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1. Introduction and the main results

It is well-known that if B is a normed space, then for every n-dimensional (or n-
codimensional) subspace F there is a projection from B onto F of norm not exceeding
V'n . But it has so far been an open question whether for every B of dimension greater
than » there is some n-dimensional subspace F onto which there is a projection of norm
o(V'n) or even K, with K an absolute constant (%). In this paper we will construct a 2n-
dimensional space in which every projection of rank n in B has norm greater than CV'n’
where C is an absolute positive constant. This example, which is in an obvious sense
the best—or the worst, depending on the point of view—possible, also settles in the
negative ‘‘the finite-dimensional basis problem™, i.e. the question whether there is an
absolute constant K such that every finite-dimensional space has a basis with basis
constant <K. We recall that the (Schauder) basis constant of a basis (x;) of B is the
smallest number K such that
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for all scalars ¢,, ¢, ...,t, and every k<n =dim B. When the sum on the left is allowed

J B

to run over any subset of {1,...,n}, we get the unconditional basis constant. The

(') Current address: Case Western Reserve University, Department of Mathematics, Cleveland, Qhio
44106, U.S.A.

(3 After this paper was submitted to publication, G. Pisier ([16]) constructed an example of an infinite
dimensional Banach space with many surprising properties, in particular the norm of any rank » projection on
it is of order V'n. In spite of a very similar formulation, this result neither implies our Theorem 1.1 nor
follows from it (the construction is strictly infinite dimensional).
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problem of the basis constant was known as early as in the '30’s to mathematicians of
the Lvov school. The first step towards a solution was taken by F. Bohnenblust in 1941
(see [1]). The problem of the unconditional basis constant was settled by Y. Gordon
and D. Lewis (see [7]) who showed that some well-known n-dimensional spaces of
operators have unconditional basis constants of order n'*. Later T. Figiel, S. Kwapien
and A. Pelczynski (see [4]) gave examples of n-dimensional spaces for which the
unconditional basis constants were of order V' n , the same as we obtained for the basis
constants.
Let us state our main result again.

THEOREM 1.1. There is a constant C>0 such that, for every n, there exists a 2n-
dimensional normed space B such that, for every projection P on B of rank n,

[|P: B>B||>CVn.
As an immediate consequence of Theorem 1.1 we get

COROLLARY 1.2, For every n there exists a normed space B, dim B=n, such that
the basis constant of every basis of B exceeds C'V n, where C' is an absolute
constant.

Recently (independently of this paper and a month or two before the work on it
was completed) E. Gluskin has proved the following result (see [6]), which also settles
the finite dimensional basis problem: for each n there exists an n-dimensional normed
space such that, for every projection P on it with rank P<n/3, ||P||=cn™'?
(1+logn)~ "2 rank P. In particular his result, while being slightly weaker than Theo-
rems 1.1 and 1.4 if rank P = O(n), yields nontrivial estimates if rank P is of order n°,
s>1/2—Dbetter than our Theorem 1.6.

The construction in the proof of Theorem 1.1 is of a ‘“‘random’’ nature: We define a
whole class of spaces and show that, in a certain sense, ‘‘most of’ them satisfy the
assertion of Theorem 1.1. The nature of the example is close to one constructed by
Gluskin in [5] to obtain two n-dimensional normed spaces, whose Banach-Mazur
distance is of order n (cf. Remark 4.6). Random spaces of essentially the same kind (but
with different distribution) were considered in [4] as having the ‘‘worst’’ possible order
of constants of local unconditional structure. The construction in [4] was based on
some phenomenon discovered in [9] (cf. Remark 4.5).

A common feature of all these examples is that they (or their duals) are quotients
of ‘‘small”’ l,’n-spaces or, in other words, the number of extreme points of their unit balls

is comparable with their dimension. A consequence of this, crucial in both [5] and here,
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is that such a unit ball, while containing sufficiently many points *‘far away’’ from the
origin to keep the Banach-Mazur distance between the space and /? (and, in random,
even I') of the corresponding dimension large, has volume very close to that of the
largest Euclidean ball contained in it. This phenomenon was observed in the case of /!

in [17], named ‘‘small volume ratio’’ and investigated more systematically in [20] and
finally noticed in the case of spaces considered here in [10] and [18].

We feel that the methods of the proofs of Theorem 1.1 and its generalisations
Theorem 1.4 and Theorem 1.6 below may be of use for some other problems, which we
will now mention.

The infinite dimensional version of the basis problem was solved, also in the
negative, by P. Enflo in 1972 (see [3]). However, his proof was based on a completely
different, infinite dimensional considerations, yielding in fact an example of a space
failing to satisfy much weaker property than having a Schauder basis. In particular the
following problem still remains open.

Problem 1.3. Does there exist a normed space without Schauder basis, but with
bounded approximation property (i.e. the identity operator is a pointwise limit of
operators of finite rank)? A finite dimensional Schauder decomposition?

Corollary 1.2 indicates that the answer may be positive.

Our proof of Theorem 1.1 yields actually a significantly stronger result.

THEOREM 1.4. Given 6>0 there exists C=C(0) such that, for every n, there is a
normed space B, dim B=n, satisfying

||T: B>B||=CV'n
for every operator T on B with rank T<(1-90}n, rank (I-T)<(1-9)n.

Theorem 1.4 may be seen as a step toward a solution of the following well-known
problem (or at least its finite dimensional version).

Problem 1.5. Does there exist an infinite dimensional Banach space such that
every continuous operator on it is of the form A/+K, where K is compact?

Modifying the proof of Theorem 1.1 a little bit one can generalize it to

THEOREM 1.6. There is a constant b>0, such that, for every n and m<n/2, there
exists an n-dimensional normed space B satisfying

HP: B——»BH Zmle—(bnzfmz Inn)

for every projection P on B with m<rank P<n—m.
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Observe that the above estimate is nontrivial (and of type m®*, a>0) if and only if
m>V 2b n/VInn.If m=én, 6>0, we get the estimate C(6) V n (as in Theorem 1.4).

Theorem 1.1 and the above remark suggests the following questions.

