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In his thesis ([7] II. p. 136) and in his fundamental paper ([6] p. 74), Grothendieck 

formulated the following conjecture: If two Banach spaces X and Y are such that their 

injective and projective tensor products X ~  Y and X ~  Y coincide, then either X or Y 

must be finite dimensional. The aim of this paper is to give a counterexample. 

We will exhibit a separable infinite dimensional Banach space X such that 

X~X=X~X, both algebraically and topologically. The space X is of cotype 2 as well as 

its dual. Moreover, the natural map from X*~X into X*~X is surjective, but it is not 

injective, since X fails the approximation property (in short the A.P.); equivalently, 

every operator on X which is a uniform limit of finite rank operators is nuclear. This 

implies that there are (roughly) "very few" operators on X of finite rank and of small 

norm. For instance, there is a number 6>0 such that, for any finite dimensional 

subspace E of X and for any projection P: X---~E, we have 

IIPIJ ~ di (dimE) I/2. 

Therefore, if {Pn} is a sequence of finite rank projections on X, then Ilenll must tend to 

infinity if the rank of Pn tends to infinity. A fortiori, the space X can contain uniformly 

complemented/~'s for no p such that l~<p~<~, so that we have also a negative answer 

to a question of Lindenstrauss [13]. 

Finally, since X is not isomorphic to a Hilbert space, although X and X* are both of 

cotype 2 we also answer negatively a question raised by Maurey in [17] (as well as 

question 5.3 in [4]). Moreover, our example shows that the A.P. cannot be removed 

from the assumptions of the factorization theorem of [23]. 

In the last ten years, under the impulse of [14], several significant steps were taken 

towards the solution of Grothendieck's conjecture; besides [22] and [23], the results of 

the papers [17], [10] and [1] play an important r61e (directly or indirectly) in our 

construction. During the same period, Grothendieck's conjecture was established 
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under various additional assumptions. It was proved in [9] for spaces with local 

unconditional structure, in [2] for spaces not containing l~'s uniformly, and in [23], [25] 

for spaces with a basis or with the bounded approximation property (in short B.A.P.). 

The paper is organized as follows: section 1 contains the basic preliminaries and 

the various results that are used. We have tried to clarify the relationship between the 

extension property of our examples and the usual notions introduced in the literature. 

Section 2 contains the construction. The announced examples are produced in section 

3. Finally, in section 4, we exhibit a Banach space Z which is weakly sequentially 

complete, of cotype 2, verifies Grothendieck's theorem, but is such that L ~ / H ~ Z  
contains Co and therefore fails all these properties (yet shared by LI/H 1 and Z). This 

answers negatively several questions raised by various authors. We also discuss in 

section 4 some open problems related to our work. 

Acknowledgements. It is a pleasure to thank W. B. Johnson and J. Lindenstrauss 

who have generously discussed with me various approaches to the subject of this paper 

during the last few years. I also thank the organizers of the Banach Space Workshop in 

Iowa City (July 1981) for providing a specially stimulating atmosphere. 

w 1. Preliminary results 

We start by recalling some notations and terminology. An operator u: X - ,  Y between 

Banach spaces is called p-absolutely summing (O<p<oo) if there is a constant ~. such 

that, for any finite sequence (x;) in X we have 

X "U(Xi)IIP ~,~P sup {X '~(Xi)[P 1~ EX*, I[~,, ~< 1 }. 

Let ~tp(U) be the smallest constant ;t for which this inequality holds. We will denote 

as usual lip(X, Y) the space of all p-absolutely summing operators from X into Y, and 

B(X, Y) the space of all bounded operators from X into Y. For more information on p- 

summing operators, cf. [21]. We will say that two Banach spaces X and Y are A- 

isomorphic if there exists an isomorphism T:X-- ,Y such that 1171111T-~II ~<A. 
We will denote (ei)ir N (resp. ((ei)i~ n) the canonical basis of the space 12 (resp. l~). 

Let us briefly recall how an inductive limit of Banach spaces is defined. Let En be 

a sequence of Banach spaces given together with a sequence of isometric imbeddings 

jn: E~---~En+~. Then, the inductive limit X can be defined as follows. We consider the 

subspace of HEn formed by all the sequences (x~)~eN such that j~(x~)=Xn+l for all n 
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sufficiently large. We equip this space with the semi-norm I[(x,,)l[=lim,,__.| [Ix,,[]. Let  

be the normed space obtained after passing to the quotient by the kernel of this semi- 

norm. The space X is then defined as the completion of the space ~. It is clear that 

there is a system of  isometric injections Jn: En---,X such that J~+tjn=J~ for all n, and 

moreover ifXn=J~(ED, then the union t.l~X~ is dense in X. 

Therefore, this construction shows that, in practice, we may always do as if the 

spaces E~ were an increasing sequence of spaces of some larger space, and we then 

identify X simply with LIE n. 

Definition 1.1. We will say that a Banach space Z verifies Grothendieck's  theorem 

if every operator from Z into a Hilbert space is 1-absolutely summing. 

In [6] (see also [14]), Grothendieck proved that the preceding property holds for 

Z=LI. 

The following facts are well known. 

PROPOSITION 1.2. For a Banach space Z, the following assertions are equivalent: 

(i) Z verifies Grothendieck' s theorem. 

(ii) There is a constant c such that, for any integer n and any v: Z-~I~, we have 

, l(v)<-cllvll. 
(iii) Every operator from Z* into an Lj space is 2-absolutely summing. 

Proof. (i)r is obvious. (i)r follows from a well known duality argument. 

Remark 1.3. Assume that Z is a dual space, say Z=X*. Then, it is easy to see that 

(ii) above is equivalent to 

(ii)* There is a constant c such that, for any n and any u: l~---~X we have 

 ,(u*)<-cllull. 

Indeed, by the local reflexivity principle (cf. e.g. [21] w 9.2.3), we have the following 

isometric identifications: 

B(l , X)** -= B(I , X**) -= B(X*, 

Therefore, any v:X*--,lg is the w e a k - ,  limit of a net of operators u*:X*---,lg which are 

w e a k - ,  continuous and such that Ilu,.*ll-.<llvll. This shows that (ii)*=~(ii). The converse is 

trivial. 

Let  us introduce some notations to be used throughout the paper. We denote by D 
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the set { -  1, 1} N, by ~ its Borel a-algebra and by p the normalized Haar measure on D. 

We will denote by ~n the a-algebra generated by the first n coordinates on D. 

We will denote by R the closed linear span in LI(D, ~) of the functions (enln E N}. 

We also need to introduce a standard probability space (f~, ~,  P), on which is 

defined a sequence {gn[n E N} of independent, identically distributed Gaussian varia- 

bles, normalized in L2(dP). We will denote by G the closed linear span in Ll(dP) of the 

functions {gn[n E N}. 

It is well known that R (resp. G) is isomorphic to 12. 

