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1. Introduction and the main results 

It is well-known that if B is a normed space, then for every n-dimensional (or n- 

codimensional) subspace F there is a projection from B onto F of  norm not exceeding 

~/-n. But it has so far been an open question whether  for every B of  dimension greater 

than n there is some n-dimensional subspace F onto which there is a projection of  norm 

o(Vr-n) or even K, with K an absolute constant (2). In this paper we will construct  a 2n- 

dimensional space in which every projection of  rank n in B has norm greater than Cx/-n- 

where C is an absolute positive constant.  This example,  which is in an obvious sense 

the be s t - -o r  the worst, depending on the point of  view--possible ,  also settles in the 

negative " the  finite-dimensional basis p rob lem" ,  i.e. the question whether  there is an 

absolute constant  K such that every finite-dimensional space has a basis with basis 

constant  ~<K. We recall that the (Schauder) basis constant of a basis (x) of  B is the 

smallest number  K such that 

for  all scalars t~, t2 . . . . .  tn and every k<~n = dimB. When the sum on the left is allowed 

to run over any subset of  {1 . . . . .  n}, we get the unconditional basis constant.  The 

(~) Current address: Case Western Reserve University, Department of Mathematics, Cleveland, Ohio 
44106, U.S.A. 

(2) After this paper was submitted to publication, G. Pisier ([16]) constructed an example of an infinite 
dimensional Banach space with many surprising properties, in particular the norm of any rank n projection on 
it is of order x/-~. In spite of a very similar formulation, this result neither implies our Theorem l.I nor 
follows from it (the construction is strictly infinite dimensional). 
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problem of  the basis constant  was known as early as in the '30's to mathematicians of  

the Lvov school. The first step towards a solution was taken by F. Bohnenblust  in 1941 

(see [1]). The problem of  the unconditional basis constant was settled by Y. Gordon 

and D. Lewis (see [7]) who showed that some well-known n-dimensional spaces of  

operators  have uncondit ional  basis constants of  order  n ~/4. Later  T. Figiel, S. Kwapien 

and A. Pelczynski  (see [4]) gave examples of  n-dimensional spaces for  which the 

unconditional basis constants  were of  order  x/--n-, the same as we obtained for the basis 

constants.  

Let  us state our  main result again. 

THEOREM 1.1. There is a constant  C > 0  such that, for  every n, there exists a 2n- 

dimensional normed space B such that, for  every projection P on B o f  rank n, 

liP: B~BII > C V T .  

As an immediate consequence  of  Theorem 1.1 we get 

COROLLARY 1.2. For eoery n there exists a normed space B, d im B=n ,  such that 

the basis constant  o f  every basis o f  B exceeds C ' V ~ ,  where C' is an absolute 

constant. 

Recently ( independently of  this paper and a month or two before the work on it 

was completed) E. Gluskin has proved the following result (see [6]), which also settles 

the finite dimensional basis problem: for each n there exists an n-dimensional normed 

space such that, for every projection P on it with rankP<n/3 ,  tlell>-cn -~/2 

( l + l o g n )  -I/2 rank P. In particular his result, while being slightly weaker than Theo- 

rems 1.1 and 1.4 if rank P = O(n), yields nontrivial estimates if rank P is of  order  n =, 

s > l / 2 m b e t t e r  than our  Theorem 1.6. 

The construct ion in the proof  of  Theorem I. 1 is of  a " r a n d o m "  nature: We define a 

whole class of  spaces and show that, in a certain sense, "m o s t  o f "  them satisfy the 

assertion of  Theorem !.1. The nature of  the example is close to one constructed by 

Gluskin in [5] to obtain two n-dimensional normed spaces, whose Banach-Mazur  

distance is of  order  n (cf. Remark 4.6). Random spaces of  essentially the same kind (but 

with different distribution) were considered in [4] as having the " w o r s t "  possible order  

of  constants of  local unconditional structure. The construct ion in [4] was based on 

some phenomenon  discovered in [9] (cf. Remark 4.5). 

A common feature of  all these examples is that they (or their duals) are quotients 

o f " s m a l l "  l~-spaces or, in other  words, the number of  extreme points of  their unit balls 

is comparable with their dimension. A consequence of  this, crucial in both [5] and here,  
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is that such a unit ball, while containing sufficiently many points "far away" from the 

origin to keep the Banach-Mazur distance between the space and 12 (and, in random, 

even I j) of the corresponding dimension large, has volume very close to that of the 

largest Euclidean ball contained in it. This phenomenon was observed in the case of I, ~ 

in [17], named "small volume ratio" and investigated more systematically in [20] and 

finally noticed in the case of spaces considered here in [I0] and [18]. 

We feel that the methods of the proofs of Theorem 1.1 and its generalisations 

Theorem 1.4 and Theorem 1.6 below may be of use for some other problems, which we 

will now mention. 

The infinite dimensional version of the basis problem was solved, also in the 

negative, by P. Enflo in 1972 (see [3]). However, his proof was based on a completely 

different, infinite dimensional considerations, yielding in fact an example of a space 

failing to satisfy much weaker property than having a Schauder basis. In particular the 

following problem still remains open. 

Problem 1.3. Does there exist a normed space without Schauder basis, but with 

bounded approximation property (i.e. the identity operator is a pointwise limit of 

operators of finite rank)? A finite dimensional Schauder decomposition? 

Corollary 1.2 indicates that the answer may be positive. 

Our proof of Theorem 1.1 yields actually a significantly stronger result. 

THEOREM 1.4. Given 6>0 there exists C=C(6) such that, for every n, there is a 

normed space B, dimB=n,  satisfying 

liT: B---,BII >~CX/--~ 

for every operator T on B with rank T<~(1-6)n, rank(I-T)<~(l-O)n. 

Theorem 1.4 may be seen as a step toward a solution of the following well-known 

problem (or at least its finite dimensional version). 

Problem !.5. Does there exist an infinite dimensional Banach space such that 

every continuous operator on it is of the form JlI+K, where K is compact? 

Modifying the proof of Theorem l . l  a little bit one can generalize it to 

THEOREM 1.6. There is a constant b>0, such that, for every n and m<.n/2, there 

exists an n-dimensional normed space B satisfying 

lIP: B--*BJJ >I m ',z-(b~2""2 l..~ 

for every projection P on B with m<~ rankP<~n-m. 
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Observe that the above estimate is nontrivial (and of type m a, a>0) if and only if 

m>~/-2-gn/l~Tff-ff. If m~6n,  6>0, we get the estimate C ( 6 ) ~  (as in Theorem 1.4). 

Theorem 1.1 and the above remark suggests the following questions. 