Problem 1.7. Does there exist a sequence K,, /% such that, for every n, one can
find an n-dimensional normed space B satisfying: if P is a projection on B, then

||P: B>B|| =K,

where m=min {rank P, n—rank P}? Can we take cVm as K,,?

Problem 1.8. Does there exist a constant K and a sequence of integers k,,,/ © such
that, for every n-dimensional normed space B, there is a projection P on B with ||P||<K
and k,<rank P<n/2?

Both problems were probably asked many times. Of course positive answer to one
of them implies negative answer to the other.

All spaces considered in this paper are real. The complex case does not follow
formally from the real one (as it is in the case of positive statements). However, one
can construct an analogous example in the complex case. The first seven sections can
be copied almost word by word: we can treat C*” as R®, complex [}, as real [,

(the ratio of the corresponding norms is always between 1 and V' 2) etc. In section 8 we
must replace O(m) by the unitary group U(m) etc.—all inequalities remain true in the
complex case because of their algebraic origin and the proof is somewhat simpler
(however, less intuitive geometrically).

Acknowledgments. The author would like to thank Dan Lewis for showing him a
preprint of [5] and reviewing the manuscript, Dan Lewis and Bill Johnson for a couple
of discussions, Steve Rallis for explaining some facts connected with section 8 and
Gilles Pisier for several helpful remarks.

2. Organization of the paper

Section 3 establishes notation.

Section 4 describes construction of a space, whose existence is asserted in Theo-
rem 1.1. It contains Proposition 4.1 (which is essentially a specification of Theorem
1.1), its immediate corollaries and some remarks.

Section S reduces Proposition 4.1 to two technical statements: Fact 5.1 and Fact
5.2 (the first of them is essentially contained in [5]).

Finally, sections 6, 7, and 8 are devoted to the proof of Fact 5.2. Section 6 reduces
it to Proposition 6.8, which is a purely Hilbert space problem.
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Proposition 6.8 is proved in section 7.

Section 8 is an appendix. It contains proof of Lemma 7.3 and lists other (precise)
estimates for the minimal cardinalities of ¢-nets of orthogonal groups and Grassmann
manifolds (with respect to unitary ideal norms and their analogues respectively)—most-
ly without proofs. More systematic exposition of that subject is contained in [19].

Finally, section 9 indicates changes in the argument necessary to prove Theorems
1.4 and 1.6.

3. Notation

Our notation generally follows [13]. Some of frequently used (but less standard)
conventions are listed below.

(ey, ..., e,,) will always mean the standard unit vector basis of R™.

The Lebesgue measure of a measurable subset § of R™ will be denoted by
m-vol (S) or shortly vol S.

For a normed space X we shall denote by B(X) its unit ball, the ball with radius r
and center at the origin by B(X) or just B,. We shall also denote B(%)) shortly by B?,.

If A, B are normed spaces, we shall denote the space of bounded linear operators
from A to B, equipped with operator norm, by L(A, B) or, in the case A=B, just by
L(A). The operator norm will be denoted by || - : A—B||, || - ||z, s or L(A, B)-norm
etc.

Moreover, we shall identify the spaces A, B with their unit balls. In particular we
may write || - || for the norm generated by an absolutely convex body BcR™, L(A, B)
for the space of operators between the spaces generated by absolutely convex bodies
A, B etc.

As usually, the group of orthogonal operators on R™ will be denoted by O(m), the
normalized Haar measure on it by u=u,,.

As it is well-known, every operator T: H,—H, (H,, H,, finite dimensional Hilbert
spaces) can be written as

T=24;(h; - ) b,
J

where (h;) and (h;) are orthonormal systems in H, and H, respectively., We shall
always assume that (4;) is a non-increasing sequence (of lengthdim H,; add zeros if
necessary) of nonnegative numbers and refer to such representation as ‘‘the polar
decomposition’’ (the sequence (4)) is then uniquely determined by T; (k;) and (h]) not
always).
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For a Hilbert space H and its subspace F we shall denote by Pr the orthogonal
projection of H onto F. IfdimH =m and | - | is the Hilbert norm, then by ‘“‘a Gaussian
variable with distribution N(0, 1, H)”’ we shall mean an H-valued random variable g
with density

— m mi2 —mx|*2
Qg(x)— <§) e~k

m

against the Lebesgue measure. g can be also represented as (1/Vm) L7

1¥;hj, where
the y,’s are independent real Gaussian variables with distribution N(0, 1) and (h) is an
orthonormal basis of H. Observe that

(3.1) E|g|*=1 (E stands for expectation).

(3.2) ? {12=|g|s2})=1—e"", c absolute.

(3.3) If E is another Hilbert space, V: H—>E an isometry onto and E; a k-

dimensional subspace of E, then
m
Vi PeVe

is a Gaussian variable with distribution N(0, 1, Ep).

In (3.2) and throughout the paper 2 stands for a probability measure, which may
be different in different places.

The letters C, ¢, ¢’, ¢ or C with a subscript etc. will stand for universal constants,
in particular not depending on dimensions of considered spaces, unless otherwise
explicitly stated. The same symbols may correspond to different numerical values in
different sections.

4. Construction of the space

Consider R** with the standard unit vector basis e, e;,...,es,. Let F =
span {ey, ..., e,}. Let, for j=1,..., n, f;: Qo—F be independent Gaussian variables with
distribution N(0, 1, F), where (Qq, ) is the corresponding probability space. Consider
another probability space (Q, ?) g (0(@dn)xQy, u®P,), where u=u,, is the normal-
ized Haar measure on O(4n).

Now, for j=1, ..., n, define the random variables g; on Q by

g=gU 0 % Ufw),
and finally let (ac = absolute convex hull)

dr
B = ac {e,,...,e,,,,,gp---,g,.}-
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Of course g, ..., 2., and hence B, depend on U and w. Thus, identifying a normed
space with its unit ball, one can consider B as a random variable on Q, whose values
are 4n-dimensional normal spaces. Denote by & its range, i.e. the set of all spaces
obtained in the above way. One can consider # as a probability measure on 2.

