.9) 

Although M and MA need not be connected, they do inherit the properties (2.1) from G. 

Conjugating P, if necessary, one can arrange that 

M A K  is a maximal compact subgroup of M, (2.10) 

and hence also of MA. 

The main objects of interest of this section are the homology and cohomology 

groups of a Harish-Chandra module V, with respect to the complexified Lie algebra n 

of N. We briefly recall their definitions and general properties. The homology groups 

Hp(n, V) (2. I 1) 

arise as the derived functors of the covariant, right exact functor 

Vw--* V/nV= H0(n, V) (2.12) 

on the category of U(n)-modules. They can be calculated as the homology groups of the 

standard chain complex C.(n, V), with 

Cp(n, V) = V | APn (2.13) 
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[5]. Dually, the cohomology groups 

/-/P(n, V) (2.14) 

are derived from the covariant, left exact functor 

Vwr-~ space of n-invariants in V -- H~ V), (2.15) 

and can be identified canonically with the cohomology groups of the standard cochain 

complex C*(n, V), whose terms are 

CP(n, V) = V |  N ' n * .  (2.16) 

For any vector space or U(g)-module V, we let V* denote the (algebraic) dual of V. 

Thus, if V is a Harish-Chandra module, V* is also a U(g)-module and a K-module in a 

consistent manner, but V* does not satisfy (2.2 b), unless dim V<oo. As can be verified 

by direct calculation, the natural isomorphisms 

CP(n, v*) -- CAn, V)*, 
(2.17) 

Cp(n, V) = cd-P(rt, V t~ Adn) 

(d=dim n) are compatible with the appropriate boundary and coboundary operators, 

and consequently they induce natural isomorphisms 

fF(n ,  V * ) -  Hp(n, V)*, 
(2.18) 

Hp(n, V) ~-- Hd-P(n, V) @ Adn 

[5] (note: n operates trivially on Aan). 

Since both m~)a and K n M  normalize n, they act on the complexes (2.13, 2.16), 

and thus on the homology and cohomology groups (2.11, 2.14). These actions are 

canonical; in particular, they preserve the isomorphisms (2.18). Shortly we shall prove 

that the n-homology and -cohomology groups of a Harish-Chandra module V are 

Harish-Chandra modules with respect to the group MA. For this purpose, we recall the 

definition of the Harish-Chandra homomorphism (without renormalization) 

y~,: Z(g)--~ Z(m ~9 a) (2.19) 

between the centers of the universal enveloping algebras of g and re@a: yb(Z), for 

ZEZ(g),  is the unique element of U(mt~ct) - -which necessarily lies in Z(m@a) --satis- 

fying the congruence 

y~,(Z) --= Z (mod nU(g)) (2.20) 
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[18]. The dual mapping, between the sets of characters of Z ( m ~ a )  and Z(g), has finite 

fibres [18]; cf. w 3 below. In particular, if l~Z(g)  is a maximal ideal, 7~,(/) generates an 

ideal of finite codimension in Z(m0)a). 

LEMMA 2.21 (Casselman-Osborne [9]).(3) I f  an ideal IcZ(g)  annihilates a 

U(g)-module V, then ~'e(1) annihilates the n-homology groups o f  V. 

Combined with (2.18), the lemma implies the analogous statement about n-coho- 

mology. We shall also use the following result of Casselman-Osborne: let nm denote 

the complexification of a maximal nilpotent subalgebra of g0 (=real Lie algebra of G); 

then 

LEMMA 2.22 (Casselman-Osborne [I0]). Every Harish-Chandra module V is finite- 

ly generated over U(nm). 

Up to conjugacy over K, I~ contains n,,, which allows us to conclude: 

COROLLARY 2.23. Every Harish-Chandra module V is finitely generated over 
u(p). 

We now state and prove the first main result of this section: 

PROPOSITION 2.24. Let V be a Harish-Chandra module for G. With respect to the 

natural actions o f  U(m0)a) and M NK, the n-homology and -cohomoiogy groups o f  V 

become Harish-Chandra modules for MA. 

Proof. In view of (2.18), it suffices to consider the n-homology groups of V. We 

resolve V by free U(I3)-modules of finite rank, 

. . . ~  v p - ,  v , _ , - , . . . - ,  Vo- ,  V- ,O;  (2.25) 

this is possible because of corollary 2.23. Since U(p) is free over U(n) by Poincar@ 

Birkhoff-Witt, the functorial definition of n-homology allows us to identify Hp(n, V) 

with the p-th homology group of the complex 

. . .--, v,,/n v,,---, vp_ ,/n vp_ , --, . . . - ,  v 4 n  vo ~ o. (2.26) 

The Lie algebra m ~ a  normalizes n, hence operates on the complex (2.26), as well as on 

its homology groups Hp(n, V). We claim that the resulting U(m~a)-action agrees with 

(3) The proof has been simplified by Vogan and others; see, for example, the appendix of [36]. 
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the one which was previously introduced(4), i.e. with the U(m0)a)-action inherited 

from the complex (2.13). For p=0,  one can check this directly: both actions arise as the 

quotient of the U(m~a)-act ion on V. To verify the claim inductively, we assume it for 

some p~>0, and for all U(l~)-modules V. We express V as the quotient of a free U(~)- 

module F, 

0---> V'--* F--> V-,O, 

which is then also free as a U(n)-module, and thus has no higher n-homology groups. In 

the exact homology sequence 

0---> Hp+l(n, V)---, Hp(n, V')---> .... 

the coboundary maps commute with both U(m0)a)-actions, since these actions have 

functorial origins. The claim follows by induction. The U(lJ)-modules Vp in (2.25) are 

free, of finite rank. Hence, again by Poincar6-Birkhoff-Witt, each term of the complex 

(2.26) is a finitely generated, free U(m0)a)-module. Using the claim that was just 

established, we deduce: the U(m0)a)-modules Hp(n, V) are finitely generated, and thus 

satisfy the firs't condition (2.2 a) in the definition of Harish-Chandra module (with 

respect to MA). The next two conditions (2.2 b, c) hold even on the level of the complex 

(2.13). As for (2.2d), an inductive argument, proceeding by the length of the composi- 

tion series of V, reduces the problem to the case of an irreducible module V. In 

particular, we may assume that some maximal ideal IcZ(,q) annihilates V. Its image 

7~,(/) generates an ideal of finite codimension in Z(m~)a), which according to lemma 

2.21 annihilates Hp(n, V). But then Hp(n, V) satisfies the Z(m~a)-finiteness condition 

analogous to (2.3). To complete the proof, we recall that (2.3), together with (2.2 a-c), 

implies (2.2d). 

roots (5) 
The nilpotent radical n of p corresponds to a system of positive restricted 

�9 +(g, a) = set of all linear functions a 6 a* 

according to which a operates on n. 
(2.27) 

(4) This observation is the point of departure of Casselman-Osborne's proof of lemma 2.21 in [9]. 
(5) This terminology is not meant to suggest that the restricted root system cl,(g, a) satisfies the axioms 

of a root system--which need not be the case, unless P is a minimal parabolic subgroup. 
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We let Pe denote the half-sum of the positive restricted roots; more precisely, 

1 
Ql'=--f 2 n~a, 

aE ~+(l~,a) 

(2.28) 

with n,~=dimension of the a-root space. As one consequence of proposition 2.24, the 

action of Z(m(~a) on the homology groups Hp(n, V) determines a decomposition 

analogous to (2.4). Since Z(mt~a) contains U(a), the action of a can also be put into 

Jordan canonical form: 

Hp(n, V) = ~ Hp(n, V) v (2.29) 
v E a* 

(finite direct sum), where 

Hp(n, V)v = largest subspace of Hp(n, V) on which X -  < v+oe, X >  
(2.30) 

acts nilpotently, for all XE a. 

The shift by pe has the effect of making our notation compatible with Harish-Chandra's 

labelling of the characters of Z(g); cf. w 3 below. 

We use the system of positive restricted roots (2.27) to partially order the dual 

space a*, by defining 

> v r ~ - v  is a non-zero linear combination, with 

positive integral coefficients, of roots a E ~+(~, a). (2.31) 

The next result plays a crucial role in both the proof and the applications of Osborne's 

conjecture. In the special case of a minimal parabolic subalgebra, it is due to Casselman 

(unpublished), and may be regarded as a weak version of the vanishing theorem for n- 

homology which was established in [36]. The much more precise version of [36] does 

have an analogue in our situation of a general parabolic subalgebra, but we shall not 

pursue this matter here. Our proof consists of a string of lemmas; it closely parallels the 

argument of [36], where further details can be found. 

PROPOSITION 2.32. Let V be a Harish-Chandra module, I ~ a linear function on a, 

and p>0 an integer, such that Hp(n, V)~,~0. Then there exists a v E ct*, with V<l~ and 

H0(n, V)v4:0. 

Following Casselman's ideas, as described in [36, w 4], we consider 

V t"l = {v*E V*]nkv *=  0 for some kEN}. (2.33) 
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A simple argument shows that V tn~ is a U(g)-submodule of the algebraic dual V*: Since 

normalizes n, we only need to worry about root spaces g-a, a E cI,§ a); for any 

such a, [g-a, nk+l]cu(g)nk if l is large, hence g - a V [ n ] c v t n ] .  AS before, n m shall 

denote the complexification of a maximal nilpotent subalgebra of the real Lie algebra 

go. We may and shall assume 

in which case 

ncnmCP, 

nm= (nm N m) @ n (semidirect product). (2.34) 

The definition (2.33) makes sense for any U(nm)-module V, and thus we may regard 

Vam---~ V tnj (2.35) 

as a contravariant functor from the category of U(nm)-modules to itself. 

LEMMA 2.36. Restricted to the category of finitely generated U(nm)-modules, the 

functor (2.35) is exact. 

This follows directly from the Artin-Rees lemma for the ideal nU(nm) c-- U(nm): let 

V' be a submodule of a finitely generated U(nm)-module V, and k a positive integer; 

then (nk+tV)N V'cnkV ', provided I is large enough [32]. 

LEMMA 2.37. For every finitely generated U(n,,,)-module V, the inclusion 

Vi"I~V * induces isomorphisms HP(n, vtnJ)=/-/P(n, V*). 

Proof. Since V can be represented as a quotient of a free module of finite rank, an 

induction argument on the degree p reduces the problem to the special case V= U(nm). 

According to the Poincar6-Birkhoff-Witt theorem, U(nm) is free as a module over 

U(n), and thus has trivial higher homology groups. In particular, the augmented 

complex 

... -* U(nm) | AVn--* ... ~ U(nm)-* Ho(n, U(nm)) ~ 0 (2.38) 

is exact. If we let U(n,,,) operate trivially on An, and by right multiplication on itself 

and on 

Ho(n, U(nm))= U(nm)/nU(nm), 

(2.38) becomes an exact sequence of finitely generated (right) U(nm)-modules, which 

remains exact when we apply either the duality functor or the functor (2.35)---cf. lemma 
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2.36. The resulting exact sequences, except for the initial terms, coincide with the 

standard complexes of Lie algebra cohomology for U(nm)* and U(n,,,) tnl, respective- 

ly. Since 

(U(nm)lnU(nm)) trtl = (U(n,,,)/nU(n,,,))*, 

one finds 

i fp  O, 

i f p > O ,  

and this establishes the lemma. 

LEMMA 2.39. Let  V be a Harish-Chandra module. Then every v* E V tnl lies in a 

finite dimensional,  a-invariant subspace.  

Proof. We begin with a simple observation: if 

O--. M'- - ,  M--> M " - ,  O 

is an exact sequence of a-modules in which both M' and M" satisfy the a-finiteness 

condition, then M also satisfies this condition. The increasing, a-invariant filtration 

0 c V}"lc V~"lc ... c V {hI, with V~ "1 = {v* E V*ln~v * = 0}. 

exhausts V [nJ and has successive quotients 

V~"J/V~n_'l = (n k-I V/nkV) *. (2.40) 

It therefore suffices to prove the a-finiteness property for the modules (2.40). The 

action of n on V determines natural surjections 

( |  | ( Vln lO--, nk-  t VInk V--. 0 

and, dually, injections 

0-'--~ (nk-lV/rtkV) *----', ( |  | (V/n V)*. 

This reduces the problem to the case of the a-module (V/nV)*. Because of proposition 

2.24, H0(n, V)= V/n V has a composition series of finite length, and in particular a finite, 

a-invariant filtration, with successive quotients on which a acts according to a linear 

function. The dual filtration of (V/nlO* has these same properties. Appealing to our 

original observation, we may deduce the required a-finiteness property for (V/nV)*, 

and hence also for V c"l. 
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The complex C*(n, V t"]) inherits the a-finiteness property in lemma 2.39 from 

V t"j, and hence has a decomposition 

C*(n, V t"j) = t~ C*(n, VtnJ) v, with 
yea* 

C*(n, VInl) v = generalized (v-pe)-eigenspace of a, 

which is analogous to (2.29), although in general infinite. On the level of cohomology, 

H*(n, V ["1) = 0) H*(n, Vt"l)v, (2.41) 
yea* 

where H*(n, Vt"J)v denotes the generalized (v-pe)-eigenspace of a, acting on 

H*(n, vtnJ); equivalently, 

H*(n, Vtnl)v = cohomology of C*(n, vt"l)v. 

Combining lemma 2.37 with (2.18), one obtains a-invariant isomorphisms 

/-f'(n, V tnl) --Hp(n, V)*, 

which exhibit the decomposition (2.41) as dual to (2.29): 

/Sm(n, vtnl)v = (Hp(n, V)_v)*. (2.42) 

Thus, if Hp(n, V)~,.0 for some p>0,  

CP(rt, vtnl)_ u = (V tnl | APn*)_~, 

must also be non-zero. The weights by which n operates on APn * can be expressed as 

sums of p negative restricted roots. We conclude: there exists a non-zero v* E V tnl, 

transforming according to some A Ea*, with 2>- /~-p t , .  By definition of V |n|, the 

U(n)-translates of v* lie in a finite dimensional, a-invariant subspace. Let -v-Q,,, be 

maximal, relative to the ordering >,  among all generalized eigenvalues that contribute 

to this subspace. Then -v-pc>.-..2, and the generalized ( -v-pe)-e igenspace  of on V in! 

meets the space of n-invariants. Thus H~ VI"1)_~ is non-zero, or dually 

H0(n, V)~*0. Since v</,, this completes the proof of proposition 2.32. 

w 3. Osborne's conjecture and coherent continuation 

The purpose of this section is to reduce Osborne's conjecture to a seemingly very 

special case. The mechanism behind our argument is the process of"coheren t  continu- 
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ation" [35, 37], which we recall to the extent that is needed here. We begin with a 

precise statement of Osborne's conjecture. 

As in w 2, P=MAN shall denote a parabolic subgroup of G, and V a Harish- 

Chandra module. To bring out the dependence on G and V, we refer to the character of 

V as Oc(V). It is a real-analytic function on 

G' = set of all regular, semisimple g E G. (3.1) 

According to proposition 2.24, the n-homology groups of V are Harish-Chandra 

modules with respect to the group MA, and thus have MA-characters 

~ ) M a ( n p ( n ,  V)) .  ( 3 . 2 )  

Every gEMANG' is regular also in MA; this ensures the real-analyticity of the 

characters (3.2) on MAn G'. The adjoint representation turns the exterior powers APrt 

into MA-modules. Since these are finite dimensional, their Harish-Chandra characters 

OMA(APn) agree with the MA-characters in the usual sense. Standard arguments in 

linear algebra imply the identity 

E (-- 1)P OMA (Apn) = det ( l-Adln);  (3.3) 
P 

in particular, the alternating sum (3.3) vanishes nowhere on MA N G'. The system of 

positive restricted roots (2.27) cuts out a negative Weyl chamber 

A- = {aEAlea(a)< I for all aE@+(~,a)} (3.4) 

in A. In terms of A-  and the function (3.3), we define 

(MA)- = interior, in MA, of the set 

{gEMA E(--1)POMA(A~n)(go)>~O f o r a l l a E a - } .  (3.5) 
P 

The main result of this paper can now be stated as follows: 

THEOEREM 3.6. For every Harish-Chandra module V, 

OG(V)I~MA)- nG' -- 
~ (- 1)POMA(Hp(rl, V)) I 

( -  1)t' OMA(AP n) 
p (MA)- n G' 
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Two properties of the set (MA)- will be important in various applications; since 

they play no role in the present section, we postpone their verification until w 5: 

every g E MA which is semisimple and regular in G is conjugate, 
(3.7) 

under G, to an element of (MA)-; 

and 

the projection MA--> M maps (MA)- onto M. (3.8) 

The character of a Harish-Chandra module for MA can be expressed as a sum of M- 

characters, multiplied by one dimensional characters of A. Hence 

every MA-character is completely determined by its restriction 

to (MA)- n G', (3.9) 

as can be deduced from (3.8) 

In order to simplify various formulas, we abbreviate the right hand side of the 

identity (3.6), 

E ( -  I~OMA(Hp(n' V)) 

O.(V) = p (3.10) 

E ( -  1)POMA (Apn) 
P 

Applying the usual Euler characteristic arguments to the long exact homology se- 

quence, one finds: 

LEMMA 3.1 1. I f  O---~ V'---~ V---~ V"--->O is an exact sequence o f  Harish-Chandra mod- 

ules, On(V) = O.(V') +On(V"). 

This shows, in particular, that O.(V) depends only on the composition factors of 

V, and not on how they are put together. In other words, we may regard O.(V) as an 

invariant of the character Oo-(V). By a virtual character, we shall mean a finite, integral 

linear combination of characters of irreducible Harish-Chandra modules. Since 

oc(v),-, o.(v) 

is an additive function, it extends to a Z-linear mapping 

O ~-> On, (3.12) 

5-838285 Acta Mathematica 151. Imprim6 le 25 octobrr 1983 
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from the Z-module of virtual G-characters to the Z-module of virtual MA-characters. In 

terms of this notation, theorem 3.6 translates into the identity 

OI(MA)- nG, = OnI(MA)_ nG,, (3.13) 

moreover, 

l 
9 = ~  - 2 a. (3.16) 

aE~+(g,b) 

As can be deduced from the Poincar6-Birkhoff-Witt theorem, for each ZEZ(g),  there 

exists a unique y[(Z) E U(b) satisfying the congruence 

Z = y:~(Z) mod rU(g); (3.17) 

y~: z(g)-~ u(b) (3.18) 

is an algebra homomorphism--the Harish-Chandra homomorphism without normaliza- 

tion. Since b is Abelian, we may identify U(b) with the algebra of polynomial functions 

on the dual space b*. In particular, evaluation at any given ;t E b* defines a character of 

U(b). The translation 

extends to an automorphism 

X~X+X(Q),  XE b, 

~'~: U(b)---~ U(b). (3.19) 

for all virtual G-characters O. 

We shall have to recall Harish-Chandra's enumeration of the characters of Z(,q). 

For this purpose, we pick a Cartan subalgebra b c g  and a maximal nilpotent subalgebra 

r, such that 

b ~ r (semidirect product) (3.14) 

is a Borel subalgebra of ft. The choice of r corresponds to the choice of a system of 

positive roots 

t~+(g, b) = ~(g,  b) (3.15) 

(~(g, b)=root system of the pair (g, b)), whose half-sum we denote by O: 
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According to a fundamental result of Harish-Chandra [16], 

y~ = y~.y~ maps Z(fi) isomorphically onto the algebra of 
(3.20) 

W(~, b)-invariants in U(b) 

(W(~, b)=Weyl group of b in g). Dually, every character of Z(~) is of the form 

Z~,~: Z(~)---~ C, with Z~,~(Z) = y~(Z) (;t), (3.21) 

for some 2 E b*, and any two of these coincide precisely when their parameters lie in 

the same W(~, b)-orbit; this is Harish-Chandra's enumeration of the characters of Z(g). 

It should be noted that the definitions of y~ and Z,,x do not depend on the choice of r, 

nor even on the choice of b: any other Cartan subalgebra is conjugate to b under an 

inner automorphism of ~, and because of (3.20), such an inner automorphism relates 

the homomorphisms y~ and the characters Z~,x corresponding to the two Cartan 

subalgebras. 

The preceeding discussion applies equally to m~)a. In order to describe the effect 

of the homomorphism (2.19), we assume, as we may, 

bcmt~a ,  and n c r c p .  (3.22) 

The positive root system (3.15) is then compatible with the system of positive restricted 

roots (2.27), in the sense that 

a E q'+(~, b), al. * 0 =~ al. E ~+(~, a). (3.23) 

By intersecting q~+(g, b) with 

(3.24) 

(=root system of (re@a, b)), one obtains a system of positive roots 

q~+(m ~ ct, b) c q~(m ~ a, b), (3.25) 

which corresponds to the Borel subalgebra b@((m@a)N r )cm0)a .  We define 

0,1 = half-sum of all a E q~+(m ~) a, b); (3.26) 

then 

(O-om)ia = oi. = QP (3.27) 
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(cf. (2.28)). If  we let m0)a,  r n m ,  0,,1 play the roles of, respectively, g,r,Q, the 

identities (3.17-21) describe homomorphisms 

F Ym@a- Z(m @ r U(b), 

Y',~ma: U(10)::, U(b), (3.28) 

P ! . 

Ym@a = )/m@a~ Z(m @ Ct)---~ U(b) 

and characters 

%m~a,x: Z(m @ a)---> C (2 E b*). (3.29) 

The image of Ym~a consists of all W(mff)a, b)-invariants in U(b), and 

sets up a bijection between b*/W(mO)a, b) and the set of characters of Z (m~a) .  

A comparison of (2.20) and (3.17) leads to the equality 

t ~ s Ym~a O y p  - -  Y f l "  (3.30) 

This in turn implies 

%~,x = Z,. m~,a+e-Q, o y~,. (3.31) 

for Z Eb*. In particular, the ideal which y~,(Kerx~,a) generates in Z(m~ct) lies in 

kernel of each of the characters Xm~.~,, with M=wA+~)-Qm for some wE W(~, b). 

Because of (3.20), no other character vanishes on this ideal. We also note that the 

character g , , ~ j , ,  restricted to U(a)cZ(m~a) ,  equals evaluation at/al~, and we recall 

(3.27). Hence Casselman-Osborne's iemma 2.21 has the following 

COROLLARY 3.32. Let V be a Harish-Chandra module for G on which Z(t]) acts 

according to X~,a. Then Z(m0)a) acts on any irreducible constituent of  H.(n ,  V) 

according to a character Xm~a.~, indexed by / t=wg+Q-Qm, for some wE W(g,b). 

Moreover, the decomposition (2.29) satisfies 

H,(n. V)= ~ H,(n. V L, 
v=w~.l. 

with w running over W(g, b). 