Problem 1.7. Does there exist a sequence K , , , / ~  such that, for every n, one can 

find an n-dimensional normed space B satisfying: if P is a projection on B, then 

liP: n--,nll ~ g~,  

where m=min {rank P, n - r ank  P)?  Can we take cX/--m as K,,,? 

Problem 1.8. Does there exist a constant K and a sequence of integers kn,, ~ o0 such 

that, for every n-dimensional normed space B, there is a projection P on B with IIPII~<K 
and kn << . rank P<.n/2? 

Both problems were probably asked many times. Of course positive answer to one 

of them implies negative answer to the other. 

All spaces considered in this paper are real. The complex case does not follow 

formally from the real one (as it is in the case of positive statements). However, one 

can construct an analogous example in the complex case. The first seven sections can 

be copied almost word by word: we can treat C 4n as R an, complex 14In as real 1~, 

(the ratio of the corresponding norms is always between 1 and V~-) etc. In section 8 we 

must replace O(m) by the unitary group U(m) etc.--all inequalities remain true in the 

complex case because of their algebraic origin and the proof is somewhat simpler 

(however, less intuitive geometrically). 

Acknowledgments. The author would like to thank Dan Lewis for showing him a 

preprint of [5] and reviewing the manuscript, Dan Lewis and Bill Johnson for a couple 

of discussions, Steve Rallis for explaining some facts connected with section 8 and 

Gilles Pisier for several helpful remarks. 

2. Organization of the paper 

Section 3 establishes notation. 

Section 4 describes construction of a space, whose existence is asserted in Theo- 

rem 1.1. It contains Proposition 4. I (which is essentially a specification of Theorem 

1.1), its immediate corollaries and some remarks. 

Section 5 reduces Proposition 4. I to two technical statements: Fact 5.1 and Fact 

5.2 (the first of them is essentially contained in [5]). 

Finally, sections 6, 7, and 8 are devoted to the proof of Fact 5.2. Section 6 reduces 

it to Proposition 6.8, which is a purely Hilbert space problem. 
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Proposition 6.8 is proved in section 7. 

Section 8 is an appendix. It contains proof of Lemma 7.3 and lists other (precise) 

estimates for the minimal cardinalities of e-nets of orthogonal groups and Grassmann 

manifolds (with respect to unitary ideal norms and their analogues respectively)---most- 

ly without proofs. More systematic exposition of that subject is contained in [19]. 

Finally, section 9 indicates changes in the argument necessary to prove Theorems 

1.4 and 1.6. 

3. Notation 

Our notation generally follows [13]. Some of frequently used (but less standard) 

conventions are listed below. 

(el . . . . .  em) will always mean the standard unit vector basis of R m. 

The Lebesgue measure of a measurable subset S of R m will be denoted by 

m-vol (S) or shortly vol S. 

For a normed space X we shall denote by B(X) its unit ball, the bali with radius r 

and center at the origin by Br(X) or just B,. We shall also denote B(l~) shortly by B~. 

If A, B are normed spaces, we shall denote the space of bounded linear operators 

from A to B, equipped with operator norm, by L(A,B) or, in the case A=B, just by 

L(A). The operator norm will be denoted by 11 �9 : A--->BI], I1 " Ilt.tA, B) or L(A, B)-norm 

etc. 

Moreover, we shall identify the spaces A, B with their unit balls. In particular we 

may write 11 �9 lib for the norm generated by an absolutely convex body BcR m, L(A, B) 
for the space of operators between the spaces generated by absolutely convex bodies 

A, B etc. 

As usually, the group of orthogonal operators on R m will be denoted by O(m), the 

normalized Haar measure on it by/~=/z,,,. 

As it is well-known, every operator T: HI---~H2 (HI, H2, finite dimensional Hilbert 

spaces) can be written as 

J 

where (hj) and (hi) are orthonormal systems in Hi and //2 respectively. We shall 

always assume that (2j) is a non-increasing sequence (of length dimHl; add zeros if 

necessary) of nonnegative numbers and refer to such representation as "the polar 

decomposition" (the sequence (2j) is then uniquely determined by T; (hi) and (h;) not 

always). 
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For a Hilbert space H and its subspace F we shall denote by P r  the orthogonal 

projection of  H onto F. I f d i m H  =m and I �9 [is the Hilbert norm, then by " a  Gaussian 

variable with distribution N(0, 1, H ) "  we shall mean an H-valued random variable g 

with density 

Og(X) = ( rn ~ml2e-mlxl2/2 
\ 2:r / 

against the Lebesgue measure, g can be also represented as (1 /Vm) ETI y:hj, where 

the yy's are independent real Gaussian variables with distribution N(0, 1) and (hi) is an 

orthonormal basis of  H.  Observe that 

(3.1) Elgl 2= 1 (E stands for expectation). 

(3.2) ~ ({1/2<<.]g]<<.2})>>-l-e -c'~, c absolute. 

(3.3) If  E is another  Hilbert space, V: H--,E an isometry onto and Eo a k- 

dimensional subspace of E, then 

m V 
3~-~ Pe0 g 

is a Gaussian variable with distribution N(0, 1, E0). 

In (3.2) and throughout the paper ~ stands for a probability measure, which may 

be different in different places. 

The letters C, c, c ' ,  c or C with a subscript etc. will stand for universal constants,  

in particular not depending on dimensions of  considered spaces, unless otherwise 

explicitly stated. The same symbols may correspond to different numerical values in 

different sections. 

4. Construction of the space 

Consider R 4n with the standard unit vector basis et ,e2,. . . ,e4n. Let  F = 

span {el . . . . .  en}. Let ,  for j =  1 . . . . .  n, fj: f2o--->F be independent Gaussian variables with 

distribution N(0, 1, F), where (f2 o, ~o) is the corresponding probability space. Consider 

another probability space (f2, ~) ~ (O(4n)xf2 0,/Z| where/~=/z4, is the normal- 

ized Haar measure on O(4n). 

Now, for j=  1 . . . . .  n, define the random variables gj on f2 by 

gj = gj(U, o,) ~= vfj(o,), 

and finally let (ac = absolute convex hull) 

B __af ac {e I . . . . .  e4n, gl . . . . .  gn}" 
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Of course gl . . . . .  g~, and hence B, depend on U and w. Thus, identifying a normed 

space with its unit ball, one can consider B as a random variable on g2, whose values 

are 4n-dimensional normal spaces. Denote by ~ its range, i.e. the set of all spaces 

obtained in the above way. One can consider ~ as a probability measure on ~ .  

Now we are able to state 

PROPOSITION 4.1. There exist absolute constants c~, c2>0 so that 

~({B: liP: B~Bll<<.Cl X/-'n for  some rank 2n projection P})<~e -c2". 