We will denote by a: 12--*R (resp. fl: 12---~G) the isomorphism which maps e~ into 

e~ (resp. into g~). 

Let r: R---~Ll(p) (resp. y: G---~Ll(f~, P)) be the natural injection. We will use the fact 

that r*: Loo(p)---~R* (resp. V*: Loo--oG*) is a 2-absolutely summing operator. 

This fact is an easy consequence of the equivalence of the L~ and L2 norms on R 

(resp. G). Indeed, let ~:R---~L2(p) be the injection of R into L2(p); then we have 

r*=(f)*J where J: L~(p)---~Lz(p) is the natural injection. Hence ~2(r*)~<ll:ll. 
The proof for y* is similar. 

The following notion will be used repeatedly 

Definition 1.4. A Banach space Z is called of cotype q (2~<q<oo) if there is a 

constant c such that, for any finite sequence (z;) in Z, we have 

We will denote by cq(Z) the smallest constant c with this property. For more details on 

this notion, we refer to [181. 

Remark. We have chosen to use the first moment of lIE e,-z~ll in definition 1.4. By a 

well known result of Kahane (cf. [151, Vol. II, p. 74) we may use a pth moment for any 

finite p (in particular for p=2), this leads to the same notion and the related constants 

are equivalent. 

Remark 1.5. (i) Let X be a Banach space and let n be a fixed integer. Let (x;),-~ be 

an element of X ~. We introduce the following norm on X": 

I(x,),~.l-- inf {llall) ( l .  I) 

where the infimum runs over all t~: LI(p)---~X such that ti(e;)=x,.. 

We will denote by ~ the space X n equipped with this norm. We claim that ~* can 

be identified isometrically with X *~ equipped with the norm defined by 
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for (~i)i<<.~ in X *n. 

Indeed, we have clearly I(xi)i<_~l=infllall where the infimum runs over all 

~: LI(Iz)--*X such that (,(ei)=xi for all i<.n and ti=0 on the orthogonal of Lm(~,). 

It is well known that to such an operator ~: L 1 ( u ) ~ X ,  we may associate a function 

ap: D-->X depending only on {el . . . . .  en} and such that 

ti(qo) = j qo(1) d/~, Vqo EL,(/t). 

We have [I/~[l=H(I)[IL| and Fl(ei)=x i implies that we have 

n 

r = ~ gixi+LII 
i = !  

where W:D-- .X  is such that f,F, ilJ~d/l,d=O for all i<.n. 

The correspondence t i - . ~  is clearly bijective, so that we deduce 

where the infimum runs over all �9 as above. 

Our original claim then becomes clear since (1.2) means that ~ is isometric with 

the quotient L~(D, ~ln, ~; X ) /N  where N is the subspace of all �9 as above. 

It follows that ~ can be identified with N•  Nn,~;X*) and this proves the 

above claim since 

(ii) We have an analogous fact with G in the place of  R. Let  0~ be the space X n 

equipped with the norm 

I Il(x,),~,lll = inf (llall} (I .3) 

where the infimum runs over all operators t~: L~(f~,P)---,X such that t~(g;)=x; for all 

i<~n. Then off, can be identified with X*" equipped with the norm 

13-838286 Acta Mathematica 151. lmprim~ le 28 Decembr~ 1983 
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The proof is entirely similar. 

The next result is known, it shows that R or G play an equivalent r61e in all the 

sequel. 

PROPOSITION 1.6. (i) Let  Z be a Banach space o f  cotype q<oo. Then there is a 

constant 2 (depending only on q and cq(Z) such that, for  any zl . . . . .  zn in Z we have 

(ii) On the other hand, without  any assumption on Z, we have 

where 2c' =EIg 1 I>0. 

The reader is referred to [18] p. 68 and to [27] expos6 III. 

Remark  1.7. It follows immediately from Proposition 1.6 that if X* is of cotype q 

for some q < ~ ,  then the norms considered on X n in (1.1) and (1.3) are equivalent with 

equivalence constants independent of  n. 

PROPOSITION 1.8. Let  C ~  I be a constant. The following properties o f  a Banach 

space X are equivalent: 

(i) X* is o f  cotype 2 with c2(X*)<-C. 

(ii) For any sequence (xi), with only finitely many non zero elements o f  X,  the 

operator u: R---~X defined by u(ei)=xi admits an extension f~: LI(p)---~X such that ftln=U 

and Ilall~<C(E Ilxil[2) 1/2. 

Proof. Let n be a fixed integer. Recall that l~X) is the space X" equipped with the 

norm (r~ 7 Ilxill2) '/2 for (xi)~ . in X". We use the notations of remark 1.5. 

Let U , : I ~ ' ( X ) ~  be the operator corresponding to the identity on X ". Then 

remark 1.5 shows that Proposition 1.8 reduces to the classical identity Ilfnll=llu~*ll for 

each integer n. Q.E.D. 

The preceding result has a Gaussian analogue, as follows. 

PROPOSITION 1.9. Let  C>~I be a constant. The following properties o f  Banach 

space X are equivalent: 
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(i) For any finite sequence (~i) in X*, we have ( II ,II2)I/Z CEIIE ge ,ll. 
(ii) For any finite rank operator u:12--*X, there is an operator t~:LI(ff2, P)---~X 

extending u in the sense that al~=u~ -I and IlalN<C~2(u*). 
Proof. By the rotational invariance of the Gaussian canonical measures, it is easy 

to see (for details, cf. e.g. [28] expos6 no. X, Proposition 2.2) that (i) is equivalent to 

(i)* For any (~1 . . . . .  ~n) in X*, we have :r2(w)~<C~llE ge~ell where w: l~--->X* is the 

operator defined by w(ei)=~i for all i. 

Let  (xi)i~, be an element of  X". 

Now let Y be the space X" equipped with the norm 

H(xe)i<~.H = ~2(v*) 

where v: l~--->X is the operator defined by v(ei)=xi for all i. 

It is well known and easy to check that ~ '  can be identified isometrically with 

I-[2(1~, X * ) .  

Therefore, the equivalence of (i)* and (ii) follows again by an easy duality argu- 

ment using remark 1.5 (ii). Q.E.D. 

We recall a result due to Maurey which we will invoke several times (cf. [16], p. 

116, or [17]). 

THEOREM 1.10. Let  X be a Banach space o f  cotype 2, then any operator u f rom a 

C(K) space into X is 2-absolutely summing.  Morever, there is a constant C (depending 

only on c2(X)) such that  2(u) Cllull Also, for  any Y, we have ll2(X, Y)=lll(X, Y) and 

there is a constant c such that :rl(v)<-crt2(v) for  any v: X - *  Y. 

The following result will be used in the next section. 

PROPOSITION 1. I 1. The fol lowing properties o f  a Banach space X are equivalent: 

(i) X* is o f  cotype 2 and verifies Grothendieck's theorem. 