Now we are able to state

PROPOSITION 4.1. There exist absolute constants ¢y, c,>0 so that
P({B: ||P: B—B||<c,V n for some rank 2n projection P})<e™".

Observe that to prove Theorem 1.1 it is enough to show that the probability above
is strictly smaller than 1.
The following two facts are immediate consequences of Proposition 4.1.

COROLLARY 4.2. For every p=2 and k there is a 2k-dimensional subspace E of an
LP-space such that no projection of rank k on E has norm not exceeding c3k'*~7,
where c3 is an absolute constant. Moreover, we can take I, as LP-space above.

Notice that since, by [12], d(E, [2,)<(2k)"*""? (d is the Banach-Mazur distance),

every k-dimensional subspace of E is a range of projection (on E) of norm not exceeding
(2k)'>~VP_ Corollary 4.2 is, in a sense, optimal.

Proof. Clearly it is enough to consider the case of even k; say, k=2n. Observe that
every B€E B is isometically a quotient of /5. Hence B*, which satisfies the assertion of

Theorem 1.1 simultaneously with B, is isometrically a subspace of [,.Now it is enough
to take B*, considered as a linear subspace of R*" equipped with /£ -norm,as E and the

conclusion will follow immediately from the inequalities
[lxllee < [bell, < (57) ]l
valid for x ER®". Q.E.D.

COROLLARY 4.3. For every n there is an n-dimensional subspace of I, which is

not contained in the range of any projection P of rank 2n with ||P: I}~ |l<c,Vn.

Proof. Consider any B € &, for which the condition in the brackets in Proposition
4.1 is not satisfied. Now it is enough to take span{g,...,g,} and look at it as a
subspace of I} . Q.E.D.
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Remark 4.4. Since, by (3.2),
P({12<||gj|<2 for j=1,...,n}) =1—ne "=1-e"°",

one can choose B of the form B=ac{ey, ..., 4., X1,...,Xn}, ||x]l2=1 for j=1, ..., n, still
failing to satisfy the condition from Proposition 4.1 (with possibly a slightly ‘‘worse’’
constant ¢;).

Remark 4.5. By somewhat more subtle considerations one can show that B, still
failing to satisfy the condition from Proposition 4.1, can be chosen in such a way that its
cotype 2 constant does not exceed C; (a universal constant) and in fact it happens for
“most of’ choices of B. In order to show this it is enough to prove that if g: I{.—B is
the quotient map, thenker g is *‘usually’’ nearly Euclidean, i.e. d(ker g, I*)<C,for some
universal constant C, (by [11], [14] or [15], cf. [4]). To show this identify R>" with
R“*@R" and observe thatkerg={(—Gx, x): x€ER,}, where G is the random 4nxn
matrix, whose jth column is g;. Clearly it is enough to prove that, for ‘‘most of’ G,

[(=Gx, 0|, < ||Gxl|,+][xll, < C/V 5n [}(=Gx, 0], .1

for all xER". Estimating ||Gx|| is easy, since, by our construction, im G is a random
subspace of R*" and hence || - ||, and || - ||, are roughly proportional on it (see [9] or
[17]). To estimate ||x|; we may copy the argument from [17]. First we show that, for
every x ER” and r>0,

PGl < rVnllxll)) = 2(|g,||, < rV R D <(Cyr)”

by Lemma 6.5 from this paper and considerations similar to the proof of Claim 6.1.
Then, combining the above with Lemma 1 from [17] we conclude that, for ‘‘most of”’
Gs,

u({x €S, _1 :|x|ly<rV'n and ||Gx||; <rV n })<(C,n™,

where u is the normalized Haar measure on S,_,. This in turn, by Lemma 3 from [17],
implies (4.1) (we must only choose r<(1/2) C;?).

Remark 4.6. Since some refinement of the argument from [5] can be used to our
class & and its variants discussed in section 9 (we use LLemma 6.5 from this paper
instead of Lemma 1 from [5]), the following statement is true:

““Given n there exist n-dimensional normed spaces B, and B, such that, for some
universal constant C,
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(1) the cotype 2 constants of By and B, do not exceed C,

(2) d(By,b)=C"'n,

(3) for i=1,2, ||P:B,—»B|=C~'V'n for projections P such that 0.0ln<
rank P<0.99n’’.

5. Strategy of the proof of Proposition 4.1 and preliminary reduction
From this point on we fix n. Proposition 4.1 will follow from the following two facts.
Fact 5.1. Let ZcB(L(l})). Then, for each ¢€(0,1), there is an &V m-net—in

the L(lfn)-norm—of Z, whose cardinality does not exceed (C0/£)"'2.

In the sequel we shall frequently denote, for fixed U € O(4n),
G=UF (F¥ span{e,,...,e,}) and Q=Pg(=I-Py).

In particular, for given (U, wo) € Q, we shall mean by G and Q the objects related to
U, by the above convention. One can visualise G as span{g;,...,g,} (they coincide
with probability 1).

Fact 5.2. Let T be an operator on R*" such that
(1) rank T<3n and

(ii) rank (/—T7)<3n.

Then, for every K€ (0, Vn),

P(B: QTg,€2KQB., for j=1,...,n})< (c, K )C’"z.
Vn

Fact 5.1 is essentially contained in Gluskin’s paper [5] (for the sake of complete-
ness we sketch the proof of it below). Also the general strategy of the proof of
Proposition 4.1 is similar to that of [5]. Namely, in order to show that, for some B€E %,
no operator on B, which is a projection of rank 2n, has small norm, we prove two
statements:

(1) a given projection (which corresponds somehow to T from Fact 5.2) is “‘good”’
for a “‘very few’’ BE & (Fact 5.2),

(2) there are not that many projections (or operators from B(L(1l},)) associated with

them) we must consider (Fact 5.1).

Hence for ‘‘most of* B € & no projection is ‘‘good’’.
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Sketch of the proof of Fact 5.1. It is enough to show that

(@ U/Vm B(L(1%)) < B(L(l},))
(b) vol (B(L(z;)))s<—3£> vol (1/Vm B(L(L%)))

and then the same construction which yields an e-net of a unit ball of a k-dimensional
normed space of cardinality not exceeding (3/e)%, leads to the desired conclusion.