Observe that to prove Theorem 1.1 it is enough to show that the probability above 

is strictly smaller than 1. 

The following two facts are immediate consequences of Proposition 4.1. 

COROLLARY 4.2. For every p ~ 2  and k there is a 2k-dimensional subspace E o f  an 

LP-space such that no projection o f  rank k on E has norm not exceeding c3k l/2-1/p, 

where c3 is an absolute constant. Moreooer, we can take l~k as LP-space above. 

Notice that since, by [12], d(E,  12 )<<.(2k) I/2-t/p (d is the Banach-Mazur distance), 2k 

every k-dimensional subspace of  E is a range of projection (on E) of norm not exceeding 

(2k) ~/2-~/p, Corollary 4.2 is, in a sense, optimal. 

Proof. Clearly it is enough to consider the case of even k; say, k=2n. Observe that 

every B E ~ is isometically a quotient of  l~n. Hence B*, which satisfies the assertion of 

Theorem 1.1 simultaneously with B, is isometrically a subspace of 15~. Now it is enough 

to take B*, considered as a linear subspace of R 5n equipped with /~n-norm,as E and the 

conclusion will follow immediately from the inequalities 

Ilxll| ~< Ilxllp ~< (5n)l/Pllxll| 

valid for x E R  5~. Q.E.D. 

COROLLARY 4.3. For every n there is an n-dimensional subspace o f  l~n, which is 

not contained in the range o f  any projection P o f  rank 2n with liP: l~n~l~4nll<<-cjC-Z. 

Proof. Consider any B E ~ ,  for which the condition in the brackets in Proposition 

4.1 is not satisfied. Now it is enough to take span{gt . . . . .  gn} and look at it as a 

subspace of 14In. Q.E.D. 
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Remark 4.4. Since, by (3.2), 

~(1 /2~<[ Ig j l l z~<2  f o r j = l  . . . . .  n}) ~ l - n e - C n ~ l - e  -c'n, 

one can choose B of the form B=ac {el . . . . .  e4n, x, . . . . .  x~). Ilxjll2= 1 for j =  1 .. . . .  n, still 

failing to satisfy the condition from Proposition 4. I (with possibly a slightly "worse"  

constant cl). 

Remark 4.5. By somewhat more subtle considerations one can show that B, still 

failing to satisfy the condition from Proposition 4.1, can be chosen in such a way that its 

cotype 2 constant does not exceed CI (a universal constant) and in fact it happens for 

"most o f "  choices of B. In order to show this it is enough to prove that if q: I~,--->B is 

the quotient map, then ker q is "usual ly" nearly Euclidean, i.e. d(ker q, l~)<~C 2 for some 

universal constant C2 (by [11], [14] or [15], cf. [4]). To show this identify R 5" with 

R 4 ~ R  ~ and observe t ha t ke rq={ ( -Gx ,  x): xERn},  where d is the random 4nxn  

matrix, whosej th  column is gj. Clearly it is enough to prove that, for "most  o f "  ds ,  

I1(-rig, x)[12 -< Ildxll2+ [Ixll, -< c2/x/-3-f f-II(-dx,  x)ll, (4. i) 

for all xER ". Estimating Ildxllz is easy, since, by our construction, im d is a random 

subspace of R 4n and hence II " II, and I[ �9 IIz are roughly proportional on it (see [9] or 

[17]). To estimate Ilxllz we may copy the argument from [17]. First we show that, for 

every x E R" and r>0, 

( l id  xll, ~< rV--~-I Ixl I~}) = ~((I Ig,I I, <- rVT)) <- r) n 

by Lemma 6.5 from this paper and considerations similar to the proof of Claim 6.1. 

Then, combining the above with Lemma 1 from [17] we conclude that, for "most  of"  

Gs, 

~,((x ~ s .  -1 :llxlll ~<r~/--n-- and Ildxll, <~rx/-~})<.(c, r) 2", 

where ~ is the normalized Haar measure on Sn-i. This in turn, by Lemma 3 from [17], 

implies (4.1) (we must only choose r<(l/2) C~-Z). 

Remark 4.6. Since some refinement of the argument from [5] can be used to our 

class ~ and its variants discussed in section 9 (we use Lemma 6.5 from this paper 

instead of Lemma 1 from [5]), the following statement is true: 

"Gioen n there exist n-dimensional normed spaces Bl and B2 such that, for some 

universal constant C, 
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(1) the cotype 2 constants o f  BI and B2 do not exceed C, 

(2) d(B1, b2)>-C-ln, 

(3) for i=1,2,  IIP:Bi~BilI>~C-~V'-f for projections 

rankP~<0.99n". 
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P such that 0.01n~< 

5. Strategy of the proof of Proposition 4.1 and preliminary reduction 

From this point on we fix n. Proposition 4.1 will follow from the following two facts. 

Fact 5.1. Let ZcB(L(I~)). Then, for each eE(0, 1), there is an e/V'--m-net--in 

the L(l~)-norm----of Z, whose cardinality does not exceed (Co~e) m2. 

In the sequel we shall frequently denote, for fixed U E O(4n), 

G = U F ( F ~ s p a n { e  I ..... e~}) and Q = P ~ ( = I - P ~ ) .  

In particular, for given (U0,co0)Efl, we shall mean by G and Q the objects related to 

U0 by the above convention. One can visualise G as span {gl .. . . .  g~} (they coincide 

with probability I). 

Fact 5.2. Let T be an operator on R 4n such that 

(i) rank T<.3n and 

(ii) rank (I-/)~<3n. 

Then, for every K E (0, V~-), 

( _  K \c2 n~ 
~((B: QTgjE2KQBI4n for j =  1 ..... n} )~  < t~,-~--n) . 

Fact 5.1 is essentially contained in Giuskin's paper [5] (for the sake of complete- 

ness we sketch the proof of it below). Also the general strategy of the proof of 

Proposition 4.1 is similar to that of [5]. Namely, in order to show that, for some B E ~ ,  

no operator on B, which is a projection of rank 2n, has small norm, we prove two 

statements: 

(1) a given projection (which corresponds somehow to T from Fact 5.2) is "good"  

for a "very few" BE ~ (Fact 5.2), 

(2) there are not that many projections (or operators from B(L(I~)) associated with 

them) we must consider (Fact 5.1). 

Hence for "most  o f "  B E ~ no projection is "good" .  
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Sketch of the proof of Fact 5.1. It is enough to show that 

(a) 1/X/-~ B(L(12)) c B(L(I~)) 

(b) voI(B(L(I~)))<~ vol(1/V'--mB(L(l~))) 

and then the same construction which yields an e-net of a unit ball of a k-dimensional 

normed space of cardinality not exceeding (Me) k, leads to the desired conclusion. 

