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1. Introduction 

In section 304 of  his "Disques t iones  Ar i thmet i cae"  Gauss  observed numerically that 

the asympto t ic  averages of  class numbers  of  indefinite binary quadratic forms (over Z) 

when ordered by their discriminants  are rather  erratic. Today the behavior  of  the class 

number  for large discriminant still remains a major  unsolved problem. In [17] we 

showed that if we form the averages of  these class numbers  when ordered by the sizes 

of  the corresponding fundamental  units (or regulators) then there is an asympto t ic  law. 

The main result of  this paper  is to derive similar such asymptot ic  express ions  for 

averages of  binary quadrat ic  forms over  the integers of  an imaginary quadratic number  

field. As will be seen there are some interesting differences.  We believe that our  results 

have an appropr ia te  extension to an arbi trary number  field. (2) To develop these results 

we will need to analyze in some detail various aspects  of  the geomet ry  of  certain 

hyperbolic three manifolds. Along the way various auxiliary theorems,  which are of  

interest in their own right, concerning these manifolds,  will be proven. These are stated 

in the following outline of  the various sections.  

(t) Research supported in part by NSF Grant NSF MCS 7900813. 
(2) For the appropriate explicit trace formulas for totally real number fields see Efrat [4]. 



254 P. SARNAK 

Let D>0 be a square free rational integer, and let Ko=Q(X/-D). We denote by 

~D the ring of integers of Ko. The discrete subgroups SL2(~D) of SL2(C) will be 

denoted by FD. Occasionally we will also consider congruence subgroups of these. 

These groups act discontinuously on H3={(y,x~,x2):y>O} equipped with the line 

element ds2=(dx~ +dx] +dy2)/y 2. 

If 

then r acts on H 3 as an isometry by 

(y,z)~-~( Y (az+fl) ( 7 z + 6 ) + a ~ y  2 ) 
lyz+al2+lyl2y 2 , lyz+al2+lYl2y2 (1.1) 

where z=x~ +ix2. 
Denote by Mo the quotient H/FD. The geometric quantities of Mo which will be 

of interest to us are, volumes of MD, lengths of closed geodesics on MD, the spectrum 

of the Laplace Beltrami operator for MD. As may be expected from the definitions of 

the groups FD each of these has a number theoretic interpretation. The quotients MD 
are of finite volume, and their volumes were computed by Humbert [10] to be 

Idl 3/2 ~k(2) 
where d = disc (KD), (I .2) 

4~ 2 

and ~x is the Dedekind zeta function of the field K=KD. 
In section 2 we begin by computing the Eisenstein-Maass series for these groups, 

explicitly in terms of L functions of Ko. 
These are needed because of their close connection with the spectrum of the 

Laplacian (we will denote the last by A). The Eisenstein series are useful in many other 

respects as well--for example we use them to compute the volumes (1.2) above. 

Besides the Eisenstein series we also introduce Poincar6 type series, which are 

generalizations of those introduced by Selberg [20] (see section 2). A computation of 

the inner product of two such series, turns out to be a zeta type function whose co- 

efficients are Kloosterman sums. Thus if A is a non zero ideal of O and ~p~,~p2 are 

additive characters of O/A then the sums in question are 

S(/PI,~2,A)= ~ ~1(6)~2(6-1) �9 
6E(O/A)* 

The poles of this "Selberg-Kloosterman" type zeta function (see definition 3.3) 
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are closely related to the spectrum of the Laplacian on MD. This relationship is used in 

two natural ways. The first, which is the one used in this paper, is to derive lower 

bounds on the discrete spectrum of the Laplacian on MD. We will prove in section 3 

the following: 

THEOREM 3.1. I f  2~ is the first discrete eigenvalue o f - A  on L2(Mo) (thus 20=0 

corresponds to the constant function and the rest of  the spectrum is positive) then 

2~>3/4. 

The other way of exploiting the above relationship is to use it to study the 

associated Selberg-Kloosterman zeta function, and in particular to study sums of 

Kloosterman sums in imaginary quadratic number fields. This has been done in joint 

work with D. Goldfeld [7]. 

Theorem 1 has also been proven by completely different and sophisticated meth- 

ods by Jacquet and Gelbart [28]. Our proof is direct and is in the spirit of Selberg [20], 

who proved a similar such bound ;tji>3/16, for congruence subgroups of the classical 

modular group. 

For the rest of the paper, viz. sections 4-7 we will consider for the sake of 

simplicity only those D for which KD is of class number one (i.e. D= I, 2, 3, 7, 11, 19, 

43, 67, 163). The results go over for any D as long as one uses the notion of "primitive 

discriminants" as in Speizer [29]. The closed geodesics on Mo are identified through 

the theory of quadratic forms over (~l~ (we call these Dirichlet forms). We introduce the 

elements of this theory in section 4. Denote by @ the set of discriminants of binary 

quadratic forms 

= {m E ~D: m -  x 2 (mod 4) for some x E ~D and m is not a perfect square}. 

The last condition in the definition of @ ensures that a form of discriminant dE @ 

will not factor over ~D. 

Equivalence of forms is defined in the narrow sense i.e. if Q=axE+bxy+cy 2, 
Q'=a'(x')2+b'(x'y')+c'(y') 2 then Q-Q'  if 

For d E ~  let h(d) be the number of classes of primitive quadratic forms of 

discriminant d. We discuss the solutions to the diophantine equation 

t2-du2=4, d E ~ ,  t, uE~. 
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Except for finitely many d, the solutions to this equation are generated by a fundamen- 

tal "uni t"  

to + ~/-~ Uo Q(V-z-fi, V--d), > 1. ed-- 2 

The lengths of the closed geodesics as well as some other quantities related to 

closed geodesics (Poincar6 maps) on MD, are described in terms of h(d) and ed, dE 

(see Theorem 4.1). Though of great interest and importance in number theory the 

numbers h(d) and e d are not well understood even for forms over Z. 

In section 5 we prove what we call the prime geodesic theorem. This gives the 

asymptotic distribution of the lengths of closed geodesics on the manifolds MD. Let 

at(x) be the number of primitive closed geodesics whose length is not greater than x, 

then we prove in Theorem 5.1: 

at(x) = Li (e2~)+O(e ~x) 

where 

for any y > 

j"  u I 

For more on the existing literature on such asymptotics see remarks 5.2. 

