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1. Introduction 

The nature of the "boundary map" of a geometric isomorphism between discrete 

MObius groups F, F' acting on upper half n-space U n, has been studied extensively 

under various hypotheses on F. Without undue elaboration at this point, it comes down 

to a homeomorphism g of R"-~=aU ", with the property that for every A EF, the 

composition g.A.g-I belongs to F' (as F' acts on R"-~=SUn). 

The most dramatic result [8] is a special case of what has become known as 

Mostow's rigidity theorem, and states that if F is of finite covolume, and if n~>3, then g 

is conformal. Ahlfors gave a shortened proof in [3]. Mostow later [9] extended his 

theorem to the case n=2, with startling alternative conclusions: either g is linear 

fractional, or it is purely singular. In this context, Kuusalo [6] obtained two similar 

results under weaker hypotheses, though by "singular" he did not mean quite as 

strongly singular as Mostow. For example, he proved that if U2/F is of class OrtB (no 

bounded nonconstant harmonic functions), then g is absolutely continuous or singular, 

and if U2/F is of class Oa (no Green's function), then g is linear fractional or singular. 

In another direction, three alternative limit sets for the group F have been consid- 

ered, which I will refer to as the topological, horocyclic, and conical limit sets, and 

denote respectively by At, Art, Ac. Because F acts discontinuously in U", these sets 

all lie in l~"-~=aU n, and we have the inclusions Ar_~An_DAc. The condition that 

I~"-~\A~: have measure zero corresponds to the class One, and the condition that 

I~n-~\A c have measure zero corresponds to the class Oc. Groups with the latter 

property are precisely the same as groups of "divergence type",  where this term 

traditionally refers to groups for which a certain series (3.6) diverges. The present 

paper has as its main objective, to show that Mostow's rigidity theorem applies to such 

groups. 
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In his important paper [1 I], Sullivan has proved some very general properties of 

AH in case n~>3. He draws the conclusion that Mostow's rigidity theorem applies to 

groups for which I ~ - I \ A  n has measure zero. In light of Sullivan's work, then, part 

of the present paper is a step backward. However, by paying attention to the case n=2, 

we can obtain Kuusalo's result, and some valuable insight into Mostow's stronger 

version. The latter, however, is a story in itself [14]. 

In addition, however, I have attempted to make it geometrically clear what is 

happening on the boundary, and hopefully to make the theorem accessible to persons 

interested in quasiconformal mappings and discrete MObius groups. To this end, I have 

minimized the use of non-constructive (ergodic) existence criteria. In order to retain 

reasonable completeness, I have repeated some arguments used by Mostow and/or 

Sullivan in the simplified versions which are appropriate to this paper. 

The major single step in the present argument is an adaptation of a nontrivial but 

elementary argument that if Ac has measure zero, then the series (3.6) converges. This 

argument was presented by Ahlfors in a recent series of lectures at Minnesota, [2], and 

is attributed by him to Thurston. 

The adaptation is to a method devised many years ago by P. J. Myrberg [10]. 

However, Myrberg dealt with very special finitely generated groups in the plane, and 

the present paper does extend his results both with respect to weakening the hypoth- 

eses, and raising the dimension. 

The paper is organized as follows: after the very general background material of 

w 2, we discuss the special properties of groups of divergence type in w 3. The main 

lemma is proved in w 4, after which Myrberg's density theorem is derived in w 5, along 

with Mostow's density theorem as a nearly topological corollary. Finally, the Rigidity 

theorem is discussed in w 6. 

2. Background 

2.1.  M O b i u s  g r o u p s .  For our purposes we shall consider the MObius group GM~ 

(n>=I) to be generated by the groups 

T n = {to:a~Rn}, 

H =  {ha:). > 0}, 

X = {id, o}, 

t a(x) = x + a, 

ha(x) = ).x 

a(x )  = x/Ixl 2 

The group GM, contains the orthogonal group On as a compact subgroup. The 

reflection principle applies to the generators, and therefore to the entire group. 
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For a set Ec_I~"=R" U {oo}, we will denote by GM(E) the subgroup of GMn which 

fixes E, and by GM]ae the group of restrictions to aE of GM(E). The two models for E 

will be u n = { x E R n ; x n > O } ,  and B"={xERn:lxl<l) ,  with respective boundaries 
l~n-l=aun, and sn - l=aB ". 

For each fE  GMn-~, there exists a unique fE  GM(Un), such that with the identi- 

fication l~"- l=au ~, we have flauo=f. In this way we have an isomorphism 

GM[au.=GM._I------GM(U"). 

The fixed map s = a t  e . h 2 a t _ e .  ~ GM., explicitly 

s(x) = o ( e . + 2 a ( x - e . ) ) ,  xE[r e.  = (0,0 . . . . .  O, 1), (2.1) 

maps U n on B n. The conjugation f~-~sfs- t is an isomorphism of GM(U n) onto GM(B'). 

Under this isomorphism, restriction to 1~ "-I corresponds to restriction to S n-~, so 

that we also have isomorphisms GM(Bn)-----GM,_~GMlaB,. We remark that 

s-lls,_,: s"-l---~l~ "-I is the usual stereographic projection. 

We obtain the more usual M6bius groups Mn, M(Un), M(B"), by considering only 

the orientation preserving maps. These may be characterized as those words in letters 

from T,, It, I~, in which an even number of appearances of o occur. 