Now (a) is obvious. The left hand side of (b) may be computed directly and shown 

to be of the same order as volB22 (up to factor of type CruZ). Estimating the right hand 

side of (b) is precisely the content of the proposition from [5]. The following argument 

is due to S. Kwapieti and N. Tomczak-Jaegermann and has been in circulation for some 

time. We have 

volB(L(I~))= .) d x ~  >~jll(xo)ll2) , 
volB~ iltxo.)ll m~ \ J ~ )  

where I](xo.)[] is the L(/2)-norm of an m• matrix (xu) and the integration is with 

respect to the normalized measure on S,.,~ and 12, being identified with the space of 

n• matrices equipped with the (Hilbert-Schmidt) norm (2i.jlx612) I/2. By the standard 

argument, we have 

( 'y . II(xo)llZdx=--~ Ilfgo)ll2dj ', 

where go, l<~i,J ~m, are independent real Gaussian variables with distribution N(0, 1). 

In turn, by Lemma 3.1(2), [2] or by a much more elementary direct argument, 

f II(gu)ll 2 d~ <~ 8m. 

Combining the last three formulas we obtain the desired estimate. 

We postpone the proof of Fact 5.2 to sections 6-8. 

Q.E.D 

Proof of Proposition 4.1. We shall prove Proposition 4.1 with 

cl = [Cl( 2 . (2Co)16)uc2]-I 

where Co, CI and C2 come from Facts 5.1 and 5.2. 

(5.6) 
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To this end set K=cl X/ft, cl as above. Let  Z '  be the set of all linear operators T on 

R 4" satisfying the conditions (i), (ii) from Fact 5.2 such that [ITIIL(I~.)<~K. Applying 

Fact  5.1 with Z=K-IZ ', m=4n and e= l /2  we see that there exists a finite subset 2 f o f  

Z, #X~<(2 Co)16"2, which is a K/(2X/4n )-net of  Z '  in the L(/4~,)-norm. For each T E N  

let ~ T = { B E ~ :  QTgjE 2KQB~4,, f o r j = l  . . . . .  n}. 

Then, by Fact  5.2, 

~(~r) <~ ( C,-~nn ) c'"~ 

and hence 

~n-n ] ~ (2C0)16n2 !k I g"-n- } 

which in turn, by (5.6) and the choice of  K, equals (1/2) "2. Hence 

~ \  O ~r) I> 1-(I /2)  "5 
TEX 

Let Go = {B E ~:  B e  2B],} = {B:llgjll2>2 for some j<~n}. Then by (3.2), 

~(~o)<~ ne-C""<~e-C'", c' > O, 

and hence 

~a(~ \  U ~ r \ ~ 0 )  ~> 1-(1/2)"2-e -c'". 
TEN 

Fix BEG \ U r e  x ~ r \ ~ 0 .  We shall show that the norm of every rank 2n projection 

on B is greater than K (=cl  X/'-n-)---this, by the estimate above, will prove Proposition 

4.1. 

Suppose not. Let  P, rank P=2n, be a projection on R 4" such that 

In particular 

and, as a consequence,  

IIe: n~n l l~  g. 

PgiEKB for j =  1 . . . . .  n, 

QPgj E KQB for j =  1 . . . . .  n. 
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Now B=ac(BI4n U {gl . . . . .  g~}) and Qg:=O 

have 

QPgjEKQB~ f o r j = l  . . . . .  n. 

Similarly we obtain QPeiEKQBIn f o r j = l  . . . . .  4n, or, in other  words, 

I[QP:B~4n~QB~.[[ <~ K. 

In turn, the above can be written as 

IlqP: l~n---'l~,,/GII <~ g 

where q: l~,.--.l~n/G is a quotient  map, because l~/G can be realized as 

QR4~=G • with the norm generated by QB~n. 

Now, by lifting, we can find an opera tor  To on R 4n such that 

qP=qTo 

II 0:z::<oll 
Clearly (5.8) may be written as 

S. J. S Z A R E K  

for j = 2  . . . . .  n show that QB=QB~n, so we 

(5.7) 

(5.8) 

(5.9) 

QP = QTo. (5.10) 

Observe that,  since To=QTo+PGTo=QP+PaTo, rankTo<<.rankQP+rankPc<<.rankP+ 
dim G=2n+n=3n. On the other  hand, since Q(I-To)=Q-QTo=Q-QP=Q(I-P) and 

rank(l-P)=2n, the same argument yields that rank(l-To)<.3n. This, together with 

(5.9), shows that ToEZ' and hence there exists TI~N such that 

_ _ E _ _ r  lit'-r~ ~<2%/ 4n (5.11) 

By the choice of  B, B ~ r t .  Hence  

QT Igi~2KQBI4n for some i<~n. (5.12) 

On the other  hand we have, for  every j<<.n, 

IIQTI gj-QPgjil2 --II QT, g~ -QTogjI[2 <<. liT, g~ - T0 g:ll2 

K K 
~< , ,_  ~, ,  ,,uj,,lIT,-Tollut$.)lle,ll2 < - - - "  2 = 

2~ / 4n ~ 4n 
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(we used (5.10), (5.1 l) and the fact that B l ~ o  consequtively), which is the same as 

(QT I gi-QPgj)E K.~_._B],flG• for every j<~n. (5.13) 
V 4n 

Now, since (1/X/-Tn)B],~-BI4,, we have 

K____B2 N G ' =  KSl.  fl G• = KQB]., 
4n 

which combined with (5.13) gives 

(QTt&-QP&)EKQB]n for j =  1 .. . . .  n. 

Now the above and (5.7) contradict (5.12). This shows that lIP: B--->BII>K=c1V-n, 
ending the proof of Proposition 4.1. Q.E.D. 

It remains to prove Fact 5.2. 

6. Proof  o f  Fact 5.2 : 1st reduction 

The purpose of this section is to reduce Fact 5.2 to Proposition 6.8. 

By definition of f~, the probability in the assertion of Fact 5.2 equals 

fo ~~ for j =  ..... n})/z(dU). 1 (6.1) 
(4n) 

Now, for fixed UEO(4n) (and hence fixed G= UF and Q=Pci ), gj= Ufj are independent 

Gaussian variables with distribution N(0, 1, G). So (6.1) may be written as 

fo~4.) fi 2KQB].})]" I~(dU), (6.2) [ ~( { QTg 

where, for each U, g=g~ is a Gaussian variable with distribution N(0, l, G). 

Let us introduce some notation. Given a linear operator W: G--~H (G, H Hilbert 

spaces) and k, e~>0 we shall say that W is (k, e)-thick (resp. (k, e)-thin) if, for some 

subspace Gi of G, dimGl>-k, IWxl>-elxlfor xEGI (resp. IWxl<elxlfor x E G l \ { 0 } ) ,  

where I " I denotes the corresponding Hilbert norm. 