Let ~x = {dE 9: JEdJ~X } . As x--~oo these sets form an increasing exhausting family 

of sets. In section 6 by use of more standard methods of additive number theory we find 

the asymptotics of J~xJ =cardinality of ~x, as x - , ~ .  

Finally in section 7 the various results are put together to prove the results 

mentioned at the beginning of the introduction. We state the asymptotic results here: 

THEOREM 7.2. There is a constant ck>0 depending on KD such that 

1 Z h ( d ) -  Li(x4) FO(x y) f o r a n y ) , > { a s x - - ~ o o .  
I xl c, x2 

The constant ck may be computed exactly, see section 6, and turns out to be a 

rational number times 

at (~,(2)) 2 

r 

Theorem 7.2 tells us that on the average, in this ordering h is about the square of 
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the unit. In the case of forms over Z, see [17], h turned out to be about the size of the 

unit. This difference is not too surprising in view of the fact that the class numbers are 

related to those of biquadratic extensions in the case of forms over ~?o, and the 

discriminants of these fields increased by a square from what the corresponding ones 

over Z are. On the other hand the units are the same size, so by the Siegel-Brauer 

theorem, see Lang [13] we expect h should increase accordingly. 

2. Maass--Eisenstein and Poincar6 series 

Our aim in this section is to introduce Eisenstein and Poincar6 series attached to the 

cusp at infinity of Fo. These are needed for the spectral analysis of A on MD. The 

Eisenstein series furnish the continuous spectrum, and will be needed later on when we 

need the Selberg trace formula. The Poincar6 series are used to make a non-trivial 

estimation of the discrete spectrum. The use of the Eisenstein series in volume 

computations is also carried out in this section. 

We will always use the co-ordinates (y, x~,x2) for H 3, as in the introduction. The 

Laplace-Beltrami operator is then given by: 

A = y  2 
+Ox~ + Oy" (2.1) 

D is fixed as in section l (not necessarily corresponding to class number one) and let 

(2.2) 

be the stabilizer of infinity. For simplicity we assume D . l ,  or 3 so the only units of ~7 

are _ 1. It is then not difficult to see that 

(recall we are working mod +I  i.e. in PSL2(C)). 
The Eisenstein series coll'esponding to the cusp at infinity are defined by the sum: 

E(s, to)= X (Y(Yto))" (2.4) 
1r r ~ N r  

where to=(y, xl, x2). 

The series converges absolutely for Re (s)>2 and since yS is an eigenfunction of A, 

so is E(s, to), the latter coming from the former by averaging by isometries. Thus 
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AE(s, to)+s(2-s)E(s, to) = 0 (2.5) 

and due to the averaging, we have 

E(s, ~to) = E(s, to) for y E Fo. 

So E(s, to) gives us eigenfunctions of A on Mo, though not in L 2. The series E(s, to) 

may, by the general theory of Selberg, be continued to a meromorphic function of s. Its 

analytic nature is controlled by the zeroth coefficients of E(s, to) in its Fourier expan- 

sion in the cusp. More precisely, since 

E(s, y, x) = E(s, y, x+b),  

we may write 

VbE~ 

E(s, to) = ~ At(y, s) e ( ( l , x ) )  (2.6) 
IE 6* 

where r is the dual lattice to ~7 in R 2, and e(z)=e 2~riz. By separation of variables and 

(2.5) 

E(s, to) = y~ +q~ ffs)y2-S+nonzero coefficient (2.6)' 

we need to know cpl ffs) explicitly. 

(2.7) Explicit calculation o f  the zeroth coefficient. 

is 

When we think of (7 as a lattice in R 2 we denote it by L. A basis for L as a Z module 

l ,w '  w h e r e w ' = I I + ~ i 2  V ~  i fD~3(4 )  

[,iX/-D- if D ~ 3(4) 

A coset representation for F ~ \ F  is 

{(c* d ) :  (c' d) = (1) and (~ '  ~-) is any ch~ ~ tw~ numbers in t~ s~ that 

Therefore, 
y$  

E(s, to)= ~ (icz+dl2§ s, z = x , §  z 
(c, d) = (1) 

mod +1 
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s 1 yS 
= Y +--2 E (icz+dl2+lcl2y2y (c, d) = 1 

ca~O 

, 1 

=Y + - 2 E  E 
c # O  d m o d c  

(d, c)  = 1 

1~.o Y' 
= Y'+-2"- Icl 2' dmodc 

(d, c)  = 1 

y$ 

~m (Icz+d+mcl2+y2tcl2 )" 

E E  

Letting FL be a fundamental domain for the lattice L in R z, we obtain the zeroth 
coefficient by integrating over FL. 

s • E(s'Y'z)dxxdx2= V(FL)Y'+ 2 ~ IcY 
L L 

Using 

fEt Ef(z+~) dxl dx2 = f f t  f(xl'X2) dxl ~,6L 2 

~ dxl dx 2 

( : ), d m o d c  z+m+ 2+y 2 
(d, c) = I 

(2.8) 

with f(z) = 
( z + :  2+y2) s 

in (2.8) and also making the change of variable z'=z-d/c we have 

s Y'ff. 2 ,+vax'ax2 E(s'~ ~ ~ 2 2 2,) 
1. ' d m o d c  - X l J V X 2  ~ 

(d, r )  = I 

Y" r .O .r  
= V(FL)Y'+ car dmodcE [cl 2" J0 J0 (r2+Y2Y 

(d, c)  = I 

= V(FL)YS_ F ~r y2-, I ( s - l ) E  E icl2S" 
c ~ O  d m o d c  

(d, c) = I 

Thus 

;r @(c) '] y2-S + nonzero E(s, to) = yS + V(FL)  2 ( s -  1) .*~o ~ ]  Fourier coefficient, 

where ~ is the Euler function 
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�9 (x) = # {b rood x: (b, x) = 1 }, 

a more generally for any ideal A of O 

~(A) = #{residue classes modA prime to A}. 

Thus in (2.6)' 

E *(A__.__~) .) :r 
I~fll 1 ( S )  = A principal N(A)" V(F2)(s-I) 

A * 0  

(2.9) 

with N(A)=norm of the ideal A. 