We now turn to the notion of coherent continuation. The Z-module of virtual 
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characters of Harish-Chandra modules, which we denote by ~, breaks up as a direct 

s u m  

cr = ~ cox, with cox = {O E cr acts on O by X~,x}. (3.33) 
). E b*lW(g, b) 

For future reference, we note that the projections 

Px: c~___, c~, l (3.34) 

map true characters to true characters, or to zero. If V is a Harish-Chandra module and 

F a finite dimensional G-module, the tensor product V| again has the defining 

properties (2.2) of a Harish-Chandra module, and its character equals the product of  the 

characters of V and F. In this manner, c~ becomes a module over the ring of finite 

dimensional virtual characters [43]. To avoid technical complications arising from the 

possible disconnectedness of G, we restrict our attention to the subring 

~:= ring of finite dimensional virtual characters of the adjoint group of g, (3.35) 

which we pull back to G via the adjoint homomorphism. (l) This will result in a slightly 

weaker, but entirely adequate notion of coherent continuation. Henceforth we assume 

that the Cartan subalgebra b arises as the complexified Lie algebra of a Cartan 

subgroup B, but we drop the condition (3.22), since it no longer plays a role. Every 

element g of the weight lattice for the adjoint group, 

A ~" b*, (3.36) 

lifts to a character e" of B. The restriction to B of a finite-dimensional virtual character 

q~ E :~ can be expressed as 

q~lB = E n~ e ~', (3.37) 
,uEA 

with n~,=multiplicity of/~. 

We shall say that a family of virtual characters {OhD. E A+2o}, indexed by the A- 

translates of some 20 E b*, depends coherently on the parameter 2 if 

(a) Oh E ~r and 
(3.38) 

(b) (PO,t = E~,~Anj, O,I+~,, 

(') The adjoint homomorphism takes values in the complex adjoint group because of (2.1 c). 
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for every ;t E A+fto and every tp E ~, as in (3.37) [35]. The choice of B does not affect 

this definition: if Bi is a second Cartan subgroup of G, with complexified Lie algebra 

bl, any particular inner automorphism of g which maps b to bl can be used to transfer 

the parametrization from b* to b~'; the reparametrized family is then coherent whenever 

the original family is. 

Characters can be put into coherent families. To make this precise, we fix 20 E b* 

and a virtual character O 0 E c~0, and we define Wo = isotropy subgroup of W(g, b) at 20, 

No=order of Wo. Then 

LEMMA 3.39. There exists a unique coherently parametrized family 

{O~lA EA+2o}, such that 

(i) O~0 = N O O 0, 

(ii) Owa = Oa, for ;t E A+2o, w E 14/o. 

The condition (ii) serves the purpose of making the family unique. Without it, the 

integers No in (i) can be replaced by one [37]--this is a more subtle result, and will not 

be needed here. If 20 is non-singular, (ii) becomes vacuous and No= 1. In particular, a 

coherent family is completely determined by any one of its members with a non- 

singular parameter 2. 

To simplify matters, we shall prove lemma 3.39, simultaneously with a related 

statement, which describes the notion of coherent continuation in more concrete terms. 

For the moment, we consider a single virtual character Oa E c~a. After replacing B by a 

finite covering, if necessary, we can introduce a Weyl denominator on B by the formula 

I-I (ea/Z-e-~/2); (3.40) 
a>0 

the product extends over the positive roots in q~(g, b). Near any b EB N G', the product 

of Oa with the Weyl denominator can be expressed as an exponential sum, 

(Harish-Chandra [16]); here X ranges over a neighborhood of 0 in the real Lie algebra 

bo of B, and the ca(b, w) are complex constants. (2) We now let ea  denote the general 

(2) Harish-Chandra [16] derives the identity (3.41) for invariant eigendistributions. In this more general 
situation, the cA(b, w) may be polynomial functions of X whenever ~t is singular. A simple tensoring argument 
of Fomin-Shapovalov [12], which is also implicit in our proof of lemma 3.39, excludes that possibility for 
virtual characters. 
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member of a family of virtual characters, subject to the condition (3.38a), and thus 

obtain identities (3.41) for each value of the parameter 2. It should be observed that the 

constants cA(b, w) are uniquely determined by Ok only for nonsingular parameters 2, 

i.e., when the isotropy group 

W~ = {w E W(g, b)lw,~ = 2} (3.42) 

reduces to the identity. In general, the average 

1 
Z ca(b' wv) (3.43) 

#Wa o~w~ 

has canonical meaning. 

LEMMA 3.44. If  the family {O~ I 2 E A+2o} is coherently parametrized, the con- 
stants ca(b, w) can be chosen so as to satisfy 

ca+~,(b, w) = eWF'(b) ca(b, w), 

for all 2 E A +;to,/~ E A, w E W(~, b) and all b E B N G'. Conversely, if these relations 
hold for every(3) Cartan subgroup BcG, the family is coherently parametrized. 

Proof of lemmas 3.39 and 3.44. To estabish the second half of lemma 3.44, we 

multiply the identity (3.41) with the virtual character q~: 

{cPOaI~>o(ea/2-e-a/2)}(bexpX)=Znu Z eU(b)ca (b'w)e~'+wa'x> 
u 6 A  wE W(~,b) 

(3.45) 
= Z nu Z e~'U(b)c~ (b'w) e(w~+u~'x) 

uEA wEW(~,b) 

(cf. (3.37); q0 is W(fi, b)-invariant!). Because of the hypothesis about the ca(b, w), this 

equals 

Z n u  Z c~+u(b'w)e(W~'t+u)'x)=~unu{O~+ul"I(e'a2-e-a/2)}(bexpX)" (3.46) 
/~ wEW(g.b) a>O 

The coherence of the family follows, since B and b E B N G' were arbitrary. 

The construction of the family whose existence is asserted by lemma 3.39 begins 

(3) To state the  condit ions for some  o ther  Car tan subgroup BI, one mus t  t ransfer  the parametr izat ion 

to toT, as descr ibed above. 
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with Oa0=N00 o. We pick constants Cxo(b, w) in accordance with (3.41); to make them 

unique, we impose the symmetry 

cxo(b, wv) = C~o(b, w), if v E W 0. (3.47) 

Next, we choose a weight/z E A which is "highly dominant" in comparison to ~.o, in the 
sense that 

(u, a) >> 13.o, a)[ for a E ~+(~, b), 

and we define 

In this situation, 

3. = 3.o+/z. 

Ao+V/z, with v6 W(~, b), is W(~, b)-conjugate to 2 

if, and only if, v 6 Wo. (3.48) 

Indeed, 2o+V/Z and wR=w(Ro+/Z) are close to, respectively, v/z and w/z--close relative 

to the size of 2o. Any two distinct conjugates of/z lie far away from each other: w2 

cannot equal 3.o+V/z unless w=vEWo; the converse is immediate. As a W(fi, b)- 

invariant sum of characters of B, 

vE w(g, b) 

extends to a virtual character on G. Using the properties of the family that is to be 

constructed, one finds 

P~(~'O0) = P~ (-~0 ~ ~OXo) 

P~ 1 E 

the penultimate step depends on (3.48), coupled with the fact that pa(q~x,)=0 whenever 

3. and 3.' are non-conjugate, and the last equality is a consequence of the symmetry 

condition Ooa=Oa for vE W0. Thus we are forced to define 
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To calculate the constants cA(b, w) corresponding to our choice of  ;t, we apply (3.45) 

with ;to in place of  ;t and ~p in place of  q0: 

{ ~POo i-[ (ea/2-e-~a2)}(bexpx)= l E eW~176 
a>0 No o, wEW(~,b) 

_ 1 ~ ~,  eW"~'(b) c~o(b, w) e <w~ (3.50) 
No wEw(~,b)vEw o 

1 E E eW~ C~o(b' w) e (w(~~176 
+ No wEw(g,b)oCw o 

In view of (3.41) and (3.48), the terms in the first of these two expressions match up 

with the character Z~,~ of Z(g), whereas those in the second sum belong to other 

characters. The symmetry  (3.47) allows us to omit the sum over v E Wo, in exchange for 

the No in the denominator.  Hence  

{P~(~OOo)i~>o(ea/2-e-~/2)}(bexpX)= E eW~'(b)C~o(b'w)e(W~'X)' (3.51) 
we W(g, b) 

or equivalently, 

cA(b, w) = eW~'(b) C~o(b, w) = eWCa-~~ w). 

We turn our attention to an arbitrary parameter  ;t E A+;t0, and we pick a weight 

/~ E A which is "highly dominant"  in comparison to both ;t and ;to. In the preceeding 

discussion, ;tl =;t+/z and/zl  =; t l - ; to  can play the roles of  ;t and/~. Thus Oa, and the 

constants 

c~, (b, w) = eW(a'-~~ (b) cxo(b, w) (3.52) 

are already known. We use these to define Ox and to calculate the cA(b, w). Since the 

arguments closely parallel those in the previous case, we shall not go into detail. In 

analogy to (3.48), 

Xl-o/~ is conjugate to ;t only if v = 1. (3.53) 

The function 

~* ~ E e-VlZ 
vE W( lt, b) 
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extends to a virtual character ~/,*E ~. Calculations based on (3.53), and similar to 

(3.49-51), show that we must define 

O~ = p~(~0*O~,), (3.54) 

and this allows us to conclude 

ca(b, w) = e-W~'(b)Q,(b, w) = eWla-a~ w); (3.55) 

the second equality is a consequence of (3.52). The definition (3.54) seems to depend on 

the choice of2~, but (3.55) ensures that this is not the case: the ch(b, w), for all possible 

B and b E B N G', determine Oh independently of 21. 

If/~ E A is an arbitrary weight, (3.55) and the analogous formula for 2+~ give 

ch +~,(b, w) = eW~'(b) ca(b, w). (3.56) 

According to the second half of (3.44)--which has already been verified--the Oh 

constitute a coherent family. We substitute v2, with v E W0, for 3. in (3.55) and appeal to 

(3.47), to find 

cob(b, w) = ca(b, wv), 

and this in turn implies the symmetry 

eoa = ea ,  if vE Wo. 

The uniqueness of the family {ehl 2 E A+2o} is implicit in its construction, since (3.54) 

was forced on us. Because of the uniqueness, any coherent family may be viewed as 

arising from our construction; thus we have established (3.56) in general. The proof of 

lemmas 3.39 and 3.44 is now complete. 

Very roughly speaking, the identity (3.13) is compatible with coherent continu- 

ation. What keeps this from being true in the technical sense is the fact that the 

characters of Z(~) and Z(m0)a) have different parametrizations. To deal with this 

problem we consider the local formulas for O and On on a particular Cartan subgroup 

B,-MA.  According to lemma 3.39, O can be inserted into a coherently parametrized 

family 

( Ohl ;t E A+~.0}, (3.57) 

at least if we replace O by a suitable multiple--as we may, without affecting the 
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identity (3.13). The family (3.57) has local representations (3.41), near any bEBnG',  
with coefficients ca(b, w) that satisfy the identities in lemma 3.44. Since we shall have 

to relate the actions of Z(~) and Z(m~a) ,  we again insist on (3.22). Each irreducible 

MA-character has local expressions analogous to (3.41), with a different Weyl denomi- 

nator, of course, and with exponential terms corresponding to a W(m~)a, b)-orbit in b*. 

Because of corollary 3.32, if the character in question contributes to (Oa)n, the orbit of 

potential exponents lies in the W(~, b)-orbit of 2, translated by Q-Pro. The quotient of 

the two Weyl denominators equals 

]-I ( ea/2- e-~/2 ) 
a E ~+(g, b) 

I-I ( ea/2-e-~/2) 
aE q~+(m ~ a ,  b) 

"r-'r 
= +eQ-em 11  (1-ea) '  

a~  ~+(g, b), a ~ ~ ( m ~ a ,  b) 

which----except for the sign and the exponential factor--is the denominator in the 

definition (3.10) of (Oa)n; cf. (3.3). Combining this with the preceeding observations, 

one obtains local formulas for the product of (Oa), with the Weyl denominator for G, 

of exactly the same appearance as (3.41): 

{ (Oa).aI~-Do(earZ-e-a/2) } (b exp X) = ~ ~ Ewes, b) ca(b' w) e<Wa'x)" (3.58) 

The definition of coherent continuation is not limited to families of characters. It 

makes sense much more generally, for families of functions defined on open subsets of 

a Cartan subgroup B, and indexed by translates of the lattice A, provided they can be 

expressed locally as exponential sums of the form (3.58). Both statements and proofs of 

lemmas 3.39 and 3.44 apply without change in this wider context. 

LEMMA 3.59. The homomorphism O~-*On is linear over ~;. 

Proof. We consider characters O, r of a Harish-Chandra module V and a finite 

dimenisional G-module F, respectively. The latter has a P-invariant filtration 

OcFI ~F2~ ... ~ FN= F 

with irreducible quotients Fk/Fk-i, on which n necessarily acts trivially. Hence 

Hp(n, V | (Fk/Fk-i)) ~- Hp(n, 1I) | (Fk/Fk-i), 
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as Harish-Chandra modules for MA. For the purpose of calculating Euler characteris- 

tics of the n-homology groups, one may treat the short exact sequences 

0---} V t~  F k_ l --~ V | F , -- .  V @ F f f  F k -  I --~ O 

as if they split. Hence (qgO)n=q0On, which was to be shown. 

The lemma ensures the coherence of the family of functions (3.58). Thus we may 

appeal to lemma 3.44, to conclude: 

~a +~(b, w) = eWU(b) t?a(b, w), (3.60) 

for all 2EA+;to, /zEA, wEW(~,b) ,  and bEBflG' .  To prove Osborne's conjecture 

(3.13) for the virtual characters Oa in our family amounts to proving the identities 

ca(b, w) = ~a(b, w), for bE(MA)-  NBNG', (3.61) 

corresponding to every choice of Cartan subgroup B c M A .  Because of the relations 

(3.60) and their counterparts for the ca(b, w), most of these identities are redundant. 

For example, if C is any particular positive constant, it suffices to check (3.61) 

whenever 

Re(wg, a ) < - C ,  for all aEq~+(~,b). (3.62) 

We are also free to disregard values of 2 near any finite number of hyperplanes, none of 

which contain A. Concretely, we may impose additional restrictions 

IRe (2, /~;)I > C, 1 <~i<~N, 

with gn .. . . .  /~NER-linear span of A, /~i4=0. The family {Oa} has now served its 

purpose, and we may think of Oa as a single, arbitrary virtual character in c~a. Since c~ a 

depends only on the W(g, b)-orbit of 2, we can arrange that Re (A, a)~<0 if a E cb+(~, b). 

This, in conjunction with (3.62), implies Re (A, a ) < - C  and w=e. 

To summarize, it suffices to check the identities (3.61) in the following special 

situation: 

(a) Re( t ,  a ) <  - C  for a E ~ + ( g ,  b); 

(b) IRe(A, gi)]>C, l<~i<~N; 

(c) Oa is a virtual character on which Z(~) acts according to Xg,x; and 

(d) w-- e. 

(3.63) 
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Here/z~ .. . . .  /ZN are non-zero elements of the R-linear span of A, and C is a positive 

constant, all of  which can be chosen at will. We recall that the positive root system 

O+(g, b) was assumed to be compatible with ~§ a), in the sense of (3.23). Although 

we have stated the conditon (3.63) in terms of a particular Cartan subgroup B c M A ,  

their meaning does not depend on B, since they take the same form when rephrased in 

terms of any other Cartan subgroup. 

We conclude this section with some remarks on how the conditions (3.63) will be 

used. First supose P m = M m A m N m  is a minimal parabolic subgroup, contained in P, 

with 

M A  ~ M m A m ,  A c Am, N r- N m, (3.64) 

and Bm'--MmAm a Cartan subgroup of G. Let ~+(g,  am) be the system of positive 

restricted roots corresponding to Pro, and ~+(~,  bin) a positive root system compatible 

with ~+(fl, am). We transfer 2 to a linear function 2,,, on bin, via an inner automor- 

phism of m0)a which makes 2m antidominant on b,,, N m, in the sense that 

Re (2m, a)  ~< 0 if a E ~ ( m  ~) ct, bin) N ~+(f l ,  bm). (3.65) 

In this situation 

(a) Re(2m, a ) < - C  for aEO+(l~,b,,,), and 

(b) Re(2mla , a ) <  - C  for aE  ~+(~, am). 
(3.66) 

The first inequality follows from (3.63 a), once we know that Re(2m, a)~<0, for every 

aECb+(~,bm). This is true by construction if a vanishes on a. If not, (3.64) implies 

a laE~+(~,a) .  The inner automorphism of m ~ a  that maps 2m to 2 sends a to a root 

flE*(~,b)---necessarily a positive root: *+(~ ,b )  is compatible with ~+(~,a) ,  and 

�9 +(~, a) contains ~la=al., Hence 

Re (2m, a) = Re (2, fl) < - C  ~< 0, 

as required. To deduce the second inequality from the first, we extend a to a root 

fl E ~(g,  bin). Both fl and its complex conjugate fl are positive, because they restrict to 

a on am, and fl+fl vanishes on bm N m. We conclude: 

Re (2mlam, a) = 1 Re (2,,, fl+fl) < - C. 

The preceeding discussion applies in particular if P itself is a minimal parabolic 
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subgroup, in which case we set P,,=P, B,,,=B, 2, ,=2.  Then,  if p denotes the restric- 

tion of  ), to ct,,,, 

Ref, u, a ) <  - C  for a E ~ + ( g ,  a,,,). (3.67) 

Now let P=h,]tfi,~ be an arbitrary parabolic subgroup,/~ch~t.g, a Cartan subgroup, 

and ~. E b* a conjugate 2. By enlarging the set {Pl . . . . .  pN}, one can make 

v = restriction of ~. to ~t 

"ve ry  non-singular":  

Re (v, a) ~< 0 ~ Re (v, a) < - C ,  (3.68) 

simultaneously for all choices of  15 and a E ~+(.q, ~t). Since there are only finitely many 

parabolic subgroups and restricted roots,  up to conjugacy,  one can treat one/~ and a at 

a time. When a is ex tended to a linear function on b, trivial on ~ N fit, and transferred 

back to b, the resulting linear function p~ E b* lies in the R-linear span of  A and satisfies 

(v, a)=(2,p~).  Hence  (3.68) follows from (3.63b), as soon as p~ is included among the 

~ti. 

w 4. Asymptotic and n-homology 

In this section, we shall review the Frobenius reciprocity theorem for Harish-Chandra 

modules and the asymptot ic  expansion of  matrix coeff ic ients-- two circles of  ideas 

which provide a link between n-homology and global characters.  

To begin the discussion, we consider a parabolic subgroup P=MAN, whose Levi 

component  MA is stable under  the Cartan involution, and a Harish-Chandra module U 

for MA. As was remarked in w 2, U lifts to a global representat ion of  MA: there exists a 

continuous representat ion a on a Hilbert space Uo, such that U can be identified, as an 

m ~ a - m o d u l e ,  with the space of  MflK-finite vectors in Uo. We continue o to P by 

letting N act trivially. Every  linear functional v E a* exponentiates  to a character  of  A, 

which then extends to a character  

eV: P---~ C * , (4.1) 

with trivial action on M and N;  this applies in particular to v=Qe, as defined in (2.28). 

By left translation, the group G operates on the space of  C = functions J2 G ~  Uo 

satisfying 

f(gp) = e~e(p-t)o(p-~) f(g), for gEG, pEP. (4.2) 
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Since KP=G, each such f is completely determined by its restriction to K. We let 

~(Uo) denote the Hilbert space completion with respect to the inner product 

(f,, f2) = I (f,(k), f2(k)) dk. (4.3) 
JK 

Equivalently, 

~(Uo) = space of L 2 functions f: K--~ Uo, 
(4.4) 

with f(km) = a-l(m)f(k), for kEK, mEKNM. 

The G-action extends to the completion, and hence defines a continuous representation 

~(a )  of G on the Hilbert space (4.4). To make this completely explicit, 

[/~p(a) ( g ) f ]  (k) = eUP(p - ')  o(p-~)f(k,, 
(4.5) 

whenevergEG,  kEK, kIEK, pEP and g-lk=klp. 

One shows, using global character theory, for example, that ~ (o)  is an admissible 

representation of finite length, which makes 

~ (U)  = space of K-finite vectors in ~(Uo) (4.6) 

a Harish-Chandra module for G--the Harish-Chandra module obtained by (normalized) 

induction of U from P to G. As the notation suggests, ~ (U)  depends only on U, not on 

the particular globalization a. For future reference, we record: 

if Z(m ~ a )  acts on U via the character Xm~,.a, 
(4.7) 

then Z(.q) acts on ~ (U)  via Xa.a; 

this follows from (2.20) and (3.31), by differentiation of the identity (4.2). 

If Vi, V2 are Harish-Chandra modules for G, we let Hom6(V~, V2) denote the 

space of linear maps commuting with the actions of g and K. The subscript G---instead 

of (g, K), for example--may appear unnatural; it is meant to convey the idea that 

Harish-Chandra modules are skeletons of global representations, and will also help us 

avoid cumbersome notation. For v E a*, we define 

Cv = one-dimensional Harish-Chandra module corresponding 
(4.8) 

to the character e v of MA. 

We can now state the Frobenius reciprocity theorem. Because of its importance for our 

purposes we shall also sketch the proof. 
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THEOREM 4.9 [7]. Let U and V be Harish-Chandra modules for MA and G, 

respectively. Then HomG(V,/~e(U))=HOmMA (H0(n, V), U| 

Proof. As a K-finite function, each f E  ~ (U)  is smooth and can be evaluated at the 

identity. Because of (4.2), the map f ~ f ( e ) |  from ~(U)  to U| ( l=generator 

of C0e) preserves the actions of m ~ a ,  K n M  and n, hence descends to a homo- 

morphism of Harish-Chandra modules 

qo: Ho(n,/~e(U)) =/~e(U)/n/~e(U)---~ U | Ct,,. 

Define i: Hom G (V,/~p(U))----~HOmMA (H0(n, V), U| by i(T)=~p- T., where 

T.: H0(n, V)---~H0(n, ~(U))  is the map induced by T. To invert i, we reconstruct Tfrom 

S=i(T) as follows: 

(Tv)(k) = T(k-lv)(e) = S(q(k-lv)), for vE V, (4.10) 

with q(k-lv)=image of k-iv in Ho(n,V). The MnK-invariance of S ensures 

that Tv satisfies the transformation rule (4,4); no matter how v EV and 

SEHOmMA(Ho(n,V), U| are chosen, the formula (4.10) describes a vector 

TvE~(U). It remains to be shown that v~Tv  commutes with the actions of g and K. 

As for K, this follows directly from (4.10). The transformation rule (4.2) for f =  Tv on the 

one hand, and the m~a-invariance of S on the other give T(Xv)(e)=X(Tv)(e), i fXE 1~, 

and hence--with kv in place of o--- T(kXk-lv)(k)=(kXk-l)(Tv)(k), for all kEK. This 

completes the proof, since Ad k(p) and f generate g. 

We shall usually induce modules of the form W| where W is a Harish-Chandra 

module for M and v a linear function on a. In the decomposition (2.29) of H.(n,  V), the 

normalizing shift by Oe is built into the indexing. Hence, if V and W are Harish- 

Chandra modules for G and M, 

Hom 6 (V, ~ ( W  | Cv)) = HOmMA (H0(n, V) v, W | Cv+0p). (4.11) 

It was observed by Casselman [7] that the theory of asymptotic expansions gives 

information about Ho(n, V), and therefore also about homomorphisms of V into in- 

duced representations. To see this, we lift V to a global representation :~ of G on a 

Hilbert space V~. The contragredient representation :r' on the dual Hilbert space V" is 

again continuous, admissible, and has finite length. We denote by V' the Harish- 
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Chandra module of K-finite vectors in V'. Equivalently, we may regard V' as a 

subspace of the algebraic dual V* of V: 

V' = {v'E V' iv '  is K-finite}; (4.12) 

in particular, V' depends only on V, and not on zr. Since K-finite vectors are analytic 

[13], the "matrix coefficients" 

L, = ( v', n(g) v) (4.13) 

corresponding to vectors v E V, v 'E  V' are real-analytic functions on G. Their Taylor 

series can be calculated in terms of the actions of ~ and K--in other words, the 

functions fo, o' are completely determined by the Harish-Chandra module V. 