Now (a) is obvious. The left hand side of (b) may be computed directly and shown
to be of the same order as vol B2. (up to factor of type c™). Estimating the right hand
side of (b) is precisely the content of the proposition from [5]. The following argument
is due to S. Kwapient and N. Tomczak-Jaegermann and has been in circulation for some
time. We have

vol B(L(Z, )) <J )m’/z> <f L 2)—,"2/2
vol B2 ”(x )”m ”(xy)nz = H( IJ)H s

where ||(x;)|| is the L(lfn)-norm of an mXm matrix (x;) and the integration is with

respect to the normalized measure on S,._, and /2, being identified with the space of

nxn matrices equipped with the (Hilbert-Schmidt) norm (Z; jix;{%)"?. By the standard
argument, we have

[16orar =L [ wepiras.

where g;, 1<i,j<m, are independent real Gaussian variables with distribution N(0, 1).
In turn, by Lemma 3.1(2), [2] or by a much more elementary direct argument,

f (g2 dP < 8m.

Combining the last three formulas we obtain the desired estimate. Q.ED
We postpone the proof of Fact 5.2 to sections 6-8.

Proof of Proposition 4.1. We shall prove Proposition 4.1 with
¢, =[C,2 QCY"]! (5.6)

where Cy, C; and C, come from Facts 5.1 and 5.2.
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To this end set K=c,V n, ¢, as above. Let Z’ be the set of all linear operators 7 on
R* satisfying the conditions (i), (ii) from Fact 5.2 such that ”T”L(QH)SK' Applying
Fact 5.1 with Z=K"'Z', m=4n and £=1/2 we see that there exists a finite subset A of
Z, #N<(2Cy)'*", which is a K/(2V 4n )-net of Z' in the L(/2,)-norm. For each TE N

let Br={B€ B: QTg,€ 2KQB,, for j=1,...,n}.
Then, by Fact 5.2,

g’(%r)s(q%y“l

n

and hence

K \a7n 2 K \G#

TEN n n

which in turn, by (5.6) and the choice of X, equals (1/2)"2. Hence
PB\ U Bp)=1-(1/12)"
TEN

Let Bo={BE B: B 2B, }={B:||g;||;>2 for some j<n}. Then by (3.2),
P By)<ne “"se™", ¢'>0,
and hence

PBN\ U BN\ By = 1—(1/2)" e,
TEN

Fix BEB \Uyzey B\ %B,. We shall show that the norm of every rank 2n projection

on B is greater than K (=c¢;V n)—this, by the estimate above, will prove Proposition
4.1.
Suppose not. Let P, rank P=2n, be a projection on R* such that

|P: B—~Bl||<K.
In particular
Pg,€KB for j=1,...,n,
and, as a consequence,

QPg,€KQB for j=1,...,n.
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Now B=ac(B;, U {g,,...,8,}) and Qg;=0 for j=2,...,n show that OB=0QB;,, s0 we

have
QPg,€KQB,, forj=1,...,n. (5.7)
Similarly we obtain QP e,.EKQB},, for j=1,...,4n, or, in other words,
|QP:B,—0B.|I<K.
In turn, the above can be written as
lgP: L~ 1L/Gll< K

where q: I}, —[},/G is a quotient map, because ,,/G can be realized as
QR*=G* with the norm generated by QB},.

Now, by lifting, we can find an operator T, on R*" such that

qP =qT, (5.8)
|| To: hi—lin|| < K. (5.9)

Clearly (5.8) may be written as
QP = QT,. (5.10)

Observe that,since To=0Ty+PsTo=0P+PsTy, rankTy<rankQP+rankPs<rankP+
dim G=2n+n=3n. On the other hand, since Q(/~Ty)=0—QTo=0—QP=QI—-P) and
rank(/—-P)=2n, the same argument yields that rank(I—T7Ty)<3n. This, together with
(5.9), shows that To€Z’ and hence there exists T;EA such that

| T, —To (5.11)

<K

e < 2V an
By the choice of B, Be%rl- Hence

OT, g;$2KQB,, for some i<n. (5.12)

On the other hand we have, for every j<n,

”QTx 8j'Qng“2= ”QTI gj‘QTongZ <||T, g,'_To gj”2
K Py K
2V 4n V 4n

= ”Tl - TO“L(I},,)”gI'HZ =
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(we used (5.10), (5.11) and the fact that B¢ %, consequtively), which is the same as
K .
(QT, g;—QPg)€ TBM NGt for every j<n. (5.13)
Now, since (1/V 4n ) B} cB),, we have

K
Vian
which combined with (5.13) gives
(QT, g;—QPg)€ KQB), forj=1,...,n.
Now the above and (5.7) contradict (5.12). This shows that ||P: B—>B||>K=c1\/7,
ending the proof of Proposition 4.1. Q.E.D.

B, N G*<KB;, N G*cKQB,,,

It remains to prove Fact 5.2.

6. Proof of Fact 5.2 : 1st reduction

The purpose of this section is to reduce Fact 5.2 to Proposition 6.8.
By definition of Q, the probability in the assertion of Fact 5.2 equals

f P{QTg,E2KQB,, forj=1,...,n})u(dU). 6.1)
O4n)

Now, for fixed U€O(4n) (and hence fixed G=UF and Q=P.), g;= Uf; are independent

Gaussian variables with distribution N(0, 1, G). So (6.1) may be written as

f [P{QTg €2KQB, 1]" u(dU), (6.2)
O(4n)

where, for each U, g=g is a Gaussian variable with distribution N(0, 1, G).

Let us introduce some notation. Given a linear operator W: G—H (G, H Hilbert
spaces) and k, €20 we shall say that W is (k, ¢)-thick (resp. (k, £)-thin) if, for some
subspace G, of G,dimG,=k, |Wx|=¢|x|for xEG, (resp. |Wx|<e|x|for x€ G\ {0}),
where | - | denotes the corresponding Hilbert norm.