We express (2.9) in a more convenient form. Let I be the ideal class group of ~7, 

with ]I[=h the class number of Ko. Let ~ ,  ~Pz ..... ~0h be the character group to I, with 

~/,x =trivial character. *pj may be extended to be defined on the ideals of r in the obvious 

way. Let L i be the corresponding L function 

L~(s) = E e/j(A)N(A) -~ 
A * 0  

clearly then 

_ L p -  1) 
/~j(s) = a.oE dp(A)~pflA)N(A)-" Lj(s) 

Noting that Lx(s) is none other than the Dedekind zeta function of K, ~k(s). From 

(2.9) 

- - = - - j ~ t  Ijh~tLj(s-1) E r 1 h l~j(s)= (2.10) 
N(A)" h h Lj(s) A principal "~ "= 

This gives us an expression for q~ ~(s) in terms of L functions of K. Notice that if h= 1 
then 

~k(S-- 1 ) 
Cpll(S) = Of(S) = V(FL) (s- I) ~k(s) (2. I !) 

which will be used later. 

Thus the zeroth coefficients of E(s, w) is 

:r y2-~. 
Y'+ V(FL)(s-1)h .= Lp) 
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Our main interest in E(s, to) is in their spectral properties, however they (the 

Eisenstein series) are useful in other respects. We digress to compute some volumes. 

(2.12) Volumes of  H3/Fo. 

LEMMA 2.13. 

Res (qq i(s), s = 2) - 
V(F z) ~ ~k(2) w 

where d=disc(Ko), and w=# of roots of  I m ~. 

Proof. It is clear by summation by parts that for Re (s)>0, Lj(s) is analytic if j : l : l .  

Thus the pole at s=2  of  tPIl(S) comes from/~l(S) alone. Now Ll=~k has a simple pole 

at s=  1 with residue h2:r/WX/-~dl r (Dirichlet class number formula.) The lemma is 

now obvious. 

Thus 

Res [E(s, w), s = 21 = 
2er 2 

V(FL) WV~[d~ ~k(2) 
(2.14) 

Let  Fo be a fundamental domain for Fo in H 3, and let V(FD) be its volume. 

Determining such a fundamental domain in terms of hemispheres that bound it, is not 

easy. An algorithm for doing so is given in Swan [21] but computations, even for small 

D, become very complicated. Luckily we do not need to know the fundamental domain 

explicitly in order to determine its volume. The general shape of a domain FD looks 

like Figure 1. 

LEMMA 2.15. Res (E(s, w), s=2)=  V(Ft.)/V(FD). 

Proof�9 The residue of E(s, w) at s=2  is a constant function, since it is an eigenfunc- 

tion of A on MD with eigenvalue s(2-s)ls=z=0. Let  this constant be c. Thus 

E(s, w) = yS + cp 11 (s) y2-.~ + H(s, 09) 

where H(s, w) is analytic in Re (s)~>2 and is also uniformly square integrable over Fo 
for such s. This last claim is a consequence of the fact that the non zero Fourier 

coefficients in expansion (2.6) decay rapidly as functions of y, into the cusp. (See [12].) 

Therefore the function 
= ( (E(s, w)-y  s) dxl dx~ dy b(s) 

o y3 

has residue cV(FD) at s=2. 
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/ 

FD 

y = A(xl, x2) 

bounding surface FD 
from below. 

FL 

Fig. 1 

On the other hand 

E(s, o))-y s = E '  Y(),t~ 
),E F |  

the prime denoting, omit ),=identity. So that 

fr dx ~ dxz dy b(s) = (E(s, m)-y s) y3 
D 

From which 

F FA(x) 

= I I ysay dx tdx 2 
Jr, J0 y~ 

fF A(x)S-2 
= , ~ - 2  d x l d x 2 "  

Res (b(s), s = 2 )  = V(FL) 

c = V ( F D / V ( F o ) .  

If we put (2.14) and Lemma 2.15 together with the following elementary facts 

'D/2 if D - 3 (mod 4) 
V(FL) = 1. ~ if D ~ 3 (mod 4) 
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- D  if D -= 3 (mod 4) 
d =  -4D i f D ~ 3 ( m o d 4 )  

we obtain the following formula, which was proven by Humbert using other methods 

(see Humbert [I0], or Thurston [22], chapter 7). 

P R O P O S I T I O N  2 . 1 .  

Id13/zr 
V(FD) - 4ar2 

Notes. (1) Though our proof does not apply directly to the cases of 

Q(x/-1 ) and Q ( ~ / - 3  ), the above formula is nevertheless valid since W and a factor 

of V(FL) cancel. 

(2) In the case h > l ,  there are more cusps besides the one at infinity that we have 

been considering. In fact it is easy to see that the number of such inequivalent cusps is 

the class number h. It is then natural and necessary for many purposes to form 

Eisenstein series in each cusp. For this paper however they will not be needed. 

(2.16) Poincar~ series. 

We now introduce a Poincar6 type series associated to the cusp at infinity. These 

generalize the series introduced by Selberg in dimension 2 [20]. 

Definition 2.17. Let m EL*, m=l:0 we define 

Pro(s, w) = Z Y(Yw)S e-2ZrlmlY+2ni(x'm) 
yE F~/F 

where (x, m) is the R 2 standard inner product. We observe that for Re(s)>2 the series 

converges absolutely, since it is certainly dominated by the Eisenstein series. Since the 

function e-2~lmlyySe 2'ri(x'm) is F~o invariant it is clear that Pro(s, w) is Fo invariant. An 

advantage that these have over the Eisenstein series is that they are in LE(Mo) for 

Re (s)>2. In fact it is clear that for e>0, ::IC,, s.t. 

IIPm(S, ")112 ~ C~ (2.17') 

for Re (s)>2+e. A simple computation shows that 

(A+s(2-s))  {ySe-2~rlmlYe2:ri(x'm)} = 2:rlml(l-2s) {yS+l e-2nlmlYe2:ri(x,m)} 

from which 
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( A + s(2-s)) Pm(s, 09) = 2:tim[ (1-2s)Pm(s+ 1, to) 

follows. 