2.2. Fixpoint  analysis.  Given p, q El~ n (p~:q), we shall require a fixed map 

kpq E GM,, which carries p, q respectively on 0, ~,  and such that if p, q E cOU n, then 

kpq ~ GM(U"). The formulae are simply 

k~lq = tpOtq,t7 (q' = o ( q - p ) ) ,  

- I  _ - I  _ kpo~ - tp, k| --  lqO. 

We note that for p .oo ,  k is continuous in p, q, including q=oo. 

Given fEMn-~,  consider its extension fEM(U"). According to the Brouwer 

fixpoint theorem, f h a s  a fixpoint in cl (un). If there is but one fixpoint in all of !~", the 

map f is classified as parabolic.  By the reflection principle, the fixpoint must lie on 

aU n, and hence from the viewpoint of f ,  there is a single fixpoint in 1~ "-I.  

If f has at least a pair of fixpoints p, q E l~" (p~oo), then we find that kpqfkp~ fixes 

0, oo, and has the form uh~, for some u E On, 2>0. The classification is loxodromic if 

;t* l, elliptic if 2= 1. 

In the loxodromic case, there are no other fixpoints, and as in the parabolic case, 

they lie in aU n. For if they did not, then by the reflection principle, they would be 

16-838286  Acta Mathematica 151. Imprim~ le 28 Decembr6 1983 
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symmetric about aU". Again by the reflection principle, the map k m would map aU" 

on some sphere S in which 0=kin(p) and oo=kpq(q) are  symmetric. Thus S has center 

0, and therefore uha=kmfk;Iq fixes 0, ~ ,  and S. Hence 2=I ,  and f is elliptic. In 

hindsight then, f has two fixpoints p, q in 1~ n- i, and kpq fkp  I = uh2, u E O n_ I, '~'~ 1. 

Of the two fixpoints, p is considered attractive if 2< 1 and repulsive if 2> 1. We 

shall denote by ~ffpq the collection of loxodromic Mfbius transformations with attrac- 

tive fixpoint p and repulsive fixpoint q. One arrives at the following summary : i f f i s  a 

member of a discrete group F~_M(Un), then one of three conditions holds. Either 

(1) f is parabolic with fixpoint on aU n, or 

(2) f is loxodromic with fixpoints p, q on cOU', or 

(3) f is elliptic of finite order. 

The finite order in the elliptic case follows because k~-q 10,  kpq is compact. 

Taking a viewpoint from all of 1~", we may consider for any a E 1~ n, the set F(a)* of 

points x E 1~ n for which there exist infinitely many distinct )'k E F, with 7'k(a)---,x. The 

topological limit set Ar is defined by OF(a)*: a E 1~'. Evidently Ar~aU n whenever F is 

a discrete subgroup of M(Un), but we have even more information in this context [2]: 

(2.2) F(a)*=Ar for all a E U n, 

(2.3) F(a)*=Ar for any a E aU n which is not a fixed point for the entire group. 

Furthermore, following methods of Lehner [7], we easily find: 

(2.4) a discrete group with a common fixpoint has, if any, only that point and 

possibly one other in At. 

Following methods of Hedlund [13] (pp. 121-123) we deduce: that if &~(F)~_ 

OUnx0U n is the set of loxodromic fixpoint pairs, 

then 

(2.5) .La(F) is dense in A z •  whenever F~_M(U n) is discrete with card At>2.  

We conclude this section with two computational lemmas. 

LEMMA 2.1. I f  gmEM,,  with gm(O)---)O, gm(~) --*~, then there exists a subse- 

quence {mk}, numbers ktk>0, and a mapping Uo E On, with 

g,, h~,kUo---,id (k--, ~). 

Proof. Set pro=gin(O), qm=gm(~176 km=kpmq, ., noting by the continuity of k at (0, 0o) 

that km---,id. 
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Meanwhile, km gm has fixpoints 0, oo and therefore has the form 

km gm= ha,, vm (v m E O n, 2 m > 0). 

By compactness we may assume v,,,-+Vo E On, and because H and On commute, 

gm hVar, Vo I = k~, mvm Vo I ---' id. Q.E.D. 

LEMMA 2.2. Suppose a linear map g: Rn--->R n has the property that for  some 

A E Mn, the composition g .A .g -  i belongs to M n. Then either A f ixes oo, or g E Mn. 

Proof. We introduce the dilatation matrix for any differentiable map f,  

f ' ( x ) r  f ' ( x )  (x E Rn). 
/ai(x ) - detZ/nf,(x ) 

The familiar and elementary properties are 

(I) f E  M~ if and only if i~f(x)==ln, 

(2) f '(x)r/us f- ( f (x)) f ' (x)  
det2:nf,(x) =/us(x ). 

From these, it follows that g . f - I  is conformal if and only if/~i=-/ag. Indeed, clearly 

/z/=/zg if/as I- =I, .  Conversely, if/zf=/zg, then 

f ' ( x )  r[/xg.f_,(f(x))-I n]f'(x) 
dete/nf,(x ) =/ag(x)-Iai(x) = 0, 

hence tzg f-~==-I n.  

We apply formula (2) to f = A  E Mn, to conclude 

A '(x)- l/xg. A-' (A (x)) A '(x) =/~ g(x). (2.9) 

We then apply the criterion for conformality of g . A . g - I = g . ( g . A - I )  - t  to conclude 

/z .A_,=/a ~. But g is linear, and/% is a constant symmetric matrix M of determinant 1. 