The following simple and well-known lemma explains the meaning of these no- 

tions. 

LEMMA 6.1. Let W: G---~H, k and e be as above. 
Let Ej2j(uj, �9 )vj be the polar decomposition of W. Then 

(a) W is (k, e)-thick iff #{j:2j>~e}>~k 
(b) W is (k, e)-thin iff #(l":2j<e}>-k. 
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Fact 5.2 will immediately follow from the following two facts. 

Claim 6.2. Let e, K'>0.  Let W: G-~H, dim G=n, be (n/3, e)-thick. Let A c H  be of  

the form A--ac {Yl . . . . .  Y4n}, lyjl<-K ' for j<-4n. Finally, let g be a Gaussian variable 
with distribution N(O, l, G). Then 

( c ,K'  ~,/3 
~9( ( Wg E A } ) ~ \ -~nn , I . 

Claim 6.3. Let e~>O; T, G= UF and Q as in Fact 5.2. Then 

~({UE O(4n): Q1]c is not (n/3, e)-thick} ) <<. (c 2 e) "2/9. 

Indeed, suppose we have proved Claims 6.2 and 6.3. Then, applying Claim 6.2 

with K '=2K and A=QBI4n we see that if, for some G and e>0, Q ~  is (n/3, e)-thick, 

then 

~({QTgs 2KQBI4,}) <~ ( 2cI K~ n/3. 
\ eX/-Y / 

Combining this with Claim 6.3 we conclude that, for every e, (6.2) is not bigger than 

~-~-! +(c2~r 2~. 

Now the choice e=(2cl K/CEX/--nn) I/2 yields the desired estimate. Q.E.D 

Remark 6.4. There is nothing special about the number 1/3 in Claims 6.2 and 6.3. 

One can prove their analogues with any a s (0, l) instead of 1/3 and conclude the proof 

in essentially the same way. 

For the proof of Claim 6. l we need two further lemmas. 

LEMMA 6.5. Let A=ac (x,,x2 . . . . .  xM)=R m with Itxjll2~l f o r j = I , 2  . . . . .  m. Then 

vol B--S~ ~ \ - ~ - /  

Proof. Standard and well-known (see e.g. [10] or [18]). We have (cf. proof of (5. l)) 

volA-  v ~  . 

and it is enough to observe that 
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to obtain Lemma 6.5 with c3=V' 2e3/Jr . Q.E.D. 

LEMMA 6.6. Let E be a Hilbert space, d imE=m,  and let go be a Gaussian variable 

with distribution N(O, 1, E). Let Ae-E be a measurable set and let L be an invertible 

operator on E. Then 

~({Lg o EA}) ~< c~ volA (detL)_l 
vol B 2 

f ( m ],,/z -mlxlZ 
Proof. ~({LgoEA})=Ez{L~oEA} =__t~a} \ - -~]  e 2 dx 

= f ( m ]  m/2 e_(mlL-,YlZ)/2 (det L)-'dy 
3A \ 23r,/ 

\ 2 J r ]  volA(detL) -l  ~<c~' v~  (detL)-I ,  
vol B2m 

where l" I is the corresponding Hilbert norm, integration is with respect to m-dimen- 
sional Lebesgue measure and 

vol B~ = ~gn/2/l"(2+ 1). Q.E.D. 

Proof of  Claim 6.2. Fix e, K, W and A satisfying the assumptions of Claim 6.2. Let 

W=Ej=12j(ui, �9 )vj be the polar decomposition. Let m=#{j :  3._/>e}. By Lemma 6.1, 

m>~n/3. Denote E=span {vl . . . . .  or,}. 

Observe that 

(1) if WgEA,  then also PEWgEPeA ,  

(2) since PeW=E~=12j(uj,. )vj, we can write PeW=APeV,  where 

A--'gEj~12j(v J, .)vj,  and V: G--->H is the isometry defined by Vuj=vj, j = l  . . . . .  n. 

Hence, by (3.3), the distribution of PeW is the same as the distribution of V'-m-7-n Ago, 
where go is a Gaussian variable with distribution N(0, 1, E). 

In view of (1) and (2) it is enough to estimate 

~( {V'-m-~ A goE Pea  }) , 

which, by Lemma 6.6 applied with L = ~ A  and PeA instead of A, does not ex- 

ceed 
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vol (PE A) 
c~' ( ~ - m ( d e t  A)-l  

vol B 2 

Now, by our assumptions, d e t A ~ e  -m (because ;tj~e for j =  1 .. . . .  m) and m>~n/3. So 

the above, and hence also the probability from Claim 6.2, is not greater than 

( _ ~ _ _ )  m VOI (Pea) 
vol B 2 

Notice that PEA=ac {PeY;, J= 1,2 . . . . .  4n} and [yj[<~K' for j =  1 .. . . .  4n. This, by Lemma 

6.5, shows that 

voI(PEA) ( "4n" K'.)". 
voiB2m ~< . cs ~-~i 

Inserting this estimate to the previous one we see that that probability from Claim 

6.2 is at most 

( 4V~-c3c4K'n~"<~(36csc4K'~ m 
"2 / 7-v . / 

which proves Claim 6.2 with c1=36c3c4 (remember that m>~n/3). Q.E.D. 

Proof of Claim 6.3. Denote S=I-T,  Hl=(imS) • and H2=(imT) • Observe that 

dimHi>~n for i=1,2. (6.3) 

Indeed, dim Hl=4n-rankS>~4n-3n (by assumption (ii), Fact 5.2). The same argument 

applies to HE. 

Our present goal is to prove (as a step towards showing Claim 6.3) 

Claim 6.7. If, for some G and e, QT]c is not (n/3, e)-thick, then either 
PHt[G or PHJG is (n/3, 2e)-thin. 

Proof of Claim 6.7. Suppose not; let for some G and e neither 

PH~IG nor PH21G be (n/3, 2e)-thin. 