Once and for all, we fix a minimal parabolic subgroup P m c G ,  with Langlands 

factorization 

P m = M m A m N m ,  (4 .14)  

such that M m c g  and amC(-1)-eigenspace of the Cartan involution (am = complexi- 

fied Lie algebra of Am). We define q~+(g, am), A~ and the partial ordering > of a* as in 

(2.27), (2.31) and (3.4); thus 

A~ = exp (am. o)-, 

(am,0)- = ( X e  am,01 <a,X> < 0  

where 

for all a E q~+(g, am) } . 
(4.15) 

To simplify the notation, we shall write 0m instead of Qe,. The growth or decay of 

matrix coefficients fo, o, is governed by their behavior on A~: the left and right K- 

translates offo,  o, are functions of the same type, and K A ~ K  is dense in G. We now 

recall the main facts about the asymptotic expansions of matrix coefficients on A~,. 

They are due to Harish-Chandra; for a complete and unified exposition we refer the 

reader to [8]. 

THEOREM 4.16. There exists a collection o f  polynomial  funct ions P:,o' on a m, 

indexed by v E V, v' E V' and by v, which ranges over a countable set ~ ( V ) c a * ,  such 

that 

fo, o ' ( expX)= Z P'o,o '(X)e~v+o''x~ 

for  X E (a,n, o)-. The product  o f  this series with any character e u converges uniformly 

6-838285 Acta Mathematica 151. Imprim~ le 25 octobrr 1983 



82 H. H E C H T  AND W. SCHMID 

and absolutely on any translate o f  (am,0)- whose closure is wholly contained in 

(am, O)-, and can be differentiated term-by-term. The degrees o f  the coefficient 

polynomials P~,o' are bounded by an integer which depends only on V. A suitably 

chosen finite subset ~t(V)c-~(V) has the property that every vE ~(V) lies above some 

vtE ~t(V), relative to the ordering >. 

We may and shall assume that ~g(V) and ~t(V) do not contain any redundant 

elements, in which case both sets are uniquely determined. The elements of ~f(V) are 

the "exponents of V" along A,,, those of ~t(V) the "leading exponents". Collectively 

the leading exponents dominate all other exponents on (am, O)-. Even though the 

asymptotic expansions do not converge uniformly near points of the boundary, some 

additional arguments show that the matrix coefficients can be bounded from above and 

below in terms of the leading exponents and their polynomial coefficients, uniformly on 

A m . In particular the leading exponents determine whether or not the matrix coeffi- 

cients lie in LP(G), l~<p<~. 

LEMMA 4.17 [8]. Suppose G has compact center, and l~<p<~. The following 

conditions are equivalent: 

(a) fo. v, E LP(G), for every choice o f  v E V, v' E V'; 

(b) Re (v ,X)<((2 /p) - l+e)  (pro, X) ,  for all vE ~gt(V) and XE(am.o)-, and some 
e>0. 

The L z criterion, which is of particular importance, takes the slightly simpler form 

Re v < 0 on the closure of (a,,,, o)-, except at 0, for all v E ~t(V), (4.18) 

again under the assumption that the center of G is compact. 

Let us consider a particular leading exponent v of V. The mapping 

v | v'--~p:,o,(O) (4.19) 

sets up a bilinear pairing V| It is non-zero and invariant with respect to the 

actions of Mm and a,,,. If Y lies in the root space corresponding to a positive restricted 

root a, a formal calculation leads to the identity 

e-<a'X>fyo, o, (expX) = -fo, to' (expX), for XE (am, O)-. 

If v were to contribute to the asymptotic expansion of fro.o,, v - a  would be an 

exponent, contradicting the definition of fgt(V). Since the root spaces of positive 
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restricted roots span n,,,, this proves p~.o,(0)=0 if vErt m V. In other words, the pairing 

(4.19) factors through a pairing 

Ho(n,,,, V) | V' ~ C. (4.20) 

Differentiating the asymptotic expansion offo, o, along some X~ a,,,, one finds 

P~x,,,v,- (v+p,,,, X) P~o, o' = Dxp',, 0' (4.21) 

(Dx = directional derivative in the direction of X). If k exceeds the maximal degree of 

the coefficient polynomials, (4.21) implies 

p~,.o,(0) = 0 whenever uE(X- (v+pm,  X))kV+nm V, 

and consequently the generalized (v+~,,,)-eigenspace Ho(n,,,, V)~ is the only one that 

can contribute to the induced pairing (4.20). The roles of V and V' in the preceeding 

arguments may be reversed, provided one also replaces Pm by the opposite parabolic 

subgroup P,,, and v by -v .  We have shown: 

LEMMA 4.22 (Casselman [7]). I f  v is a leading exponent, the mapping (4.19) 
descends to a non-zero bilinear pairing 

Ho(nm, V)vxHo0im, V')_:-', C, 

which is invariant with respect to Aim and am. In particular Ho(n,,,, V)v*0. 

Coupled with the reciprocity theorem, the lemma proves Casselman's strength- 

ened form of the subquotient theorem of Harish-Chandra [14]: 

COROLLARY 4.23 [7]. Every irreducible Harish-Chandra module can be realized 

as a submodule o f  a Harish-Chandra module induced from a minimal parabolic 

subgroup. 

If V is an irreducible Harish-Chandra module, Z(~) acts according to a character 

3fg, a. We may think of the parameter 3. as a linear functional on a Caftan subalgebra b 

which contains am. As another consequence of lemma 4.22, we note that 

every leading exponent of V is of the form v = w3.1a,, 

for some wE W(g, b); 
(4.24) 

cf. corollary 3.32. 
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According to lemma 4.22, every leading exponent v of a Harish-Chandra module V 

is an exponent of Ho(nm, V), in the sense that H0(n,,, V)v:#0. The converse of this 

statement is due to Mili~id: 

THEOREM 4.25 [31]. The set o f  leading exponents of  V coincides with the set o f  

exponents o f  Ho(nm, V) which are minimal with respect to >. 

Proof. Let v be a minimal exponent of Ho(nm, V); it must be shown that v is 

greater than or equal to a leading exponent of V. We choose a finite-dimensional, 

irreducible G-module F, whose lowest am-weight p satisfies 

(u+V+Om, a)<O forall  a~O+(fl ,  am). (4.26) 

The am-weight spaces other than the lowest weight space span an nm-in- 

variant subspace F t c F .  Since n,,, acts trivially on the quotient F/F~, 

�9 ..--,H0(nm, V| V| V)| is an exact sequence of 

am-modules. In particular, H0(nm, V| is non-zero, and thus has an irreducible 

Mm-module W as quotient. We may appeal to (4.11) to conclude 

Hom o (V | F,/~e(W | C~+v)) :~ O. (4.27) 

In the situation (4.26), the induced Harish-Chandra module ~ ( W  | C~+v) has a unique 

irreducible submodule Vo, and/~+v occurs as a leading exponent of V0; this result, 

which plays a crucial role in our proof of Osborne's conjecture, will be proved in the 

appendix. Because of (4.27) V0 is a quotient of V| and/u+v, as an exponent of Vo, 

must also be an exponent of V| For entirely formal reasons, every exponent of the 

tensor product can be expressed as a sum/~+vl+r], with vt 6 ~'(V) and r] equal to a 

(possibly empty) sum of positive restricted roots. In the case of the exponent/~+v this 

gives the relation v>...vt, which proves the theorem. 

Harish-Chandra calls a representation tempered if its character extends to a 

suitably defined space of Schwartz functions on G. For our purposes it is simpler to use 

the asymptotic behavior of the matrix coefficients as a criterion for temperedness. The 

resulting definition is known to be equivalent to Harish-Chandra's, as will also become 

apparent later in this paper. We enumerate the simple restricted roots in ~+(~, am) as 

at,  a2 .. . . .  tZr, and we let/zt . . . . .  ~r denote the dual collection of fundamental highest 
weights; in other words, 

aj) 
2 =by, l<.i,j<.r. (aj, aj) (4.28) 
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We say that a Harish-Chandra module V is tempered modulo the center  of  G if 

Re (v, #i) >- 0 for 1 ~< i ~< r and every exponent  v of  no(llm, lv 0 ; (4.29) 

V is t empered- -wi thou t  qualification--if ,  in addition, 

e v restricts to a unitary character  of  ZanAm (4.30) 

for every such v (Z~ = center  of  G). This latter condition becomes vacuous in case G 

has a compact  center.  According to theorem 4.25, both (4.29) and (4.30) amount  to 

restrictions on the leading exponents:  we may replace " fo r  every exponent  v of  

H0(rtm, V)" by " fo r  every v E ~t(V)" without altering the definition. 

The matrix coefficients of  a t empered  Harish-Chandra module are at least "a lmost  

square-integrable",  modulo the center:  as soon as the inequalities in (4.29) become 

strict, the criterion (4.18) ensures that the matrix coefficients are truly square-integra- 

ble on the semisimple part of  G. If Z(g) acts on V via a character  %~,~--for example,  if 

V is i r reducible-- ,  the exponents  v of  H0(nm, V) are restrictions to a,,  of  Weyl 

translates of  2; here we assume, as we may, that the parameter  ). lies in the dual b* of  a 

Cartan subalgebra b which contains am. Hence ,  under the hypothesis  

Re(Z, wMi)*O for 1 <.i<.r, wE W(fi, b) (4.31) 

on the character  X~,a, the inequalities (4.29) hold strictly or not at all. In this situation 

the matrix coefficients of  a tempered Harish-Chandra module V are necessarily square- 

integrable, modulo the center  of  G. 

We close the present  section with a result that is part of  Langlands'  classification 

of the irreducible Harish-Chandra modules [28]. By a collection of  Langlands data, we 

shall mean a triple, consisting of  a parabolic subgroup P with Langlands decomposi t ion 

P=MAN,  of  a tempered irreducible Harish-Chandra module W for M, and a linear 

functional v E a*, such that 

R e ( v , a ) < O  for all a E ~ + ( g , a ) .  (4.32) 

We do not exclude P=G, in which case MA =G and A = the split part of  the center  of  G. 

LEMMA 4.33 (Langlands [28]). Every irreducible Harish-Chandra module V for  G 

can be realized as a submodule o f  an induced module/~e(W| corresponding to a 

collection o f  Langlands data P = M A N ,  W, v. 

The proof  depends on certain geometric considerations.  As before,  we let 
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Pm=MmAmNm denote a minimal parabolic subgroup. The closed negative Weyl 
chamber 

~ =  s  for 6te(I)(g.l~m) } (4.34) 

is a closed convex cone in (ct,,,, o)*. Hence, 

the least distance from any particular/~ E (am, o)* to c~ is attained 

at a single point #~ cr (4.35) 

On a,,, rl center of go, whose dual lies in ~g,/~o agrees with/~, and on the semisimple part 

of am,/~~ any element of ~----is equal to a unique linear combination of some of 

the fundamental highest weights (4.28), with strictly negative coefficients: 

(a) ~o=/~ on a,n fl center of go, 

(b) I~~ on a,,,N [g, g], ci<O. (4.36) 

The index set 

S = S ~ ) c  {1,2 ... . .  r} (4.37) 

depends on ~o, and thus on/~. For l<.i<~r and t~>0, the point/~~ also lies in ~ and 

cannot be closer to/~ than/~o. In other words, 

0 ~ ILu-~u~ 2-  Itu-m~ 2 = 2 tQ~- /~~  t21Lu,II 2, 

which implies (u-/~~ If the index i belongs to S, one also obtains the opposite 

inequality, since i~~ qg even for small negative values of t. In view of (4.28) and 

(4.36a), we may conclude 

/~_#0= Z d J a J '  dj>~O. (4.38) 
j ,s  

The two properties (4.36), (4.38) of/~ ~ and S not only follow from the characterization 

(4.35) of/~ ~ they also imply it. Indeed, if a t E  qg, 

I[~-i, 'liLIl~-l,~ = Ilta-l,~176176 ~ 2ta-l,~176 ') 

= 2 ~ dj(aj, ~o_~,) = -2  Z dJ(ai' ~') ~ 0; 
j t S  j fS  
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i.e.,/~0 minimizes the distance from/~ to ca. We sumarize: 

/~~ ca and S = S ~ )  are uniquely determined by (4.36), (4.38); 
(4.39) 

/~o is the point in ca closest to/~ 

(cf. the "geometr ic  l emmas"  of  [28]). 

To prove lemma 4.33 for a particular irreducible Harish-Chandra module V, we 

write each of  the exponents/~ of  Ho(nm, 1O as 

/~ = Re/~+iIm/~, Re/, ,  Im/~ E (am,o)*. 

Among these, we select onemto  be called/~ from now onmwhich  maximizes the length 

of  (Re/~) ~ Let  us recall the standard construction that associates a parabolic subgroup 

to the set 

S = S (Re/~) c {I . . . . .  r}. (4.40) 

The root spaces indexed by roots in 

{aEdp+(~,am)l(a, lzi)>O for some iES}  (4.41) 

span an ideal ncnm,  the complexified Lie algebra of a normal subgroup NcN, , , .  Its 

normalizer in G is a parabolic subgroup P, containing P,,,. We define 

A = {aEA,,,lea~(a) = 1 for a l l j ~ S } ,  
(4.42) 

M = anisotropic part(a) of the centralizer of A in G; 

then 

P = M A N  (4.43) 

is a Langlands decomposition of  P,  and the Cartan involution preserves the Levi factor 

of  MA. 

The exponent/z  of Ho(nm, V) which was used to construct P, restricts to a linear 

function v E a*, 

v =/.tin. (4.44) 

We must show that v satisfies the negativity condition (4.32). For  this purpose, we may 

(~) i.e., the common kernel of all R+-valued characters. 
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as well assume g is semisimple, in which case the Pi, i E S, span the orthogonal 

complement of the annihilator of  a in a*, whereas the aj, j ~: S, vanish on a. Hence,  for 

any r/E a*, 

(P;[a, r/[a) = (p;, r/), if i E S, 
(4.45) 

(ajla, rl[a)=O, if j~ .S .  

According to (4.36) and (4.38), with g=[g ,  g], (Re/~) ~ is a linear combination of the/ui, 

i E S, with strictly negative coefficients ci, and differs from/~ by a linear combination of 

a j ' s , j ~ S .  If  r/ is one of the roots in the set (4.41), this allows us to conclude 

Re (v, r/[ a) = ((Re/~)[a, r/[ a) = ((Re p)~ r/[ a) 

= E CiQ'gi[a'/'][ct) = E CiQAi' l~) < O. (4.46) 
iES iES 

Every a E ~+(g ,  a) arises as the restriction to a of  some such r/, so (4.32) follows. 

The final ingredient of  lemma 4.33 is an irreducible, tempered Harish-Chandra 

module W for M, such that 

Hom e ( V, fie(W | Cv)) 4= 0. 

In view of the reciprocity theorem (4.11), any irreducible quotient W of Ho(n, V)~ will 

do, provided 

Ho(n, V)~ is non-zero and tempered, (4.47) 

as Harish-Chandra module for M: the quotient W then inherits the temperedness, since 

the induced mapping on homology in dimension zero is surjective. 

To begin the verification of (4.47), we note that the isomorphism 

H0(n,,, V) = V/n,, V = ( V/n V)/( m 0 n,,) ( V/n V) 

= H0(m N n m, H0(n, V)) 

commutes with the action of a. Hence,  if PEa* denotes the restriction to a of some 

Ho(n m, V)t~ = Ho(m N n m, H0(n, V)~)a+Qe; (4.48) 

the shift by the appropriate 0 occurs because of (3.27). In the special case o f # = p ,  this 

gives 

H0(m n nm, H0(n, v)~)~,+~, 0, 
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so H0(n, V)v cannot vanish. 

As for the temperedness of Ho(n, V)v, some preliminary observations will be 

helpful. The minimal parabolic subgroup Pm intersects M in a minimal parabolic 

subgroup of M, with Langlands decomposition 

MNP,n=Mm(MNAm)(MNNm). 

By restriction from a,~ to m N am, we can make the identification 

( ] ) + ( m ,  m [1 am)  ~--- ~ + ( m ~ a ,  am)= {a E (I)+(g, Ctm)i(a, /Ai) = 0 for iE S}. 

This latter positive root system is spanned by the aj, j@S, which we may regard as the 

simple roots for (m, m13am). Dually, the I~j, j@S, become the fundamental highest 

weights. In our present situation, then, the temperedness criterion (4.29) reduces to 

Re (/2, #j) ~> 0, for e v e r y j ~ S  and every exponent g 
(4.49) 

of Ho(nm, V) which restricts to v on a; 

cf. (4.48). The second condition (4.30) is irrelevant, since M has a compact center. 

Let us collect various pieces of information about the exponents g of Ho(nm, V) 

whose restriction to a equals v. The original choice of/~ was made so as to maximize 

II(Re/~)~ 

II(Rep)~ >I II(Re~)~ 

for all the g. According to (4.36) and (4.36), 

( R e g - ( R e g )  ~ (Reg) ~ = 0; 

also, (Re/~) ~ lies in c~ and cannot be closer to Reg than (Reg) ~ i.e. 

IlReg-(Reg)~ <~ HReg-(Rep)~ 

with equality hoding only if (Reg)~ ~ Since/~ and g have the same restriction to 

a, their difference can be expressed as a linear combination of the a i, j ~  S. The 

restriction to a,,, 13 [g, g] of (Rep) ~ on the other hand, is a linear combination of the Pi, 

iES, so 

(Re g -  (Re/~)o, (Re/0 ~ = (Re/.i- Re p, (Re/~)o) + (Re p -  (Re/~)o, (Re ~t) ~ = 0. 

The preceeding statements, read in sequence, justify the following chain of equalities 

and inequalities: 

II(Rep)~ z ~> II(Reg)~ 2= IlRegll z -  I lReg- (Reg)~ 2 

~> IlRe~ll2-llRe~-(Re~)~ - II(Re~)~ 2. 
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Since equality must hold at all steps, (Re/i) ~ and (Re/~) ~ coincide, hence 

S = S (Re/~) = S (Re/i). 

At this point another application of (4.36) and (4.38), with Re/~ playing the role of/a, 

give the inequality (4.49). The proof of lemma 4.33 is now complete. 

Except for the geometric description (4.39) of the inducing parameter--which was 

discovered independently by several others--the preceeding argument is a modification 

of that of Langlands [28]. In this form it was shown to us by Mili~i6 during a 1977 

conference in Oberwolfach and is also contained in the monograph [3] of Borel- 

Wallach. 

A final observation: if V satisfies the condition (4.31), then W satisfies the analo- 

gous condition with respect to M; indeed, the fundamental highest weights for 

(m~)a, a, ,)--namely the/zj, j~S-- -occur  among the fundamental highest weights for 

(g,a,,,), and the parameter 2 remains the same. Since W is tempered, its matrix 

coefficients are square-integrable in this situation. For future reference, we state 

Remark 4.50. Under the hypothesis (4.31) on V, the inducing module W has matrix 

coefficients which are square-integrable on M. 

w 5. The induced character formula 

The process of induction, which associates a Harish-Chandra module for G to a Harish- 

Chandra module of a Levi factor of a parabolic subgroup of G, has a direct analogue on 

the level of  global characters. In this section we review the formulas for induced 

characters established in [25] and [42] and state them in a form suitable for the 

applications we have in mind. We start with some remarks of general nature. 

For g E G, set DG(g) = coefficient of ~C) in the polynomial 

det { (Adg+t -1) :  ~--) ~t}. (5.1) 

Here r(G)= rank of G denotes the dimension of any Cartan subgroup of G. The 

function g~-~D~g) is real analytic on G, as well as conjugation invariant. It detects 

regular semisimple points: g E G' if and only if D6(g)#:O. Restricted to any Caftan 

subgroup of G, 

= l'-[ (ea/2-e-a/2) 2 (5.2) 
a>O 
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where 1-la>o(ea/2--e -al2) is the Weyl denominator defined in (3.40). Although the 

Weyl denominator may not make sense unless we pass to a finite coveting of G, its 

absolute value is always well defined, as it is equal to [DG] v2. We remark that the 

function 

IOd -j/2 l--I (ea~-e-aa) (5.3) 
a > 0  

is continuous on BflG' and can admit only the values + l ,  + V ' - l .  In fact, 

[1-la>o(e~176 -~) is invariant under complex conjugation, 

hence real, and therefore the Weyl denominator takes on only real or purely imaginary 

values. 

Let V be a Harish-Chandra module for G. Fix b E G'. Then B, the centralizer of b 

in G, is a Cartan subgroup of G. Assume that Z(g) acts on V according to a character 

X=Z~,a(2 E b*). Recall from section 3 that the product of the character OG(V) with the 

Weyl denominator can be expressed locally as an exponential sum: 

I'-I (e~/2-e-~2)O6(V)] ( b e x p X ) =  Z c~(b, w)e (w;~'x), (5.4) 
a>0 d wEW(~,b) 

for all X in a neighborhood of 0 in bo. The coefficients ca(b, w) are complex constants 
depending on b and w. Let us emphasize again that (5.4) may make sense only on a 

finite coveting of B. This ambiguity--which did not present a problem in w 3---can be 

circumvented by defining 

[IDd'aOc(V)](bexpX)= ~ c'~(b,w)eW<~,x>; (5.5) 
wE W(g, b) 

the new coefficients c~(b, w) are related to the ca(b, w) by a multiplicative constant 

equal to + 1 or + X / - 1  . In general the formula (5.4) holds uniformly on larger subsets 

of B fl G' than the right hand side of (5.5). On the other hand (5.5), because of its global 

flavor, behaves nicely under the process of induction. To keep the distinction between 

these two formulas, we reserve the primed symbols for the expansion (5.5). 

Let P=MAN be a parabolic subgroup of G, and U a Harish-Chandra module for 

MA. It is necessary for us to have explicit formulas for the character O6[~(U)  ] of the 

induced module ~ ( U )  in terms of  OMA(U). According to [25, 42], if B=G is a Cartan 

subgroup, 

O6[~(U)  ] vanishes on B Iq G', unless B is conjugate under G 
(5.6) 

to a Cartan subgroup of MA. 
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Thus, in order to compute Oc[~ (U)  ], it is enough to determine its restriction to B N G', 

for each Cartan subgroup B contained in MA. We fix such a B, and select representa- 

tives B=B~,B2 . . . . .  Bk from the various MA-conjugacy classes of Cartan subgroups in 

MA,  which are G-conjugate to B. The Weyl group of Bi in G, 

W(G, Bi) = NG(Bi) /Bi ,  

acts on b; and b~', and can be identified naturally with a subgroup of the complex Weyl 

group W(g, hi). It may not act on B,., since Bi need not be Abelian. In any case vg, with 

v E W(G, Bi) and g EBi, makes sense up to conjugation by elements of B;, and we shall 

use this suggestive, but slightly inaccurate notation when vg appears as an argument of 

a function invariant under conjugation by B;. Finally, choose e=yl ,y2  . . . . .  y k E G  so 

that y i B y T  1 = B i .  