Therefore, from (2.9), 

A'(x) - IMA'(x)  = M, 

which is to say that M commutes with A'(x) for all x. 

Now suppose that A ( ~ ) * ~ .  Then A - I ( ~ ) = q * ~ ,  hence AtqO fixes ~,  and A 

stands in a relationship Atq=tpBo, where B is linear and conformal, and p E R n. Hence 
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Now, it follows that 

A'(x+q)=Bo'(x)  ( x E R " \ { 0 } ) .  

MB o'(x) = B o'(x) M (x :~ 0). 

But M, as a real symmetric matrix, has a real eigenvalue 2, and a maximal 

invariant eigenspace V associated to 2. Now (Ba'(x))-~V is the corresponding eigen- 

space for (Ba'(x))-lMBcr'(x), but the latter is again M, and so V is invariant under 

Ba'(x) for every x*0. We have in addition the simple formula 

o'(x)h=h/Ixl2-2x.hx/ lxl  ' (h E R~,x =1= 0). 

Let n be any normal vector to V. Because Bcr'(x)V~_V, we have 

O= n.Bo'(x)v = n .Bv / l x lZ -2n .Bxx . v / l x l  4 (vE V,x~O). (2.10) 

A choice o f x E B - ~ V  gives n.Bx=O, and therefore 

and because B is conformal, 

O = n . B v  (vE V), (2.11) 

O = B - l n . v  (vEV). (2.12) 

Returning to (2. I0), we have by continuity and (2.11), 

O = n ' B x x ' v  (vEV, xER~). 

Choosing x=B-in+ v, and using (2.11) and (2.12), we find 

O=(Inl +n.Bv)(Ivf+B- n.v)= Inl' lvl  2 (vEY). 

It follows that n=O, that V is all of R", and that M has only one eigenvalue. Because M 

is positive definite of determinant one, the eigenvalue must be 1, and M=I,.  Thus, 

either A(~)=~,  or M=I,.  The latter implies that gEM, .  Q.E.D. 

3. G e o m e t r y  in B n 

3.1. Projections, shadows, and eclipses. The results of w 2 transfer naturally from 

M(U n) to M(B"), with S" - l=aB ~ taking the role of aU". Let us now set some notation 

for use in B ". 
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Given a E B ~, 0>0, we shall denote by Be(a) the ball of non-Euclidean center a, 

and non-Euclidean radius 0. We understand by B e the ball Be(0). 

These balls are of course Euclidean balls as well. We require precise information 

about the Euclidean center and radius, which we denote respectively by c(Q, a) and 

r(~, a). From the basic formula for non-Euclidean distance, 

we derive the formulae 

d(0, a) = log 1 +l a I 
l-laI '  

1 - tanh 2 Q/2 c(o, a) = a (3.1) 
1 - I  a ]2 tanh 2 Q/2' 

r(o, a) = ( 1-1 a 12) tanh 0/2 
I-1 a 12 tanh 2 0/2 

In particular, there exist positive functions R0, R1, such that 

Ro(O)(1-1a l) <~ r(o, a) < - R , ( o ) ( l - l a  I). 

(3.2) 

(3.3) 

Given a point a E B  ~, a~0,  we shall define the projection pr{a}c_S "-I by a/lal, and 

the shadow sh{a}c_BnUS ~-~ by the closed line segment [a, pr{a}]. For brevity, 

denote the Hausdorff (n- l ) -measure  on S ~-I, of the projection of a set Ec_B ", by 

alE]. Thus, 

a[E] = ~._,[pr{E}] (E~B"). 

In this case, if 0EE,  we shall set pr{E}=S "-~, and a[E]=w._l .  In some earlier 

writing, a was known as the centri-angle [10]. 

One calculates easily that 

a[B~ + sinho ( la l  ~ l). (3.4) 
(1 - t a l )  "-I 

A first consequence is that there exists a function K(0, t) such that 

a[Bo(a)] <. K(Q, t) whenever d(a, b) <<- t. (3.5) 
a[Bo(b)] 

For indeed, the ratios are bounded by simple continuity and compactness consider- 

ations, as long as a is confined to any compact set {Ixt<~l-6}. On the other hand, by 

(3.4), as lal--+l, the ratios are asymptotically equal to 
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whereas 

(1-1bl]"-', 
l - l a l /  

( 

= [d(0, a)-d(O, b)[+ log 2 

<~ d(a, b)+ log2 ~< t+ log2. 

Next, we introduce the notion of eclipse. A set E~_B" is eclipsed by a set FEB",  if 

EN sh {F}*~.  The eclipse is total if E~_sh {F}, partial if E \ s h  {F}~=O. 

3.2. Groups of Divergence type. A discrete 

convergence type if the sum 

group F~_M(B') is said to be of 

~ ( 1 - [  s(o)I)"-' (3.6) 
s e t  

is finite. In view of (3.4), the condition is equivalent to the finiteness of the sum 

a[S(Bo)] (q > 0). 
s e t  

Alternatively, F is said to be of divergence type if the series (3.6) is divergent. This 

characterization of divergence type in terms of the action of F on B n is analogous to the 

condition of finite covolume, which is to say that F has a fundamental region in B" of 

finite non-Euclidean n-measure. 

Both the classifications have intrinsic characterizations. Thus, let F~_M,_t be 

discrete, and using conjugation by stereographic projection and extension from S "-t  

to B ", let F correspond to f'c_M(B~).(l) Then [" has finite covolume if and only if the 

quotient space F \ M , _  ~ has finite invariant measure, whereas F is of divergence type 

if and only if the series 

Z exp { - ( n -  1) r(A, id)} 
Aer 

is divergent. Here, r is the left-invariant distance function in M,_ ~. We make no use of 

these relations, but the interested reader may consult [1] for details. 