The following simple and well-known lemma explains the meaning of these no-
tions.

LLEMMA 6.1. Let W: G—>H, k and ¢ be as above.
Let ;A u;, - )v; be the polar decomposition of W. Then

(@) Wis (k, e)-thick iff #{j:A;=e}=k

(b) W is (k, e)-thin iff ${j: L<e}=k.
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Fact 5.2 will immediately follow from the following two facts.

Claim 6.2. Let ¢, K'>0. Let W: G>H,dim G=n, be (n/3, &)-thick. Let AcH be of
the form A=ac{y,,...,Yan}, |Vj|<K' for j<dn. Finally, let g be a Gaussian variable
with distribution N0, 1, G). Then

@({WgeA})s(c‘ K')"B.
eVn

Claim 6.3. Let €20; T, G=UF and Q as in Fact 5.2. Then

u{UE O(4n): QT\; is not (n/3, )-thick}) < (c, s)"%.

Indeed, suppose we have proved Claims 6.2 and 6.3. Then, applying Claim 6.2
with K'=2K and A=QB,},, we see that if, for some G and €>0, Q7| is (n/3, £)-thick,
then

P{QTgE2KQBL)) < (zc‘ K )"B.
o~

Combining this with Claim 6.3 we conclude that, for every &, (6.2) is not bigger than

2¢, K\ )
(C‘ ) +(c, &)™

EV n

Now the choice e=(2¢; K/c, V' n)"? yields the desired estimate. Q.E.D

Remark 6.4. There is nothing special about the number 1/3 in Claims 6.2 and 6.3.
One can prove their analogues with any a €(0, 1) instead of 1/3 and conclude the proof
in essentially the same way.

For the proof of Claim 6.1 we need two further lemmas.

LEMMA 6.5. Let A=ac {x,x;, ..., xa} <R™ with ||x;{[»<1 for j=1,2,..., m. Then
volA < <03M>'"'
vol B, m*?

Proof. Standard and well-known (see e.g. [10] or [18]). We have (cf. proof of (5.1))

Vol A < <M) vol B}, < <M> (—%‘g—)m/2 vol B2,
m m

T

and it is enough to observe that
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()=
m m
to obtain Lemma 6.5 with c,=V 2¢%/n . Q.E.D.

LEMMA 6.6. Let E be a Hilbert space, dim E=m, and let go be a Gaussian variable
with distribution N(0,1, E). Let AcE be a measurable set and let L be an invertible
operator on E. Then

P(Lg,€AD < 7Y (gerr)t,
vol B

m

m mi2 —M
(—) e % dx
2

Proof. 9’({L80€A})=EX(LgOEA) =f
{Lx€A}

mf2 —~1,,12
= f (%) e~ "D (det L) 'dy
A

mf2
s<ﬂ> vol A(det L)™' < ¢ volA4
27 vol B?

m

(detL)™!,

where | - | is the corresponding Hilbert norm, integration is with respect to m-dimen-
sional Lebesgue measure and

vol Bfn=n"'/2/F(%+l). Q.E.D.

Proof of Claim 6.2. Fix ¢, K, W and A satisfying the assumptions of Claim 6.2. Let
W=E 4w, - )u; be the polar decomposition. Let m=4#{j: 4,>¢}. By Lemma 6.1,
m=n/3. Denote E=span{v,, ..., U,,}.

Observe that

(1) if Wg€A, then also PrWg€PcA,

(2) since PeW=L" A, (u;, - )v,, we can write PgW=APgV, where
AL Ll A (v, v, and V: G—-H is the isometry defined by Vu=v;, j=1,...,n.
Hence, by (3.3), the distribution of PcW is the same as the distribution of V' m/n Ag,,
where g, is a Gaussian variable with distribution N(0, 1, E).

In view of (1) and (2) it is enough to estimate

PUV minAg,€EPLAY),

which, by Lemma 6.6 applied with L=V m/n A and P A instead of A, does not ex-
ceed
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vol(PzA)
vol B>

" (Vmin)™(det A)~!

Now, by our assumptions,det A=¢~™ (because i=¢ for j=1,...,m) and m=n/3. So
the above, and hence also the probability from Claim 6.2, is not greater than

(g\/? )'" vol (P-A)

vol B,

[

Notice that PeA=ac {Pgy;, j=1,2,...,4n} and |y|<K’ for j=1,...,4n. This, by Lemma
6.5, shows that

vol(PA) _ <c3 “4n-K’ >m

2 n
vol B, m

Inserting this estimate to the previous one we see that that probability from Claim
6.2 is at most

EmM

(4\/Tc3 c,K'n )”‘< (36c3 c4K’)m
& T\ eV

which proves Claim 6.2 with ¢;=36 c;c4 (remember that m=n/3). Q.E.D.

Proof of Claim 6.3. Denote S=I-T, H,=(imS)' and H,=(im7T)*. Observe that
dimH;=zn fori=1,2. 6.3)

Indeed, dim H,=4n—rank S=4n—3n (by assumption (ii), Fact 5.2). The same argument
applies to H,.
Our present goal is to prove (as a step towards showing Claim 6.3)

Claim 6.7. If, for some G and e, QT|g is not (n/3, e&)-thick, then either
Pyl or Pylg is (n/3, 2¢)-thin.

Proof of Claim 6.7. Suppose not; let for some G and ¢ neither
PH||G nor PHZlG be (n/3, 2¢)-thin.