We write this in a more convenient form 

(2.18) 

Pro(s, to) = 2:rlm[ (1-2s)R~(2-,)(Pm(S+ 1, to)) (2.19) 

Ra being the resolvent of A on L2(Mo) at 2. 

The spectral theory of A on L2(MD) has been carefully studied by Selberg [19]. In 

fact the theory has been fully developed for any three manifold of finite volume. The 

spectrum consists of a finite number of discrete eigenvalues in [0, 1), call these 

0=2o<21~<22...~<,;tk<1. Here 2o=0 corresponds to the eigenfunction Uo(to)=constant. 

We denote the corresponding eigenfunction by uj(to) j= l, 2... k, and call these ;%, uj if 

they exist, exceptional spectrum. So Auy+2juj=0, ujE L2(MD), 0<;9< 1. 

The interval [1, oo) comprises two kinds of spectrum: Firstly the continuous 

spectrum which is spanned by the Eisenstein series Ej(l+it, to), t ER, where the j 

denotes the Eisenstein series in the jth cusp. Each of these is defined in an analogous 

way to the Eisenstein series in the infinite cusp. Then there is also the discrete 

spectrum uj,,;% within [l, oo) 

Auj+Ajuj=O, 2j>~ I, ujEL 2. 

From these remarks, it follows that R,,~2-,, is meromorphic in Re (s)>l ,  and is 

analytic except at those sfs  which correspond to ;%'s in the spectrum 2jE(0, 1), so 

sj( 2- sj) = %. 

The corresponding residue of Rst2-s) at sj is simply the projection operator onto the 

spectrum at ).j. 

Using (2.17)' and (2.19) it follows that Pm(s, w) may be continued to Re(s )>l  and 

is analytic except possibly at the sfs.  Furthermore the residue of P,,(s, to) at s i is the 

projection of Pm(s+l,to) on the eigenspace at ~j, multiplied by 2:tlmt(l-2sj). To 

determine this more exactly, we expand a typical Ul(to) in the cusp. Being an eigenfunc- 

tion it is easy to see its coefficients must be Bessel functions and we have the expansion 

uj(to)= E c~(j)yK~j-t(23tlnly)e((m'x) )" 
nEL* 

(2.20) 



THE ARITHMETIC AND G E O M E T R Y  OF SOME HYPERBOLIC T H R E E  MANIFOLDS 265 

Therefore 

yF em(S+ 1, W) Uj(W) 
D 

dx l dx 2 dy 
y3 

fOC~ ~ dx1 dx2 dy _ yS+J e-Enlm[y e+2ni(m,x) Uj(09) y3 
L 

io = y,e-2,~tmlYcm(j) V(FL)K,i_j(2ertmly ) dy 
Y 

r(s+sF1)  F(s-s~+ l) 
= r V ( F 2 ) -  

(4ar[m[) s F(s+ 1/2) 

It is also clear from the above set of calculation that for m+0  

s P~(s, w) dxl dx2dY 
y3 

(2.21) 

= 0 (2.22) 

so that Pm(s, ~) has no pole at s=2  (i.e. corresponding to 2=0). 

3. Kloosterman sums and lower bounds for the discrete spectrum 

To obtain information on the discrete spectrum we consider the inner product of two 

Poincar6 series (all relative to a fixed Fo). More precisely consider 

fv P.,(s, w) P.(g+2,  to) 
dx I dx2dy 

y3 (3.1) 

as a function of s. From the previous section we know the poles of the function in (3.1) 

are related to the spectrum in question, on the other hand a lengthy computation will 

show that the function in (3.1) is essentially a type of Zeta function whose co-efficients 

are "Kloos te rman sums" .  We first introduce these sums. 

Let  K=Q(X/-D ), and m, n E (~7)* =(~7o)* the dual lattice of (~, as before. For y*0 ,  

y E ~7 define the Kloosterman sum 

{Tr lh (3.2) S(m,n,7)= E e\  r/O[ ~ J /  
a E (O/(yl)* 

where e(z)=e 2~iz,Trr/Q is the trace from K to Q, and R* is the group of invertible 

elements of a ring R. 

S is well defined (i.e. independent of the choice of generator y of (),)), also note that 

S(m, n, ~) is real and S(m, n, p)=S(rh, ti, ~). 

18-838286  Acta Mathematica 151. Imprim~ le 28 Decembr6 1983 
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Following Selberg [20] we define what we call the Selberg-Kloosterman zeta 

function 

Z(m, n, s) = ~ S(m, n, (y)) (3.3) 
* o N(y)' 

From the trivial estimate, IS(m, n, y)l~<N(y) it follows that the series (3.3) con- 

verges absolutely for Re (s)>2. However if mn~=O we can use the well known estimates 

of A. Weil [24] on exponential sums in finite fields to prove 

PROPOSITION 3.4. I f  mn*O the series (3.3) converges absolutely for  Re (s)>3/2. 

Proof. We first need a factorization property of these sums, which will allow us to 

concentrate on the Kloosterman sum when it has a prime ideal in its third argument. 

We need slightly more general sums than those in (3.2). Let  A * 0  be an ideal of  (7 

and let 91,92 be characters of the additive group tT/A, define 

s(A, 91,9t02) = E 91(6) 92(6-1). (3.5) 
6 E (r 

Clearly (3.2) is of this form with 

9,(a) = e (Trr/Q ( - ~  ) ) 

{Tr { ah'~'~ 
9 2 ( a )  = e ~ K/Q ~ Y ]]"  

Suppose that A=P~' P~'... P~' is the factorization of A into prime ideals. Since 

<, e , .  6/p~, (3.6) ~/A = ~/PI x ~7/P 2 .. • 

we may factor any characters q9 and 9 of  ~?/A in qg=tplxq~2... Xqnr, 9 = 9 1 x 9 2 . . .  X9r 
with 

9i, q~i characters of 6/P7 i. 

So that 9(xl . . . . .  Xr)=gI(xO92(X2) . . . . .  9r(Xr) in the factorization (3.6). The following 

lemma is then obvious. 

LEMMA 3.7. 

e l S(9, cp, A) = S(9, ,  cPl, P, ) S(92, ~2, p~2) ... S(gr, q;gr, P~'). 