THEOREM 5.7 (Hirai [25], Wolf [42](1)). The restriction o f  to 

BNG'  equals ~ki= l Cpi, where 

~(g) =__1 ~ [iOMal,/2OMA(U)](v(y, gy;,)) ' 
Ci o E W(G, Bi) 

for  g E B N G', and ci= # W(MA, Hi). 

We note the following important consequence: 

the character of/~e(U) depends only on MA and U, and not on 
(5.8) 

a particular choice of P. 

Suppose that Z ( m ~ a )  acts on U according to a character X. Choose 2=;tl, 22 .. . . .  ;tk in 

b~' .... .  b~', respectively, so that X=Xg.xl for each i. By (5.5), we can express the function 

IDMAI'/EOMA(U), restricted to a neighborhood in Bi of an MA-regular point h EBi, in 

the form 

a'a,(h, w) e wa', (5.9) 
wE W(m ~a, hi) 

with suitable complex constants d'~(h, w). It follows from theorem 5.7 that 

q~ exp X) = "LI ~ ~ d'~,(o-'(YibyT, I),w) e(ow~''Adr'tx)) , (5.10) 
Ci vE W(G, Bi) wE W(m ~a,  b i) 

(~) The possibility that k > l  is overlooked in [42]. 
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for all b E B N G' and X in a neighborhood of 0 in bo. We want to transfer the data 

attached to b,. back to b. Let u/be an inner automorphism of mt~a wich maps b to bi 

and, dually, 2 to 2;--for i=1, we pick ul = identity. Then Ady,: I ou; normalizes b and 

operates as an element w; of W(g, b); Wl is the identity. We remark that u;=l  on a, 

hence 

wiX=AdyTl(X) for XEa.  

The map w~-->Adyi-lo w o Ad Yi establishes an isomorphism of W(G, Bi) with W(G, B), 
and sends W(m~)a, hi) isomorphically onto the subgroup 

{wE W(t], b)lwoAdy~l(X) = Ady~-l(X) for all XE a} (5.11) 

of W(6, b). We can now rephrase (5.10) as follows: 

cPi(bexpx)= l-~ Z d';t,(Yi(v-lb)y~l,AdYiowo AdyT, l)e(~ (5.12) 
Ci o, w 

where v and w vary over W(G, B) and the group (5.11), respectively. The above formula 

amounts to an expression for the constants a~ in the expansion 

Z a'a (b,w)ewa (5.13) 
wE W(g, b) 

of IDd" e[ (t0] near b, in terms of the constants d~. 

Any two maximally split Cartan subgroup in MA are MA-conjugate. Hence, if 

BcMA is maximally split, the induced characters formula becomes considerably 

simpler: in a neighborhood in B of b, IDcI ' /ZO[~(U)]  equals 

1 Z Z d';, (v-'b'w)e~ (5.14) 
C oEW(G,B) w 6 W ( m ~ a , b )  

where c= # W(MA, B). 
Our next result is of a technical nature and will be needed later. Again let V denote 

a Harish-Chandra module for G, on which Z(g) acts via Z~.~. For /zEa*, define 

O6-(V) u, the/~-component along P of the character O6.(V), as follows. Fix a Cartan 

subgroup B in MA, and b E B N G'. Then, restricted to a neighborhood of b in B N G', 

Z c'~(b, w) e w;t 
w 

OG(V)~ -- iOMall/2 e ~ (5.15) 
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(cf. (5.5)), where w ranges over the set of all wE W(~, b) such that w21~=/~. This 

formula describes a real analytic,  MA-conjugation invariant function on (MA)n G'. 

Formally OG(V h, looks like a virtual character of MA, and in fact coincides with such a 

character on (MA)-,  as will follow from Osborne's  conjecture. At this point, however, 

we attach no representation theoretic meaning to it. 

Let  ~+(~g, b) be a positive root system, compatible with ~+(g ,  a), as in (3.23). We 

suppose that Z ( m ~ a )  acts on U according to a character Zg.a, with 

Re (2, a) < 0 for all a E r  lb). (5.16) 

Then U can be expressed as a tensor product 

U= W| 

of the one dimensional a-module C~,,/~=3`1,, and a Harish-Chandra module W for M, on 

which Z(m) acts according to Zm, ~, r=3`lbn,1- 

LEMMA 5.17. Under the hypotheses which were just  stated, 

e~[~(w | c~)], = OMA~W | c.+o). 

Proof. Although the anti-dominance condition (5.16) is phrased in terms of  a 

particular Cartan subgroup B~-MA, it has independent meaning: i f B t c M A  is any other 

Cartan subgroup, one can transfer 3̀  to 3̀~ E bT and ~+(g ,  b) to a positive root system 

~+(g ,  b0,  both via the same inner automorphism of  m0)a;  then ~+(g,b~) is also 

compatible with ~+(~1, a) and makes 3̀= anti-dominant. Let  us check the identity which 

is to be proved near some b E MA n G'--we may as well assume that b lies in the Cartan 

subgroup B which was used to state (5.16). We claim that q0,., for i>  1, cannot contribute 

to the g-component  of  ~6[ffe(W| ]. Because of (5.16), this is equivalent to 

for v E W(G, B) and w in the group (5.1 I). The condition (5.16) implies that a W(g, b)- 

conjugate u2 of  3̀  cannot restrict to/z on a unless u E W ( m ~ a ,  b). Thus we must show 

vwwila*l,  with v ,w  as before and i>1. We recall that Wila=AdyTl[a and 

w o  Adyi-I[a=Adyr, lla. In particular, 

vwwil, = v o Ad y,:- I[, = I r v = Ad m o Ad Yi, for some m E M. 
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If so, bo=vbo=AdmoAdyil~o=Admbi, o is MA-conjugate to b;,o, hence i=1. Now let 

us examine the local expression 

1 Z d ,  ~ _, w)eOgoa. = - -  (v b, (5.18) 
q)l CI v,w 

Arguing just as before, we find that vw2la4=/t unless v=Ad m, for some m EM--in  other 

words, unless v E W(MA, B). Thus, as far as the /t-component is concerned, only 

summands with vE W(MA, B) matter in (5.18). The character of U=W| is invariant 

under conjugation by MA, hence 

d't(v-l b, w) e vgoa = d'~(b, w) e goa 

for v E W(MA, B). We conclude 

1 E E d'a (v-'b'w)eowa= E d'a (b'w)egoa' 
Cl vE W(MA,B) goE W(m ~)a, b) wE W(m ~a,  b) 

which is the local expression for IDMAII/ZOMa(W| The iemma follows. 

Recall the definition (3.10) of the "Osborne character" On(V) of a Harish-Chandra 

module V for G. The local expressions (3.58) near any b E B N G' can be re-written with 

IDd 1/2 in place of the Weyl denominator, 

[IOall/2On(V)] (b expX) = E U~(b, w)e(Wa'x); (5.19) 
w E W(g, b) 

the new constants t~(b, w) are related to the 6a(b, w) by the same factor which relates 

the c~(b, w) of (5.5) to the ca(b, w) of (3.41). In analogy to (5.15), we introduce the/t- 

component en(V) u, which is given locally near b E B N G' by the expression 

E (~(b, w) e goa 
gO 

O,(V) u = iOualj/z e ~ (5.20) 

with w ranging over the set (wE W(g, b)l w21.=/t}. We note that 

O(V) u = O.(lO~, in a neighborhood of bEBnG' r 
(5.21) 

ca(b, w) = ~a(b, w), for all wE W(~, b) such that w21, =/t .  

Since c~,(b, w)/ca(b, w)=~(b ,  w)/6a(b, w), this is equivalent to the corresponding state- 
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ment about the primed constants, which in turn follows immediately from the defini- 

tions (5.15, 5.20). 

As before, let B denote a Cartan subgroup in MA, and ~+(fi, b) a positive root 

system. Then, on B, 

IOdV2 eQe = e~ H (ea/2-e-a/2) 
[DMAI v2 ~>o,~,o o. a 

= H (1-ea) l= ~(--1)POI~A(APn) 
a > 0 ,  a r  a 

(cf. (3.3)). The function Ep(--I)POMA(APn) assumes only positive values on (MA)-, 

as can be seen from the definition (3.5), hence 

[Dcll/----~2 ee" on (MA)- fiG' E (-  1~' OMA(A p n )  = [DMA[ I/2 P 

Since Hp(n, V)~, is the generalized (a+Op)-eigenspace of a in Hp(n, V), the identities 

(3.10) and (5.20) allow us to conclude: 

O,(V)~ = E (--1)POMA(H' (n' V)) on (MA)- nG'. (5.22) 
P 

Our next lemma is a counterpart to lemma 5.17 for the "Osborne character".  We 

suppose again that Z(g) acts on the Harish-Chandra module V according to Z~,a, with 

2 E b* subject to the negativity condition (5.16), and we set 

p = restriction of 3. to a. (5.23) 

Then 

LEMMA 5.24. On (MA)- fl G', 

On(V)~, = OMA(Ho(n, V)a). 

Proof. Because of (5.16), any Weyl translate wA differs from A by a linear 

combination, with non-negative coefficients, of roots in ~+(6, b). Each of these 

restricts to a root a E ~+(6,  ct) on ct, or to zero. In particular/~ is minimal among the 

homology exponents, relative to the partial ordering (2.31). The lemma now follows 

from (5.22) and the vanishing theorem 2.32. 

We close this section with a proof of the two statements (3.7--8) about the set 
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(MA)-, and with an explicit description of  (MA)-NBNG',  whenever B is a Cartan 

subgroup contained in MA. Enumerate  the connected components of  B as 

B ~ = identity component,  B 1 , B 2 . . . . .  B N, 

and define 

e a ( ~ , b ) = { a E C P ( g , b ) l e a ( B ) c R } ,  e R . i = { a E C P a ( ~ , b ) l e a > 0  onB'} ;  (5.25) 

both are sub-root systems of  r 19). We note that r b) can be described equiv- 

alently as follows: 

r b) = {a E r b)t (a,  bo) c R).  (5.26) 

Indeed, if a lies in this latter set, z=e a and ~ = complex conjugate of Z are characters 

by which B acts on ~; their differentials a, d agree, and hence so do Z and ;~. Fix a 

system of  positive roots r  b) which is compatible with r  a); then 

(1)~(~, b)  = (I)R({~ , b)  n (I)+(~,  b) ,  (1)R, i = (I)R, i ['1 (I)+(~,  [9) (5 .27)  

are systems of positive roots in en(f i ,  b) and r  

LEMMA 5.28. The set (MA)- NBiN G' coincides with 

{bEBinG'le~(b)< 1 for all aEr such that al.*0}. 

Proof. The definition (3.5) describes (MA)- as the interior, in MA, of 

{gEMA~( - I~OMA(APn) (ga)>~O for all a E A - } .  (5.29) 
P 

Let us suppose bEBiNG ' lies in the set (5.29). Then, for aEA,  

~ (--lY'eMA (Ap)(ba)=det(1-Ad(ba)) n = l-] (1-e~(ba))>-O (5.30) 
P aE q~+(g, b), a~0 on a 

(cf. (3.3)). Non-real roots occur in pairs a, ci. If  one of the two lies in q)+(~, b) and 

restricts non-trivially to a, then so does the other. In this situation the factor 

(1 - ea(ba)) (1 - e~(ba)) 

appears in the product on the right hand side of (5.30), is non-negative and vanishesm 

with fixed b and variable a EA---on a proper subvariety of  A. It can therefore be 

7-838285 Acta Mathematica 151. Imprim6 Ic 25 octobre 1983 
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omitted from the product without affecting its non-negativity. If a belongs to 

�9 ~(~, b)but not to ~[,i, the factor (1-ea(ba)) is strictly positive and can also be 

omitted: 

U (1-ea(ba))>~O for a EA-. (5.31) 
ctE ~ ,  i, a ~ 0 o n  ct 

Each factors of this product is strictly positive if a EA- lies far from the boundary of 

A-.  Let a0 be such a point, and a(t), 0~<t~<l, a continuous path from a(0)=a0 to 

a(1)--e, wholly inside A-  except for the endpoint e. Moving the path slightly, we can 

prevent it from crossing two or more of the hyperplanes 

{a EAlea(a) = e-~(b)} + , aEtZI~li ,  i, oqa=l=0 

at any one time, until it reaches the endpoint. Since the product (5.31) remains non- 

negative along the entire path, no factor can change sign, and hence all factors are still 

non-negative at a--e. In fact, they are strictly positive: bEBiNG ' is regular, so 

ea(b)4=l. The first part of the proof can be reversed, and we may conclude: the set 

(5.29) intersects B;N G' in 

(Bi) - =  {b~.BiNG'le~(b)<l if a f i r e . ; ,  ala*0}. 

Since (MA)-  is the interior of the set (5.29), 

(MA)-  NBiN G' c (Bi) - .  (5.32) 

The MA-conjugacy classes which meet (Bi) - lie entirely inside the set (5.29), because 

the latter is MA-conjugation invariant, and they constitute an open subset of MA, 

because (Bi) - is open in B and consists of elements which are regular in MA. This 

proves the containment opposite to (5.32). The lemma follows. 

We can now verify the statements (3.7-8). Let g C= MA be semisimple and regular in 

G. Then g lies in a Cartan subgroup B c M A .  The Weyl group W(G, B) contains all 

reflections about roots a E ~n(~, b). As was remarked before, W(G, B) may not act on 

B, but wg, with w E W(G, B), does makes sense up to conjugation by an element of B. In 

particular, an appropriate conjugate ~ E B of g satisfies the inequalities 

ea(~) < I for aE  ~ ( ~ ,  b), 

necessarily strictly, because g is regular. Lemma 5.28 ensures the containment 

E (MA)- ,  which proves (3.7). 
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As for (3.8), let mEM be given. If aoEA- lies far away from the boundary of A- ,  

the eigenvalues of Ad ao on rt will be small in relation to the operator norm of Ad m. 

Hence O<det(1-Ad(mao))l,=Ep(-1)POMA(APn)(mao). This inequality persists if 

we replace ao by al a, with al EA- lying close to ao and a EA-,  and m by any nearby 

m~ EM. We conclude that mao lies in the interior of 

{gEMA ~(-1)POMa(APrt)(ga)>~O f o r a l l a E a - } ,  
P 

i.e., in (MA)-. 

w 6. Osborne's conjecture: the case of a minimal parabolic 

We are now ready to prove theorem 3.6---or equivalently, the identity (3.13)--in the 

case of a minimal parabolic subgroup PmcG. We fix a Langlands decomposition 

Pm = M,,A,,,N,,, (6. I) 

with MmcK, and extend Am to a Cartan subgroup BmcMmA,,. In ~(g, b,,,) we pick a 

positive root system ~+(~, bm) compatible with @+(g, am); cf. (3.23). According to 

the discussion in w 3, we may assume that Z(~) acts on the virtual character O via X~.x, 

for some 2 E b* subject to the conditions (3.63 a, b); the/~i and the constants C will be 

specified later. Since the identity (3.13) is linear in O, we are also free to assume 

O = O(V) is the character of an irreducible Harish-Chandra module V. (6.2) 

Recall the definitions (5.15, 5.20) of the/~-components Oc(V) z, O, (V), corresponding 

to P=Pm and bt E a*. Because of (5.21) and the reductions which were made in w 3, the 

problem is to prove 

with 

O6(V) , = On(V) , on (MmAm)-NG', (6.3) 

/~ = restriction of ;t to a,,. 

We note that (3.63 a) implies the hypothesis of lemma 5.24, hence 

Ortrn(V)~ ~--- OMmam(no(lqm, V) u) 

on (M,,Am)- N G'. 

LEMMA 6.6. The group MmAm acts semisimply on Ho(n,,, V). 

(6.4) 

(6.5) 
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Proof. Since Mr, is compact and Am connected, we only need to worry about the 

action of the Lie algebra am. In fact, it suffices to show that am acts semisimply on the 

lowest weight spaces in the Mm-module H0(nm, V), or equivalently, on 

no(llm, V)/(r fq ram)  n 0 ( n m ,  V) --- n o ( r ,  V) ,  (6.7) 

with r =  span of all root spaces ga indexed by roots a E ~+(~, bin)- The am-action on 

the module (6.7) extends naturally to an action of bin. We identify U(bm) with the 

algebra of polynomial functions on b*. Then 

l(bm) = algebra of W(~, b,,,)-invariants in U(bm) 

operates on the b,,,-module Ho(lC, V)| o according to the character 

p ~--~p(2) (p E I(bm)). (6.8) 

This follows from the Casselman-Osborne lemma 2.21, coupled with (3.31); the normal- 

ization in the definition of the Harish-Chandra homomorphism y~ accounts for the shift 

by the one-dimensional bin-module C_ e. Because of (3.63 a), k is not a fixed point of 

W(g, b,,,)---in geometric language, the covering 

bm bm/W(~, b,,) 

does not ramify over :r(k). Let E be one of the generalized eigenspaces of b,,, acting on 

Ho(r, V)| e, and XEbm a linear function on b* which separates the various 

W(~, bm)-translates of k. The character (6.8) annihilates the product 

P = I--[ w(X-X(k). 1) E l(bm), 
wE W(~, b m) 

but only one of the factors can fail to be invertible on E. We conclude: the annihilator 

of E in U(bm) contains one of the maximal ideals lying above zt(2). Since the general- 

ized eigenspace E is arbitrary, bm must act semisimply on Ho(r, V), and hence so does 

I~ m . 

To simplify the notation, we let W denote H0(nm, V) u, viewed as an Mm-module. 

Because of lemma 6.6, Am acts via the character e u+om (the shift by 0m=Oe, is built 

into the definition (2.30)!), hence 

Ho(n m, V) u --- W | Cu+Q, ., (6.9) 
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as MmAm-modules. 

LEMMA 6.10. Suppose Ho(nm, V)~,~O. Then Mm acts irreducibly on W. The 
induced Harish-Chandra module/eCem(W| contains V as a submodule. Among the 

composition factors of l~e (W| only V satisfies Ho(nm, V),*0. 

Proof. Let W= ~=l Wi be a decomposition of W into irreducibles. The Frobenius 

reciprocity theorem 4.11 provides inclusions 

V~/e~e (W,| C~), l<.i<.k (6.11) 

(V is irreducible!). If we choose the constant C large enough, (3.67) implies 

QA-["Qm, Gt)<0 for all aEO+(g, am). (6.12) 

In this situation, if Wi is an arbitrary irreducible Mm-module, 

~ .  (Wi| has a unique irreducible submodule; it is the one and only 
(6.13) 

composition factor of~,(Wi| which has/~ as a leading exponent. 

Moreover, 

the unique irreducible submodules of/e~e (Wi| and/'~p (Wj| (6.14) 

are non-isomorphic unless Wi=Wj. 

Both (6.13) and (6.14) are formal consequences of Langlands' classification, in conjunc- 

tion with an observation of Mili,~i~; an elementary, self-contained proof will be given in 

the appendix. From (6.14) we immediately deduce that all the irreducible summands 

Wi ... . .  Wk of W are isomorphic. According to the reciprocity theorem 4.11, 

HOmM.A. (H0(n,,, V), W l | C~+Q) = Hom o (V, ~ ( W  I | C~,)). 

On the one hand, this space has dimension k, since Ho(nm, V)~, is a direct sum of k 

copies of WI| ; on the other, it has dimension one, since V is the only irreducible 

submodule of ~m(Wt | C~). Thus W=WI is irreducible. Any composition factor U of 

~ ( W |  C~,) which satisfies H0(n m, U)~:0 has ~ as a leading exponent: the condition 

(3.63 a) ensures that/~ is minimal among, the exponents of Ho(nm, V), and so we may 

appeal to theorem 4.25. At this point (6.13) implies U=V, as was to be shown. 
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Our next result links homology to the global character: the p-component Ohm(V) ~ 

can be non-zero on (MmA,,)- only if Ho(rtm, V),~4=0. In the following section we shall 

use the analogous statement for arbitrary parabolic subgroups. To avoid duplication, 

we treat this more general case now. Let P=MAN be a proper parabolic subgroup of G, 

and B a Cartan subgroup of G, lying in MA. As before, O=O(V) denotes the character 

of an irreducible Harish-Chandra module V, on which Z(g) acts via X0,~, with ). E b* 

subject to the conditions (3.63 a, b)---the choices of the pi and of the constant C will be 

specified during the course of  the proof. We set p = restriction of  2 to a. 

PROPOSITION 6.15. Suppose H0(n, V)I,=0. Then Oc(V)~, vanishes on (MA)- N G'. 

Assuming the proposition, or merely its specialization to P=Pm, we can complete 

the proof of theorem 3.6 for the minimal parabolic subgroup Pro. If H0(n, V)u=0, the 

identity (6.3) follows from (6.5) and proposition 6.15; both Oc(V) u and O.m(V) ~ vanish 

on (MmA,,)-NG'. On the other hand, if Ho(n,,,V)~,*O, we apply lemma 6.10: 

according to what we just saw, V is the only composition factor of ~m(W| such 

that O~V)~, restricts non-trivally to (M,,, A,,,)- n G', hence 

OG(V)~,= OG(~,(W| ~ on (MmAm)-flG'. 

In this situation (6.5), (6.9) and lemma 5.17 imply the identity (6.3). As was pointed out 

before, theorem 3.6 for P=Pm is a consequence of (6.3). 

Proposition 6.15 is similar to a result of Mili~,i~ (Theorem 1 in part III of [31]). 

Mili~,ir bounds the global character in terms of Harish-Chandra's E function, but this is 

not quite enough for our needs. At least for P=Pm the proposition can be deduced from 

Langlands' classification and Harish-Chandra's bound on tempered characters [19]. 

Here we proceed differently, since we shall use Osborne's conjecture to establish these 

results. 

As a first step in the proof of the proposition, we estimate the "diagonal matrix 

coefficients" of V. For this purpose we realize V as a submodule of an induced Harish- 

Chandra module, in the manner described by lemma 4.33: 

r c ~ ( w  | c~), (6.16) 

where/~=JlT/A/V, v, W is a set of Langlands data. Enlarging the constant C in (3.68) if 

necessary, we ensure that v E~t* satisfies not only (4.32), but even the stronger 

condition 

Re(v+O~,,a)<O for aE~+(~,f i ) .  (6.17) 
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The infinitesimal character of W is of the form X~,~, with ,(=restriction to rh of 2, 

transferred to a Cartan subalgebra of r h ~ t  by an inner automorphism of ft. By making 

an appropriate choice of the/~,- in (3.63), we arrange that W satisfies the conditions 

analogous to (4.31), with AI taking the place of G; cf. remark 4.50. Then W is square- 

integrable---in particular, 

W is a unitary (t) Harish-Chandra-module for Al. (6.18) 

The quantities/~i, C which were just specified appear to depend on/5, but we are able to 

make a uniform choice because G contains only finitely many conjugacy classes of 

parabolic subgroups. 

For each i E/~, we let di denote the degree of i, and V; the i-isotypic subspace of V. 