Let s �9 )z i be the polar decomposition of PH~IG" Then, by Lemma 6.1, the 

fact that Ptt~IG is not (n/3, 2e)-thin implies 

2n k ~= #{j: aj ~>2e} > 
3 (6.4) 
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Let G'=span{x,  .. . . .  Xk}. Clearly I P n x  2~>2ellxll: if xEG. Moreover, if xEG' 

and yEG with y.l_x, then 

I le,,,(x+y)l 1~ I> 2tllxll~. (6.5) 

To show this, denote y' =Pc'Y and H; =span {zl . . . . .  zk} =H1. Clearly (x,y') = (x,y} =0 

and hence 

]]Pt~,(x+Y)II2 >~ IIP"~(x+Y)II~ = ]]et6(x+Y') 2 

~>2tllx+y'll2 ~>2ellxll~ 

as required. Similarly we show that the assumption Phil6 is not (n/3, 2e)-thin implies 

I e,,~(x+y)[ 2>~ 2filmily. (6.6) 

for xEG" and yEG with y.l_x, where G" is some subspace of G, dimG"~p>2n/3. 
We prove now that if xEG' fl G" with Ilxl12= 1, then 

IIaTxll2 >>- ~. (6.7) 

Since dimG'nG">~k+p-n>2n/3+2n/3-n=n/3, this contradicts the assumption that 

Q/~c is not (n/3, e)-thick, thus proving Claim 6.7. 

Once again suppose (6.7) does not hold. Then for some xEG'N G", Ilxl12 = 1 and 

IIQTxlI2<t. In other words, for some real t and y E G, y• 

e > ]lTx+tx+Yll2 = II(1 +t) Tx+tSx+yll2 

(because S+T=I). Assume first that Itl~<l/2. Then l+t~>l/2 and 

t >  II(l+t)Tx+tSx+yll2>~ liP., [(1+/)Tx+tSx+y] 2 

= IPItt[(I+t)x+Y]I 2=(l+t) llPn,(x+(l+t)-' Y) 2 >~1 ]Pnt (x+(l+t)-I Y) 2 

which, by (6.5), contradicts xEG' (we used the identities Pn, S=P6ms)• S=0 

and Pn, T=Pn,). Similarly, assuming Itl>>-l/2 and using Pn2 and (6.6) instead of Pn, and 

(6.5) we obtain a contradiction to xE G". This shows (6.7) and concludes the proof of 

Claim 6.7. O.E.D. 

1 2 -  838286 Acta Mathematica 151. Imprim~ le 28 Decembr~ 1983 
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that 

Let us return to the proof of Claim 6.3. Claim 6.7 shows that it is enough to prove 

#({UE O(4n): Pn~lc is (n/3, 2 t)-thin})~< (C[ e) n2/9 

for i=I ,  2. Arguments in both cases are the same, one uses only (6.3). In other words, 

everything reduces to the following: 

PROPOSITION 6.8. Let E c R  4n, dimE~>n and let 6>0. Then 

/z( { U E O(4n): II eEt 011 6 for some Go ~ G= UF, dim Go >I n/3 } ) <~(c'~6) "219 

where II" II is the operator norm with respect to the 12~-norm. 

7. Proof of Proposition 6.8 

We shall prove the slightly more general 

PROPOSITION 7.1. Let F=span{e~ ..... en}cR", let EcRm,dimE=p, and let 

6 E (0, 1). Then, for every positive integer q, 

iZ({diUEm O(m):thereexistsGoCUF' ~cra2dq(p-n-q)" 
Go~ q, such thatllPEl ol [ < rJ] 

Clearly Proposition 6.8 is a special case of Proposition 7. I with q=n/3 and m=4n. 

Before passing to the proof of Proposition 7.1 we must introduce some notation (for 

more details see section 8). 

Let Gk.m be the Grassmann manifold (i.e. the set of k-dimensional subspaces of 

Rm), v the normalized Haar measure on it, induced by the action of O(m), and let p be 

the metric on G~,.m defined by 

p(H~, H 2) = inf lit- vii. 
VEO(m): V H  I = H  2 

Here and throughout this section I1" II will always denote the operator norm with 

respect to 12m-norm or restrictions thereof. 

It is easy to observe that Q(H~,/-/2) is the same as the Hausdorff distance between 

Sm-~NHt and S,,_tNH2. In particular it depends only on the position of H~ in 

relation to/-/2 and not on a "superspace"  containing both of them. In the sequel we 
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shall not distinguish between metrics obtained by considering different such "super- 

spaces". 

For the proof of Proposition 7.1 we need two further lemmas. 

LEMMA 7.2. For every t/E [0, Vr2 -] and HoEGn,m we have 

C7 2 ~/~(m-~)~< v({H: o(H, Ho) ~< ~/}) ~< C~ '2 r/~(m-~). 

Observe that: 

(1) n(m-n)=dim G~,m, 

(2) by invariance of v and ~ with respect to the action of O(m), the measure in the 

assertion does not depend on Ho, 

(3) V'2-=diamG~. m. 

LEMMA 7.3. Let, for some r i E (0, V~-'), .IV" be an rl-net o f  Gn,m (with respect to Q) 

o f  minimal cardinality. Then 

cmz i~-n(m-n) ~ ~-~ ~ C721~ -n(m-n). 

Since, as one can easily show, if N satisfies the assumptions of Lemma 7.3, then 

v({H: o(H, Ho) <~ r/}) -t ~< #N~ v((H: o(H, Ho) <~ r//2)) -~, 

it is enough to prove one of the two lemmas above and the other one will automatically 

follow. We shall prove Lemma 7.3 (in section 8). 

Proof o f  Proposition 7.1. Let us identify Gq,n with the set of all q-dimensional 

subspaces of F~span  {el .. . . .  en}. Then, by Lemma 7.3, this set admits a 6-net NI 

with 

#./V'l ~< C~ 2 6 -~-q). (7. I) 

i.e. 

Now let UEO(m) and G--UFEG,,.,,, satisfy the condition from Proposition 7.1, 

IIPEI6011 ~<6 for some GocG, dimGo=q. 

Since UNI is clearly a &net in the set of q-dimensional subspaces of G, we can 

find HEN~ and an isometry V on G, IIV-/H~<6, such that VGo=UH. Hence 

IIPEI.-II--I IPElvool I = II  ~ -< I IP"i~ +llP <'-v)l~ 
<~6+6=26. 
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This shows that the measure in the assertion of Proposition 7.1 does not exceed 

HEXI HEXt 

The measure after the summation sign clearly does not depend on H, so the sum equals 

#At1 times the single term. Besides, for fixed H, [IPeluull depends only on UH and not 

on the particular choice of U E O (m). 

Hence the sum above equals 

: IIPEIHII ~< 2~}). (7.2) 

We need the following elementary 

LEMMA 7.4. Let  E and H~ be subspaces o f R  m anddimHl+dimE<.m.  Then there 

exists H2=E • dim H2=dim Hi, such that e (n , ,  n2) ~<X/TIIPEIH, II. 

Proof. Denote d=llP l.,I I. We can assume that 0 < d < l  (otherwise the assertion is 

satisfied trivially). Let H2=Pe; H I, then dimH2=dimH~. Choose xEHI ,  Ilxllz=l, such 

that dist (x, Sin- I fl/-/2) =Q(HI, H2). Then we have 

llP xll2-- IIx-e  xll2 e d,. 