Returning to the sum (3.2) if (y)=P~' p~2 ... p~, then 
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= el p : 2 ) . .  S(~Or, q)r' p:r). S(m, n, r) S(v/i, cPl, Pi ) S(~2, q~ 

To prove Proposition 3.4 it is of importance for us to know when q0i and ~i are not both 

trivial. 

LEMMA 3.8. I f  P is not one o f  a f inite number o f  primes (depending on n), then the 

" induced"  character v/i on pe obtained f rom the factorization 

(•) = peR, (P, R)  = I 

where cp (x) = e (Trr /e (ax / r ) )  = ~0~ • ~Oz(x), is nontrivial .  

Proof. Suppose for the sake of argument that D~3(4) in which case 

~ =  Z ~ r  - D  Z 

L* = Z ~--J---i Z 
v - f t "  

Say n=n I +in2/X/-D, n I , n 2 E Z. 

Assuming that ~1 is trivial, we have 

q0(x)=l, VxfiR =:, 

Now xiV'--D E R, Vx E R so 

o r  

o r  

From (*) and (**) 

\ Y / 

x(fzD) E 

Y 

x(ftD) E (~) 

(riD) C(y) 

::*" PI riD. 

x E R .  

(*) 

(**) 
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Thus if P is not one of  the finite number  of  prime divisors of  t~D then ~p~ is not trivial. 

Returning to the proof  of  Proposition 3.4, if P is a prime ideal and ~p and q~ are not 

both trivial then 

SOp, q~, P) = ~ ]  ~,(x) co(x-') 
x*O 

the sum being over the finite field 6/P. This sum can be written as 

E X (ax+bx-I) 
x*O 

with Z nontrivial, ab4:O. The estimates of  Weil [24] now imply in the case that ~p and q0 

are not both trivial that 

IS(W, q0, e)l ~ 2N(P) I/2. (3.9) 

For our fixed n, m in Proposition 3.4 (say n+0)  we define a multiplicative function 

on the ideals of  ~7 by 

and F(P~)=N(P e) if e>O. 

~2N(P) I/2 if P+nD 
F(P) = [ N ( P )  if PInD 

It follows from our considerations that 

IS(n, m, Y)I ~< F((y)) ~ IS(n' m, 7)1 <~ ~ F((y)) 
N(y)" N(y) ~ 

= H (1 +N(P) N(P)-~ -2~ ...) 
PInD 

x H (1 +2N(P)I/2N(p)-~ 2) N(p)-2~ 
P+nD 

= H ( I - N ( P ) ' - ~  l+N(P)'/2-~ 1 ~ o 1  
PInD 

which converges absolutely if 

E N(p)U2-~ and E N(P)2-2~ 

both converge, i.e. if o>3/2.  This completes  the proof  of  Proposition 3.4. 

The connect ion between (3.1) and Z(m, n, s) is the following: 
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P R O P O S I T I O N  3 .10 .  

fF Pm(s, to)'Pn(g + 2, to) 
dx.  d x  2 dy  _ n -3/z In ]-2 4-s-1 F(s) Z ( m ,  n, s) + l~(s) 

y3 F(s) F(s+3/2) 

where t~(s) is analytic in R e ( s ) > l .  

Actually more than Proposition 3.10 can be said, especially about the growth 

properties of the above as functions of t, where s=o+it. For a more detailed analysis of 

this type and especially the behavior of Z(m, n, s) and of sums of Kloosterman sums see 

Goldfeld and Sarnak [7], from where some of our computations here are borrowed. 

Proof. We first consider 

fF Pm(SI, to) e -2zi(n,x) dx I dx 2. (3.11) 

We use the notations X~---(XI,X2) o r  

(n, z)=n, ntxl+n2xz=Re(hz).  Also if 

then 

z=x)+ix2 interchangeably. Notice that 

y(rto) = Y x(rto) = z(rto) . . . .  
I~,z+al2+tyl2y 2' y y I~z+~lZ+lyl2y 2 " 

Finally let ~(z)=e 2niRelz). Now (3. I) may be written as 

f~.y,~ e-2~lmty e2m(,n,.r)- 2hi(n, x) dx| dx2 

q - E  f yS'e(-2nlmiY'/lYz+alz+lvl~Y20(~ rPl 

5)r JF (lyz+dlz+lyl2y2) '' y 

y4~0 

= V(F) ySte-2~lmly bm' n 

+ E YS'O(amlY) f exp(-2Jrlmlyl(lz+dl~'12+y2)lY]2) 
~.0 b,I z'' J r  (Iz + a/ylZ + y2) s' 

r E F ~ \ F  

( ) xO y2(iz+d/712+yZ) nz dxldx 2 

yz+d 

(lyz+ dl 2 + 171Zy 2) 
- ~ z )  dx~ dx 2 
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= V(F) yS, e-2nlmly ~m, n 

+ X Y"e(arn/Y)~efp exp(-2#lmly/(Iz+k+~/Yl2+y2)lYl2) 
~*0,~r~o~_+, I~'1 ~s' 2 ~ ~, (Iz+k+d/yI +Y ) 6rood7 
a6 ~ I (rood 7) 

.. [ -rh(z + k +d/7) -~z )  dx I dx 2 
• ~ ~,y'Clz + k + 6/~1 ~ +~~) 

= V(F) y s' e-2nlmlYdm, n 

YSt O(ath/Y) f exp ( -  2him [y/(I z + ~/~1 ~ +y2) iel ~) 
(Iz +dlyl2 + y2) s' 

~mod7 
a6 E I (rood ~,) 

xO(  -(z+dly)rh ~z) dxldx2. \ ' y ~ - - ~ )  

Letting z'=z+d/~ and then z=z'/y we get, above 

= V(F) y ~' e-2#lmlY~m,n 

y ,o  Irl 2~' J , ,  (Izl~+l) s' y 2 y ( l ~ l )  
(3.12) 

It follows that 

Fern(S1 tO) P.(s 2, w) dXldxzdy fo| w)yhe-XnlnlYe 2#i(n'x) dxldxzdy y3 = Pro(s t '  y3 

which by (3.12) gives 

dm'"V(F) F(s'+s2-2)+ E S(m,n, 7) fo| fn /~-"e-2=t"lyexp(-2#lmll(Izl2+l)ylYI 2) 
(4#lbl) s'+h-2 I~,1 ~'' (Izl~+ I )"  7,00 2 

rood -+l 

-zth y~z y3 • /yC-~-+l) 