The dual space V* is naturally isomorphic to the i*-isotypic subspace of the dual 

Harish-Chandra module V' (i* =contragredient of i). To every pair of dual bases 

{va} c Vi, {v~*} c Vi* one can therefore associate "diagonal matrix coefficients" fva. v:, as 

in (4.13). Their sum 

Fi = Efoo. o: (6.19) 
G 

depends only on i, not on the particular choice of bases. The character O=O(V) is the 

sum of all "diagonal matrix coefficients", 

0 = E Fi' (6.20) 
iE~" 

in the sense of distributions. We shall measure the growth of the Fi in terms of a certain 

spherical function. In order to describe it, we replace P by a conjugate if necessary, so 

that )VLADM,,,Am, AcA,, ,  lVcN,,. With a slight abuse of notation, we refer to the 

extensions of v and t~ (shorthand for Q~) from ~t to a,,, by the same letters; thus 

vl~na =Ol,~na~ =0.  (6.21) 

Every g E G can be expressed uniquely as g=k(g)a(g)n(g), with k(g)E K, a(g)EA,,, 
n(g) E N,,. For ~ E a*, define 

= f e -r (a(g-~k)) dk. (6.22) q~(g) 
Jr 

(]) It is known that temperedness already implies unitarity. We have avoided using this fact, which is 
proved in w 8. 
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These are Harish-Chandra's spherical functions [17]. 

LEMMA 6.23 (cf. [31, p .  83]). Let S~G be compact. There exists a constant C, 
depending only on S and v, such that 

[Fi(gxg-')l <~ C d~ q~Rev+O_om(X), 

for all iEI~, g E S  and xEG.  

Proof. The Harish-Chandra module W has a unitary globalization W~, which in 

turn determines a globalization ~(W, |174 By definition, every 

fE~(W~| is a right /Linvariant function from G to W| o. For g EG 

and kEK,  we write gk=lrh~h, with IEK, th EAI, ~EA, tiE/V. Since z is unitary, 

[[f(gk)[[ -- [le-~+~ r(rh -~) f(DOI[ -- e-(Re v+O)(a)[If(DOll. 

Factoring th as l'a'n', with 1' E K N AI, a'  E Am N h,]r, n' E Nm N M, we find 

gk = ll' a' fi(~- in'a) ~, 

hence a(gk)=a'a, e-~Re~+O)(~)=e-(Rev+O)(a(gk)) (cf. (6.21)), and finally 

Ilf(gk)ll -- e-~Rev+O)(a(gk)) Ilf(lr)ll .  (6.24) 

The first factor on the right remains bounded as g ranges over the compact set S and k 

over K. Assuming f is bounded on K, 

sup [[f(gk)[I <~ C, sup [[f(k)ll, for g E S, (6.25) 
k E K  kEK 

with Ci depending on S and v. Now let us suppose t ha t fhas  length one, relative to the 

K-invariant inner product (4.3), and lies in a K-invariant, K-irreducible subspace of 
type i; we claim: 

sup Ilf(k)ll ~ d]/z. (6.26) 
k E K  

To see this, we extend f=fl  to an orthonormal basis {fl . . . . .  fa}, d=d~, of the K- 

invariant subspace in question. For k, l E K, 

fs (l-lk) = E a,s(Do f~(k), where a,s(l) = (( f~(l- lk) ,  f,(k)) dk. 
J K  
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The ars satisfy the Schur orthogonality relations, hence 

(f(l), f(1))dl = ~etc (f(I-'k)' f(l-lk))dl 

f , ---- E ( fr(k) ,  f s  (k)) a,,(l)a~,(l)dl=--d ~ llf,(k)ll 2, 
r,s EK r 

which implies (6.26). The G-invariant pairing 

(f*,  f )  = ( ( f * ( k ) ,  f(k)) dk 
JK 

(6.27) 

exhibits ~(W'~| as the Hilbert space dual to ~(W~| Let {fl ..... f,} be an 

orthonormal basis of ~(W| whose first m members constitute a basis of 

Vi,--~(W| The dual basis {f~' . . . . .  f*} of ~(W'| is then also orthonormal, 

and the natural projection ~(W'| sends {f~' .. . . .  f*} to the basis dual to 

{fl .. . . .  f,,}. In particular, 

Fi(gxg-I) = ~ ( f . ,  l~r174 v) (gxg-i) f~) 
r=l 

= ~ (f*,/~p(r| (x) f ,) ,  
r=l 

(6.28) 

where fr=~(r|174 We may assume that the K-trans- 

lates of each of the f ,  andffr span a K-irreducible subspace. According to (6.25-26), if g 

lies in S, 

sup IIZ(k)ll = s u p  IIZ(gk)ll ~ C, d '/2 - - i  " 
kEK k~K 

(6.29) 

This bound has a direct analogue forf~,: there exists a constant C2, such that 

Since V is irreducible, 

sup IIf~k)ll = C2 dY 2. (6.30) 
kEK 

2 m = dim V i -.~ d i . (6.31) 
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The statement of the lemma now follows from (6.24) and (6.27-31): 

IF,(gxg-')t <~ ~ t( f'*,, I~P(r| (X) Yr)l 
r = l  

~< ,=~, sup, ex II (k)ll sup, er IIZ(k)ll fK e-tRe"+O)(a(x-lk))dk 

<~ C d3i tpRcv+0_o (X), 

where C=C~ C2. 

Our next objective is to translate the estimate of the Fi into a bound on O. The 

arguments are inspired by the proof of proposition 6.10 of [I], and incorporate ideas of 

Harish-Chandra [19]. As before, B shall denote a Cartan subgroup in MA. To any e>0 

we associate the set 

B~ = {b EB I le'~(b) - 11 > e for a E r b)}; 

then B~ is open in B, and 

(6.32) 

BflG' = O B e. (6.33) 
E>0 

Since B ~ the connected component of the identity, lies in the center of B, the 

assignment 

~: (gB ~ b) ~ gbg-~ (6.34) 

describes a map of G/B~ onto B~ ~ the union of all conjugacy classes passing 

through B,. It is a normal covering, with group N6(B)/B ~ which is finite because of 

(2.1). Once and for all we fix a function qDECo(G/B~ such that .fo/~q~dg*=l, and we 

define 

T: C O (B~)--~ C O (B e ) (6.35) 

by the rule Tf(g)= average, over the fiber ~-'(g), of the function 

(gB ~ b) ~ qg(gB~ f(b) IDc(b)l-~/2 (6.36) 
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(cf. (5.2)). According to a standard integration formula, 

~ h d g = c l  f IDc(b)lh(gbg-')dg*db, (6.37) 
a JB JG/B ~ 

for every compactly supported, continuous function h on B~ the constant c reflects 

the normalization of the invariant measures and can be made equal to one. Both O and 

DG are conjugation invariant, hence restrict to Nc(B)-invariant functions on B. Apply- 

ing the integration formula and averaging with respect to Nc(B)/B ~ we find 

O(Tf)=fBfG/BoCP(gB~ 

(6.38) 
= ~ OlDall/2fdb' 

provided the measures are suitably normalized. 

LEMMA 6.39. The distribution f~-->O(Tf) on Be can be expressed as ET=lXjh j, in 

terms of translation invariant linear differential operators Xi . . . . .  X,, on B and continu- 
ous functions hi ..... hm on BnG',  such that 

Ih~(b)[ ~< C(e) ~/2 [Do(b) ] q0aev+o_o (b), for all bEB~. 

The Xj and h i can be chosen independently of e. 

Proof. By infinitesimal right translation, each XE ~ determines a left invariant 

vector field r(X) on G. The map X~--~r(X) extends to r: U(g)---,aigebra of left invariant 

linear differential operators. For iE/~, the Casimir operator f2xE Uff)cU(~) of K acts 

on Fi according to the same constant to;~>0 by which f2r operates on Vi, so 

0 = ~ F i = r ( l  + Q r y  E ( l+ t~  ' 
iE~ i~r 

in the sense of distributions. If the integer n E N is large enough, 

(6.40) 

(1 +toi)-nd~ < oo. (6.41) 
iElr 

Indeed, the unitary dual of K ~ is parametrized by the non-singular, dominant points in 

the weight lattice; in terms of this parametrization, a~; equals the square length of the 
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lattice point minus a constant, and d; is a polynomial function. Since K ~ has finite index 

in K, (6.41) follows. Combining lemma 6.23 with (6.40--41), we find: there exist an 

integer n and a continuous function h on G, such that 

(a) O = r(l +Qx)nh, in the sense of distributions; 

(b) i f S = G  is compact, Ih(gxg-I)l~C(S)CPRev+O_om(X), for all gES, xEG. (6.42) 

The covering ~ pulls back the operator r ( l+Qr )  to an operator on G/B~ On 

general grounds, 

~*r(l+flr)" = Z ~0,~Z~ | Y~' (6.43) 
r, $ 

independently of e, where Z1 ..... Zk are linear differential operators on G/B ~ YI ..... Yt 
translation invariant linear differential operators on B, and ~prsEC|176 
Let wl ..... WNEN~(B) be a set of representatives for N6(B)/B ~ The differential 

operator (6.43) commutes with the action of the covering group, hence 

{r(1 +ff~r)nTf} (gbg -l) = {~*r(l + Qr)" (~*Tf} (gB ~ b) 

= 1 ~,s,t ~s(gwtB~176 

for fECo(BE), g EG, b EB,. Since g2r is self-adjoint, the integral of this function 

against the function h of (6.42) equals O(Tf). We use (6.37) to re-write the integral as an 

integral over G/B~215 we can then dispense with the averaging procedure because ~*h 

is invariant under Nc(B)/B~ 

fnf~o~(gB~176 O(Tf) = Z m ~ 
r, $ 

The differential operators IDGll/2YslDo1-1/2 on BNG' can be expressed as linear 

combinations of translation invariant operators X~ .. . . .  X,,, with C | coefficients, 

I D d " e r ,  l O d - " 2  - - aj, X,.  

The formal adjoints X 7 of the Xj are also translation invariant. Define 

h~(b) = Z ajs(b)lDc(b)l I/2 fG/ ~Ors(gB~ b) Zr cp(gB ~ h(gbg -l) dg*; 
r,  $ B 0 
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then 

e o  T=  ~ X j * h  i , 
J 

in the sense of distributions. In view of (6.42), this proves the lemma once it is known 

that the functions ajs and V/rs are uniformly bounded on the sets B~ and suppq0xB~, 

respectively, for all e>0. 

The boundedness of the ajs follows from the identity 

IOd 1/2 = c I--[ (eal2--e-a/2), 
a>0  

with c constantly equal to + I or +i on any particular connected component of B N G', 

as was pointed out in the beginning of w 5. In order to bound the g:,,, let us examine the 

differential of the map ~. Via left translation by g, we identify the complexified tangent 

space T(G/B~ with b•  orthogonal complement of b, relative to the Killing form. 

Similarly T(G)g= g and T(B)b~-D. In terms of these identifications, the differential ~, at 

(gB ~ b) is given by 

~.(X, Y) = Ad g(Y+(Ad b -~ -  1)X). (6.44) 

To see this, we note that ~.(X, Y) is the tangent vector at t=0 to the curve 

t ~-, ~(g exp tX, b exp t I0 = g exp tX b exp t Y exp ( -  tX) g-1 

= gbg -l exp (tAd g(Y+(Ad b -~ -  1)X)+O(t2)}. 

The linear transformations 

( A d b - I - 1 ) - l : b x - - - ' , b a ,  b E B N G ' ,  

are diagonal with respect to the root space decomposition and have eigenvalues 

(ea(b) - 1)-~ l, a E ~(g,  b), which are bounded on the sets B~, as are their derivatives of 

all orders. We can express the pullback to G / B ~  ') of any left invariant vector 

field r(X) on G in terms of vector fields {Z,} on G/B ~ and translation invariant vector 

fields { Y~} on B, 

~*r(X) = ~ ar, Z, | Y,. 

Inverting (6.44) and using the preceeding remark, we find that the coefficient functions 

a,s have the following property: if Y is a translation invariant differential operator on B 
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and Z a linear differential operator on G/B ~ both of  arbitrary order, then (Z |  Y)a~ 

remains bounded on any set of  the form (ffxB,, with e>0 and with a compact first factor 

~7. The analogous statement about left invariant linear differential operators r(X) on G 

follows by induction on the order of  X. In particular, this establishes the boundedness 

of  the functions ~p~ on supptpxB~. The proof of the lemma is now complete. 

The statement of  proposition 6.15 remains unchanged if we replace P by a 

conjugate. We may therefore put P into "s tandard posi t ion",  i.e. 

M A  ~ M mAre, A c A , , ,  N c Nm. (6.45) 

At this point we bring the hypothesis H0(n, V)~,=0 into play. 

LEMMA 6.46. There exist a root a E ~ + ( ~ , a ) ,  a constant (~>0 and, for  each 

compact  set S c B ,  a constant  C(S), such that 

[Dc(ba) ['/2q~Re v+~_Qm(ba) <~ C(S) eRel'+aa(a) 

whenever b E S, a E A - .  

Proof. As linear functions on a,,, (cf. (6.21)), v and 0 restrict to linear functions on 

a. We claim: 

(a) [Dc(ba)[ I/2 <~ C I e-~ 

(b) CpRev+~_o (ba) ~ C 2 e Re v+~ (6.47) 

again for all b E S ,  a E A - ,  with constants C,,C2 which depend on S. Indeed, as b 

ranges over a compact set and a over A - ,  e~(ba) stays bounded if a E ~(~ ,  b) either 

restricts trivially to a or projects to a root in ~+(fi ,  a), and e~(b) is bounded in any 

case; hence 

IDc(ba)l'/2= aeI-ia,~, b) (ea(ba) -1) i/2 

<~ C I e-~(a) = C I e-~ 
k a E ~ + ( g , a )  

As for the second inequality, A c B  ~ lies in the center of  B, so 

= q0Re v+o_e,(ab) = f e-eRe ~+O(a(b-m a-,k))  dk. (6.48) q0Rr v+O-Om(ba) 
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We write a- tk=l 'a 'n  ' and b-ll '=l"a"n ", with 1', l"EK, a', a"EA,. ,  n', n"EN,".  Then 

b - l a - I k  = l"a"a'(a'- In"a') n', 

hence a(b- ta- lk )=a 'a"=a(a- lk )a(b- l l ) .  Since a(b-ll) is bounded as b- l l  varies 

over the compact set S-1K,  there exists C2=C2(S) such that 

e -(Re v+~ ~ C z e-~R~ ~+O)(a(a - lk)). (6.49) 

Since 15 was assumed to be in standard position, the negativity condition (6.17) implies 

(Rev+0,  a)~<0 for aE~P+(~,am), 

which in turn gives 

e-( Re v+O)(a(a-lk) ) <~ e Re ~+O(a), (6.50) 

for all aEc losure  of  A m, k E K .  This inequality is a standard result (cf. [2, w 14]) and 

can be deduced from simple manipulations with finite dimensional representations; we 

shall sketch a proof in the appendix. Since A - c  closure of A~,, (6.48--50) imply (6.47 b). 

The lemma follows from (6.47) once we produce 6>0  and a E ~+(~I, a), with 

eRev+O(a)~eReU+ee+6a(a), f o r  aEA-. (6.51) 

We ennumerate the simple roots in ~+(.q, a,,) as al . . . . .  ar, so that 

ai4:O on ~t ,:~ l <~i<~s, (6.52) 

and we let/zl . . . . .  /Zr denote the corresponding fundamental highest weights in a*. We 

transfer 2 E b* to a linear function 2,, on b," (=complexified Lie algebra of a Caftan 

subgroup B,"cM,~A,"),  via an inner automorphism of m~)a which makes 2,, anti- 

dominant on b," N m, in the sense of (3.65). Then 2 and 2,. have the same restriction to 

a, namely/~, and 

Re(2,.,  a) < - C  if a E ~ + ( ~ ,  b,") (6.53) 

(cf. (3.66)). Recall how the embedding (6.16) was constructed in w 4: V has a leading 

exponent,  necessarily of the form W2,,,iam, W E W(~, bin), such that 

(a) W2mia,,, = vq-~ir=s+l aia i, Re ai~O, and 

(b) v =  -Ei~=l bil~ i on a,,N[~, g], R e b i > 0 ;  
(6.54) 
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here v is regarded as a linear function on am, as in (6.21). According to theorem 4.25, 

the same exponent  shows up as an exponent  of  

no(nm,  V) = no(rim FI m, n o ( n ,  V)). 

Since Ho(n, V) u was assumed to vanish, 

W2ml a */~ = ;tin[ ~. (6.55) 

The anti-dominance condition (6.53) implies 

r 

W2ml%= Amlam+ ~ Ciai, Reci~>0. (6.56) 
i = l  

As a conjugate of  2,2m has a regular real part; cf. (3.66). Hence,  if Rec i=0 ,  any 

minimal expression of  w in terms of  reflections about  simple roots cannot  involve a 

reflection about  a simple root  whose restriction to am equals ai, in which case ci itself 

vanishes. Taking into account  (6.55), we find: 

there exists an integer j ,  1 <-j<~ r, such that Re cj > 0 and ctjla :4= 0. (6.57) 

It will be convenient  to view/~ and 0e  as linear functions on all of  ctm, trivial on cl m N m. 

Since v - p  and 0 - O e  vanish on the split part of  the center  of  g, v-/~+O-Oe can be 

expressed as a linear combinat ion of  the a;, 

r 

v-/~+O-Oe = ~ di av (6.58) 
i = 1  

To prove (6.51), it suffices to show 

(a) Redid>0 whenever  ajla=l=0, and 

(b) this inequality holds strictly for at least one such aj. 
(6.59) 

Since aj does not vanish on a, I~j is perpendicular  to those aj that do vanish on a n i n  

other  words, to the simple roots  in q~+(m, ct,,,n m). Hence  /t i vanishes on am N m, 

which implies 

(~,/~j) = (gin,/~j) (6.60 a) 

(cf. (6.55)). Similarly 

(Op,,uj) = (Ore,/'2), (6.60 b) 
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because Qel~=tgm[~ (P is in standard position!). If a,. is non-zero on d, we can argue 

analogously, to deduce 

(0, /z;) = (Q,,,, /z;) for l ~ i ~ s .  (6.61) 

Let  us suppose first that l<.j<.s. Then (6.59a) follows from (6.54-56) and (6.60-61): 

Re (v-/z+ O-Oe, Pj) 2 Re (v -2  m, Iz) Re cj I> 0. R e d j =  2 = = 
(a t, aj) (aj, ai) (6.62) 

Now suppose s+ l<.j~r. We claim: 

/a:= ~ e:i/~i+ ~ f:iai, with e:i~O, fji~O, (6.63) 
i=1  i = s + l  

and 

for each j ,  at least one fj~ is strictly positive. (6.64) 

To see this, we regard/zjl~,:~ as a fundamental highest weight for ~ + ( f i ,  am N fit). The 

roots span the weight lattice over Q, and any two fundamental highest weights have a 

non-negative inner product;  hence 

i = s + l  

Not all fj~ can be zero, because gj restricts non-trivally to a, ,  n fit. Both gj and the a,. 

vanish on the split part of  the center of  g, and #t . . . . .  gs span the annihilator of a,,, Iq f i  

in the dual space of  am n [~, g]. It follows that gj can be expressed as in (6.64)--we only 

need to check that ej~>-O. For 1 <<.i<~s, ai is perpendicular to/~j and has a non-positive 

inner product with at, s+ l~l~r .  Thus 

r 

(uJ-E fitavai) - -21~+ (ai, a)  >-0, ej, = 2 (a,, a,) = jfjt (at, 

as was to be shown. 

We recall that 0 vanishes on Ctm FI fit, which implies 

(0, ai) -- O, s+l<~i<~r. (6.65) 

8-838285 Acta Mathematica 151. Imprim~ le 25 octobre 1983 
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The following chain of equalities and inequalities is justified by (6.58), (6.60), (6.63), 

(6.61) and (6.65), (6.54 a) and (6.56), (6.54 b), in the given order: 

�89 aj) Re dr= Re (v-/~+~-Ov,/zj) 

= Re ( v - 2  m +0-Ore,/zj) 

= R e ( v - 2 m + O - P , ,  s ejilzi+ s fjiai) 
i=1 i = s + l  

= s ej iRe(v- ,~m,  lZi)+ s f j i R e ( v - A m - Q m  , a i) 
iffi I i f  s + l 

>~ s fjiRe(v-2m-O,..ai) = -  s fiiRe(2,.+0m, ai) �9 
i = s + l  i=s+l 

(6.66) 

If the constant C in (3.63) is chosen large enough, the negativity condition (6.53) implies 

Re (2m+Qm, ai) < 0, I ~< i~< r. (6.67) 

At this point (6.64) and (6.66--67) prove (6.59a) in case s+l<~j<~r: 

Redid> ~ ~ , .  Re(Xm+Om, ai) - z  Z ,  h; 7 - - 7  >0.  i=,+l tc~, %/ 

The inequality also proves (6.59b), provided at least one of the roots as+~ ... . .  ar 

restricts non-trivially to a. If not, (6.59 b) follows from (6.57) and (6.62). As was pointed 

out before, (6.59) completes the verification of the lemma. 

We shall prove proposition 6.15 by contradiction. Thus we suppose that OG(V) F, is 

non-zero near some b E (MA)- fl G'. We may also suppose b E B, since the choice of the 

Cartan subgroup BcMA has been left open until now. In terms of the local expression 

(5.5) for ID~I~/ZO~V), this means: there exists a w E W(g, b), such that 

c'a(b, w)+O and witla=/z. (6.68) 

Let B i be the connected component of B which contains b. Moving b slightly, we can 

arrange 

ea(b) ~ R unless e a assumes only real values on B i, (6.69) 
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for a E ~(fi ,  b), without destroying (6.68) or the containment b EB j. We claim: if U is a 

sufficiently small compact  neighborhood of  the identity in (M N B) ~ 

bUA-  c (MA)- nB,, (6.70) 

provided e>0 is small enough (cf. (6.32)). To see this, we recall the description (5.28) of 

(MA)-NBiNG '. If ctEd~t,i restricts non-trivially to a we know that ea(b)<l ,  and 

hence 

ea(bma) = ea(bm) ea(a) < ea(bm) < I, (6.71) 

for all mE U and a E A - ,  as long as U is not too large. In particular (MA)- contains 

bUA-.  It remains to be shown that 

e ~ stays bounded away from 1 on bUA-,  (6.72) 

for every a E ~(g ,  b). We distinguish four cases. If  + a  E ~ . i  and al~*0, (6.72) follows 

from (6.71). A similar argument applies if a restricts trivially to a. If a belongs to 

~n(~,  b) but not to On.i, e a assumes no real positive values at all on B i, so (6.72) is 

automatic. Finally, if a does not belong to ~R(fi, b), we use (6.69) to conclude that 

e'~(bma)lea(bma)l-I=e'~(bm)lea(bm)l -I stays away from I, again assuming U is not 

too large. 

We enumerate the restrictions to a of  ,1 and its W(fl, b)-conjugates as 

/~ =/~1,/~2 . . . . .  /~n, without repetition. Because of the negativity assumption (3.63 a) on ,t, 

[e~'-~(a)l < I, for 2 ~< i ~< n, a E A-.  (6.73) 

In view of (6.70) the local expression (5.5) can be analytically continued to all of  

BUA-.  Hence there exist C | functions qg~ . . . . .  q0n, defined on a neighborhood of  U in 

(M n B) ~ such that 

n 

[Ddl/ZO(bma) = ~ ~(m) e~'(a) (m E U, a EA-).  (6.74) 
i= l  

The assumption (6.68) implies cpl@0 on U. Thus we can choose a C | function ~p on 

(Mn B) ~ having support in U, with 

f~M dm= 1. V/ 
n B) ~ 
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For a E A - ,  we define 

O(a) = e-U(a) ( (IDol 1/2 O) (bma) lp(m) dm. (6.75) 
Jm E (MnB) ~ 

Because of  (6.74), we can express 0 as an exponential sum, 

n 

0 = I +E ci e~-'" (6.76) 
i = 2  

On the other hand, if we integrate the estimates in lemmas 6.39 and 6.46 for the 

distribution (6.38), we find: there exist translation invariant linear differential operators 

X1 . . . . .  X,,, on A, continuous functions hl ..... hm on A - ,  a linear function rEct~ and 

constants C1 . . . . .  C,,, such that 

0 = ~ Xjhj, in the sense of  distributions, [hjl ~< Cj e ~ for 1 ~<j ~< m, 

j= I (6.77) 
and er(a)< 1 for a E A- .  