Now let y=Pei x/llee~ xl12. o f  course y E HE, [lY[12 = I and 

o(H,, n2) <<-IIx-yll2 = (d~+[l-(1-d~)'/212) '/2 = v~-(1 -(1-d~)'/2) 'n <~ v ~ d ,  <<. v ~  d. 

This proves Lemma 7.4. Q.E.D. 

Now, to estimate (7.2), consider HE Gq.m such that IIPEIHII~<2~. Clearly we can 

assume that dim E+dim H=p+q<.m (otherwise IIPEIG011 = 1 for every Go with dim Go=q 

and Proposition 7.1 holds trivially with C=I) .  Then, by Lemma 7.4, there exists a q- 

dimensional subspace H' of E • such that 0(H, H')~<2 V'Tdt<36. By Lemma 7.3, there 

exists a d~-net At2 of the set of all q-dimensional subspaces of E • (identified with 

Gq,m-p) with 

:~'~f2 ~ C7 2 r (7.3) 

Choose H"E N2 so that 0(H', H")~<6 and hence 0(H, H")~<36+dt=46. 
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Then we have 

{H G m:IIP IHII<<.2 }= U 
' tr'~x2 (7.4) 

By Lemma 7.2, the measure of  the latter set doesn ' t  exceed 

~)r C~ 2 (4c~) qCm-q) <~ ~:'N'2 " (4C2) m2c}q(m-q)" (7 .5 )  

Combining (7.4) and (7.5) we see that (7.2), and hence the measure from the 

assertion of  Proposition 7. I, is not bigger than 

�9 # 2 r  2 �9 (4c9 2  

By (7.1) and (7.3), the above is at most 

C7 2 (~-q(n-q) C7 2 (~-q(m-p-q) (4c2)m z (~q(m-q) = (4c~ C2 )m2 (~q(p-n+q) 

which proves Proposition 7.1 with C=4c~ C 2. Q.E.D. 

It remains to prove Lemma 7.3. 

8. Appendix on Grassmann manifolds 

The main objective of this section is to prove (for notation see below) 

LEMMA 7.3. Let, for  some positive integers m, n and r 1 E (0, V"2-),,A c be an q-net o f  

Gn,m (with respect to ~) o f  minimal cardinality. Then 

rtl 2 c'~ 2 rl-n(m-n) <~ # ) f  ~ C 2 rl -n(m-n), 

where cl and c 2 are constants independent o f  m, n and r I. 

Remark  8.1. Independence of  c~, c 2 of  m and n is the main point in Lemma 7.3. A 

similar statement with ct, c2 depending on m and n, but independent of  r/, is very easy 

to prove. 

At the end of the section we list (without proofs) a number of strengthenings and 

generalizations of Lemma 7.3 and their analogues in the case of  orthogonal group 

(Remarks 8.4-8.6). More specifically, we give exact order of minimal cardinalities of e- 

nets of O(m) (resp. Gn, m) with respect to unitary ideal norms (resp. their quotients). 

The proofs and a more systematic exposition of the subject may be found in [19]. 
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Let Gn, m be the Grassmann manifold, i.e. the set of all n-dimensional subspaces 

of  R m. To be more strict, denote F =  span {en . . . . .  en} c R  m and let O(n; m) ~={ V E O(m): 

VF=F}. Clearly O(n;m) is a subgroup of O(m), isomorphic to O(n)x O(m-n) .  Now let 

us identify Gn, m with O(m)/O(n;m), the set of  left cosets of O(n;m), via VF-VO(n;m).  

Denote by v the Haar  measure on G.,,,, resulting from this identification. Let  

q:O(m)-,O(m)/O(n; m)=G,,m be the quotient map and let 0 be the quotient metric on 

G., m induced by the operator norm on O(m). More explicitly, for H: ,  H2 E Gn, ,,,, 

Q(HI,/'/2) -- inf {Ill-VII: v ~  O(m), v i i  I --" H2}. 

where we can consider HI a n d / / 2  either as subspaces of R "  or cosets of  O(n;m) in 

O(m) and [l" I1 is the L (/2)-norm (operator norm). 

If  K is a subset of  a metric space and d the corresponding metric, we shall denote,  

for e>0, 

N(K, d, e)= inf {#Ac:~C'an e-net of K with respect to d}. 

As a rule, we shall consider only e E(0 ,d iamK].  I f d  is induced by a norm II " II, we may 

write N(K, 11" 11, e) instead of  N(K, d, e). 

In the notation introduced above, Lemma 7.3 can be written as 

LEMMA 7.3A./f0<r/~<X/-2-, then 

m 2 rt l  2 c~ 17 -n(r~-€ <- N(G,. m, Q, r !) <. c 2 ~i -~('-~), 

where c] and c2 are independent o f  n, m and T 1. 

We shall need the following simple facts about the function N ( . ,  �9 .). 

LEMMA 8.2. (a) Let (KI, dl) and (g2, d2) be metric spaces, (KI xK2, d] xd2) their 

product with dl• {dl(xl,yO, d2(x2,Y2)}. Then, for every 

e>0, 

N(KI, dl, 2e) N(K2, d2, 2e) ~< N(K1 x K:, dl x d2, e)<-N(Ki, dl, e) N(K2, d2, e). 

(b) Let G be a compact group, H its subgroup, d an invariant metric on G and d' 

the corresponding quotient metric on G/H. Then, for every e>0, 

N(G, d, 2e) ~< N(G/H, d', e) <<. N(G, d, e/2) 
N(H, d, e ) N(H, d, e) 
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(c) Let (X, II �9 II) be a normed space, dimX=D, and (M, d) a metric space. Let 

�9 : X---~M be a map satisfying, for  some r, R, l, L>0, 

(i) q~(BR) =M 

(ii) O(~(x), cl,(y))<-Zllx-y[I for x, yEBR 

(iii) O(~(x), ~(y))>-lllx-yll for  x, yEBr  

where Bs stands for the ball o f  radius s in X. Then, for every eE(0, diam M], 

where c'=rl/2, c"=3RL. 

(c'/e) ~ <. N(M, d, e) <. (c"/e) D, 

The proofs of all parts of Lemma 8.2 are standard. Let us just mention that (c) 

follows almost immediately from the very well-known fact that, for any e, s, 0<e~<2s, 

(s/e)O<~N(Bs, [l" I1, ~) ~< (3s/e) ~ 

For the rest of this section I1 II will always denote the 12 operator norm (the 

L(12)-norm). 