(i) Explicitly, F=S~S -I, with s as in (2.1). 
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However, it is important to remark that F is of divergence type if F has finite 

covolume. A proof for the case of mappings o fB 2 may be found in Tsuji [12]. The proof 

is easily adapted to any dimension. Kleinian groups, on the other hand, are discrete 

groups of the second kind. s n - l \ A r  is open and non-empty, and the present theory 

says nothing about them. 

Ahlfors gives simple proofs [2] of 

PROPOSITION A . / f F  is of divergence type, then 
(1) F is of the first kind (Ar=Sn-I),  and 
(2) F acts ergodically on S n-l. 

The latter condition means that if ~_S  n-~ is invariant in the sense that S (~=~f  for 

every SEF,  then ~ n - l [ ~  is either ton-i or 0. (One assumes that ~ is measurable.) 

3.3. Some estimates. Ahlfors has further calculated explicitly [2] that if S E M(Bn), 

S(0)=a E B n, then 

l - l a l  2 
IIS-"(x)ll = ix_al2  ([xl = l). (3.7) 

The norm on the left is the sup-norm. Whenever A is conformal, A'(x) has the form h~u, 
with u E On and 2 = ~.(x)>0. Then Ilm'(x)ll =A(x). 

Of crucial importance to us is the observation that there exists a positive function 

M(p), such that if ~l, ~2 E S n-I are confined to S-I(pr {S(Be)}), then 

II s'(~,)II o-' ~< M(O). (3.8) 
II s'(~2)I1"-' 

The estimate is straightforward. Set xi=S(~i)E pr {S(Be) }. Then in view of (3.7), with 

a=S(0), 

IIS'(~,)ll IIS-"%)11 Ix , - a l  2 

IIS'(~,)ll IIS-"(x,)ll Ix2-al z' 

whereas Ix-al is maximized in pr{Be(a) ) by any x on the relative boundary 

a pr {Be(a) } of pr {Be(a) } in S n-I, and minimized by x=pr {a}. 

One calculates by elementary geometry that whenever x E a pr {Bo(a) }, then 

r(Q, a) Ix-al2= l+lalZ-2lalcos {sin-t (.lc(o,a),.) }. 
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In view of  the formulae (3.1), (3.2), it easily follows that for xEapr{Be(a) }, 

{x-al2 -'--~cosh2Q ( l a l~  I). 
I pr { a } - a  12 

Hence any number  M(Q) larger than cosh~-~Q will suffice in (3.8) for all but a finite 

number of  S E F, and a suitably larger number  will do for all S E F. 

We further require some simple relations among shadows and projections,  all of  

which follow from the fact that two non-Euclidean lines become farther apart as one 

moves away from their point of  intersection, even if their intersection lies on S ~- i 

LEMMA 3.1. I f  two geodesic rays with common terminal ~ES ~-I both meet a ball 

Be(a), and if  one meets Bo(b) between ~ and Be(a), then the other meets Bo+2e(b). 

The estimate is sharpened to B~,+e(b) if  one meets a itself. 

LEMMA 3.2. Be(a)~sh  {B2e(b)} i f  any radius r meets, in order: O, b, Be(a). 

LEMMA 3.3. Be+r(a)~sh  {Bo+~(b)} whenever Be(a)cshB~(b). 

In case B=Be(a) is any ball in B n, we consider the collection fl~_B~t_JS ~-l of  all 

radial segments [0, pr {x}], x E B. This set will be known as the solid angle supporting 

B. Any image S(fl) (S E M(B~)) will be a solid angle with vertex S(O). It is geometrically 

evident that there is a positive function ao(~9), such that 

~i(n_ 1 [fl N S n-t ] I> ao(Q) (3.9) 

whenever fl is a solid angle containing B e. 

We shall in the following section, have need for the concept  of a half-ball. By this 

we understand a set ~_B~U S ~-~, bounded by a Euclidean sphere orthogonal to S "-~. 

It is helpful to agree that x includes its closure in B ~. Thus x O S ~- ~ is a spherical cap. 

The non-Euclidean line in B ~ with endpoints p, q E S "- I  will be denoted by Cpq. 

We shall also use this notation in U n, provided p, q E aU ~. 

4. The  m a i n  l e m m a  

4.1.Preliminaries. In this section, n~>2 will be fixed, and we shall shorten the 

notations B n, S n-~, ~ ,_~,  to . - i  to simply B, S, ~ ,  to. Suppose now that Fc_M(B) is a 

discrete group. Fix TCF,  and take any WEF,  •>0. We consider the set EQ(W)~_S, 

defined by 
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Ee(W) = pr (WT(B2o) n sh (W(B7e))). 

For any enumeration W1, W2 ... .  of F, let 

~'~(T) = lim sup Ee(W k) (k ---, oo). 

The purpose of this section is to prove the following 

MAIN LEMMA. If F~_M(B) is of the first kind, and if there exists p>0 and TE F 
with ~[~'~(T)]=0, then F is of convergence type. 

To motivate this result, let us define a second set, with T fixed as before: 

~Q(T) = {q E S: for every p E S, p ~ q, there exists a sequence { Wk} c_ F, with evq 

meeting Wk(Be), WkT(BQ) in order from p to q, and Wk(BQ) ~ q as k ~ ~ }. 