(ii) There is a constant C such that every finite rank operator u: R - - , X  admits an 

extension ~t: LI(g)---~X such that Ilall<.Cllull. 
(iii) There is a constant C such that every finite rank operator u: G - * X  admits an 

extension •: Ll(ff2, P)---~X such that IlalN<fllull. 

Proof. We first observe that each property (ii) or (iii) implies that X* does not 

contain lg's uniformly, and therefore (cf. [18] p. 68) that X* is of cotype q for some 
q<oo. 

The equivalence of (ii) and (iii) is then an obvious consequence of remark 1.7. 
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We now prove that (i) implies (iii). 

If X* is of cotype 2, we know by Proposition 1.9 (and Proposition 1.6) that there is 

a constant C' such that any u:G---~X of finite rank extends to an operator 

ti: L~(fl, P)---~X with Ilall~<C'~2(u*). 
By Proposition 1.2, if X* verifies Grothendieck's theorem, we have 

c"1tull 

for some constant C", therefore 

Itall c '  c'llull 

and this shows that (i) implies (iii). 

It remains to show that (ii) implies (i). 

Assume that X verifies (ii) and let u : R ~ X  be a finite rank operator. Then, we can 

factor u as u=~r where r: R---~L~) is the natural injection and ti: LI(~)---~X verifies 

Ilall Cllull. 
Therefore, we have u*=r*ti*, so that 

~2(u*) <~ zt2(r*)Ilall ~ c ,  Itull 

where Ct=Cnz(r*). 
By Maurey's theorem (cf. Theorem 1.I0), since X* is of cotype 2, we have 

ndu*)<.C2n2(u *) for some constant C2 so that 

c,  c211ull. 

By remark 1.3, this shows that X* verifies Grothendieck's theorem. It is clearly of 

cotype 2 by Proposition 1.8, so that the proof of (ii)=~(i) is complete. Q.E.D. 

Remark. It is not hard to check that Proposition 1. I 1 remains valid if we replace X* 

by X in (i) and X by X* in (ii) and (iii). 

Remark. It is also easy to check that the second property in Proposition 1.11 

implies that for any bounded operator u:R---~X there is an extension ti:Ll(~)---~X** 

such that IlalG<Cllull. Therefore, i fX is complemented in its bidual (for example i fX is 

reflexive), then property (ii) above holds for any bounded operator u: R ~ X .  

We will use the following remarkable result of J. Bourgain concerning the space 

LI/H ~. We denote simply by L~ the Lrspace  relative to the circle group, and by H ~ the 

subspace of L1 spanned by all the functions {e;"'ln~>0}. 
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J. Bourgain proved in [1] that the space L~/H ~ is of cotype 2 and verifies 

Grothendieck's theorem. Let Q:L~---,LI/H ~ be the quotient map. By a routine argu- 

ment, it can be shown that Bourgain's theorem has the following consequence. 

COROLLARY 1.12. There is an absolute constant b such that for  any finite 

sequence xl . . . . .  xn in L l /H  l, there is a sequence $1 . . . . .  $~ in L I such that: Q($i)=xifor 

all i and 

For the convenience of the reader, we sketch the argument. 

Proof. Consider v: l~--*Ll/I-I ~ defined by v(ei)=xi for all i<~n. Since L~/It I if of 

cotype 2, we have 

for some constant Ci (see e.g. [28[, expos~ X, for more details). 

Therefore, by Pietsch's factorization theorem (cf. [211 p. 232) we can factorize v as 

v=uw with w: l ~ l ~  and u: l~---~L~/It R such that 

 z<w) Ilull (1.5) 

We claim that u can be "lif ted" through Lt, that is to say that there exists an operator 

a: l~--*Li such that Qa=u and Ilall<~czllul[ for some constant cz. 

Indeed, let A be the disc algebra, considered as a subspace of C(T). Consider the 

operator T:A---~I~ defined by T(f)=((xi ,  f))i<~,,. By Proposition i.2 (iii) (or by Corol- 

lary 3 in [I]). There is a constant C' such that zz(T)<C'IITII. Therefore, T extends to an 

operator/~: C(T)--*/~' with II~II~<C'IITII. 

Let/~k be the measures on T defined by /~*(ek)=/~k. Letf~ .. . . .  f ,  be the absolutely 

continuous parts of these measures. Then the operator t~: l~---,L~ such that ~(e,.)=f,. 

verifies Ilall< llf'*ll<.f'llTIl=f'llull and Qa=u. 
Finally, we set ~f/=tiw(e;). 

We have then 

E[Zg'i$i I ~--"~"~ll:~i~'e; 
 con,., 
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-< Ilall  2(w) 

<- C'tlull n2(w) 

~<C':t2(v) by (1.5) 

<~C'C1E ~ g i x i  by (1.4). 

Therefore,  by Proposit ion 1.6, the sequence (~i) verifies the announced inequality. 

Q.E.D.  

w 2. The main step 

We will use the following result from [24]. 

PROPOSITION 2.1. Let  S be a closed subspace o f  a Banach space B. Let  o: B--~B/S 

be the canonical surjection. 

Assume that S is a-isomorphic to a Hilbert space, for  some a>- l . Then there exists 

a constant 2=2(a)  depending only on a such that 

For any finite sequence (zl . . . . .  zn) in B/S, there is a sequence 

(zl . . . . .  ~ )  in B such that a(~ i) = zi f o r  all i and EIIE F.i Zi[ [ ~ AEIIE F~i Zi[ 1. J (2.1) 

By a well known inequality of Kahane,  the norms of  a series of  the form E ei~i in 

L2(u;B) and in LI(u;B) are equivalent (cf. e.g. [15], Vol. II, p. 74). Therefore ,  the 

preceding s tatement  is a particular case of  the main result of  [24]. 

The above proposit ion holds under the weaker assumption that S is K-convex with 

K(S)<~a; we will not use this fact, see [24] for details. In the sequel, we will denote  

K(S, B) the smallest constant  2 for  which (2.1) holds. 

Let  S be a reflexive subspace of  L~. Then S satisfies (2.1) for some constant 2 (cf. 

[24]). Actually, it is known that the quotient LI/S verifies Grothendieck 's  theorem. 

This was proved in 1976 independently in [22] and [10]. In his paper [10], Kisliakov 

used the following construct ion which is essential in the sequel: Le t  S be a subspace of  

a Banach space B and let u: S--,E be an operator  with values in some Banach space E. 

Then,  we can find a Banach space E~ containing E isometrically, such that the opera tor  

u " e x t e n d s "  to an opera tor  ~: B--->E~ with the same norm, and moreover such that the 

spaces E~/E and B/S are isometric. 

Roughly, this means that the space E~ extends E in the same way as B extends S. 

Kisliakov used the fact that i fB/S  and E are of  some finite cotype,  then the same is true 
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for El. In this paper,  we will use a more precise analysis of the constants involved in 

this phenomenon.  

The following theorem and its corollary are the main results of  this section. They 

are the crucial step on which is based the construction of  the announced examples.  