Let L a;{(x;, - )z be the polar decomposition of PHI!G' Then, by Lemma 6.1, the
fact that Py | is not (n/3, 2¢)-thin implies

& oypi 2n
k= #{j:a; 22¢} > 3 6.4)
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Let G’'=span {x,, ..., x,}. Clearly ||PHlx||2>2£||x||2 if xXEG. Moreover, if x€G’
and yEG with y 1 x, then

||Pa, (e +2)]|, = 2elx]2- (6.5)

To show this, denote y'=Pgy and Hi=span{zy, ..., zx}=H,. Clearly (x,y')=(x,y)=0
and hence

“PHl(x+y), IZ Z||Py(x+y)||, = IIPH](x+y’)| |2
=2e|[x+y'||2 = 2el|x|]
as required. Similarly we show that the assumption PH2|G is not (n/3, 2¢)-thin implies
||Pr,(x+)] |, = 2ellxl2- (6.6)

for x€G" and yEG with y Lx, where G" is some subspace of G, dim G” ‘gp>2n/3.
We prove now that if x€EG' N G” with ||x||;=1, then

[1QTx||, = e. 6.7
Since dim G’ N G"=k+p—n>2n/3+2n/3—n=n/3, this contradicts the assumption that
QOTl¢ is not (n/3, ¢)-thick, thus proving Claim 6.7.

Once again suppose (6.7) does not hold. Then for some x€G'NG", ||x||=1 and
[|QTx||;<e. In other words, for some real t and y€G, yLx,

e> || Tx+tx+y|2 = ||(1+0) Tx+tSx+yl;
(because S+T=I). Assume first that |¢|<1/2. Then 1+¢=1/2 and

e>||(14+0) Tx+1Sx+yll, = || Py, [(1+0) Tx+1Sx+y]) |,

= |[|Py [+ x+y]||, = A+D || Py (x+(1+D7" y) zzi Py (x+(1+0)7" )|,
I i 2 !

which, by (6.5), contradicts x€G’ (we used the identities P,,I S=P =0

(im$)*
and Py T=P, ). Similarly, assuming |f/=1/2 and using Py, and (6.6) instead of P, and
(6.5) we obtain a contradiction to x € G”. This shows (6.7) and concludes the proof of

Claim 6.7. Q.E.D.

12 - 838286 Acta Mathematica 151. Imprimé le 28 Decembré 1983
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Let us return to the proof of Claim 6.3. Claim 6.7 shows that it is enough to prove
that

W{UE OW@n): Py is (n/3, 2¢)-thin}) < (C} &)™

for i=1, 2. Arguments in both cases are the same, one uses only (6.3). In other words,
everything reduces to the following:

PROPOSITION 6.8. Let EcR*", dim E=n and let >0. Then

U{UE O@n): ||Pel,|| <6 for some GocG=UF, dim Gy = n/3}) <(ci8y"™

where || - || is the operator norm with respect to the I;,-norm.

7. Proof of Proposition 6.8
We shall prove the slightly more general

PROPOSITION 7.1. Let F=span{e,,...,e,}<R"™, let EcR™,dimE=p, and let
0 €(0,1). Then, for every positive integer q,

U€ O(m): there exists Gy UF, )
7 . S Cm oI,
dimG,=q, such thatI 'PE|Go| | <4

Clearly Proposition 6.8 is a special case of Proposition 7.1 with g=n/3 and m=4n.
Before passing to the proof of Proposition 7.1 we must introduce some notation (for
more details see section 8).

Let G, ,, be the Grassmann manifold (i.e. the set of k-dimensional subspaces of
R™), v the normalized Haar measure on it, induced by the action of O(m), and let g be
the metric on G, ,, defined by

oH, H)= inf |-V
VEO(m): VH,=H,
Here and throughout this section || - || will always denote the operator norm with
respect to 2-norm or restrictions thereof.
It is easy to observe that o(H,, H,) is the same as the Hausdorff distance between

Sn_1NH; and S,,_;NH,. In particular it depends only on the position of H, in
relation to H, and not on a ‘‘superspace’’ containing both of them. In the sequel we
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shall not distinguish between metrics obtained by considering different such ‘‘super-
spaces’’.
For the proof of Proposition 7.1 we need two further lemmas.

LEMMA 7.2. For every n€[0, V 2] and Hy€G,,,,, we have

C "™ < w({H: o(H, Ho) <n}) < Cy" n""~",

Observe that:

(1) n(m—n)=dimG,, ,,,,

(2) by invariance of v and @ with respect to the action of O(m), the measure in the
assertion does not depend on Hj,

3) V2 =diamG, .

LEMMA 7.3. Let, for some n€(0,V 2), N be an n-net of G, (with respect to o)
of minimal cardinality. Then

Cr "< HN<Cp g,
Since, as one can easily show, if ¥ satisfies the assumptions of Lemma 7.3, then
v({H:o(H, H)<n}) 's #N¥<v({H:o(H, H)<n2})",

it is enough to prove one of the two lemmas above and the other one will automatically
follow. We shall prove Lemma 7.3 (in section 8).

Proof of Proposition 7.1. Let us identify G, , with the set of all g-dimensional
subspaces of F¥ span{e,,...,e,}. Then, by Lemma 7.3, this set admits a J-net W,
with

H#N, <CJ 679, (7.1)

Now let UEO(m) and G=UFE€EG,,, satisfy the condition from Proposition 7.1,
ie.
|| Pela,|| < & for some Gy=G, dim Gy=g.

Since UW, is clearly a é-net in the set of g-dimensional subspaces of G, we can
find H€ &) and an isometry V on G, ||V—I||<d, such that VG,=UH. Hence

||PE|UH” = ”PElVGo” = ”PE V|Go|| = llPE|G°||+||PE(I_V)|Go||

<0+6=20.
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This shows that the measure in the assertion of Proposition 7.1 does not exceed
ﬂ(ngv. {U: ||PE|U,,|| s26}> sH;ZM u({U: ||PE|UH|| <20}).

The measure after the summation sign clearly does not depend on H, so the sum equals
#.4) times the single term. Besides, for fixed H, ||Pg|yx{l depends only on UH and not
on the particular choice of U€ O (m).

Hence the sum above equals

#N, - v({HEG,,: ”PE|HH <20}). (7.2)

We need the following elementary

LEMMA 7.4. Let E and H, be subspaces of R™ anddim H,+dim E<m. Then there
exists Hyc E+,dim H,=dim H,, such that o(H,, H))<V 2 ||PE|H,||-
Proof. Denote d=| IP""”II

satisfied trivially). Let H,=Pg. H,, then dim H,=dim H,. Choose x€ H,, ||x||;=1, such
that dist(x, S, N Hy)=p(H,, H,). Then we have

. We can assume that 0<d<1 (otherwise the assertion is

d=||Ppx||,= ||x—Pe x|, L d).
Now let y=P.. x/||Pg. x||;. Of course y € H,, ||y|.=1 and

o(H,, Hy < |lx—yll, = (&1+[1-(1-d)" P = V2 (1-(1-d)"H)"*<V2 d, s V2 d.