Lemma 7.3 A will be deduced from 

PROPOSITION 8.3. There exist universal constants c3, c4 such that, for all e E (0,2] 

and all m, 

ga 2 

c 3 e -D <~ N(O(m), I1" II, ~) ~ c~ ~-~ 

where D = D ( m ) = m ( m -  1)/2= dim O(m). 

Proof. Consider the special orthogonal group SO(m) ~{ U E O(m): det U= 1 ). Since 

geometrically O(m) is a disjoint union of two copies of SO(m), it is clearly enough to 

prove Proposition 8.3 with SO(m) instead of O(m). 

We shall apply Lemma 8.2(c) with (M,d)=(SO(m),  I1" [1). As X we shall choose 

A(m), the subspace of L(l~) consisting of all skewsymmetric operators (i.e. A E A(m) iff 
k A* = -A) ,  as * the exponential map defined, as usually, by expA= Ei=oA/k !. 

It is a well-known fact from differential geometry that exp(A(m))=SO(m).  The 

main step is to show that in fact 

exp(B,~(A(m))) = SO(m), (8.1) 
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i.e. the condition (i) of Lemma 8.2(c) holds with R=~ .  To show this consider 

UESO(m) and let AoEA(m) be such thatexpA0=U. Then Ao can be written in the 

form 
m 

0 21 

-21 0 
0 '~2 

- -2  2 0 

",o 

0 

0 ;tk 
-2k 0 

" .  

(8.2) 

with respect to some orthonormal basis of R m, where k<.m/2 and 2~ .. . . . .  ;tk are reals. 

Let, for any real 2, ,( be the (unique) number satisfying 

(r (2-~)/2zr is an integer 

(13) - ~ < ~ < ~ .  

Define AI EA(m) to be the matrix obtained from (8.2) by replacing 2j's by ,(i's. Then, in 

view of (r and (13), 

(r expAl=expAo=U 

~)' Ila,II = maxl).jl ~< ~r, 
j<~k 

which proves (8.1). 

To conclude the proof of Proposition 8.3 observe that the definition of exp yields 

immediately 

( 2 - e  a) Ila-nll ~< I lexpa-expnl l  ~< ealla-nll 

for any a~>0 and A, BEL(I~),IIAII, HBI[<-a. Hence the conditions (ii) and (iii) from 

Lemma 8.2(c) hold with R=et, L=e ~, r=0.4 and l=0.5 (<2--e~ This shows Proposi- 

tion 8.3 (e.g. with C3=0.3 and C4=15). Q.E.D. 

Proof ofLemma 7.3A. We identify Gn, m with O(m)/O(n; m). As was observed at 

the beginning of this section, O(n;m) is naturally isomorphic to O(n)xO(m-n) (via 
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U~(UIF , U[F• )).  Moreover, the product metric, as defined in Lemma 8.2(a), coincides 

with the operator metric inherited from O(m). Hence, by Lemma 8.2(a), for any e>0, 

N(O(n), I1 II, 2e) N(O(m-n) ,  I1 11,2e) ~< N(O(n; m), l I" II, ~) 

< N(O(n), I1 II, ~) N(O(m-n) ,  I1 II, ~). 

Combining this with Lemma 8.2(b) we get, for any e>0, 

N(O(m), I1" II, 2~) 
N(O(n), II" II, e)N(O(m-n) ,  I1" II, ~) 

<~ N(G . . . .  O, e) 

N(O(m), II 11,~/2) 
N(O(n), I1 II, 2~) N(O(m-  n), [l" II, 2~) 

Now, applying the corresponding estimate from Proposition 8.3 to each of the 

quantities of type N(O(k), I1" II, ~) appearing above, we get Lemma 7.3A, and hence 

also Lemma 7.3. Q.E.D. 

Remark 8.4. For n (or m - n )  significantly smaller than m Lemma 7.3 (or 7.3A) is 

not sharp. In fact one can show that, under the same assumptions, 

(c~/ rl) nCm-"~ ~ N( Gn, m, ~, rl) ~ ( c~/ rl) nCm-n~ 

with universal constants cl, c~. On the other hand, Proposition 8.3 is basically sharp. 

Remark 8.5. Let a be any unitary ideal norm on the space of operators on R"  (i.e. 

a(1)=a(UTV) for U, VEO(m) and any T,a(S)--IISII if rankS=l) .  Then for every 
r/E (0, 2a(/)], (c3 a(/)/r/) dim ~162 a, r/)<~(c4 a(/)/r/) dim or where c3 and c4 

are positive constants indpendent of a, m and r/. 

Remark 8.6. In the notation of Remark 8.5, let, for some n<m, 0 =o(a) be the 

corresponding quotient metric on G,,m. Denote d=diamG,,m=V'-fa(Pspa.(e ...... e,}), 

where k=2min {n, m - n } .  Then, for any r/E (0,d]. 

(c 5 d/r])"("-")<~ N(G., m, o(a), 7"/) ~< (c 6 d/r]) "r 

with c5, c6>0 independent of a, m, n and r/. 

The estimates given in Remarks 8.4-8.6 are "isomorphically" sharp. The proofs 

can be found in [19]. 
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9. Sketches of the proofs of Theorems 1.4 and 1.6 

The case o f  Theorem 1.4. In the proof of  Theorem 1.1 we added n additional extreme 

points (corresponding to gl . . . . .  gn) to the unit ball of 1~. In this case we add k=[6n/2] 

points to the unit ball of  1~ and the argument is the same. The crucial observation is that 

if T is an operator satisfying the assumption of Theorem 1.4 and To the corresponding 

lifting satisfying analogues of  (5.8) and (5.9) (with T instead of  P), then rankTo ~< rank 

T+ [6n/2] ~<(I - 6/2) n and the same holds for rank ( / -  To). Q.E.D. 

The case o f  Theorem 1.6. Here we add k=[m/2] gy's. Then, similarly as above, the 

corresponding lifting To of  P satisfies 

rank T O ~< n -  , rank ( I -  T 0) ~< n--~-. 

Applying the same line of  argument as in the proof of  Theorem I. 1 we are able to show 

the following analogue of Fact  5.2 

" I f  To satisfies the conditions above, then 

( C Kn3/Z ~ a, 2 ' ' 
~ ( { Q T o g j E 2 K Q B  ~ for j =  1 . . . . .  k } ) < ~ \ - - - - - ~ ]  . 

Combining this with Fact  5.1 we see that in our present setting 

( CKn3/2~ "k~+e_C, k 
~9((B: liP: B-.-,,BII <~ g}) <~ (2C0) "2 \ - - - - ~ ]  

~<C~'~\ m 2 / 
+e-C~ m, 

which turns out to be strictly smaller than 1 provided 

K < m I/2-bnzlm~ln n, 

proving Theorem 1.6. Q.E.D. 
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