THEOREM 2.2. Let 2~<q<~. Let S be a closed subspace of  a Banach space B. We 

assume that B is o f  cotype q and that S verifies (2.1). Then, for any operator u from S 

into a Banach space E, there is a Banach space E] and an isometric imbedding 

j: E---~El with the following properties: 

(i) There is an operator ft:B---~EI such that als=ju and Ilall~<g, llutl, where 

K] =2(K(S, B)+ 1). 

(ii) cq(Ei)~max (cq(E),/(2} where K2=2K(S, B) cq(B). 

Proof. We first assume that Ilull~<,7 where r/=(2(K(S, B)+ 1 ) ) - I< l .  

Le t  F be the space Bff)E equipped with the norm 

II(b, e)ll = Ilbll+flell for all b in B and e in E. 

We denote by a: B--,B/S the quotient map. 

Let  N be the subspace of  F defined by 

N = {(s, -u(s) ) l s  E S}. 

The space E] will be the quotient space F/N. We will denote by ~t: F---~F/N the quotient 

map. We claim that the space E~ has the desired properties.  We define j: E---~E~ and 

(t: B---~EI as follows: 

j(e) = rt((0, e)) for all e in E 

ti(x) = zr((x, 0)) for all x in B. 

The first properties are easy to check (exactly as in [10]): For  e in E we have 

IIj(e)ll = in f{ l l s l l+  Ile-u(s)llts ~ S}  = Ilell since Ilu(s)tl <~ Ilsll. 

This shows that j is an isometric imbedding. Concerning t~, we have clearly Ilall~ 1 and 

also, for all s in S, 

ft(s) = ~t((s, 0)) = ~t((O, u(s)) =ju(s). 

This shows that ~ls=ju. 
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We now pass to the proof of the second point which is the crucial one. Let 

(fl . . . . .  fn) be a finite sequence in El =F/N such that 

E ~ ekf  k ] < I. (2.2) 

We can find Yk in B and e~ in E such that 

fk = :t((yk, e~)). 

Applying (2.1), we may find elements xk in B such that O(xk)=o(yk) and 

with K=K(S, B). 
By adjusting e'k, we may as well replace Yk by Xk; indeed, we have obviously 

fk = ~((Xk, eD) with ek = e'k--U(Xk--yk). 

We now develop (2.2). By definition of the quotient norm of E~ =F/N, we can find for 

each e in {-1,  +1} n an element s(e) in S such that 

where the expectation is meant with respect to e in {-1,  +1}" equipped with the 

uniform probability. 

Let us set for simplicity 

By (2.4), we have a + b < l .  

By (2.3), we have 

By the triangle inequality, this implies El[s(e)}[<<-(l+K)a. 
Now, since Ilull <,7, this implies (again by the triangle inequality) 
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From (2.5) and (2.6), we deduce respectively 

(EllxkHq)l/q<~Kacq(B) a n d  (Ellekllq) I/q 

Since IIAIN<llxkll+lle,ll, this yields 

193 

a. (2.6) 

<~ cq(E)(b+~l(l + K)a) = c q(E) (b+-~) .  

and since a + b < l ,  this last expression is less than 

max {cq(E), 2Kcq(B)). 

By homogenei ty,  this means that 

Cq(Ei) ~ max {cq(E), g2} as announced.  

In conclusion,  if u: S---~E is now an arbitrary operator ,  we apply the preceding 

construction to the operator  v=u(~llull-I), this yields a space El and O:B---,EI, 
extending v and such that II011<~1. It is easy to check that a=llul l ,7- '0  has all the 

required properties.  Q.E.D.  

Remark. Let  f be an element  of  E~; assume that f=:r(x, e') for some x in B and 

some e' in E. It is easy to check that 

IIo~x)JlB, s -- inf {]lf+j(e)llle E E}. 

Therefore  El/j(E) is isometric to B/S, cf. [10]. 

C O R O L L A R Y  2.3. Let 2~<q<oo. 

Let {BiliEl} be a family of  Banach spaces. For each i, let Si be a closed subspace 

of Bi. 
We assume that 

cq = sup {cq(Bi)[iEl} < oo 

K = sup {K(S~, Bi)liEI} < oo. 
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Let E be a Banach space and let Hi: Si--->E be a family o f  operators. Then there is a 

Banach space El, and an isometric imbedding j: E--->EI with the following properties: 

(i) For each i in I, there is an operator ~i:Bi---,E~ such that f~ilsl = 

and Ila,ll <K, Iluill where KI=2(I+K).  

(ii) cq(EO<~max {cq(E), K2}, where K2=2Kcq. 

Proof. We denote by Ii {Bi} the Banach space of all families (xi)iel in IIietBi such 

that Eiet[[xi[[<oo, equipped with its usual norm. 

We let B=ll{Bi} and S=II{Si}. We will consider S as a subspace of B. 

We denote by u: S---,E the operator defined by 

U((Si)iEl) = Z lti(Si) for all (si)iE I in S. 
iEl 

By homogeneity, we may clearly assume that I I t t i l l = l  for all i in I. (Otherwise, we 

replace ui by vi=uillu,II -I and we then set a/=llu;ll 0~.) With this assumption, we have 

Hull=l. 
Let us denote by Ai: Si--,,S (resp.)~i: B~---~B) the canonical isometric injection of S~ 

into the subspace of S (resp. B) spanned by the elements (xi)iej for which xj=0 for all 

j r  We have clearly U2i=U i. 
On the other hand, it is easy to check that 

and 

K( S, B) = sup { K(Si, B~) I i E I } = K <  

cq(B) = sup { cq(ni) I i E I} = Cq< ~.  

Therefore, by Theorem 2.2, we can find a space El, an isometric injection 

j: E ~ E t ,  and an operator t~: B--->E~ verifying the conclusions of Theorem 2.2. If we set 

ai=a~,, we find ails=als2~=ju2i=jui and Ila,ll~<llall~<g~. This concludes the proof of 

Corollary 2.3. 

The crucial point in the preceding statement is that we can iterate the construction 

as many times as we wish without spoiling the estimate (ii). Indeed, let E~ be the space 

obtained in Corollary 2.3, and suppose that we are given a family of operators 

wi: Si-->EI. 
If we apply again the preceding corollary to this family, then we find a space 

E2, an isometric imbedding jz:E~--*E2 and operators tb~:B~--,E2 such that 

l, bilS=Jl W i and Ila~ill<~g,llwill. 
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Moreover, we have jl llilSi-'m-jl ju  i so that we have preserved the extension property 

of E1 relative to the family (u~). 

Finally, we have 

cq(E2) <~ max {cq(EI), K2} ~< m a x  {cq(E), K 2 ) ,  

therefore, we have not spoiled either the second estimate in Corollary 2.3. If we 

continue this iterative process, we can obtain 

THEOREM 2.4. Let  q, {Si, Bi}, Ki and K2 be as in Corollary 2.3. 