This proves Lemma 7.4. Q.E.D.

Now, to estimate (7.2), consider HEG, ,, such that ||Pg|y||<26. Clearly we can
assume thatdim E+dim H=p+q<m (otherwise ||[Pg|s ||=1 for every Go withdim Go=¢
and Proposition 7.1 holds trivially with C=1). Then, by Lemma 7.4, there exists a g-
dimensional subspace H' of E* such that o(H, H')<2V 2 §<3d.By Lemma 7.3, there
exists a d-net N, of the set of all g-dimensional subspaces of E* (identified with
Gg4.m—p) With

BN, < CJF §79m P9, (7.3)

Choose H" € N, so that o(H', H")<0 and hence o(H, H")<30+6=49.
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Then we have

(HEG,, ||Pdy|| <20} = Y (HEG, ,i0(H,H') <46}. .4

By Lemma 7.2, the measure of the latter set doesn’t exceed
#A, - C;"2 (40)1m=D < H N, - (4C2)’"26"""“’). (7.5)

Combining (7.4) and (7.5) we see that (7.2), and hence the measure from the
assertion of Proposition 7.1, is not bigger than

HN, - HN, - (4C) ™69,
By (7.1) and (7.3), the above is at most
C;n’ 5~9n-a) C;nz S-am=p=9) (4C2)"'z 9m=a) = (4c§ Cz)m2 HIP—n+a)

which proves Proposition 7.1 with C=4¢3 C,. Q.E.D.

It remains to prove Lemma 7.3.

8. Appendix on Grassmann manifolds

The main objective of this section is to prove (for notation see below)

LEMMA 7.3. Let, for some positive integers m,n and n€(0, V 2), N be an n-net of
Gp,m (With respect to @) of minimal cardinality. Then

2 — - 2 - -
¢TI S NS o T,

where ¢, and ¢, are constants independent of m, n and 7.

Remark 8.1. Independence of ¢, ¢, of m and n is the main point in Lemma 7.3. A
similar statement with ¢, c, depending on m and n, but independent of 7, is very easy
to prove.

At the end of the section we list (without proofs) a number of strengthenings and
generalizations of Lemma 7.3 and their analogues in the case of orthogonal group
(Remarks 8.4-8.6). More specifically, we give exact order of minimal cardinalities of &-
nets of O(m) (resp. G, ,») with respect to unitary ideal norms (resp. their quotients).
The proofs and a more systematic exposition of the subject may be found in [19].
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Let G, ,» be the Grassmann manifold, i.e. the set of all n-dimensional subspaces
of R™. To be more strict, denote F=span {e,, ..., e,}<R™ and let O(n; m) g{VE O(m):
VF=F}. Clearly O(n;m) is a subgroup of O(m), isomorphic to O(n)x O(m—n). Now let
us identify G, ,, with O(m)/O(n; m), the set of left cosets of O(n; m), via VF~VO(n; m).
Denote by v the Haar measure on G, ,, resulting from this identification. Let
q:0(m)—>0(m)/O(n; m)=G,, ., be the quotient map and let ¢ be the quotient metric on
G,, » induced by the operator norm on O(m). More explicitly, for H;, H €G,, .,

o(H,, H,) = inf {||[-V||: VE O(m), VH, = H,}.

where we can consider H; and H, either as subspaces of R™ or cosets of O(n;m) in
O(m) and || - || is the L(I2)-norm (operator norm).

If K is a subset of a metric space and d the corresponding metric, we shall denote,
for £>0,

N(K, d, ¢) =inf {#N:N an e-net of K with respect to d}.

As arule, we shall consider only ¢ €(0, diam K]. If d is induced by a norm || - ||, we may
write N(K, || - ||, €) instead of N(X, d, ¢).
In the notation introduced above, Lemma 7.3 can be written as

LEMMA 7.3A. If 0<np<V 2, then
¢ "< NG, .o 0. ) < € 7",

where ¢, and c, are independent of n,m and 7.
We shall need the following simple facts about the function N (-, -, -).

LEMMA 8.2. (a) Let (K,,d;) and (K;,d>) be metric spaces, (K,XK,,d,xXd>) their
product with dXdx(xy,x2), 01, y)) Lmax {di(x1, 1), ds(x2,7)}. Then, for every
0,

N(Ky,dy,2e) N(K3, d3, 26) < N(K1 X K3, d\ X d3, £)<N(K), dy, €) N(K>, dy, ).

(b) Let G be a compact group, H its subgroup, d an invariant metric on G and d’
the corresponding quotient metric on G/H. Then, for every £>0,

N(G, d,2¢) _ , N(G., d, £12)
MG, d.28)  NGIH, ', e) < NG 4 82)
NH d ey NG SN d o)



THE FINITE DIMENSIONAL BASIS PROBLEM 175

() Let (X,|| - | be a normed space,dimX=D, and (M, d) a metric space. Let
®: X—>M be a map satisfying, for some r,R, 1, L>0,

(i) ®Br)=M
(i) o(®(x), ®O)<L|lx—y|| for x,y€Br
(iii) o(®(x), PO))=l||x—y|| for x,y€EB,

where By stands for the ball of radius s in X. Then, for every € € (0, diam M],

(c'le’<NM, d, e) <(c"le)P,
where ¢'=rlf2, ¢"=3RL.

The proofs of all parts of Lemma 8.2 are standard. Let us just mention that (c)
follows almost immediately from the very well-known fact that, for any ¢, s, 0<e<2s,

(s/e)’ < N(B,,|| - ||, &) < (Bs/e)®.

For the rest of this section || - || will always denote the /% operator norm (the
L(2)-norm).