Now let ,~2=st+2 and st=s, then we have 

Fern(S, 09) P~(.~+2, w )  
dx I dx 2 dy 

y3 
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where 

6,.,. V(F) r(2s) 

(4~1nl)2, ~- ymod +1 

S(m,n,y) fo| 
I~,12' 2 (IzlZ+1) ' y 

+ Z  S(m, n, y) R, . . ( s ,  y) 
Irl ~ , 

(3.13) 

Rm,.(s,  r)  

:foy,, ye-2"NrO(-y~Z)[exp ( -2~lm I 0(  -zm 
(]Z]2+ 1) s ) ')--1] dXI dX2dy" (IzlZ+ 1) yb, I 2 )'2y(l~ 1) 

It is clear that 

f: [fo" r ] Rm,(s,~,)~ ydy+ e -2nlnly y dy rdr ~lr1-2 
' jirl_2 I~,1 z (r2+ 1) ~ o -  1 

~_~ay S(m, n, y) gm' n(s, ),) 

Irr" 

and hence that 

is holomorphic in Re (s )>l .  Returning to (3.13), we must evaluate 

l=fo| y2e-2~lmlyO(-YfZZ) dxldx2dy 
, (Izl2+1) ' y 

Now 

e+ 2ni(y(nl x t + n2x2)) 
fa2 (x~+x~+ 1) s 

I =  

f| f2n e_2niyrsin(O+a)ln] 
dx  I dx  2 = r dO dr 

Jo .~o ( r % l y  

fo | fo 2~ fo | = F e-2Ztiyrlnl sin odO dr = 
(r2+l) 2 (r2+l) ' 

K_.+ ~(2:tln I y) (2:tlnl y ) ' - '  
= (see [8, p. 686]). 

F(s) 2'-i 

fo 1 (2~t[nl)S_ly,+l e_2,1,1rKl_,(2:tlnly) dy 
F(s) 2 '-  l y 

dr 
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. . . . .  (2srlnl) ' - '  x/--~- r (2s )  
r (s)  2 ~- 1 (4x[nl)~+ 1 r (s  +3/2) 

1 F(2s) 
a-3/24s+J[nl 2 F(s) F(s+3/2) 

(see [8, p. 712]) 

which completes the proof  of  Proposition 3.10. 

We are now in the position to prove an important estimate, concerning 21, (as 

introduced following (2.19) and in the introduction). 

THEOREM 3.1. 21~>3/4. 

Proof. In view of  Proposit ion 3.4 we see that for mn*O, the right hand side of  

Proposition 3.10 is analytic in Re(s)>3/2.  However by the analysis of section 2, 

P,,,(s, co) and hence the left hand side of  Proposition 3.4 may have a pole at an s i in (3/2, 

1) if any such exist. We can calculate the corresponding residue: if s i (2 - s  ) is an 

eigenvalue with corresponding eigenfunctions u~(w) . . . . .  Ur(W) (a basis for this space) 

then the projection of  the residue of Pro(s, co) on uj is by (2.21) 

Cm(J) V(F L) ~ F(2s F 1) 
2~r[m I (1-2s~) (4~lml) sj F(sj+ 1/2) uj. 

So the residue of  the left hand side in Proposition 3.4 is 

f. 2Jrlm[ (I -2sj)  E Cm(k) V(FL) X/-'~-F(2sk-I) dx, dx2dy 
~ t (4rtlm[)S*F(sk+ 1/2) u k P , (s ,+2 ,  to) y3 

Now just  as in the calculation (2.21) this becomes 

V(FL)2erF(2sk- 1) F(2s k) c,,(k) c,(k) 
2:tirol (1 2s~) i 

,~'~=. (4:r[m [)'* (4:tin [)~'+ J F(s, + 1/2) F(s, + 3/2)" 

If, as we may, we choose  the co-efficients o fu j  to be real, and choose m=n so that 

cm(1)+0, we see that the residue at the ficticious sj is not zero. Our previous remarks 

then imply that no s j6  (3/2, 2) exists. This means that 21>3/4. 

Remarks 3.14. (1) From a completely geometric point of  view one can derive lower 

bounds for )],j for a hyperbolic 3-manifold, however their bounds get worse as the 

volumes increase, and in fact go to zero as the volumes tend to infinity. For example 

Schoen (see Buser [1]) has shown that for a very small constant c 

V(M) 2" 



THE ARITHMETIC AND GEOMETRY OF SOME HYPERBOLIC THREE MANIFOLDS 273 

In the general case one can make 2~ as small as one pleases for some suitably 

chosen 3-manifold. 

(2) It seems a natural conjecture that ).~ I> 1 for our manifolds Mn. This conjecture 

could be stated in representation theoretic language. Also, a similar conjecture for 

congruence subgroups of the modular group in dimension 2 (that)q>~l/4), exists in the 

literature (see Selberg [20]). For D very small, one may use methods analogous to those 

of  Roelcke [16], i.e. estimating the Rayleigh quotient, to show that ;tit> 1. 

(3) Finally we remark that for certain number theoretically defined subgroups of 

F3, Kubota  (see Patterson [15]) has shown that 21=8/9. The corresponding eigenfunc- 

tion is of great importance in Patterson and Heath-Brown's solution of the Kummer  

conjecture. 

4. Diophantine equations, quadratic forms and closed geodesics 

From this section on, we assume that Ko is a field of class number one. We will 

describe, in terms of  standard number theoretic quantities, the closed geodesics on the 

manifolds Mn. 

(4. I) A diophantine equation. 

Consider the equation 

t2-du 2 = 4 (4.2) 

which is to be solved for (t, u)E ~ x ~ ,  and dE ~ is fixed (a "Pe l l "  type of equation). 

First, i f d  is a perfect square (in 6) then the left hand side of (4.2) factors over 0~and 

one can easily calculate all the solutions. So assume that d is not a perfect square 

PROPOSITION 4.3. t2-du2=4 has infinitely many solutions. 