For any Banach space E o f  cotype q, we can f ind  a Banach space X o f  cotype q, 

containing E isometrically and  possess ing the fol lowing properties: 

(i) For any i in I and any t>0,  every finite rank operator v: Si---~X admits an 

extension O: Bi---~X such that OIs=v and IlOIl< g llv{I (l+e). 

(ii) Cq(X)~<max {cq(E),K2}. 

Moreover, i f  I is countable and i f  E as well as each o f  the spaces Bi and S* is 

separable, then we can f ind  a separable space X with the above properties. 

Proof. Let Fi be the set of all finite rank operators from Si into E. We will apply the 

preceding corollary to the family (Si, B~)ier where 1' is the disjoint union of the sets 

{F~IiEI}, and where {ut[IE Fi} is the collection of all finite rank operators from S~ into 

E. When ! is in F~, the spaces St and Bt are just taken identical to S~ and B;. 

By the preceding corollary, we can find E1 and an isometric imbedding j: E---~EI 

such that properties (i) and (ii) are satisfied. If we now repeat the construction with Et 

in the place of E, we find E~ and an isometric imbedding jt: E~---~Ez with the same 

properties. Continuing further, we construct inductively a sequence of Banach spaces 

E~,Ez . . . . .  E ,  . . . .  and isometric imbeddings j , : E , ~ E , + t  with the following proper- 

ties: 

(2.7) For each i in I and each finite rank operator v: Si--*E,,, there is an operator 

O: Bi---~En+ 1 such that O l s = j . v  and [IoII<~K~IIvII . 

cq(E,,+ l) <~ max {cq(E,,), Ki } ~< max {cq(E), Ki }. (2.8) 

Finally, we let X be the inductive limit of the system {En, JR} as indicated in w 1. (We 

identify X with the closure of UE,.) By (2.8), we have clearly cq(X)~<max {cq(E), Kt}. 

Let us denote by J,: E~---~X the natural injection so that J ,=J ,+l  J,. 
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Let i be a fixed index in I. Since U En is dense in X, the finite rank operators 

v: Si---~X with range in U En (or equivalently in E~ for some integer n) are dense in the 

space of all finite rank operators from Si into X. Therefore, it is enough to check the 

first assertion of Theorem 2.4 for such operators. 

Now let v: Sr-->X be a finite rank operator with range included in E~ for some 

integer n, so that we have v=J~u for some u: S~---~E~; by (2.7), there is an operator 

a: Bi-----> En+ 1 such that als =j, u and Ilall<-g,llull= g,  lloll . 

We may then set O=Jn+ I a, so that II011~<g~lloll and Ols=V. 

Finally if E and the spaces Bi and S* are separable and if I is countable, we can 

consider at each step a dense countable set of finite rank operators and we obtain 

finally a separable X as above. This concludes the proof. 

Remark. Actually, Corollary 2.3 is not really needed. We can deduce directly 

Theorem 2.4 (or Corollary 2.3) from Theorem 2.2 by transfinite induction. 

Remark 2.5. For future reference, we consider here again the separable case, as in 

the last assertion of Theorem 2.4. Let L be a Banach space such that L* is separable, 

and let P: S---~L be a fixed operator from a certain subspace S of a separable Banach 

space B. We assume that K(S, B)<.K and cq(B)~cq. Then, we can find a separable 

space X satisfying the conclusions of Theorem 2.4, and possessing moreover the 

following property: 

For each e>0, and for each operator v: L--~X of finite rank, there is an operator 

T:B---~X such that ~s=vP and [12~l[<~gt(l+e)Iloell. The proof is an obvious modifica- 

tion of the preceding argument for Theorem 2.4. 

w 3. The counterexamples 

In this section, we present the counterexamples to the conjecture of Grothendieck 

mentioned earlier. 

Let u:X-- ,Y  be an operator between Banach spaces; then if u factors through a 

Hilbert space, its "norm of factorization" 72(u) is defined as 

72(u) = inf{llvll Ilwll: u =vw,  w: X.---~H, v: H----> Y} 

where the infimum runs over all possible factorizations of u through a Hilbert space H. 

We will use the following result from [23]. 
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THEOREM 3. | .  Let X, Y be Banach spaces such that X* and Y are both o f  cotype 

2. Then there is a constant Cx. v (depending only on c2(X) and cz(Y) such that, for any 

finite rank operator u: X---> Y, we have 

y2(u)~fx,~lull. (3.1) 

More generally, every operator u:X---, Y, which is approximable uniformly on every 

compact subset o f  X by finite rank operators, factors through a Hilbert space and 

verifies (3.1). 

Let us recall the definitions of the injective and projective tensor products. Let X 

and Y be two Banach spaces. Then any element u of X|  Y defines a finite rank operator 

from X* into Y. We denote IlulJv the operator norm of this associated operator. 

We denote Ilull^ =inf{E Ilx, ll Ilyill} where the infimum is over all possible represen- 
n tations u-Ei=lxi|  i of the tensor u. Finally, we denote by X ~ Y  (resp. X~Y)  the 

completion of the space X |  Y with respect to the norm II IIv (resp. II II^). 
This is the injective (resp. projective) tensor product of X and Y according to the 

terminology of [6]. 

We can now state our main result: 

THEOREM 3.2. Any Banach space E o f  cotype 2 can be imbedded isometrically 

into a Banach space X such that: 

(a) X and X* are both o f  cotype 2 and both verify Grothendieck's theorem. 

(b) X ~ X  and X ~ X  are identical. 

Moreover, if E is separable, we can f ind a separable space X with these properties. 

Remark 3.3. We will apply Theorem 2.4 with a specific family {(SI,B0, 

(S2,B2),(S3,B3)}. The space B2 will be simply Ll(u) and $1 will be R. The space B2 

will be Li (over the circle group) and $2 will be H I. Finally B3 will be L~/H~. We will 

denote ~n the element of LJ/H ~ corresponding to the function e -'3~ (so that 

~n=Q(e-'~"t), where Q:LI---,LI/H I is the quotient map). The space $3 will be the 

subspace of B3=L~/H I spanned by the sequence {~nlnEN}. It is known that $3 is 

isomorphic to lz (cf. e.g. [20] w 3). 

Let k: 12---~B3 be the map defined by k(en)=~n which establishes an isomorphism 

between 12 and S3=k(lz). We will use the fact that k*: H~ admits the factorization 

k*=PJ where J:/-F~ ~ is the natural injection and where P: H~---,12 is the operator 

defined by Pf=(f(3~))~>~o for all f i n  H I. By a classical theorem of Paley (see [20] w 3), 
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P is a bounded operator. This factorization of k is used in Wojtaszczyk's proof of 

Grothendieck's theorem (cf. [20] w 3). Finally, we observe that the assumptions of 

Theorem 2.4 are satisfied: It is well known that B, and B2 are of cotype 2; by 

Bourgain's theorem [1], the same is true for B3, and by Corollary 1.12 and Theorem 2.1 

each of the three couples (Si, Bi) (i= 1, 2, 3) possesses property (2.1) of Theorem 2.1. 