Lemma 7.3 A will be deduced from

PROPOSITION 8.3. There exist universal constants cs, c4 such that, for all € €(0,2]
and all m,

e P < NO(m), || - ||, ) s ce®,

where D=D(m)=m(m—1)12= dim O(m).

Proof. Consider the special orthogonal group SO(m) ‘-‘:f{ U€O(m):det U=1}. Since
geometrically O(m) is a disjoint union of two copies of SO(m), it is clearly enough to
prove Proposition 8.3 with SO(m) instead of O(m).

We shall apply Lemma 8.2(c) with (M,d)=(SO(m),|| - ||). As X we shall choose
A(m), the subspace of L(Ifn) consisting of all skewsymmetric operators (i.e. A € A(m) iff
A*=—A), as P the exponential map defined, as usually, by expA= L7 A¥k!.

It is a well-known fact from differential geometry that exp (4(m))=SO(m). The
main step is to show that in fact

exp(B(A(m))) = SO(m), @8.1)
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i.e. the condition (i) of Lemma 8.2(c) holds with R=z. To show this consider
U€SO(m) and let Ag€A(m) be such thatexpA¢=U. Then A, can be written in the
form

ey _
-Ar 0 0
0 A,
—-A 0
0 . 8.2)
0 Ax
- 0
L 0
with respect to some orthonormal basis of R™, where k<m/2 and 4,,. ..., A, are reals.

Let, for any real 4, 4 be the (unique) number satisfying

(@) (A-A)/27 is an integer
B) —a<i=n.

Define A, € A(m) to be the matrix obtained from (8.2) by replacing 4;’s by /Tj’s. Then, in
view of (o) and (),

()’ expA,=expAy=U
@ [JA)]| = maxft| <.

J<=

which proves (8.1).

To conclude the proof of Proposition 8.3 observe that the definition of exp yields
immediately

(2—e)||A-B|| < ||lexp A—exp B|| < e*||A-B]|

for any a=0 and A, BEL(2),||A||,||B||<a. Hence the conditions (ii) and (iii) from
Lemma 8.2(c) hold with R=x, L=¢", r=0.4 and [=0.5 (<2-¢%*). This shows Proposi-
tion 8.3 (e.g. with ¢3=0.3 and c,=15). Q.E.D.

Proof of Lemma 7.3A. We identify G,, ,, with O(m)/O(n; m). As was observed at
the beginning of this section, O(n,; m) is naturally isomorphic to O(n)xO(m—n) (via
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U~(U|g, Ulg:)). Moreover, the product metric, as defined in Lemma 8.2(a), coincides

with the operator metric inherited from O(m). Hence, by Lemma 8.2(a), for any >0,

NOW), || 1|, 2e) N(O(m—n), || - ||, 2e) < N(O(n; m), || - ||, &)
s1\/(0(’1)’” ’ ||’£)N(0(m'n)9|| ’ ||’5)-

Combining this with Lemma 8.2(b) we get, for any >0,

N(O(m), || - ||,2¢)
N(O(n)v” . ”’E)N(O(m_n)’ H : Il’e)

=N, . 0,8)

< N©Om), || - |}, €/2)
NOm), || - ||, 2e) N(O(m=n), || - ||,2¢)

Now, applying the corresponding estimate from Proposition 8.3 to each of the
quantities of type N(O(k), || - ||,n) appearing above, we get Lemma 7.3A, and hence
also Lemma 7.3. Q.E.D.

Remark 8.4. For n (or m—n) significantly smaller than m Lemma 7.3 (or 7.3A) is
not sharp. In fact one can show that, under the same assumptions,

(Ci/ﬂ)n(m—n) < N(G".m, RS (Cé/n)n(m—n)

with universal constants cj, c5. On the other hand, Proposition 8.3 is basically sharp.

Remark 8.5. Let a be any unitary ideal norm on the space of operators on R™ (i.e.
a(D=a(UTV) for U,VEO(m) and any T,a(S)=||S|| if rankS=1). Then for every
7€0,2a(D], (c3aDmiimOm<NO(m), a, <(csalDin) ™™, where ¢; and c4
are positive constants indpendent of a, m and 7.

Remark 8.6. In the notation of Remark 8.5, let, for some n<m, g =¢(a) be the

corresponding quotient metric on G, . Denote d=diamG,, n=V 2 a(P ;... .. o))

where k=2 min {n, m—n}. Then, for any 7€ (0, d].
(C5 d/n)"(m—n)s N(G"'m, Q(a), 77) < (CG d/'])n(m—n)

with ¢, c,>0 independent of a, m, n and 7.

The estimates given in Remarks 8.4-8.6 are ‘‘isomorphically’’ sharp. The proofs
can be found in [19].
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9. Sketches of the proofs of Theorems 1.4 and 1.6

The case of Theorem 1.4. In the proof of Theorem 1.1 we added n additional extreme
points (corresponding to g1, ..., g,) to the unit ball of . In this case we add k=[dn/2]
points to the unit ball of /! and the argument is the same. The crucial observation is that
if T is an operator satisfying the assumption of Theorem 1.4 and T, the corresponding
lifting satisfying analogues of (5.8) and (5.9) (with T instead of P), then rankTg < rank
T+[6n/2)<(1-06/2) n and the same holds for rank (/—T5). Q.E.D.

The case of Theorem 1.6. Here we add k=[m/2] g;’s. Then, similarly as above, the
corresponding lifting 7, of P satisfies

rank Ty < n—%z, rank (I-7Ty) < n—%.

Applying the same line of argument as in the proof of Theorem 1.1 we are able to show
the following analogue of Fact 5.2
“If T, satisfies the conditions above, then

32 CkZ”

kZ
Combining this with Fact 5.1 we see that in our present setting

CK'lyz) okt + e—c’k

kZ

32\ eom?

< nt Cz Kn " —tzm

= () 5 +e T,
m

P({B: ||P: B—B|| < K}) < (2C)" (

which turns out to be strictly smaller than [ provided
K< ml/2—bn1/m’ln n

proving Theorem 1.6. Q.E.D.
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