Let  fECo(A-) be such that fAfda = 1, and l e t f ~ , f  2 . . . .  be the translates of  f by a 

sequence of  points al,a2 . . . . .  whose inverses tend to oo along a ray in A - .  Since the 

exponentials e/''-~', 2~i~n, decay on A - ,  (6.76) tells us that fafkOda tends to 

fAfda= I as k---,o~. Arguing similarly, we deduce 

fAfkOda = ~ fA(X* fk)h~da--"O 
j = l  

from (6.77). This is the contradiction which proves proposition 6.15. 

w 7. Osborne's conjecture: the general case 

In this section we complete the proof of  theorem 3.6 for a general parabolic subgroup. 

We also reformulate the character identity in theorem 3.6, in terms of the homology 

groups with respect to certain maximal nilpotent subalgebras r contained in g. 

The proof of  Osborne 's  conjecture in the general case proceeds along the same 

lines as that for a minimal parabolic subgroup, with one major exception: the verifica- 

tion of lemma 6.6 depended crucially on the compactness of  M,,,, and does not carry 

over to the present context.  We get around this problem by proving an analogue of  

lemma 6.10 directly, as a consequence of  theorem 3.6 for P=Pm. 
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We begin by drawing some conclusions from the special case of theorem 3.6. 

PROPOSITION 7.1. Let Bm be a maximally split Cartan subgroup, and B ~ its 

connected component containing the identity. The character OG(V) of  a Harish- 

Chandra module V cannot vanish on any non-empty open subset of  B ~ unless V=0. 

We remark that the same statement about virtual characters fails spectacularly: the 

difference of characters of any two contragredient discrete Series representations of 

G=SL(2, R), for example, is identically zero on the hyperbolic set. 

Proof. We may as well suppose BmcMmAm. Osborne's conjecture for P=Pm 

asserts the identity 

O6(V) E (- 1)p OM.,A~,(AP nm) 
P 

= V ) )  

= E E (- lr o..a 
# P 

(7.2) 

on (MmAm)-NG'. Let us assume that OG(V) vanishes on an open subset of B~ it 

then vanishes also on an open subset of (M,,Am)-NB~ N G'--this  follows from (3.7)---, 

as do the contributions of the various exponents/~ E a* to the right hand side of (7.2). 

Each of these contributions is a finite dimensional virtual character, hence real analyt- 

ic. We conclude: 

E ( -  lY'OM,,a,,(Hp(n,,, V)u) = 0 (7.3) 
p 

on B ~ for a l lpEa* .  According to the vanishing theorem 2.32, there can be no 

cancellation in (7.3) if /~ is minimal among the exponents of H0(nm, V), thus 

H0(nm, V)=0. Casselman's lemma 4.22 now implies the vanishing of V. 

As an immediate consequence of the proposition, we find 

COROLLARY 7.4. I f  O---)V'---)V---)V"---,O is an exact sequence of Harish-Chandra 

modules, and OG(V)=O~(V" ) on a non-empty open subset of  B~ then V~-V". 

Let V be a Harish-Chandra module for G, and P = M A N  a parabolic subgroup, in 

standard position with respect to Pro, i.e., 

MA ~ MmAm, A c Am, N c Nm. (7.5) 
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Theorem 3.6 for minimal parabolic subgroups allows us to deduce the general state- 

ment, at least on (MmAm)-: 

LEMMA 7.6. Restricted to (MmAm)- f~G', 

OG(V) = e , , (v ) .  

Proof. It is enough to show that 

O.(V) = O, ( I / ) ,  

or more explicitly, 

2 (--1)P~)MA(Hp (F[' V))~-- 2 (--I)POMrnAm(HP (r[' V ) ) X  
p p 

Z ( -  1)p OMA (Apn) 
P 

2 ( -  1)P OM, a,(APn,- ) 
P 

(7.7) (-lre,, .~ (H,(n. v)) 
P 

Z (-  I)POM~.A.(AP(nm O 111)) 

P 

both on (MmAm)-A G'. Let us apply theorem 3.6, with MA and Pm n MA in place of G 

and I'm, to the first term in (7.7). We note that PmnMA is a minimal parabolic 

subgroup of MA, with Langlands factorization MmAm(N,,AM). Also, the set of 

validity of theorem 3.6, specialized to our present situation, includes 

(MmAm)-AG'--to see this, we appeal to lemma 5.28. Hence, on (MmAm)-nG', 

0Ma(H~(n, lO)= 
Z (-  1)qOM.A.(nq (rim D m, np(n, V)) 
q 

E ( -  l)qOM, a,(Aq(nm A m)) (7.8) 
q 

The Hochschild-Serre spectral sequence for H.(nm, V) corresponding to the semidirect 

product n,,,=nt~(n,,, fl m), has E2-term 

E.2~ = H~(n~ n m, H~(n, Y)). 
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Since there are only finitely many non-zero terms, the usual Euler characteristic 

argument gives 

E(--1)P+qOMma.(Hq(nrnAm'Hp (n' V))= E (--1)POM.A.(HP (IIm' V)). 
p,q p 

This coupled with (7.8), proves (7.7), and hence the lemma. 

We fix a Cartan subgroup B c M A ,  and a linear function 2 E b* which is antidomin- 

ant, relative to a positive root system ~+(g,  b) compatible with ~+(g,  a). In other 

words, 

Re (A ,a )<0  for aE ~+(g ,b ) .  (7.9) 

We let/~ and r denote the restrictions of A to, respectively, a and b Am. 

LEMMA 7.10. I f W  is an irreducible Harish-Chandra module for M, such that Z(m) 

acts according to Zm.~, then 

Ho(n, ~ ( W  @ C~,))1, = W | C.~op; 

moreover, on (MA)- A G', 

oG[r | c,)]~ = e . [ r 1 6 2  | c,)],. 

hypotheses of lemmas 5.17 and 5.24 are Proof. The satisfied. Hence, on 

(MA)- n G', 

(a) 0 6 [ ~ ( W  | C~)]~, = OMA(W @ C/~+oe), (7. I I) 

(b) o . [ ~ ( w  | c~)]~ = OMA[H0(n. ~(w | c~))~]. 

Let B~ be the identity component of a Cartan subgroup B,,cM,~Am. Lemma 5.28, 

applied to both (MA)- and (MmAm)-, gives the containment 

(MA)- AB~ ' ~ (MmAm)- AB~ fl G'; 

both sets are open in B~ and non-empty. According to lemma 7.6, the two quantities on 

the left in (7.11 a, b) agree on (MmAm)-AG'. We conclude: 

OMA[Ho(n, ~ ( W  | C~))~] = OMA(W | C,+e), (7.12) 
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on (M,,Am)-N B ~ N G'. The Frobenius reciprocity theorem 4.11 produces a surjection 

H0(rt, ~ ( W |  C~,))~,--) w |  C~+o --> 0 

(W is irreducible!). At this point (7.12) and corollary 7.4, with MA playing the role of G, 

imply the first statement of the lemma. The second statement follows because of (7.11). 

We can now prove theorem 3.6 for a general parabolic subgroup P=MAN, which 

we may as well put into standard position; cf. (7.5). Again let B denote a Cartan 

subgroup of G, lying inside MA. We make the same reductions as in the beginning of 

w 6: V is an irreducible Harish-Chandra module for G, on which Z(g) acts via X~,~, 

with 2 E b* subject to the restrictions (3.63 a, b). It then suffices to prove the identity 

O~(V)~, = On(V)~, on (MA)- N G', 

where 

= restriction of ;t to a. 

From lemma 5.24 and proposition 6.15 we deduce: 

if H0(n, V)~, vanishes, both Oc(V)z and On(V)~, 

are identically zero on (MA)- N G', 

(7.13) 

(7.14) 

(7.15) 

which implies (7.13) in this particular situation. 

Thus we suppose H0(n, V)~,=I=0, and we let W denote an irreducible quotient of 

Ho(n, V)~,, viewed as Harish-Chandra module for M. Because of the reciprocity 

theorem 4.11, there exists a short exact sequence 

0---~ V--,/~p(W | C~)---~ a---~ 0, (7.16) 

and a corresponding long exact sequence 

...~nl(n,O)~,---~Ho(n, V)~,~no(n,~(W| (7.17) 

Since 2 satisfies the negativity condition (3.63 a), # is a minimal element of the set 

{w;tl~ I w e w(~, b)}, 

relative to the partial order (2.31). We now appeal to the vanishing theorem 2.32: 

Hp(rt, Q)u = 0 for p > 0. (7.18) 
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The negativity of ~. also ensures that a W(~, b)-conjugate w;t restricts to/~ an a only if 

w E W(m~a ,  b). This, in conjunction with the Casselman-Osborne lemma 2.21, makes it 

possible to identify the Z(m)-action on W as •m, 3, with r=restriction of 2 to b n m. In 

particular, lemma 7.10 applies in the present context. Since 

H0(n, ~ ( W  | C~))~ = W | C~+~ 

is irreducible and Ho(n, V)~,~=O, (7.17-18) imply Ho(rt, Q)~,=0. We claim: 

Ho(n, V~)~ = 0, for every composition factor V1 of Q. (7.19) 

Indeed, let 0--~Q'--~Q---~Q"--~0 be a short exact sequence; then H~(n, Q")F,=0, for the 

same reason as (7.18), hence 

H0(n, Q')~, = Ho(rt, Q")~, = 0, 

which establishes (7.19) by induction on the length of Q. In view of (7.15), O6-(Q)~, and 

On(Q)~, vanish on (MA)- A G'. Equivalently, 

oG(v)~ = o . ( ~ ( w  | c.))~, 

o.(v)~ = o . ( ~ ( w  | c~))~, 

both on (MA)-NG' .  The identity (7.13) follows from another application of lemma 

7.10. The proof of theorem 3.6 is now complete. 

We close this section with an alternate version of Osborne's conjecture, in terms of 

the homology H.(r ,  V) with respect to certain maximal nilpotent subalgebras ~:c ft. Let 

B denote a Cartan subgroup of G. We conjugate B, if necessary, to make it invariant 

under the Cartan involution. Then 

B = (B n K)A (direct product), (7.20) 

with A = split part of B. We fix a system of positive roots q~+(~, b) which is compatible, 

in the sense of (3.23), with some system of positive restricted roots q~+(~,a). The 

choice of ~§ b) determines a Borel subalgebra b~)r~ g, whose nilpotent radical r is 

the direct sum of all root spaces go indexed by roots a E q~+(~, b). The group BOK and 

the Lie algebra a commute, they both normalize r and act on any Harish-Chandra 

module V. These actions induce commuting actions of B n K and a on the homology 

groups Hp(r, V). As we shall see shortly, the homology groups are finite dimensional. 

Once this is known, we can lift the a-action uniquely to an action of the vector group 
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A--in other words, the homology groups Hp(r, V) become B-modules. As was re- 

marked in w 5, every root in 

�9 b) = {a e <a, bo) R} 

exponentiates to a real-valued character of B. We define 

B"= {bEB[e"(b)* 1 for aE~R(g,b)},  

B - = { b E B [ e " ( b ) < l  f o r a E ~ ( g , b ) } ,  (7.21) 

where ~ ( ~ ,  b)=~a(g,  b) n ~+(g, b). 

THEOREM 7.22. The r-homology groups o f  a Harish-Chandra module V are finite 

dimensional. For b E B -  a G', 

{Oa(V) I'-[ ( l - e" ) } (b )=E(-1)POn(Hp(r ,V) ) (b )"  
. E ~+(g, b) P 

Let us mention a useful corollary before we turn to the proof. If one passes to a 

suitable finite covering, 

= half-sum of all aE~+(8, b) 

lifts to a character of B, and this makes it possible to introduce a "Weyl denominator" 

H (e~176  I-[ ( l -e") .  (7.23) 
aE ~§ b) aE ~+(fl, b) 

Since W(G, B) contains all reflections about real roots, it permutes the positive root 

systems in ~R(fl, b) transitively. Equivalently, every connected component of B" is 

conjugate, under the normalizer No(B) of B, to a subset of B-.  Thus: 

COROLLARY 7.24. The "Weyl numerator" 

O c( lO 1-[ ( e ~ - e -"e ) 
a E ~+(g, b) 

on B N G' extends to a real-analytic function on all orB". Its restriction to any particular 

Nc(B)-conjugate o r B -  is equal to a finite, integral linear combination o f  characters(I) 

o f  B. 

(i) Not  necessar i ly  one d imens ional  charac ters ,  s ince B need not  be Abelian. 
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The first of the two assertions is also part of Harish-Chandra's matching conditions 

[26]. With some effort, the second can be deduced from the matching conditions, the 

induced character formula in theorem 5.7 and Harish-Chandra's character formula for 

the discrete series [19]. 

Proof of theorem 7.22. The system of positive restricted roots @+(g, a), with which 

@+(g, b) is compatible, corresponds to a parabolic subgroup P--MAN, such that 

r = (rN m) ~ n (semidirect product). (7.25) 

This decomposition of r leads to a Hochschild-Serre spectral sequence 

E2p, q = Hq(rfl m, Up(n, V)) =~ Hp+q(r, V). ( 7 . 2 6 )  

We claim: if W is a Harish-Chandra module for M, 

(a) d i m H . ( r A m ,  W)<0o, and (7.27) 
(b) OM(W)l-lalEO§ bnm) (1--ea)=Ep(--1)qOe(Hp(rAm, W)), on BAM" 

(M'=set  of all m EM which are semisimple and regular in M). Let us assume this for the 

moment. There are only finitely many non-zero terms in the spectral sequence (7.26), 

all of them finite dimensional. Hence H,(r ,  V) is finite dimensional also, and 

X (-I)POB(Hp (r' V))= X (-l)P+qOa[Hq(rAm'Hp (n' V))]. (7.28) 
P P.q 

From (7.27b) we deduce the identity 

X (-1)qOe[Hq(rAm, Hp (n, V))] = OMA(Hp(n' V)) I-I (1-ea) '  (7.29) 
q ale ~+(m ~a, b) 

which holds on all of B II G', because A commutes with r n m and B n G'cB A (M'A). The 

description in lemma 5.28 of (MA)-ABAG' shows that the character formula in 

theorem 3.6, 

X ( -  l~'OuA(Hp(n' V)) = Oa(V ) X ( -  I)POMA (Aun), (7.30) 
P p 

is valid on B-  A G'. Since 

X (- I)p OM.4(Apn) H ( l -ea )  = I-'[ ( l -ea) ,  
P ale O+(m ~a, b) ale q~ +(11, b) 

the identities (7.28--30) imply the theorem. 
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We must still verify (7.27), which is nothing more than a special case of theorem 

7.22: the Cartan subgroup B AM of M has no split part, hence is compact and lies in the 

maximal compact subgroup K f l M  of M; cf. (7.20). In other words,  if we change 

notation, with G, B, r taking the places of M, B AM, r fl m, we have to prove theorem 

7.22, under the additional hypothesis that 

B c K is a compact Cartan subgroup of G. (7.31) 

The analogous result about r-cohomology is implicit in [34], though well-hidden. We 

briefly recall the argument, translated back into homology. 

Let ~ = f ~ d  be the Cartan decomposition. The standard complex of z-homology, 

V | Ar = V | A(d O r) | A(f n r), 

has a natural increasing filtration 

Fp(V | At) = <9 V | N(~ n r) | A(f n r). 
j ~ p  

A straightforward calculation shows that the boundary operator of z-homology induces 

the boundary operator of (]In r)-homology on the quotients 

FJFp_ ~ --- V | AP(~ n r) | A(f N r). 

In other words, the filtration determines a spectral sequence 

E l,  q = Hq(f n r, V | AP(~ n r)) =~ Ho+q(r, V). (7.32) 

Under the action of the torus B ~ (=identity component of B)(Z), V breaks up into an 

algebraic direct sum of weight spaces, which are generally infinite dimensional. Since B 

normalizes r, the homology groups Hp(r, V) inherit a weight space decomposition. For 

each weight g, we let Cu denote the one dimensional B~ corresponding to the 

character e ~. Then, because of the Casselman-Osborne lemma, 

Homn0 (H,(r, V), C~,)= 0 for all but finitely many weights/~. (7.33) 

Since b~(fN r) is solvable, A(~ fl r) has an increasing filtration, invariant under B and 

fl r, with successive quotients C~, .. . . .  C~,, indexed by the weights r/j . . . . .  r/n of A(d flr). 

(2) BO=B if G is connected .  



CHARACTERS,  ASYMPTOTICS AND n-HOMOLOGY OF HARISH-CHANDRA MODULES 125 

This filtration leads to a second spectral sequence 

E~,q = Hp+q(t N r, V | Cv) ~ np+q(~ 1717, V ~) A(~ fl r)). 

The decomposition of V into its K-isotypic components, 

also decomposes the ELterm: 

(7.34) 

np.q(~ n E, V ~ Cr/p) = iE(~ np.q(~ n r, Vi) ~ Ctlp; (7.36) 

the factor Cvp can be pulled out of the parentheses because it is trivial as a module for 

fn r. For any particular weight/~, 

Homs0(Hp(tNr, Vi),C~,) =0,  for all but finitely many iE/~, (7.37) 

as follows from the Casselman-Osborne lemma, this time applied to I. Since dim V;<oo, 

(7.32-37) prove 

dim Hp(r, V) < oo, (7.38) 

which is the first assertion of theorem 7.22. 
In view of the Weyl character formula, the formal series 

I--[ (1-ea) ~ Ox(V/) (7.39) 
aE~+(f ,b)  iE~" 

is an infinite linear combination of characters of B, with integral coefficients. By the 

usual Euler characteristic arguments, the two spectral sequences (7.32), (7.34) imply 
the equality 

I-I ( 1 - e a ) E  OK(V/)= E (- l~Os(Hp(r '  V)), (7.40) 
a E ~+(~I, b) i p 

of formal linear combinations of characters of B. Let ~+ denote the intersection of 

q)+(g ,b) with ~(I, b), and ~+ the complement of ~+ in q)+(g, b). In an appropriate 

finite covering of K, the Weyl denominators of K and G become well-defined functions 

on B. Both are anti-symmetric with respect to W(K, B). Their quotient 

I-I (e~2-e-~)  
aE ~n + 

v =  ~ v i, (7.35) 
/Et~ 
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is a W(K, B)-invariant finite linear combination of characters of B, hence the restriction 

to B of a virtual K-character Ac/K. We can re-write (7.40) as follows: 

I-I (ea/'Z-e-a/2) ~ AG/x E OK(Vi)} = +-e-~ E (-1)POB(Hp(r', V)). (7.41) 
a E ~  + [ i 6 ~  p 

The term in curly parentheses is a formal linear combination of irreducible characters 

of K, with integral coefficients. Because of Weyl's character formula, and because the 

right hand side of (7.41) is a finite linear combination of B-characters, we conclude: 

A6/KE er(Vi) is a finite linear combination of irreducible characters of K. (7.42) 
iEir 

According to Harish-Chandra [16], the series 

Ox(V) = E Or(V,) (7.43) 

converges to a distribution on K; this K-character Or(V) is real-analytic on K N G', and 

Or(V) = Oc(V), as functions on KnG'. (7.44) 

At this point, (7.40--44) prove 

I-I (1-e a) Oa(V) = E ( -  I~'OB(Hp(I:' V))' 
a E ~+(i~, b) P 

as an identity between functions on B N G'. 

w 8. Characters, asymptotics and induced representations 

Osborne's conjecture and the circle of ideas around it provide a very natural explana- 

tion of several important results in the representation theory of semisimple Lie groups: 

the relationship between characters and asymptotics [31, 23], basic facts about tem- 

pered representations [20, 38], the generic irreducibility of induced representations [4, 

22], and Langlands' classification [28]. In this section we intend to show the close 

connection between them, which is not so apparent from the existing proof. 

Recall the notion of a leading homology exponent of a Harish-Chandra module V, 

along a parabolic subgroup P=MAN:/~ E ct* is a homology exponent if H.(n,  V)~,=#=0, 

and a leading homology exponent if it is minimal, relative to the partial order (2.31), 
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among all homology exponents .  According to proposit ion 2.32, a leading homology 

exponent  contributes only in degree zero. Thus we can characterize the leading 

homology exponents  also as the minimal elements in the set 

~ E a*lHo(n,  V)F,* 0}. 

We shall call/z a character  exponent  of  V along P if O6(V)~,, as defined in (5.15), does 

not vanish identically on (MA)-NG'. This can be restated, in terms of  the local 

expressions(I)  (5.4) or (5.5), as follows: there exist a Caftan subgroup BcMA,  an 

element bE(MA)-NBNG',  2ED* and wE W(g, b), such that w2la=l~ and ca(b, w)*O 

(or equivalently, c~(b, w)*0) .  A leading character  exponent  is one that is minimal with 

respect  to the order  (2.31). 

THEOREM 8.1. The set of  leading character exponents along P coincides with the 

set of  leading homology exponents along P. l f  lz is one of  these leading exponents, 

e~(v)~=eMa(Ho(n, V)~,) on (MA)-n G'. 

Proof. According to (5.22) and theorem 3.6, 

e6(v)/, = ~ (--1)POMA(H~(n, V),) on (MA)-nG'. (8.2) 
p 

In particular every character  exponent  occurs  also as homology exponent .  I f /a  is a 

leading homology exponent ,  only the 0th summand contributes to the right hand side of  

(8.2). Thus O6(V)/~@0 on (MA)-NG', and /a  is a character  exponent - -necessar i ly  a 

leading one, because of  our  first observation.  The theorem follows. 

In the special case of  a minimal parabolic subgroup P,,,, the theorem was proved 

by one of  us (Theorem 1.3 of  [23]). When combined with theorem 4.25, it implies: 

COROLLARY 8.3. Every leading exponent in the asymptotic expansion in theorem 

4.16 is a leading character exponent along Pro, and conversely. 

Since the three notions of  leading character  exponent  along P,  leading homology 

exponent  along P and - - fo r  P=Pm - - leading exponent  in the asymptot ic  expansion 

(~) Since we do not require Z(g) to act on V according to a single character X~, (5.4) and (5.5) must be 
modified slightly: the sums should extend not only over W(I], b), modulo the stabilizer of 2, but also over a 
finite set of 2 E b*, pairwise non-conjugate under W(g, b). 
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coincide, there is no need to distinguish them; from now on, we shall simply speak of a 

"leading exponent along P " .  

Let V be a Harish-Chandra module, with composition factors V~ .. . . .  Vn. The 

character exponents of V, and hence the leading exponents depend only on the 

composition series of V: 

COROLLARY 8.4. The module V and its " semisimplification" VI ~ . . .  ~ Vn have 

the same leading exponents. 

For P=Pm, this is a result of Mili~i6 [31]: the matrix coefficients of V grow no 

more rapidly than those of V ~ . . .  ~ V~. 