Finally, set ~Q(F)=f'I~o(T): TEF. 

THEOREM I. I fF  is of divergence type, then ~f[~e(F)]=w for every Q>0. 

Proof of Theorem 1. The set ~Q(T) is invariant, and since F is of divergence type, 

~[~e(T)] is ~o or 0, and F is of the first kind, by Proposition A, w 3.2. 

But we observe that qE ~o(T) if and only if q lies in infinitely many of the sets 

Eo(Wk). This occurs if and only if there exist infinitely many WE F, with the radius 0q 

meeting in order 0, W(B2Q), WT(BTQ). This implies that any line Cpq, p=l=q, meets, near 

q, infinitely many balls W(BsQ), WT(Bso), and that q E ~sQ(T). In other words, 

~(T)c_ ~8~(T) (TEr, Q>O). 

Therefore, if ~[~e(T)]<oJ for some O, T, it follows that ~[~?e(T)]=0, and therefore 

~[~e/s(T)]=0. By the main lemma, it follows that F is of convergence type. From this 

contradiction, we conclude that for every 0>0, TE F, we have ~[~?o(T)]=~o. But since 

F is countable, with each set ~e(T) having a complement in S of measure zero, it 

follows that 

The proof of the main lemma will be achieved with the help of three preliminary 

lemmas, throughout which T will be a fixed element of F. 
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LEMMA 4.1. Suppose that F is of  the first kind. Then for every half ball u, there 

exists A E F, with A(Be), AT(Bo)~u, and 

AT(B e) ~_ sh {A(B2e) ) . 

Proof. Choose another half ball u',  opposite 0 from T(Be), with the property that 

every ray from any point inside u',  through 0, meets T(Be). By reduction of u, u' if 

necessary, we may assume uNu'=~, O~uUu'. 

By (2.5), choose A E ~p# fl F, p E u n S, q E u' fl S. By taking sufficiently high powers 

of A, we may assume that A maps B \ u '  inside u. From A-i(0)Eu ', draw the ray r 

through 0, which necessarily meets T(Be). Then A(r) is a radius, meeting in order 0, 

A(O)EA(Be), and AT(BQ), the latter two sets lying in u. By Lemma 3.2, AT(Be)~_ 

sh {A(B2e)}. Q.E.D. 

LEMMA 4.2. Suppose F is of  the first kind. Given p>0, there exists a finite set 
~tc_F, such that for any solid angle fl containing B e, there exists A Esg, with 

A(Be), AT(Be)~_ fl, and AT(Be)~_sh {A(B2e)}. 

Proof. For any half ball u, with u N Be=f~, consider the collection qg of half balls u' 

which do not meet u UB e. Set 

E(u) = nB u S \ u ' :  u' E qg. 

The set E(x) is a tubular set containing u and B e, and if u is sufficiently small, then E(u) 

meets S in an open, nonempty set F(u)~_S, opposite u. In this case, that part G(u) of 

E(u) between BQ and F(u) has the property that if a solid angle fl containing B e has 

vertex in G(x), then uc_fl. Choose a finite collection of half balls u with this property, 

whose union covers S. This has the consequence that the regions G(u) cover B \ B  o, 

and therefore iffl is any solid angle containing B e, its vertex lies in some G(u). In each 

u, find A EF with the properties of Lemma 4.1. Q.E.D. 

LEMMA 4.3. Given ~f as in Lemma 4.2, there exists a positive constant 

Me=Me(M), such that for any UEF, there exists W=W(U)EF, with the properties 

(i) W(Bo), WT(Bo)c_sh {U(Bt,) }, 

(ii) WT(Bo)c_ sh ( W(B4e)}, 

(iii) a[U(BQ)]<~Moa[WT(Bo)]. 

Proof. Given U, let fl be the solid angle supporting U(Be). Then U-I(fl) is a solid 
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angle containing B e, and therefore containing A(B e) and its companion AT(Be)~_ 
sh (A(BEe)}, for some A E ~t. Define W= UA. 

As regards the properties, (i)  is obvious from the construction. For (ii), take any 

radius r=Oq meeting WT(Be). From U-I(q), draw the radius s' to 0, and the geodesic 

r'=U-I(r). Set s=U(s'). 
Now r' meets AT(Be) and B e, and therefore s' meets AT(BEe). Hence s' meets 

A(B3e), s meets W(BEe), and r meets W(B4e). We have used Lemma 3.1. 

Finally, part (iii) is obvious from (3.5), once we note that 

d(WT(O), U(0)) = d(AT(O), O) <~ d(AT(O), A(O))+d(A(O), O) 

= d(T(O), O)+d(A(O), O) 

~< to = max d(A(0), 0) +d(T(0), 0): A E ~ .  