Proof. The easiest way of proving this is probably by diophantine approximation of 

X/--d-, see for example [5]. 

The d 's  which are of interest to us are those which are discriminants of binary 

quadratic forms. Thus 

d-flZ(mod4), for some f ie  (7. (4.4) 

For such d 's  one can introduce a convenient group structure on the solutions of 

(4.2). 
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LEMMA 4.5. L e t  x,  y E ~ wi th  

then 

( x - y )  ( x+y )  - 0 (mod 4) 

x + y  - 0 (mod 2). 

Proof .  If  2 is a prime in ~? then 2 [ x - y  or 2[x+y and so 2[x+y since x + y - x - y  

(mod 2). 

If 2 = p  2 where p is prime, then clearly p [ ( x - y )  (x+y)=~p 2 divides one of the factors 

and so p2=2 divides both factors. 

If  2 = p q  with p and q primes, then since x - y - - x + y  (mod 2) we see that (x--y)2=0 
(mod 2), and therefore p and q divide x - y  or ( x - y ) - O  (mod 2)= , (x+y) -0  (rood 2). 

Now suppose that d satisfies (4.4). To each solution (t, u) of (4.2) we associate 

t + V'--d-u 
et'u -- 2 (4.6) 

(where argument V-d- is chosen in [0,:0). Now if el,e2 correspond to ( h , u O  and 

(t2, u2) respectively then 

a+ V"-d b 
el e2 = 2 

t t t2+du I u 2 t t  u 2 + t  2 u I 
a =  , b =  

2 2 

where 

Thus clearly a 2 - d b 2 = 4 ,  and 

Thus 

By Lemma 4.5 we have 

so  that 

.2_,,2 2(mod4),  k = l , 2 .  a - f12 (mod 4) =~ t k = p u k 

(tk--flUk) (tk + flUk) -- 0 (mod 4). 

tk = +fluk (mod 2) 

tl t2 =- fl2u! u2 (mod 2) 
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is 

Also, 

tl, t2 ~ d/dl/-t2 (mod 2) ~ a E r 

tlu2+t2ul=--O (mod2) =}bEr 

Thus, when el e2 is written in the form (4.6) we see the corresponding (t, u) is a 

solution of (4.2). The structure of  this group, with the exception of some finitely many 

d's (which we easily identify), will be seen to be infinite cyclic. 

There is always the trivial solution of (4.2), viz., t=_+2, u=0.  Any solution with 

u*0  will be called nontrivial. Corresponding to each nontrivial solution (to, Uo) one has 

three others (+to, +Uo) and correspondingly _+e • 

First, we want all solutions with lel=l.  In this case [e- l[=l  as well, so that 

to + Uo 
[to+V'-d-uo[ = [to-V~Uo[ = 2 where e - 

2 

therefore 

so that 

Ito + V'--d uol2 +lto-  uol : 8 

Itol2+ Idl luol 2 = 4. (4.7) 

It follows that if there is a nontrivial solution with [e I= 1 then 

[d I ~< 4. (4.8) 

Thus with the exception of  a finite number of  d 's  there are no nontrivial solutions 

with le[= I. For  these we choose a solution (to, Uo) for which 

1 012+1 o21 

is as small as possible (of course it is larger than 2). It is clear that 

_+to n , n~>0, n E Z  (4.8)'  

will yield all the solutions of  (4.2). This solution which by convention we choose to be 

in absolute value greater than one, is called the fundamental solution. This shows the 

group of solutions to be infinite cyclic. The fundamental solution is denoted by ed. 
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Returning to (4.8) we find that for Idl~<4 it may happen that nontrivial solutions, 

with 161= 1 exist. For  example take Ko with D * I  or 3 so that the units of  t?o are + 1. 

By (4.7), N(d)~<16 and Idl--~/N(d) is in Q. Therefore  

(i) Idl = 4 ~ t = 0 ,  lu l  = 1 ,  

Therefore  by (4.2) 

d = - 4  

( i i )  Idl = 3 =~ lul 2 = 1 = Itl 2. 

Therefore  

(i i i)  [d I = 2 

Idl = 1,2, 3 or 4. 

V ' - 4  
and e = + 

2 

~ u = + l .  

u = t = + l  ~ d = - 3  

__l• -3 
- a generator  is 

2 

I + V  ~ - 3  

can only happen if D = 2  and then d--2 (else d is a perfect square) 

~ t = 0 ,  u=+%/-2 

2 

(iv) [ d [ = l ,  s o d = - l  

(otherwise again d is a perfect  square). However d = -  I is never a square modulo 4 for 

these fields. 

Thus d = - 4  has the group of  solutions to (4.2) of the form ZxZ/(4Z).  

d =  - 3  has Z• 

and d - -+2  only in the case of  Q(V" - 2  ) has the group structure 

Z• (4.9) 

All the others are infinitely cyclic. 

Even in the noncyclic case it makes sense to talk of  the modulus of a generator  of  

the free part of  the group of  solutions to (4.2L 
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(4.10) Quadratic forms. 

Let Q(x, y)=ax2+byy+cy 2 be a binary quadratic form over ~7. We call Q primitive 

if (a, b, c)=(1). Dirichlet [3] was the first to develop Gauss's theory of binary forms to 

forms with coefficients in Z[X/--ZI-]. We therefore will call these forms (for any 

Q(V ~ - D  )) Dirichlet forms. As usual SL2(O) acts on these forms by linear substitutions. 

This gives us the notion of equivalent forms (in the narrow sense). The discriminant d 

of the form is of course invariant. The number of classes of primitive forms with a given 

discriminant is finite (Dirichlet [3]) and denoted h(d). As far as computing h(d) for 

various d we refer the reader to Bianchi [2], who computes fundamental domains for 

the action of SL2(~ on ~3, as in section 2, and shows how there may be used to find a 

representative set for these classes. 

By an automorph of Q is meant a transformation 

which fixes Q. These clearly form a subgroup of SL2(ff). 

PROPOSITION 4.1 !. The group of  automorphs o f  a primitive form Q is given by the 
set 

au t2bu. 
such that t2-du 2= 4 

where d is the discriminant o f  Q. 

Proof. Very similar to the familiar case of forms over Z, we give the proof anyhow. 