We are now in a position to apply Theorem 2.4. 

Proof of Theorem 3.2. By Theorem 2.4 E can be isometrically imbedded into a 

space X of cotype 2 and verifying the extension property with respect to the spaces 

{(Si, Bi)} (i= I, 2, 3) described above. We first observe that, by Proposition 1.11, X* is 

of cotype 2 and verifies Grothendieck's theorem. Let us show that X also does. Let 

v:X~l~ be an operator. We will estimate eq(v). By definition of zdv), we have 

z~,(v) = sup  {Jr , (vw)}  (3.2) 

where the supremum runs over all operators w: coaX with [[wH~<l. Since x is of 

cotype 2, we have by Maurey's theorem (cf. Theorem 1.10) ~2(w)<~Cllwll<C for some 

constant C. By Pietsch's theorem (cf. [14] Proposition 3.1) we can factor w as w2w~ 
with Wl: Co~12 and w2: 12---~X such that 

Since zz(vw2) is nothing but the Hilbert-Schmidt norm, 

Therefore, we have 

z2((vwz)*) = z2(vwg. 

(3.3) 

~2(vw9 ~< ~2(w9 Ilvlt 

and since X* verifies Grothendieck's theorem, we have 

z~2(w9 ~< C'llw211 for some constant C'. 

Using the fact that the composition of two 2-absolutely summing operators is l- 

absolutely summing, we obtain finally 

Jrl(vw)= ~l(vwzwl)<~rt2(vw2)~r2(wt) (cf. [21] p. 286) 

~< C'llw21111vll ~z(w,) 

<CC'llvll by (3.3). 
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This means,  by (3.2), that ~rl(v)<~CC'llvll, which implies (cf. Proposit ion 1.2) that X 

verifies Grothendieck 's  theorem. This proves the first part. 

We turn now to part (b). 

Le t  u be an element of  X |  We will show that Ilull^ and Ilullv are equivalent. 

The tensor  u defines a finite rank operator  denoted again (albeit abusively) u: X*---~X. 

Since X is of  cotype 2, by Theorem 3.1, there is a constant C such that V2(u)~< 

Cllull. Therefore ,  we can decompose  u as u=u2ul where uI:X*----~I 2 and u2: 12-"*X a r e  

finite rank operators such that Ilulll Ilu211<-Cllull. Moreover,  since u is w e a k - ,  continu- 

ous, we can assume that the same is true for u~. Therefore,  we have u~=v* for some 

operator  v: 12---~X of  finite rank, say equal to n. We may as well assume that v(ei)=O for 

all i>n. We now use the extension proper ty  of  X with respect to ($3, B3). This yields an 

operator  O:LI/HI---.X such that Iloll<.KIIvll for some constant K and Ols3=vk-~ls ~ or 

equivalently Ok=v. 

It is well known that, for  each integer n, there is a finite rank operator  

Tn:LI/HI~L~/H ~ which is the identity on the span of  {~1 . . . . .  ~n}, vanishes on the 

span of  {~ili>n}, and verifies IIT.II< C ' for some constant C' independent of  n. (For  

instance, a Riesz product  argument yields this, cf. [29] p. 247.) 

We have then obviously: 

v= OT,,k, 

so that ul=k*wwi th  w=(OT~)*. 

Note  that 

Ilwll ~ C'll011 ~ gc ' l lv l l  = g f ' l l u , l l .  (3.4) 

By the factorization of  k* described above, we have 

ul = PJw, hence u = (u2P)Jw. 

If we now apply the extension property to T=u2P:HI--~X, we obtain an operator  

]2 LI-~,X such that II ll <KllZll for some constant  K and 

Let  us denote by J: L=--.L~ and by i: H=-.Loo the natural injections (relative to 

the torus). 

We have finally obtained u=TJiw. This factorization can be summarized in the 

following commutat ive diagram. 
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L ' iJ 
H ~ 

w 

X* 

Y 

J 

l~ I 

H l 7: 

P 

~ [2 ~ 

The operator  TJi is clearly integral with integral norm 

ll(TJi)<~ IITII Ilill = IITll ~< KIITII 

~< K'llu211 for some constant  K' .  

Since w is of  finite rank, E=w(X*) is finite dimensional. We can rewrite w as w=ha~, 

where h: E---,H ~ is the natural injection, and where a): X*--~E is the restriction (relative 

to the range) of  w. Note  that,  since w is weak--x- continuous,  the same is true for W. 

Consider now the opera tor  A=TJih: E--->X. By (3.5), we have I~(A)<~K'IIu2II, buy 

since E is finite dimensional the nuclear and the integral norm of  A coincide; hence,  this 

operator  A can be identified with a tensor  (denoted again A) in E*| such that 

Ilall^ -- It(a) <~ g'llu211 (cf. e.g. [211 p. 102). 

Now, since t~ is weak--x- continuous,  the tensor u, associated to the composit ion 

u=Aa~, in X |  must verify 

Ilull^ ~ Ilall^ Ita~llv <~g'tluzH Ilwtl 

<~gg'c'llu21111u,II by (3.4) 

<~ gg'cc'llull. 

This proves that II IIv and II I1^ are equivalent on X| therefore the completed tensor  

products X ~ X  and X ~ X  must be identical and their norms are equivalent. 

Finally, the separability of  X can be justified using remark 2.5, applied to 

P: H 1 -'-~12. 

Remark. By a similar argument,  we can show that any space E of cotype q can be 

imbedded into a space X of  cotype  q such that X* is of  cotype 2 and verifies 

Grothendieck 's  theorem. 
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Remark 3.4. Let X be a space with property (a) of Theorem 3.2. Let T: X---~X be a 

finite rank operator. Then, by Theorem 3.1, ~,2(T)~<CIITII for some constant C, and 

since X verifies Grothendieck's theorem ar2(T)~<C'),2(T) for some constant C'. There- 

fore, ~2(T)<-CC'IITI[. As a consequence, the eigenvalues of T, denoted by 0~j(T))j_>j, 

must verify: 

( Z I2j( T)IZ ) I/2 <<. Jr2( T) <. CC'IITII 

(cf. [21] w 27.4.6). 

In particular, if P:X--.X is a projection, we have ~rz(P)>~(rankP) ~/2 so that 

[[P[[>~(1/CC') (rank P) '/2. 

This leads to the following application. 

COROLLARY 3.5. There is an infinite dimensional Banach space X and a positive 
6 such that, for any finite rank projection P: X---~X, we have 

IIPII ~ ~ (rank P)1/2. 

In particular, this space X cannot contain uniformly complemented l~'s for any 

p, I ~<p<~o0; this space is a counterexample to a question of Lindenstrauss [13]. 