4.2. Proof of  the Main lemma. Our objective is to show that 

(4.1) 
a[U(BQ)] < ~, 

UEF 

and to this end we closely follow Ahlfors-Thurston [2]. In an enumeration U~, U2 . . . .  of 

F, fix t>t o, and choose a new sequence Uk,, U~ . . . .  with the property that Uk0=id, and 

forj>~l, k 1 is the first index k such that d(Uk(O), Uk,(O))>3t, for i=O, 1,2 . . . . .  j - l .  The 

sets 

= { U E F: d(U(O), Uk/0)) ~< 3t} 

are of constant cardinality N(t), and U~ .= F .  By (3.5), 

<. K( O, 3t) 

ver j=o ve~ 

<~ ~ N(t) K( 0, 3t) a[ Uk/Bo) ] , 
j=O 

whenever UE ~/. Hence 

and so for (4.1), it suffices to prove 
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j = o  

Let us relabel this sequence UI, 0 2  . . . . .  and set Vj= WT, where W =  W(Uj) as in 

Lemma 4.3. Now it suffices by Lemma 4.3 (iii), to prove that 

< oo. 

j=0  

We note that the Vj are well spaced. Indeed, 

d(Vy(O), V,(0)) I> d(~(O), U,(0))- d(Uy(0), Vj(0))- d(U;(O), V,(0)) 

> 3t-2t o/> t. 

Henceforth we denote by Bj the ball Vj(Be), and we shall assume that t~>3O, so that 

these balls are disjoint. Following [2], we set up classes of balls: 

I 0 = {Be} 

I l = {Bk: B k is not eclipsed by any Bi} 

Ira= {Bk:B k is not eclipsed by any Biq. Uj<,,Bj}. 

Note that in any class Ira, the shadows sh {Bk} are disjoint. Further, every 

Bj~.I,,,+I is eclipsed by some BkEI,,,, for if it were not, it would have been selected in 

an earlier class. Our immediate objective is to show that 

E a[Bj] ~<---2 E a[B*l" (4.2) 
OjElm+ I 3 BkEI m 

In this way, 

j=O m=OBjEI,, m=O 

We shall further subdivide each class l, ,+t into two subclasses: 

l'~+j = {Bj E Iz+t: B~ is partially eclipsed by some B k C Ira}, 

l"+l = {BjE Im+I: B j is totally eclipsed by some Bk E lm}. 

As regards the class l ' + l ,  fix B~=Be(aj), partially eclipsed by Bk=Be(aDEI,,,. This 
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means that there exists q E S n 8 pr {Bk}, such that the radius 0q meets 8Bk at a point bk, 

and B~ at a point bj, in the order 0, bk, bj-. Then denoting rj=r(aj, ~), rk=r(ak, Q), we 

find 

hence 

o r  

and in view of (3.3), 

o r  

t <- d(a k, aj) <- d(b k, bi)+2 Q 

= d(bj, O)-d(b k, 0)+2~ 

<~ d(aj, O)-d(ak, O)+4Q, 

d(O, aj) 1> d(O, ak)--4Q+t. 

l o g ~  I> - 4 Q + t - l o g  2, 

rk 1 Ro(O) 
- -  e t - 4 # ,  

rj 2 R~(Q) 

Rl(P ) ) 
rj <. C(O) e - ' q  C(O) = 2 R o ( Q )  e 4~ . 

This means that the projections pr {Bj}, Bj partially eclipsed by Bk E I,., all lie inside an 

"annular" region on S, of Euclidean inner radius asymptotic to r t=rk( l -2C(o)e - t ) ,  

and Euclidean outer radius asymptotic to ro=rk(l+2C(Q)e- ') .  This "annulus" has 

total ~-area asymptotically proportional to 

~o-t_~-, = ~-I [(1 +2C(~o) e-')"-'-(1-2C(o) e-')"-'] 
= ~ - '  O(e-') = a[Bk] O(e-t). 

We sum this over BkEI,,,, and conclude that for all sufficiently large t, we have the 

estimate 
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As regards the c l a s s / "+ , ,  fix Bk~:lm, and an index set [k such that for jE/k,  the 
balls BjE/"+I are all totally eclipsed by Bk. Let El,=pr{t.JB.i:jEik}=Opr{Bj}:jEik, 
and F k = V~ '(pr {Bk}) ~_ V~-t(Ek). 

Let fl be the solid angle supporting B k, and consider V~-l(fl), a solid angle 

containing B e. We have the estimate (see (3.8), (3.9)) 

ao(e) ~[Ek]<<. )~[Vk'(~) n S] ( II vz(~)It-'  d ~ )  
J~ v~ '(E k) 

~[V~"(pr {B~})] ~aFX k II v', ~[V;'(Ek) ] 

~< I d)tff~) M(~) min I[ V;,(~) 1["-' gE [ V~-'(Ek) ] 
JF, qEF k 

[ It V~ (~)II"-'dgg(~) M(o) ~[V~-'(Ek) ] , 

or finally, 

~< M ( O )  ~[V~-'(Ek)]. ~[Ek] a-~-~a[Bk] (4.4) 

Now consider for j E[k, V= Vj= WT, where W= W(Uj). From Lemma 4.3, we know 
that V(BQ)~_shW(B4r We now claim that 

V'~'(V(BQ)) ~_ sh { V['(W(B6e)) } , (4.5) 

for if r'=Oq is a radius meeting V-~I(V(BQ)), then r=Vk(r') is the geodesic ray 

[Vk(0), Vk(q) ]. Take s as the radius [0, Vk(q) ], and take s '=  V-~l(s). Then s meets V(Bzo), 
and therefore also meets W(BsQ). Hence s' meets V-~I(W(Bso), and r' meets V{ I W(B6o). 