Suppose P = M A N  is in standard position with respect to the minimal parabolic 

subgroup Pm=MmAm Nm: 

MA ~ MmAm, A c Am, N c Nm. (8.5) 

LEMMA 8.6. Every leading exponent v E a* of  V along P arises as the restriction to 

a o f  a leading exponent I~ E a* of  V along Pro. Conversely, every leading exponent 

E a* along Pm restricts to a homology exponent v E a* along P. 

Proof. If v E a* is a leading exponent along P, Ho(n, V)v is a non-zero Harish- 

Chandra module for MA, which has at least one leading exponent along the minimal 

parabolic subgroup 

Pm N MA = Mm Am(Nm N M) 

of MA. Whenever p~ E ct* restricts to v~ E a* on a, 

H0(n m, V)~, t --- n0(n,, N m, H0(n, V)v,)~+vr; (8.7) 

the shift by Q~, reflects the normalization of the indexing. In particular Ho(nm, V) has 

an exponent p~ E c t*, which restricts to v on a. If/~</~ is a leading exponent, its 

restriction v' to a satisfies v'<.v, is an exponent of Ho(n, V) by (8.7), and hence 

coincides with the leading exponent v. The second assertion of the lemma also follows 

from (8.7). 

We shall say that a character Oc(V) has order of growth (at most) t along a 

parabolic subgroup P=MAN,  provided 

Re (1~, X)  <~ - t ( e e ,  X)  for every leading exponent/~ E a* of V 

along P and every XE ao; (8.8) 
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as usual, aoca  o denotes the negative Weyl chamber, relative to the system of positive 

restricted roots which corresponds to P. The character Oc(V) has order of growth t, 

without qualification, if it has order of growth t along every parabolic subgroup. 

LEMMA 8.9. A character has order o f  growth t if and only if  it has order o f  growth 

t along any particular minimal parabolic subgroup. 

Proof. The "only if" is immediate. Conversely, we suppose Oc(V) has order of 

growth t along Pro; it suffices to check that it has the same order of growth along every 

parabolic subgroup P- -MAN which is in standard position with respect to 

P,n=MmAmNm. If yea*  is a leading exponent along P, lemma 8.6 guarantees the 

existence of a leading exponent/~ E a* along Pro, with/~]a=v. Because of our assump- 

tion on P, a o lies in the closure of (am,0)-, and ~e~ restricts to Qe on a. Hence the 

inequality (8.8) for ~ on (am.0)- implies the analogous inequality for v on a o. 

Our definition of a tempered Harish-Chandra module in w 4 characterizes temper- 

edness in terms of the inequality (8.8), with t--0, for all leading exponents/~ along a 

minimal parabolic subgroup. The L p criterion in lemma 4.17, a byproduct of the 

asymptotic expansion of matrix coefficients, involves the same kind of bound, with 

t<1-2/p .  Lemma 8.6 and theorem 8. l, which is implicit in our identification of leading 

character exponents and leading homology exponents, make the L p criterion and the 

definition of temperedness equivalent to conditions on the growth of the character. To 

simplify the statements, we suppose that G has compact center. 

COROLLARY 8.10 [19, 39, 31]. A Harish-Chandra module V is tempered, as 

defined in w 4, i f  and only if  the character Oc(V) has order o f  growth zero. For 

l~<p<oo, all matrix coefficients fv, o,, with vE V, v'E V', lie in LP(G) if and only if 

OG(V) has order o f  growth strictly less than 1-2/p. 

Except for the different terminology, the tempered case and the case p=2 are 

implicit in Harish-Chandra's work on the discrete series [19]. The "only if" for l~<p<2 

was first proved by Trombi-Varadarajan [39], and the remaining implications are due to 

Mili~i6 [31]. Harish-Chandra, Trombi-Varadarajan and Mili~i~ state their results in 

terms of global bounds on the character. It is not difficult to make the transition, but we 

shall do so only for p=2 and the tempered case. The general statement, which 

compares OG(V) to Harish-Chandra's E-function, can be established in the same way. 

Recall the definition of the conjugation invariant function DG, as the coefficient of t r~G) 

in the polynomial (5.1). 

9-838285 Acta Mathematica 151. Imprim6 le 25 octobre 1983 
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LEMMA 8.1 1. The following conditions on a character 0 are equivalent: 

(a) O has order of  growth zero; 

(b) supgec, IDc(g)l ~/2 IO(g)l < ~o. 

Similarly, (c) and (d) below are equivalent: 

(c) O has order o f  growth strictly less than zero; 

(d) for every Cartan subgroup B and e>0, there exists a compact subset g2cB, 

such that SUpg eB n G', g ~ n IOc(g)l 1/2 IO(g)l < e. 

Some remarks are in order. Harish-Chandra calls a character O, or more generally 

an invariant eigendistribution O, tempered if it extends continuously to a suitably 

defined Schwartz space, and he proves that this is the case precisely when 1D61"20 
grows at most polynomially. Thus temperedness is a slightly weaker notion than 

condition (b), and coincides with it for characters: the "Weyl numerators" (5.5) of a 

character O behave purely exponentially. Again according to Harish-Chandra, a repre- 

sentation is tempered if its character is, in the sense that was just described. The 

equivalence of our definition of temperedness in w 4 to Harish-Chandra's follows from 

his results [19], and is also one of the consequences of corollary 8.10 and lemma 8.11. 

The condition (d) on the characters of square-integrable representations plays a crucial 

role in the geometric construction of the discrete series [I], but is implicit already in 

Harish-Chandra's construction. 

Proofoflemma 8. I I. We consider a Cartan subgroup B, invariant under the Cartan 

involution, so that B=(B N K)A,  with A=split part of B. To every choice of a system of 

positive restricted roots q~+(g, a) corresponds a parabolic subgroup P = M A N  and a 

negative Weyl chamber aoca  o, whose image in A we denote by A-.  Although it is 

possible to manage without it, we now use a consequence of the Harish-Chandra 

matching conditions(2) [26]: there exist (non-zero) C | functions q01 . . . . .  q~N on B NK 

and Vl . . . . .  vNs a*, such that 

0 1-I (ea/2-e-a/2) = ~ cPi ev~ on (MA)- NBNG'; (8.12) 
a>0 i 

this set of validity contains ( B n K ) A - ,  as follows from lemma 5.28, for example. We 

may have to pass to a finite covering to make the Weyl denominator well-defined. Each 

(2) A consequence which can also be deduced from Osborne ' s  conjecture; cf. Corollary 7.24. 
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vz is a character exponent along P, hence ~i~12~, for some leading exponent v~, in which 

case Rev~ dominates Revz on aN. Since IDrl ~/2 coincides with the absolute value of 

the Weyl denominator, 

sup tOG(g)l '/2 IO(g)l < oo, 
gEG'A(BnlOA- 

provided the leading exponents satisfy the bound (8.8) with t=O. As we let the system 

of positive restricted roots ~+(~, a) vary, the sets (BAK)A-  cover a dense subset of 

B n G'; also, G' can be covered by the conjugate of finitely many Cartan subgroups B, 

which we may assume are invariant under the Cartan involution. Thus (a) implies (b). 

To establish the converse, we apply (8.12) to a maximally split Caftan subgroup Bm. 
Then P=Pm=MmAmNm is a minimal parabolic subgroup, and all Cartan subgroups 

of MmAm a r e  conjugate to Bin. Consequently all character exponents along Pro, and 

�9 all leading exponents in particular, show up in (8.12). They must satisfy (8.8) with t=O, 

if [DGII/ZO is to be bounded on (BAK)A- .  This already proves the implication 

(b) => (a): Lemma 8.9 makes it unnecessary (3) to bound the order of growth along other 

parabolic subgroups. The same arguments, with only small modifications, prove the 

equivalence of (c) and (d). 

It will be convenient to call a Harish-Chandra module V square-integrable if its 

matrix coefficients fo. o, lie in L2(G). When this is the case, V can be embedded into a 

finite number of copies of L2(G) n C| equivariantly with respect to ~ and K on the 

right: 

v ~ ( f o ,  vl . . . . .  L v:); 

here {v~ ... . .  v'} is a set of  U(q)-generators of the dual module V'. 

Observation 8.13. Every square-integrable Harish-Chandra module V has a unitary 

globalization. In particular, any such V is completely reducible. 

Let P = M A N  be a parabolic subgroup. Under the normalized induction procedure 

described in w 4, unitary representations of MA induce unitary representations of G, 

hence 

Observation 8.14. If W is a square-integrable Harish-Chandra module for M and v a 

(3) Unlike l emma 8.9, l emma  8.11 also applies to virtual characters ;  with a little more  effort one can 

avoid the use  of  l emma 8.9. 
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linear function on a0 with purely imaginary values, the induced module ~(W| has 

a unitary globalization and is completely reducible. 

According to Corollary 8.10 and Lemma 8.11, a Harish-Chandra module V is 

tempered precisely when Oc(V) satisfies the boundedness condition in lemma 8.11 (b), 

even if the center of G fails to be compact; cf. (4.30). The induced character formula in 

Theorem 5.7 shows that this boundedness condition is hereditary under induction. 

Temperedness is also shared by the composition factors of a tempered module, as 

follows from the definition in terms of leading exponents: 

Observation 8.15. An induced module/eCe(W| and all its composition factors 

are tempered, provided W is square-integrable, or more generally tempered, and v 

purely imaginary. 

We now state three important results about Harish-Chandra modules. Their 

proofs, which have several common features, will be given at the end of this section. 

THEOREM 8.16 [20, 38, 40]. Every irreducible, tempered Harish-Chandra module 

for G occurs as a summand of  a module /e~e(W| induced from a parabolic 

subgroup P = M A N  by an irreducible, square-integrable Harish-Chandra module W for 

M and vEict~. Two induced modules /~e(W|174 of  this type have no 

summands in common, unless the triples (MA, W, v), (M'A', W', v') are conjugate 

under G, in which case the induced modules are isomorphic. 

The existence of an embedding was proved by Trombi [38], and appears implicitly 

also in Harish-Chandra's earlier paper [20]. Langlands [28] points out that [20] contains 

the ingredients of a proof of the disjointness statement, but this is not obvious; a 

completely algebraic proof was given by Vogan [40]. The trivial parabolic subgroup 

P=MA=G is not excluded as a possibility in theorem 8.16; square-integrable Harish- 

Chandra modules cannot be realized as summands of induced modules ~(W| of 

the type described above, unless P=G. One immediate consequence of the theorem 

deserves particular attention: 

COROLLARY 8.17 [20, 38]. Tempered, irreducible Harish-Chandra modules can be 

lifted to global unitary representations. 

We conjugate P = M A N  if necessary, to make the Levi factor MA invariant under 

the Cartan involution. Then each element of 

W(G, A) = normalizer of A in G/MA (8.18) 
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has a representative in K; this is a standard fact in the special case of a minimal 

parabolic subgroup, to which the general case can be reduced. Thus W(G, A) operates 

not only on a and a*, but also on the set of isomorphism classes of Harish-Chandra 

modules for M. With a slight abuse of notation, we write 

W~--~vW, vE W(G,A).  (8.19) 

A celebrated result of Bruhat [4] (for minimal parabolic subgroups) and Harish- 

Chandra [22] (in general) asserts that the induced representations in the statement of 

theorem 8.16 are generically irreducible. More precisely, 

THEOREM 8.20 [4, 22]. The number o f  irreducible summands o f  an induced 

module/~e(W| corresponding to a square-integrable, irreducible Harish-Chandra 

module W and v E ict~, does not exceed the order o f  the stabilizer o f  W| in W(G, A). 

In particular,/~e(W| is irreducible whenever v is non-singular. 

As will be apparent during the course of our proof, the theorem is a special case of 

a more complicated irreducibility criterion, in terms of the character exponents of W; 

cf. observation 8.47 below. In the special case of an algebraic group G, Knapp and 

Zuckerman [27] have explicitly determined the number of irreducible summands of 

~(W| Their arguments are considerably more complicated, however. 

Recall the notion of a collection of Langlands data: a parabolic subgroup P = M A N  

--possibly P = G - - ,  a tempered, irreducible Harish-Chandra module W for M, and a 

linear function v E a*, such that 

R e ( v , a ) < 0  for all a E ~ + ( ~ , a ) .  (8.21) 

THEOREM 8.22 (Langlands [281). The induced module /~e(W| attached to a 

collection of  Langlands data P = M A N ,  W, v, has a unique irreducible submodule, to be 

denoted by J~e(W| Every irreducible Harish-Chandra modules for G is isomorphic 

to one o f  these Langlands submodules J~e(W| The isomorphism class of  

J~e(W| determines the Langlands data uniquely, up to simultaneous conjugation 

by elements o f  G. 

Langlands states the classification dually, in terms of quotients and positive 

exponents. He characterizes the distinguished quotient as the image of the standard 

intertwining operator. The observation that the Langlands quotient can be described 

more simply as the unique irreducible quotient was made by Mili~i6 [31]. The proof of 
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theorem 8.22 has a corollary, also due to Langlands' which is useful in certain inductive 

applications of the classification. Let [IRe vii denote the length of the real part of v E a*, 

measured with respect to the Killing form. Then: 

PROPOSITION 8.23. I f  J~e,(W'| r is a composition factor o f  I~e(W| distinct 

from J~e(W| the parameters v, v' satisfy [IRe v'll<llRevll. 

We now turn to the proofs of the three theorems. We fix a minimal parabolic 

subgroup Pm=MmAmNm, a parabolic subgroup P = M A N  which is in standard posi- 

tion with respect to Pm, a n  arbitrary Harish-Chandra module W for M, and an arbitrary 

linear function v E a*. 

LEMMA 8.24. (a) Every character exponent i~ E a* o f  l~e(W| ~) along Pm can be 

expressed as IZ=W~, where 

(i) ~ is a character exponent o f  W| along MA NPm, 

(ii) w E W(G, Am) maps ~ + ( m ~ a ,  a,,) into ~+(g, am). 

(b) Suppose w~la<<-v implies wa=ct and wv=v, for  all w, ~ as in (i), (ii) above. Then 

v is a leading exponent ofl~e(W| ~) along P, and 

OMA[Ho(II' #(W~Cv))v] = E OMA ((OW) ~ Cv+ee)" 
vE W ( G , A ) , w =  v 

Proof. We choose a Cartan subgroup B,,cM,,A,~ and assume, without loss of 

generality, that Z ( m ~ a )  acts on W| via a character Zm~a,a, ;t E b*. If ME ct* is a 

character exponent of/~e(W| along Pro, there exists b E (Mm A,.)- N B,. N G', such 

that the local expression (5.5) for the induced character around b, 

[IDol ''20~(~(W| (b exp X) = E c'~(b, s) e <sa'x) , 
$ E W({I, b m) 

involves a coefficient 

c'a(b, s) 4: O, with s2la" = g. 

In view of the induced character formula in theorem 5.7, this can happen only if the 

local expression 

[IDMAI'/2OMA(W| (vb expX) = ~ d'a(vb, u) e <'a'x> , 
uE W(m ~a, b m) 

(8.25) 



CHARACTERS, ASYMPTOTICS AND n-HOMOLOGY OF HARISH-CHANDRA MODULES 135 

around a conjugate vb, v E W(G, Bm), has a non-zero contribution corresponding to vsg. 

In other words, we have found s E W(.q, bin), v E W(G, Bm), with 

d'a(vb, vs) * O, vs;~l% = va. (8.26) 

The Weyl groups W(G, Bm) , W(MA, Bin) preserve Am, and hence act on q~(fi, a,,). The 

group W(MA,Bm) acts as the restricted Weyl group W(MA,Am), which includes all 

reflections about roots in ~ ( m ~ a ,  am). Since the expression (8.25) is W(MA, Bm)- 

invariant, we can modify v by an element of  W(MA, Bin) on the left, to arrange 

V - l  (I~+(m (~ 1~, am) c ( I )+(~,  am) , (8.27) 

without destroying (8.26). Real roots of (g, bin) restrict non-trivially to am, so 

v -~ cI,~(m |  b,,) = cI,~(~, ~m)- 

In conjunction with lemma 5.28, this shows that v maps (MmAm)-NBmN G' into the 

subset of  MA which plays the analogous role when (MmA,,O- is defined with refer- 

ence to MA, rather than G. At this point (8.26-27) prove (a): 

= restriction of vs2 to a,,, 

is a character exponent of W| along MA NPm, 

w = restriction of v- l  to am 

satisfies the positivity condition (ii), and w~=/~. 

The reciprocity theorem 4.11, applied to the identity on /e~e(W| produces a 

surjection 

H0(n,/e~e(W| W | C~+op---~ 0. (8.28) 

Thus v is a homology exponent of/~e(W| along P, and there exists a leading 

exponent vt<<.v. According to iemma 8.6, vt is the restriction to a of a leading exponent 

along Pro. Hence there exist w, ~ as in (a), with w~la=vt<~v. As a character exponent of 

W| ~ restricts to v on a. If the hypothesis of (b) is satisfied, v must coincide with 

the leading exponent vl. 

To prove the identity in (b), we initially drop the hypothesis on v, and regard v E a* 

as variable. Then 2 in (8.25) becomes a function of v, with 

218 = v, 21%nm = constant. (8.29) 
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We enumerate the restrictions to a of the various translates s2, s E W(.q, bm), as 

v = v l ,  v2  . . . . .  v n ,  ( 8 . 3 0 )  

without repeating those vi which coincide for all values of v. The order relation v~<~v 

holds only if v-v~ lies in a discrete subset of  a*; cf. (2.28). Since v ~ v - v i ,  i*  1, is non- 

constant and affine-linear, there exists an open, dense subset Uca*, such that 

v E U ,  v i <.~ v ::::# v i = v "~ 

vE U, i=l=j:=vvi*vj. 
(8.31) 

We claim: 

O6(/~e(W| Cv)) ~ = OMa(W| C~+ep) on (MA)- NG', (8.32) 

for all v E U; here OG(...)v refers to the v-component of  OG(...) along P, as defined in 

w 5. To see this, we first observe that v is a leading exponent whenever vE U: it is a 

homology exponent because of  (8.28), and all potential homology exponents occur 

among the vi. According to theorem 8.1 and (8.28), the difference of the two terms in 

(8.32) is then an MA-character,  restricted to (MA)- N G'. We now appeal to proposition 

7.1: it suffices to check the identity (8.32) on (MA)-NB,,  N G'. Since B,, is maximally 

split, the induced character formula in theorem 5.7 involves the single summand q0t, 

with yl=e. When v is confined to U, a W(g, bm)-conjugate s2 restricts to v on only if 

s E W(mOga, bin). Hence,  in (5.7), the term corresponding to a particular v E W(G, B,,) 

contributes to the v-component of the induced character if and only if v E W(MA, Bm). 

As far as the v-component is concerned, we can omit the sum over v altogether, if we 

also drop the factor 1/c~, because W(MA, B,,,) preserves the inducing character. This 

proves the identity (8.32) on B,, N G',  and therefore on (MA)-N G'. 

The W(G, A)-conjugates of  v play essentially symmetric roles. Thus, if we replace 

U by a suitable smaller open, dense subset of a*, 

O~(~((vW) | C~))o~ = OMa((vw) | C~+~) (8.33) 

on (MA)-N G',  for all v E W(G, A) and all v in the newly re-defined set U. Conjugate 

inducing data yield isomorphic induced representations, and the induced character 

depends on MA, W, v, but not on the choice of P; cf. (5.8). Hence 

Oc(/~p(W | Cv) ) = O~(~e((vW ) | Coy ) = Oq(/~e((vW ) | Co~)" (8.34) 
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Combining (8.33-34), we find 

Oa(/e~e(W| C~))o~ = OMA((VW) @ Cw+Qe) on (MA)- riG', (8.35) 

for every v E U and v E W(G, A). 

As v varies over U, the Vrcomponents of Oc(~(W| depend smoothly on v: 

the induced character formula, and (5.12) in particular show that the coefficients in 

their local expressions near any b E MA N G' are constant,  whereas the exponents vary 

with v in an affine-linear fashion. When v approaches an arbitrary Vo E a* from inside 

U, the various Vrcomponents have definite limits, and 

O6(~(W| ~ lim O~(~(W| (8.36) 
~,<vo): Vo v-, v o 

of course, we only need to sum over those v; which are actually character exponents 

for a generic choice of v. Any such vi is dominated from below by a vj, which is 

generically a leading exponent.  Because of Lemma 8.6 and 8.24(a) we can find a 

character exponent ~ of W| along P and w E W(G,A,,), subject to the positivity 

condition (ii), such that 

W ~ I  a = 'l~j ~ l,I i. (8.37) 

From now on we suppose that Vo satisfies the hypothesis in lemma 8.24(b). The 

relation (8.37) persists under the specialization v--*Vo, which also sends vi to v0. 

According to the hypothesis,  w normalizes a and fixes Vo. Since ~ restricts to v on a, vj 

is identically equal to vv, with v=restriction of w to a, which lies in the normalizer of Vo 

in W(G,A). The condition vj<~vi is discrete, but vi and vj=vv both tend to Vo, so v~=vv. 

Thus only exponents v~=vv contribute to the right hand side of (8.36); their contribu- 

tions can be read off  from (8.35). As we saw before, v0 is a leading exponent,  hence 

OM,[Ho(". (#(W | Cvo)).0] = | C.0)).0 : O,,,((vW) | 
vE W(G,A) ,  VVo = v 0 

on (MA)- fl G', and because of  (3.8) even on all of MA. This completes the proof of (b), 

with V=Vo. 

LEMMA 8.38. The hypothesis o f  Lemma 8.24(b) is satisfied in either o f  the 

following situations: 

(a) W is tempered and Re (v, a)<O for a E O+(g, a); 

(b) W is square-integrable and v E ia~. 

10-838285 Ac ta  Ma thema t i ca  151. Imprim~ le 25 octobre 1983 
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Proof. Let 51 . . . . .  ar be the simple roots in ~+(8, t i m ) ,  enumerated so that 

a= {X@a,,,l<ctj, X > = 0  for s+l  <.j<~r}, (8.39) 

and/~i . . . . .  ~r the corresponding fundamental weights. Then as+~ . . . . .  ar can be identi- 

fied with the simple roots in ~ + ( m ~ a ,  am), whereas/~, . . . . .  ~s constitute a basis for the 

dual space of a n [8, 8]. If ~ is a character exponent of W| along MA flPm, 

~= ~ail.ti+ ~ bj~j ona , ,n [~ ,8 ] ,  
i= I j = s + l  

(8.40) 

with suitable ai, bjE C. The first of the two sums represents v, the second a character 

exponent of W. Character exponents are dominated from below by leading exponents, 

hence the assumptions (a), (b) imply, respectively, 

(a) Reai<0 for l<~i<.s, Rebj~>0 for s+l<~j<~r, 

(b) Reai=0 for l<~i<.s, Rebj~>0 for s+l<~j<.r. 

We suppose w E W(G, Am) sends ~ + ( m ~ a ,  am) into ~+(8, am). Then 

(8.41) 

wajla>~O, s + l  <~j<~r, (8.42) 

and equality in all cases means that w preserves the linear span of as+ ~ .. . . .  Ctr, in other 

words, 

wajla =O for s+l  <~j<<-r =~ w a = a .  

Since ~u i is dominant, ].~i-w~.~i is a non-negative, integral 

a~ . . . . .  ar. The coefficient of ai, 

~ui-w~v~;) 2[Lu,]]2-2(w~v~,) ][u/-w~,[[ 2 

( ~ i '  a i )  (r ~ ' )  Ilaill 2 ' 

is strictly positive unless wfli=],li: 

wlzi*/ui ~ (I.r 1 <~i<~s. 