It is worthwhile to recall that if E is an n dimensional subspace of an arbitrary 

Banach space X, then there exists a projection P: X ~ E  with IIPII~<V'-Y. Therefore, the 

space described in the preceding corollary exhibits an extreme behaviour with respect 

to finite rank projections; in this space, the general upper bound which we just recalled 

is also a lower bound. 

Remark 3.6. Take E=ll in Theorem 3.2, then clearly X cannot be isomorphic to a 

Hilbert space although it is of cotype 2 as well as its dual. This yields a counterexample 

to a conjecture of Maurey [17]. Actually, except in the finite dimensional case, any 

space X verifying Theorem 3.2 must fail the approximation property. Otherwise, the 

identity on X would be approximable, uniformly on compact subsets of X, by finite 

rank operators and (by Theorem 3.1) X would have to be isomorphic to a Hilbert space, 

which is impossible because of (a) or (b). Therefore, such a space X also shows that the 

approximability assumption of Theorem 3.1 cannot be dropped. 

We recall that an operator u: X---~ Y is called nuclear if there are sequences (x*) and 
oo , 

(Yn) in X* and Y respectively, such that E I IIx.llllY.ll<~ and 

(3.5) u(x)=E~x~x)y, for all x in X. The nuclear norm of u, denoted N(u), is 

14-838286  Acta Mathematica 151. lmprim~ le 28 Decembr~ 1983 
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defined as the infimum of E 1 Ilx~[ [lYnll over all possible representations of the form 

(3.5). We denote by N(X, D the Banach space of  all nuclear operators from X into Y. 

Obviously, there is a natural surjection of  X* ~ Y into N(X, Y) but in general this map is 

not injective. Indeed, Grothendieck showed that X has the approximation property if 

and only if the surjection from X * ~ X  into N(X, X) is injective. It is not the case in the 

next result (the first example of  a space failing the A.P. goes back to Enflo [5]). 

THEOREM 3.7. Let X be a Banach space verifying property (a) in Theorem 3.2. 

Then, there is a constant K such that, any finite rank operator o:X-->X verifies 
N(v)<---KHvtl. (Equivalently the map from X * ~ X  into X * ~ X  is onto.) 

To prove this result, we will need a dual version of Theorem 3.1, which is also 

proved in [23]. Let  X, Y be Banach spaces and let v: Y--,X be a finite rank operator. The 

y$ norm of  v is defined as 

72*(v)=inf{(~l ,ty*l,2)l/2(~llXil12)l/2 } (3.6) 

where the infimum runs over all finite sets (y*) and (xi) in Y* and X such that 

[(x*, v(y)) I ---< lyi*(y)1221x*(xi)12 I , 

for all x* and y in X* and Y respectively. 

This is the definition chosen in [23]. (Note however, that there is a mis-print in 

[23], which makes the definition of y~ unintelligible: line (2.15) in [23] should be 

erased.) 

Equivalently, we can clearly define y~(v) as equal to (3.6) where the infimum runs 

over all (y*) and (xi) for which we have 

V= s aOy*~x j 
i,j= 1 

for some matrix (a o) corresponding to an operator a: l~ l~  with [lal[~<l. 

In some sense, the y~-norm can be considered as the dual norm to the y2-norm (cf. 

[12] or [21] for details). 

We also use a different reformulation of (3.6). Indeed, it is possible to show that 

y~(v) = inf {VrE(A) vr2(B*)} 
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where the infimum runs over all possible factorization v=BA of v. For more details on 

this, cf. [21] w 19.1.8, p. 264. 

The "dual"  version of Theorem 3. I is the following (cf. [23]). 

THEOREM 3.8. Let X, Y be as in Theorem 3.1. Then there is a constant K 

depending only on c2(X*) and c2(Y) such that, for any finite rank operator o: Y--->X, we 

have N(v)<~Ky~(v). 

Remark. It is worthwhile to emphasize that N(v) cannot be replaced by Ilvll^ in the 

preceding result. 

Proof  o f  Theorem 3.7. Let v:X--->X be a finite rank operator. Then, by Theorem 

3.1, we can write v=BA with A:X---~12 and B: 12---->X such that IIAII Ilnll<-Cllvll for some 

constant C depending only on X. Since we assume that X and X* both verify Grothen- 

dieck's theorem, we have 

:r2(A) ~< C ' l l a l l  and ~r2(B*) ~< C"[IB[I 

for some constants C' and C". (Recall that :r2(u)~<:rl(U) for any operator u.) 

Therefore, f"llvll. 
Finally, by Theorem 3.8, we obtain N(v)<-KCC'C"IIvlI, which concludes the proof 

of Theorem 3.7. 

Remark. Let X be the Banach space associated to E=ll in Theorem 3.2. Then 

B(X, IO=III(X, IO. Indeed, if u:X---~ll is a finite rank operator and i f j : l t --*X is an 

isometric imbedding, we have by Theorem 3.7: :r,(u)<-g(ju)<-KIIjull--Kllull for some 

constant K. 

This is the first known (infinite dimensional) space with this property. 

Remark. In this remark, we use the terminology and the notations of [24]. It is easy 

to see, using [25], that a Banach space B verifies property (2.1) for any subspace S o B  if 

and only if B is K-convex. Therefore, in that case, we may use in Theorem 2.4 the 

family of all subspaces S of B. 

For instance we can use B=L p, for l<p<2 ,  and we obtain in this way a Banach 

space X verifying the conclusions of Theorem 3.2 and verifying in addition: 

(iii) There is a constant C, such that for any space Y and any finite rank operator 

u: Y---~X, we have Ip(u)<.C:rp(u), where Ip(u) is the p-integral norm of u. 

Remark. S. V. Kisliakov observed (private communication) that the results of this 

section can be proved without appealing to Bourgain's results in [1], by making a 
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different choice of ($2,B2) and ($3,B3) than the above. We only briefly sketch 

Kisliakov's ideas (the reader will find similar ideas exploited in [111). We denote by L~ 

the space R ~ equipped with the norm 

II(x,);_ nll - -  n lX/  

By a variant of a construction originally due to Kashin (see [11]) it is possible to prove 

that, for each integer n, the space L~ can be decomposed into three mutually or- 

thogonal parts S~n(1)$2~(3S3~ with the following properties: 

(i) The norms of L~ and L~' are uniformly equivalent (with constants independent 
I 2 2 3 of n) on S~(3S~ and Sn(3S n. 

(ii) The dimension of S~ tends to infinity with n (j= 1,2, 3). 

If we apply Theorem 2.4 to (SI,BI) as before and, in addition, to the family 

$2cln/r r162 (n= l ,2  .. . .  ) we obtain Theorem 3.2. 
n O l ' ~ n  ' ~  ~ l ' ~ n  

Remark. Incidentally, the space (SI,B0 was used mainly to have a convenient 

way to see that the space X constructed in Theorem 3.2 (or in the preceding remark) is 

of cotype 2, but we could have derived this fact from the other extension properties of 

X. On the other hand, the first part of Theorem 3.2 can be obtained using only (S~,BO. 

The results of [1] are really used only to prove part (b). 

w 4. Further remarks and problems 

In this section, we present some examples (simpler than those of section 3) showing 

that the projective tensor product X ~  Y does not inherit the "good" properties of X 

and Y, such as weak sequential completeness, not containing Co, or cotype. 