We also claim that 

V~lfpr {Bj}) ~_ sh {V-~'V(B2o) } . (4.6) 

To see this, suppose qEpr  {V(Bo) }, and consider V-~J(q). Let r be the radius 0q, and s' 

be the radius [0,V~l(q)]. Then s=Vk(s') is the geodesic ray [Vk(0), q], and we find as 

usual that s meets V(B2Q), and therefore s' meets V-~IV(B2e). 
From (4.5) and Lemma 3.3, it follows that 

Vk I WW(B20 ) = Vk I V(B2~,) c: sh ( Vk I W(B7~)} , 
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and therefore with (4.6), that 

Ee[V-~W ] = pr {V~JV(B2e)} ~_ V~-t(pr {Bj}). (4.7) 

It is to be observed that 

d(V;  ~ W(O), O) = d(W(O), Vk(O)) = d(V~ r -  ~(0), Vk(O)) 

>t d(V~(O), Vk(O))-d(Vy(O), Vy T-t(O)) 

t-to, 

and therefore, we obtain from (4.7), the estimate 

V~-k l(Ek) = 13. V~-I(pr {Bj}) ~_ U Eo(A): d(A(0), 0) I> t - t  o. 
j E I  k 

Upon taking Hausdorf f  measure,  and using the hypothesis that 

W[lim sup Ee(A): A E F] = 0, 

we see that 

~ r [v ; ' ( ek) ]  --, 0 (t --, o~), 

and therefore we may select t sufficiently large that 

ao(q) 
~/t~[Vk-'(Ek)] <~ 3M(q) ' 

and with (4.4), that ~[Ek]<.~a[B~], uniformly for BkEI m, m = 1 , 2 , 3  . . . .  The last in- 

equality is now summed in k, to yield 

Bfir',.+l Bk EI,n m 

which, along with (4.3), yields (4.2), and completes  the proof. Q.E.D.  

5. The density theorems of P. J. Myrberg and G. D. Mostow 

With n>~2, referring again to our standard map kpq (see w 2.2), let us suppose that 

f E M  n hasf(p)=s,f(q)=t.  Then kstfk~lq fixes 0, oo and has the form 

ks,fk~ = hau (u E O n, 2 > 0). 
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This number 2 will be denoted by 2pq(f). 

Fix p, qESn-J(p4=q), and s, tES"-t(s*t), and assume that F~_M(B") is of diver- 

gence type. Because F is also of the first kind, there exist sequences {S,,)=__F, 

{Tm}c_F, with 

Sm(O ) ----> s, Trn(O ) ----> t (m ---> oo). 

Suppose that q E ~e(F). Then for each m, there exists Wm E F with the line epq meeting 

Wm(B o) and WmSmJTm(BQ), and we may require that W~(Be)---~q. It follows that 

Sm(W~t(fpq) meets SIn(Be) and TIn(Be), and hence S~W~'(epq) approaches e,,. But it is 

also geometrically evident that because W,,(BQ)~q, we have 

~Lpq(SmW~n I) "-> 0 (m --> oo). 

We have just proved the following approximation theorem, first formulated by P. 

J. Myrberg [10] in case n=2 and F is finitely generated. 

THEOREM 2. I f  F~_M(B ~) is of divergence type, then for a.e. qES n-l, every 
p ES~-I(p*q),  and any line ~_B", there exists a sequence {Vm}~_F, with V,,(~pq)---~, 
and with ]Lpq(Vm)"'-~O. 

Before moving to Mostow's theorems, it is better for technical reasons to transfer 

to U ~, where the auxiliary maps kpq(p, qEaU ~) all belong to M(U~). We denote the 

intersection M(U ~) N L~pq by Lf~q. 

THEOREM 3. I f F ~ M ( U  ~) is of divergence type, then for a.e. qEcgU ~, the set F ~  

is dense in M(U ~) for every pEc3U"\{q}.  

Proof. The qualitative and quantitative content of Theorem 2 transfer immediately 

to U n. Hence take q EaU" with the properties of Theorem 2, and any other p E aU". 

Next, take any g E M(U"), and set s=g(p), t=g(q), ]to=)tpq(g). Next, find a sequence 

{Vm}_~F, with Vm(fpq)~est, and 2,,=2pq(Vm)--->O. Set s,,=V~,(p), tm=Vm(q), and 

kin=ks,j, # We find 

k m V m k~-~ = u m h~.~ (some u m E O. N M(U~), ~,~ > 0), 

k,, gk~ = u o h~o (some u 0 E O. n M(U")), 
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hence 

V m k ~  = k~, I u m ham 

= k~ 1 ks ' k~ tum hA m 

= k~, I k, tgk~tq Uo I h-~o~ umhzm, 

o r ,  

In other  words, 

where 

Vmk~q h~,a uT. ~ uokpq = kT~ ~ /q,g.  

km I kstg = Vm gin' 

gm ---- kp 1 hao/x,.Um ! uokpq E M ( U " ) ,  

and thus gm E ~ u  as soon as 2m<A 0. 

On the other  hand, with the possible exception s=  oo we have k~ ~ kst---~id. In other  

words, for a.e. q EaU ~, and every p EaU n (p4:q), the closure in M(U ") of  F~qUp 

includes all g E M(U n) except  those with g(p)=oo. But this set has no interior in M(U"), 

and so the result is established for a.e. q, and every p4=q. Q.E.D 

The proof  of  Theorem 3 is now completed,  but looking solely at the statement,  and 

keeping in mind the basic homeomorphic  isomorphism between M~ and M(Un+I), we 

have the following: 

THEOREM 4. I f F c M ~  is a discrete group o f  divergence type, then for  a.e. qEl~ ~, 

the set F~qp is dense in M~ for  every p~=q. 