(8.43) 

linear combination of 

(8.44) 

If w fixes /~ . . . . .  /zs, it belongs to the group generated by the reflections about 

as+, . . . . .  ar. In view of the positivity condition on w, this happens only if w=l :  

Wl~i=Izi for l <~i<~s =~ w = l .  (8.45) 
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According to (8.40-45), 

i=l  j = s + l  

= ~ c iai[ ~, with R ec  i~<0, 
i=l  

which cannot be greater than zero in the order > ,  and equals zero only if wa=a. Since 

restricts to v on a, w must then also fix v. Hence the lemma. 

LEMMA 8.46. Suppose that W is irreducible, and that v is a leading exponent o f  

/~p(W| along P. Let VI .. . . .  Vn be the composition factors of/~e(W| repeated 

with appropriate multiplicities. 

(a) I f  v is a homology exponent o f  Vi, it is a leading exponent. 

(b) OgA[H0(rt, I~(W| E , r Vi)v). 

(C) I f  VI ~ . . .  �9 Vm, m<<-n, can be realized as a completely reducible submodule o f  

/~e(W| then W| occurs as a composition factor o f  H0(n,/~p(W| with 

multiplicity at least m. 

Proof. The assertion (a) follows from corollary 8.4. Together with theorem 8. I, (a) 

implies the identity (b), at least on (MA)-  n G', but MA-characters which agree on this 

set agree everywhere on MA; cf. (3.8). According to the reciprocity theorem 4.11, 

W~+Qe is a composition factor of H0(n, Vi)v whenever Vi can be embedded into the 

induced representation. Thus (b) implies (c). 

The irreducibility theorem 8.20 is an immediate consequence of the preceeding 

three lemmas: lemmas 8.24 and 8.38 guarantee that v is a leading exponent of 

~(W| they also identify the multiplicity of W| in the composition series of 

H0(n,~(W| v, as the order of the stabilizer of W| in W(G,A). Because of 

lemma 8.46, this integer bounds the number of irreducible summands of/~e(W| 

More generally, lemmas 8.24 and 8.46 imply: 

Observation 8.47. The conclusion of  theorem 8.20 remains valid if W is an 

irreducible Harish-Chandra module with a unitary globalization, such that the character 

exponents of  W| satisfy the hypothesis of  lemma 8.24 (b). 

If P = M A N ,  W, v is a collection of Langlands data, we argue similarly: v is a 

leading exponent of/~e(W| along P, and 

H0(n, ~(W| W | Cv+Q, 
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is irreducible, because only the identity in W(G, A) fixes v. In view of (4.1 l) and lemma 

8.46, ~ ( W |  v) has a distinguished composition factor J~e(W| with the following 

properties: 

(a) J~aj,(W| is the unique irreducible submodule of ~(W| 

(b) H0(rt, Je~e(W|174 (8.48) 

(c) J~p(W| is the one and only composition factor of ~(W| 

which has v as leading exponent along P. 

The second statement in theorem 8.22 has already been verified; cf. lemma 4.33. The 

proof of the uniqueness of the Langlands data and of proposition 8.23 depends on 

certain geometric considerations. For simplicity, we suppose G has compact center, so 

that 

a,,, r- [~, g]. (8.49) 

The general case can easily be reduced to this. As in (4.34), we define 

~= OzE(am, o)*l(u,a)<-O for aECP+(g,am)}. (8.50) 

Let at .. . . .  ar be the simple roots in ~+(g,a,,,), and /zl .. . . .  /xr the corresponding 

fundamental weights. According to (4.39), for each (am.o)*, there exists a unique 

subset S=S(u)c-{1,2 ... . .  r}, such that 

iz= Z ci~i+E d~aj, with c i<0,  di~>0; (8.51) 
iES j ~ s  

moreover, 

/z~ = E c;p; is the point in ~ closest to/z. 
iES 

(8.52) 

LEMMA 8.53 (cf. Langlands [28]). If tl . . . . .  tr are non-negative, 

II( + ,oit~ 
with equality if and only if b=0 for all j ~ S(lz). 

Proof. It suffices to consider the case of a single non-zero t=t~. As the dj in (8.51) 

are increased,/z ~ remains unchanged. We may therefore suppose k E S(u). For continu- 
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ity reasons, we only need to argue locally, i.e. O<-t<e. As t tends to zero from above, 

the image/z(t) ~ of 

I~(t) = bt + tak 

approaches ~o on one of the faces of cO---this follows from geometric reasons, but also 

from the uniqueness of the representation (8.51). In other words, there exists a subset 

S 'c{1  .. . . .  r}, such that ~(t)=~ies, Ci(t)l~i+Zjcs, dj(t)ctj, with cf(t)<0, dj(t)>~O, for 

0<t<e.  Some of the ci(t) may vanish at t=0, and the remaining iES' constitute S~) ,  

again because of the uniqueness of (8.51). In particular Ck(0)<0. Let p denote the 

orthogonal projection onto the linear span of the/~i, i E S'. Then paj=O, fo r j  ~ S', hence 

i~(t)~ on the interval O<.t<e, and 

ILu(t)~ = IlpCu+tak)ll 2 - ILu~176 

= Itu~ ~ c,(0)(~,, ak) 
iES' 

= ILu~ 2. 

This is strictly decreasing near t=0, as required. 

* be a homology exponent along Pro, of any one of the composition Let/z E a,~ 

factors of ffe(W| Because of corollary 8.4, ~(W| has a leading exponent/-gl 

along Pro, such that gt~<g. Then/~t=w~, with w and ~ as in lemma 8.24. The identities 

(8.40--41 a) apply in the present context, and amc[g, g]. Hence 

~= ~ ai/ui+ ~ bjag, with R e a , < 0 ,  Rebj>~0, 
i = l  j = s + l  

(Re ~)0 = ~ Re ai/a i, S(Re ~) = { 1 .....  s}. 
i~ l  

(8.54) 

The first of two sums restricts to v on a. Since /~t .....  /~s are perpendicular to 

(ct,,,,oN m)*, this implies 

IIRevll--- [ ~i=t (Reai)~i = II(Re~)~ (8.55) 
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As was pointed out in the proof of lemma 8.38, the waj, j~>s+l, and pi-w/~i,  l ~ i ~ r ,  

are non-negative linear combinations of a~ . . . . .  ar. We conclude 

W~ = s  s s bjwctj 
if I if I jfs+ I 

• 2 = ai~i+ c iai, with Re c i I> 0. 
iffil i=1 

If Rec/=0 for all i<s, w must be the identity, as follows from (8.A. A. A.5). The order 

relation/~>/~t= w~ gives 
• r 

ju = ail~i+ E (ci+n i) a i, n i >I 0. 
i = l  i = l  

We now appeal to lemma 8.53: H(Re/~)~ (Real)all [, and equality forces w = l ,  

/~t=~, ni=O for i<~s, hence/~[a=v, S(Re/~)={l . . . . .  s}; conversely these last two condi- 

tions imply equality. To summarize, 

[[(Re~)~ ~< [IRe vii, with equality if and only if S(Re/~) = { 1 ... . .  s} 
(8.56) 

and v = restriction of/~ to a, 

for every homology exponent/~ along Pm of any composition factor of ffe(W| 

We can now reconstruct the data P = M A N ,  W, v from /e~e(W| Let/~ be a 

homology exponent along Pm which maximizes II(Re~)~ We claim that the maximum 

value equals [[Revl[. Indeed, any leading exponent ~ of W| along M A N P . ,  is a 

homology exponent of Jece(W| as follows from (8.48 b) and the isomorphism 

H0(n m, J~e(W| - H0(n n m, H0(n, J~e(W| 

Any such ~ satisfies (8.54), hence I[(ReO~ by (8.56), which establishes our 

claim. Applying (8.56) to our original choice of/~, and recalling (8.39), we find 

(a) S(Re/~)={i[ l<i<~r, ail~ q~(m~)a, am)}, (8.57) 
(b) v= restriction of/~ to a. 

The equality (a) determines M and A, hence also P, which was assumed to lie in a 

standard position with respect to Pro, and (b) determines v. The inducing module W can 

be recovered from (8.48b). Thus P = M A N ,  W, v are unique, up to the choice of p,,,, 

which itself is unique up to conjugation. 

We prove proposition 8.23 by contradiction. As we just saw, if [IRevll=[lRev'll, 
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J~e,(W'| has a homology exponent/z '  along Pm such that II(Re/~')~ 
IIRevll. According to (8.56), p '  restricts to v on a. Let/~"~</z' be a leading exponent 

along Pro. Then/z" restricts to a homology exponent v" E a* along P (cf. lemma 8.6), and 

v"=~"l~  ~<~'1~ = v. 

Since v is a leading exponent of/e~e(W| hence also of its "semisimplification", this 

makes v"=v a leading exponent of JeGe,(W'|162 contradicting (8.48c). 

Now the proof of theorem 8.16. Let V be a tempered, irreducible Harish-Chandra 

module for G, and/ t  a leading exponent of V along the minimal parabolic subgroup 

P,,, = M,,, Am Nm. Then 

/z takes purely imaginary values on am.0Ncenter of 80, (8.58) 

and 

t~= X aiai on a, ,n[8,  8], with Reai~>0; (8.59) 
i = l  

as before al . . . . .  ar are the simple roots in ~+(8,  am). We suppose that/z has been 

choosen among all the leading exponent so as to maximize the cardinality of the set 

T= {iIReal = 0} c {1 .. . . .  r}. (8.60) 

This set determines a parabolic subgroup P=MAN, in standard position with respect to 

P,,,, such that 

a={XEaml<ai, X}=O fo r inT} .  (8.61) 

Let v denote the restriction of/~ to a. We claim: 

Ho(n, V)v is non-zero and square-integrable, 
(8.62) 

as Harish-Chandra module for M. 

Indeed, v is a homology exponent of V along P by lemma 8.6, hence dominated by a 

leading exponent v'~<v, which is the restriction to a of another leading exponent/~' 

along Pro, again by lemma 8.6. More generally, we consider a homology exponent a '  

along P,,,, which restricts to v'. Since V is tempered and/z'la ~</zla, 

~t' ---- ~ bict i o n  a,~ N [fl, 8], with Re b i >~ 0, 
i = l  

bi=ai-n i for iET, with ni>-O; (8.63) 

moreover/z-/z '  vanishes on am Ncenter of 8, which lies in a. Comparing (8.63) to 

(8.60), we find ai=bi if iE T. Hence v coincides with the leading exponent v', and 
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H0(n, V)v*0. Any leading exponent/z'  of Ho(n, V)v along MA fl Pm restricts to v on a 

and is a homology exponent of V along Pro, because 

no(llm, V) = n 0 ( n  m n m ,  Ho(n, V)). 

In particular (8.63) applies to bd. Since Re bi=Re ai=0 for all i E T, the maximality of T 

implies Re b/>0 for i15 T. This completes the verification of (8.62): the ai, i~ T, can be 

identified with the simple roots in ~ + ( m O a ,  am). The exponent v assumes purely 

imaginary values on ao, as follows from (8.58--61). If W is an irreducible quotient of 

Ho(n, V)~, the reciprocity theorem 4.11 provides the required embedding 

Vc/~e(W| The preceeding argument is virtually identical to that of Borel-Wallach 

[3]. 

We now suppose that V occurs as a summand of both I=~(W|  and 

I'=I~e,(W'|162 The two parabolic subgroups P=MAN, P'=M'A'N' ,  which we put 

into standard position with respect to Pro, correspond to subsets 

T = {il aila * 0}, T' = {i I ailc,, aF 0} (8.64) 

of { 1 .....  r}. Since I, I' play symmetric roles, we may assume 

card T ~  < card T'. (8.65) 

According to Lemma 8.24, Lemma 8.38 and (4.11), v' is a leading exponent of I' along 

P' ,  and a homology exponent of its composition factor V. Thus v' is a leading exponent 

of V along P' ,  and can be realized as the restriction to a' of a leading exponent/~' of V 

along P,,,; cf. lemma 8.6. Since Vcl ,  there exists a leading exponent/~<~/z' of I along 

Pro. lemma 8.24 allows us to write/z=w~, where w E W(G, A,,) satisfies 

waiEdP+(~,am) if i~ T, (8.66) 

and ~ is a character exponent of W| along MA fl Pro. Since W is square-integrable 

and v imaginary, 
r 

~ = X a i a i  Onamfl[~,~],withReai>O i f i r  R e a / = 0  i f iET.  (8.67) 
i= l  

Combining (8.66--67), we find 

= W~ = ~ b iot i 
i = 1  

with Re b i > 0 if i ~ T", 

on ct m n [~, ~], 

Reb i=  0 i f iET"; 
(8.68) 
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here T"c{l  .. . . .  r} is the largest subset such that 

{waili(~ T} ~ span of {ailir T"}. (8.69) 

In particular card T"~<card T. The exponent/~', which is ~>~, restricts to the imaginary 

linear function v' on a~. Because of (8.64-65) and (8.68-69), this can happen only if 

card T"=card T, T"=T', ~ul,~,=~'l,~=v', wa=a', and hence wM=M'. As a character 

exponent of W| ~=w-~ restricts to v on a, so wv=v'. Because of (5.8) and 

observation 8.14, ~ (W|  depends only on the data (MA, W, v), not on P. As we just 

saw, w conjugates (MA, v) to (M'A', v'). At this point, we may as well assume P=P', 
MA=M'A', v=v'. Once more we appeal to lemmas 8.24 and 8.38: 

OMA[Ho(I'I' ~P(W(~Cv))v] = E OMA((UW)@Cv+Qp )" 
vE W(G,A), or= v 

Since ~(W| ~(W' |  have a summand in common, 

0 ~= Hom 6 (~(W| ~(W'|  

= HOmMa(H0(n, (~(W| W' | C~+Q). 

The last assertion of theorem 8.16 follows: W'=vW, for some v in the stabilizer of v in 

W(G, A). 

Appendix 

For the convenience of the reader, we supply proofs of certain results of MiliO~, which 

were quoted in the proof of theorem 4.25 and in (6.13-14). In passing we also verify the 
inequality (6.50). 

We fix a minimal parabolic subgroup P,,,=M,,,A,,,N,,, with M,,,cK, an irreducible 

Mm-module W, and a linear function ~ E a*, subject to the condition 

Re ~+~m, a) < 0 for all a E ~+(~, a,,,). (A 1) 

The pairing (6.27) identifies /~em(W'| ) with the dual of ~ (W| In particular, 

cf.fo(g) = fK (f*(k)'f(g-lk)) dk (gEG) (A2) 

is the matrix coefficient corresponding to f E  ~,(W| and f*  E/~em(W'| ). Let 
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[~m=M,,,Amfilm denote the parabolic subgroup opposite to Pro. As we shall see 

presently, the integral 

Jf*(g) = I.. f*(gfO df~ (A 3) 
d l V  m 

converges(~) in the situation (A 1); for purely formal reasons, f * ~ J f *  defines a 

homomorphism of Harish-Chandra modules 

t J:1~pm(W | ffp, (W' | (A4) 

the so-called "standard intertwining operator". We consider a particular XE (am.o)- 

and set at=exp(tX), tER; thus a,6A~ if t>0. 

PROPOSITION A5 (Harish-Chandra [17]). I f  the invariant measure df~ is normal- 
ized appropriately, 

l i m e  -~'-~ t) cf, io (at) = (Jf* (e), f(e) ). 
t '--* + | 

The proof requires some preparation. Each g E G factors as g=k(g) a(g) n(g), according 

to the Iwasawa decomposition KAmNm of G. Suppose 2Ea*,0 satisfies (2, a)~>0 for 

all a E dp + ( ft, am). Then 

LEMMA A 6. ea(a(a_r k))~e~(a_t) whenever k E K and t~O. 

In effect, this is the inequality (6.50). We assume the lemma for the moment. 

Because of (A 1), 

Ile-~-e'ta,) f(a_t k)ll = e-Re~'-e'(a(a-t k)) Ilf(k(a_, k))ll 
e-rtc~-Q,(a ,) 

is uniformly bounded for k E K, t~>0. We can therefore apply the dominated conver- 

gence theorem: 

lira f e-~-~ (f*(k) , f(a_tk))  dk lim e-J'-O'(a,) cf, f.(at)= t~| JK 
t - - c + |  

= fx '--'lim| e-~'-~ {f*(k),f(a_tk) } dk, (A7) 

(i) In fact, the integral converges and proposition A5 below applies even if Re(p,a)<0 for all 
uE~+(g,a, , , )  [17]. The more restrictive hypothesis (AI), which is entirely adequate for our purposes, 
simplifies the arguments slightly, 
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provided the limit under the integral sign exists almost everywhere. The #m-orbit of the 

identity coset in G/Pm is open and dense, and can be identified with /~/m. Since 

G/Pm=K/Mm, the map 

N,,,--->K/Mr~, ~-->k(a)Mm (A8) 

describes a diffeomorphism of Nm onto an open, dense subset of K/Mm. A straightfor- 

ward calculation of the Jacobian shows that 

fx/~, q~(kMm) dk* = f~c cp(k(~) Mm) e-2a'~(a(h)) dh (A9) 

for q~EL~(K/Mm); this is the normalization we use to define J. The integrand in (A7) is 

M,,,-invariant on the right. For k=k(~), 

e-U-a'(a,) ( f*(k(h)), f(a_t k(~)) ) 

= e-U-a'(at) e~'(a(a)) (eU-a'(a(ri)) f*(k(a)), e-'-a'(a(~)) f(a_ t k(s 

= e-~'-a'~(a,) e2e'(a(~)) ( f*  (~), f(a_, 4)) 

= e~"(a(~)) (f*(~), f(a _, ~a t) ). 

If a is a positive restricted root, e-a(a_t) tends to 0 as t~+0o .  Hence a_t~at.---~e, and 

we conclude: 

lim e-U-a'(at) ( f.(k(~)), f(a_, k(~)) ) = e ~'(a(~)) ( f*  (~), f(e) ). 
t " - + §  

(A 10) 

Now (A7) and (A9-10) imply 

lim e-U -ore(a,) cf. f. (a t) = I .  (f*(ri)' f(e) ) d~. 
t--,+| (A I I) 

J N  m 

In particular, the integral on the right converges. As f varies over ~ (W| the 

values f(e) span the finite dimensional vector space W. The integral (A3) therefore 

converges also, at least for g=e. Since we did not use the K-finiteness o f f * ,  we can 

apply the same argument to any g-translate o f f* ,  and this proves the convergence of 

the integral (A 3) in all cases. Clearly (A 11) establishes the proposition. 

We must still prove lemma A 6, which is a standard tool in reduction theory [2]. On 

the intersection of a,,, with [g, g], 2 coincides with a non-negative linear combination of 
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fundamental highest weights. Thus we may as well suppose that A occurs as the highest 

am-weight of an irreducible, finite dimensional G-module F, and that the A-weight 

space F ~ has dimension one. We introduce a K-invariant inner produce on F which 

makes the am-weight space decomposition 

F =  ~ F ~ 
v~a~.0 

orthogonal. If v~ E F x is a unit vector, 

Ilgu~ll = Ilk(g) a(g) n(g) uxll = e~(a(g))Ilk(g) oxll = ea(a(g)). 

We apply this identity for g=a_tk ,  t>~O, and we write kvx as a sum of weight vectors 

vv. All weights v satisfy v-<A, hence 

e2a(a(a_t k)) = Ila_t kvxll 2 = X eZV(a-, ) tivoli 2 
V 

<~ e2a(a-t ) E Ilvvll 2 = eE't(a-t ) IIkvxll 2 : eAX(a-,) 
V 

(recall: a_ t lies in the closure of the highest Weyl chamber). This is the assertion of the 

lemma. 

It is well known that the operator J does not vanish identically. One can also 

deduce this fact from the proof of proposition A 5, as follows. If f E  fie (W| assumes 

a non-zero valuef(e), and if one drops the K-finiteness condition on f*, one can use the 

map (A8) to produce a smooth function f*:  G~W' |  subject to the transforma- 

tion rule which characterizes fie (W'| such that 

~ (f*Oi),f(e)) d~4:O. 
m 

(A 12) 

The derivation of the identity (A I 1) gives the bound 

lfN. (f*(ti), f (e))d~[  <-.supHf*(k)llsup,[f(k),l.k~r kex (A 13) 

C s There exists a sequence {f~} ~ ( W  | approximating f* uniformly on K. Be- 

cause of (A 12-13), Jf'~(e) cannot vanish for all n, hence J4=0. 
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Let L denote the kernel of J, and V the annihilator of L in /~em(W| then 

V' ~- I~em(W' | (A 14) 

The next result is due to Mili~i~ [31]. As Mili~i6 points out, it constitutes a refinement 

of a lemma of Langlands [28]. 

PROPOSITION A 15 [31]. /~e (W| has a unique irreducible submodule, namely 

V. I f  Wl is another irreducible Mm-module, the unique irreducible submodules of 
/~e (W| (WI| are non-isomorphic unless WI=W. Among the composition 

factors of/~em(W| V and only V has/~ as a leading exponent along pro. 

We note that (6.13-14) are immediate consequences. Part of the proposition is also 

used in the proof of theorem 4.25. 

Proof. In order to identify V as the unique irreducible submodule of/~em(W| it 

suffices to show that L = K e r J  contains every proper submodule L1 of ~ , (W ' |  ~,). If 

L~ is such a proper submodule, there exists a non-zero vector f i n  its annihilator. For all 

f*  ELI and all kl, k 2  E K, the matrix coefficient corresponding to k~-lf and k 2 if* van- 

ishes identically. Hence, by proposition A 5, 

(Jf*(k2), f(kl) ) = lim e-~'-e~'(a,) c~;,j, k~lf,(at) = O. 
/---* + ~ 

The values f(kO span the irreducible Mm-module W. Consequently J f*=0 on K, and 

f*  E L, as required. 

The pairing f~ f*~(J f*(e) , f (e ) )  induces a bilinear form ( , )  on Vx V', which is 

equivariant with respect to M,,, and am. This bilinear form does not depend on how V 

is realized as a submodule of fie (W| for v E V, v* E V', 

(v, v*) = lim e-~'-Qm(a,)co.o.(at) (A 16) 
t.---~ + ~ 

can be calculated in terms of the matrix coefficient co, o*. In particular, 

V/radical of ( , )  (A 17) 

is an invariant of V and/t. The original description of ( , ) ,  on the other hand, sets up an 

M,,,-homomorphism between W and the quotient (A 17). This proves the second part of 

the proposition. 
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The express ion  (A 16) has a limit as t - - ,+oo,  for  all v E V, v* E V' and X E  (am,o)- 

(recall: a t = e x p  tX). Since the limit does  not vanish identically in o, v*, the convergence  

propert ies  of  the asymto t ic  expans ion  (4.16) force /t to occur  among the leading 

exponents  of  V. In view of  proposi t ion A5  and the description (Al4 )  of  V' ,  the 

express ion analogous to (A16), corresponding to any matrix coefficient of  

I~e(W| and any choice of  X ~  (am.0)-, tends to zero as t - -~+~ .  This precludes 

the occur rence  of  g as a leading exponent  of  a composi t ion  factor  o ther  than V. The  

p roof  of  proposi t ion A 15 is now complete .  
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