THEOREM 4.1. There is a weakly sequentially complete (in short w.s.c.) separable 

Banach space Z of cotype 2 and such that LI/HI~Z contains Co. 

Remark 4.2. Since Lt/H I is of cotype 2 [1], it does not contain Co, and moreover 

(cf. [19]) it is w.s.c. Therefore, the preceding theorem shows that these properties are 

not stable by the projective tensor product. Note also that L t / H ~ Z  is of cotype q for 

no finite q since it contains Co. This answers several questions raised in the literature, 

cf. [8], [3], p. 258. 
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Proof o f  Theorem 4.1. We use the notations introduced in remark 3.3. The 

operator k*: H~--+12 factors as k*=PJ where J: H~---~H 1 is the natural injection. Recall 

that we denote by J: L~---~L~ and by i: H~-+L~ the natural injections (the underlying 

measure space being the circle). 

We can apply Theorem 2.2 to the operator P: H ~ 1 2 .  This shows that there is a 

separable Banach space Z of  cotype 2, an isometric imbedding j: 12~Z and a bounded 

operator/5: Lr--*Z such tha t  /SIH~=jP. Let Zn=j(en), and let U=/sJi=jk*. 

The operator U is clearly integral, and we have 

U~ = 2 ~.(~o) z, 
n = t  

for all q~ in H ~176 We claim that the sequence ~n| is equivalent to the unit vector basis 

of  Co in L l/Hl ~ Z .  

By a well known result (cf. e.g. [29], p. 247), there is a constant D such that for any 

scalar sequence (wk) with only finitely many non zero terms, there is a finite rank 

operator T: LI /HI - -~L i /H  I such that T~k=Wk~k for all k, and IITIND sup Io)kl. 
Since T is of  finite rank, the composition UT*: H ~ - . Z  verifies 

N(UT*) <~ HTIIIt(U), and more precisely we have: 

.~ O)k ~k | Zk L ,/H, ~ z ~ C SuP I~okl (4.1) 

where C=DI~(U), for all (e)D as above. 

On the other hand, let V=E w~ ~k| we have V(eiSkt)=o)k z k, so that I okNIIvII for 

all k. 

This yields 

suplo)kl~ < ~ o ) ~ k |  C/ , '~z ;  (4.2) 

and, since liviNg(v), this proves the claim. 

It remains to show that Z is w.s.c. Let  Y=j(12). Then, Y is reflexive (since it is a 

Hilbert space), a n d  Z/Y is, by construction, isometric to Lt/H ~ (cf. the remark after 

Theorem 2.2). Since L I / H  l is W.S.C. (Cf. [19]), so is Z/Y. Let us show that the same is 

true for Z. Let  (zn) be a weak Cauchy sequence in Z, converging weak--x- to an element 

z in Z**. We have to show that z is in Z. 
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Let :t: Z---}Z/Y be the quotient map. Observe that (Z/Y)**=Z**/Y**=Z**/Y. Since 

Z/Yis w.s.c., the sequence zt(zn) converges weakly in Z/Yto some element ~ in Z/Y; on 

the other hand, ~t(z,,)=z~**(z,,) must tend in the weak--x- to topology to ~t**(z). There- 

fore :t**(z)=~ so that z must belong to Z+ Y which is included in Z. This completes the 

proof that Z is w.s.c. Actually, G. Godefroy (personal communication) proved that if Y 

is a w.s.c, subspace of a Banach space Z and ifZ/Y is w.s.c., then Z is w.s.c. 

Remark 4.3. Actually, for any norm a on LI/HI| such that IIllv a ll" II^, the 

completed tensor product L~/H ~ ~ Z contains Co. This follows immediately from (4.1) 

and (4.2). Therefore, not only the projective tensor product, but any other reasonable 

tensor product fails the stability properties already mentioned. 

Remark 4.4. (i) A close look at the proof of Theorem 2.2 shows that the space Z is 

nothing else but the quotient Ll/kerP, where p:HI~I2 is the operator defined in 

remark 3.3. 

(ii) Kisliakov observed (private communication) that the space Z verifies Grothen- 

dieck's theorem. Therefore, Theorem 4.1 yields two spaces verifying Grothendieck's 

theorem, but such that their projective tensor product does not. Actually, this also 

follows from Theorems 3.2 or 3.7, but the space Z is simpler. This answers problem 1 in 

[22]. 

(iii) J. Bourgain (private communication) was able to show that there is a Banach 

space X (related to the examples of section 3) with the Radon-Nikodym property (in 

short R.N.P.), and such that X ~ X  contains Co, and consequently fails the R.N.P. For 

more examples of this sort, cf. [30]. 

Finally, we mention several open problems. (ln the sequel, we implicitly consider 

only infinite dimensional spaces.) 

Problem 4.5. Does there exist a reflexive Banach space X with property (a) or (b) 

(or both) of Theorem 3.2. 

Actually, there is no known example of a reflexive space verifying Grothendieck's 

theorem. It is also not known whether there is a reflexive Banach space which does not 

contain uniformly complemented /~'s for any p (we conjecture that there are such 

spaces). 

Note however that, if E=lz in Theorem 3.2, then the space X cannot be reflexive 

since X* must contain 11; indeed, the quotient map from X* onto 12 must be 1-summing, 

but it is not compact, therefore (cf. [26] added in proof) X* must contain 11. (I am 

grateful to H. P. Rosenthal for helpful conversations on this and related questions.) 
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R e m a r k  4.6. Le t  X be a space verifying property (b) in Theorem 3.2. By duality, 

this implies that every bounded  opera tor  u: X--~X* is integral (incidentally, this shows 

that X and X* are not isomorphic).  If  we could obtain a reflexive space X (or merely 

such that X* has the R.N.P.)  then,  every bounded operator  from X into X* would be 

nuclear. It is apparently still unknown whether  there are infinite dimensional spaces X 

and Y such that every compact  (or every bounded) operator  from X into Y is nuclear. 

R e m a r k  4.7. It is our  feeling that the counterexamples to the Lindenstrauss 

question [13] presented in section 3 are intimately connected with the absence of  

approximation property.  More  precisely,  we conjecture that every space X with the 

B.A.P. (or simply with the A.P.)  contains uniformly complemented l~'s for  some p. 

The results of  [25] strongly support  this conjecture.  In [25], a positive answer is given if 

X is of  cotype  2 or only of  co type  q for any q>2.  Moreover,  (cf. [25]), any space which 

is of  cotype 2 as well as its dual and is not a Hilbert space, cannot  be imbedded into any 

space with the B.A.P.  not conta in ing/g ' s  uniformly. 
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