A final remark for this section: it is implicit in the statements that Theorem 3 

applies to the case n~>2, but that Theorem 4 applies as well to the case n=  1. I shall refer 

to the points q E !~ ~ satisfying the conclusion as "d en s i t y "  points. 

6. Mostow's rigidity theorem 

I believe that the proper  setting for this theorem is !~ n, rather than aU n or S n, as it is 

often presented.  The theorem says that a map g which is compatible with a discrete 

group F of  divergence type,  is ei ther M6bius or very strange indeed. 

17-838286 Acta Mathematica 151. Imprim~ le 28 Decembr6 1983 
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I am taking the hypothesis that g is quasiconformal, by which I mean that g is 

quasisymmetric if n= 1. It was a significant portion of Mostow's work to show that if I" 

has finite covolume, and if g is the boundary mapping induced by a quasi-isometry 

g: U"§247 then g is indeed quasiconformal. Sullivan makes the same asser- 

tion in case [" has 0(u"+l)\A/.z of measure zero, which would cover the case that F is 

of divergence type. In any case, I prefer to set this issue aside. 

It will be clear from the argument that the two truly relevant properties of g, in 

addition to the compatibility, are 

(i) F must satisfy the conclusions of Theorem 4, 

(ii) g must have the property that for every p, q with q=g(p), the collection of 

mappings I-It_qgtpI-I forms a normal family. 

The conclusion would then be that either g is M6bius, or that g is extremely 

singular. Examples of the later alternative are commonplace in case n---1, but I would 

say it is an open problem to give an example if n~>2. Such an example will not be found 

among groups of the special types herein considered, for as mentioned above, g will be 

quasiconformal in these cases. 

THEOREM 5. Suppose that ['~_Mn is a discrete group o f  divergence type. Suppose 

that g: R"---~R n is quasiconformal with the property that 

g .A .g -~EMn (allAEF). 

Then 

(i) i f  n>>-2, we have gEM~, and 

(ii) i f  n= 1, either g E Mi, or g is singular. 

Proof. (This part of the argument is similar to Mostow's, cf. [9].) Let us first 

assume that g has nonsingular total differential (positive, finite derivative if n= 1) at the 

density point x=0, and that g(0)=0. Our normalization g: R ' ~ R "  means that g(~)= ~. 

By assumption, FZP0~o is dense in M,. Of course LPo~o_cl'lOn, so select ;treE(0, 1), 

u,,, E On, T,,, E F, such that T,, ham um--~id. We may assume that u,,~Uo E O~, and 

because F is discrete, that 2,~---~0. By hypothesis, we have Bn, E Mn, with 

g" Tm= Bm'g. 

For any xER, ,  we have 

Bm(g(h~ (um(X)))) = g(Tm(h~ (um(x)))) ~ g(x), 
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and testing at x=0 ,  ~ ,  we find Bm(O)--'*g(O)=O, and B . , ( ~ ) ~ .  By L e m m a  2.1, and 

passing to a subsequence ,  

mapping Vo E O. ,  with 

we may assume that there exist  numbers  /~m>0, and a 

B" hi,, v o ---. id. 

Next ,  set f , .=h-~ "g'ham. Then  

Bm(h~,m(fm(U"(x)))) = Bm(g(h2m(Um(X)))) ~ g(x). 

But the mappings f , .  are all K[g]-quasiconformal ,  with fro(0)=0, fm(~)=oo ,  and hence 

belong to a normal  family,  [5].(l) We may assume that they converge uniformly on 

compac t  sets of  R " \ { 0 } ,  to a limit function q0, which is ei ther a homeomorph i sm or 

constant .  However ,  for  x * 0 ,  we have 

g(x) = lim B~(h~,, (f,,,(u,.(x)))) 

= lim B"(h~,,(f.,(uo(x)))) = v o l(q0(u0(x)) ). 

In particular,  q0 is not constant ,  and q~=vo.g. Uo ~. We have established that there exist 

numbers  2,.",~0, # " > 0 ,  such that for all x E R " \ { 0 } ,  

g(A, mX) = f"(X) ~ Vo(g(uoI(X))). 
/Um 

But now g has the total differential at x=O, and therefore for any x E R " \ { O } ,  we have 

g(;t"x) 
0:~ g'(O)x = l i m - - ,  

2,. 

and therefore we must  have the exis tence of  the limit 

0 * ~. = lim ;tm//~" (m ~ ~) ,  

and the identity 

2g'(0)X = vo(g(UoJ(X))) (XE R"). 

We deduce by differentiation at x=0 ,  that  ~.= 1, and in any case,  we s e e t h a t  g is linear. 

(~) This fact in case n= i can be deduced from the case n=2 with the help of the Beurling-Ahlfors 
extension formula, [4]. 
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According to L e m m a  2.2, ei ther ~ is a fixed point for  the entire group, or g is MObius. 

The former  alternative is excluded by (2.4) and Proposit ion A(1), w 3.2. 

In the general case, suppose that g has nonsingular total differential (positive, 

finite derivative if n=  1) at some density point p E R n, and set q=g(p). Then the special 

hypothesis  applies to t_q .g . tp  with respect  to the group t_pFtp, and the same 

conclusion follows for g. 

Since the density points and the points of  nonsingular total differentiability com- 

prise sets of  full measure when n~>2, it is clear that such points exist in this case. In the 

case n = l ,  we can only say that i f f '  exists and is positive on a set of  positive measure, 

then such p can be found. Otherwise,  f i s  singular. This is Kuusalo 's  theorem. 
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