First note that 
t - b u  t+bu 

- -  E ~7 (4.12) 
2 ' 2 

since 

so that 

t 2 = b 2 u  2 (mod4) ( d -  b z (rood 4)) 

(t-bu) (t+bu) =- 0 (mod 4) 

which by Lemma 4.5 implies (4.12). 

It is simple algebra to verify that each transformation of the above form fixes Q. 
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Now we show that every automorph is of  the above form. Let  

be such a t ransformation.  It follows if Q = a x Z + b x y + c y  2 then 

a = ar2+brm+cm 2 

Therefore  

b = 2ars+b(1 +2sm)+2cmn .  

0 = a r s + b s m + c m n .  

Eliminating b and c gives 
as = - cm 

a ( n - r )  = bin. 

Since (a, b, c)=(1) it follows from a/cm and a/bm that a/m; so let m=au;  then s = - c u ,  

n - r = b u ,  (n+r)2=du2+4. So if n + r = t  then 

t - b u  t+bu  
r = - -  n - as needed. 

2 ' 2 

It is not difficult to see that fixing Q with discriminant d, and mapping solutions of  

(4.2) to matrices 

(t, u) 

is a group isomorphism. 

From this we see that if 

('? ) - -  C / /  

t+bu 

\ a u  2 

d E ~ =  { m E ~ ? : m - f l  2 (mod4),  s o m e f l E ~ ,  m not a perfect square} 

and d is not one of  the finitely many except ions described in (4.9), then the group of  

automorphs of  Q is infinite cyclic and is generated by 

et2 = to + buo 

\ au~ 2 

where (to, Uo) is a fundamental  solution of  (4.2). 
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(4.12) Closed geodesics. 

Quite generally if Mr=H3/F where F is a discrete subgroup of PSL2(C) acting 

discontinuously on ~3, we can describe the closed geodesics of M in terms of the 

transformations in F. We are being a little sloppy in that if 7 E F, 7~identity has fixed 

points in ~3 then M is not really a manifold at such points; however this has no bearing 

on our considerations. 

A transformation ~' in PSL2(C) is conjugate to one of the following. 

(a) (10 ~), zEC, z4:0 

in which case, it is called parabolic. 

called elliptic. 

(c) 

called hyperbolic. 

I~/[ = l, r/~: _+l 

(oe" 0) r_le_i o r > l ,  r•R 

In the latter case many authors call ), hyperbolic if 0=0, otherwise they call it 

Ioxodromic. 

In case (c) l e t  N(~')=r2e 2i0. Also in this case the transformation ~, has two distinct 

fixed points in the extended plane. The geodesic between these is called the axis of the 

transformation. ), has the property that it "c loses"  its axis (and no other geodesic), 

which is clear since the axis is moved into itself. Two conjugates (in F) of hyperbolic 

transformations will give rise to the same closed geodesic in Mr. A hyperbolic 

transformation is called primitive if it is not a power (not trivially) of any other 

transformation in F. It is not difficult to see therefore, that the primitive conjugacy 

classes of hyperbolic transformations give rise to the closed geodesics on Mr. Also 

from the canonical form (c) the length of the closed geodesics is loglN(7)l, and the 

Poincar6 map about the closed geodesic is a rotation by 

2 arg (N(7)). (4.13) 

With a primitive form ax2+bxy+cy 2 with d E ~ ,  we may associate the roots of 
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aO2+bO+c=O in K(V'-d-). We will give the roots an order. As before, we choose 

arg X/d-E [0, Jr), and then associate with [a, b, c] the roots 

(0,, 02) = ( - b - V " - d  - b + V ' ~ . ~  
2a ' 2a /" 

This then distinguishes between [a, b, c] and [ - a ,  - b ,  -c ] .  The group of automorphs of 

Q has 01, 02 as common fixed points. Conversely any PSL2(O) transformation fixing 

these points is an automorph of Q. In this way we associate to each form, a directed 

axis of its automorphs. 

To make our convention in (4.8)' about choice of (to, uo) for (4.2) more unique, we 

always choose ~ and u 0 with arguments in [0, at) and then choose to so that let0,,0[> 1. 

This defines ed uniquely (as well as td, Ud). 
We now make the correspondence between primitive forms and primitive hyper- 

bolic transformations precise. 

To the primitive form [a, b, c] associate of discriminant dE @ associate the primi- 

tive hyperbolic transformation 

ta-bud 

) 
2 --CUd 

ta+bud " 
and T 

(4.14) 

A computation shows that equivalent forms are sent to conjugate transformations. 

Thus we have a mapping from classes of (primitive) forms and conjugacy classes of 

primitive hyperbolic transformations. This mapping is onto since if ), is primitive 

hyperbolic in PSLE(~D) then ), has an axis between fixed points 01,02 say. If 

, ( :  ;) 
then 0~, 02 are roots of 

az+b - z  
cz+d 

or cz2+(d-a)z+b=O. Thus if ctlz2+ct2z+ct3=0, aiE~ is the minimal equation of 

01,02 over (Y then y is an automorph of [al, ct2, ct3] and since it is primitive, it is one of 

(4.14) or its inverse (which corresponds to [ - a t , - a 2 , - a 3 ] ) .  

The preceding discussion proves the following 

THEOREM 4.1. By choosing a representative set for the classes of primitive 
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quadratic forms o f  discriminant dE ~, and associating to it its fundamental automorph 

as in (4.14), one gets a representative set for  the conjugacy classes o f  primitive 

hyperbolic transformations in FD. 

COROLLARY 4.1. The norms o f  the conjugacy classes o f  primitive hyperbolic 

transformations are the numbers e 2, with dE ~ and with multiplicity h(d). In particular 

the lengths o f  the closed geodesics (primitive) are the numbers 2log ledl with multiplic- 

ity h(d), dE ~ and the rotations o f  the PoincarO maps about these are 2 arged with 

d E ~ and multiplicity h(d). 

Proof. When 

is brought in canonical form 

We will have 

therefore 

o r  

td-bud 

I 

2 --CUd 

td+bU d 
aUd 

(; 
Z-I-Z -I = t d 

Z2--tdZ+l = 0 

t d +_ ~ r--~d-- 4 t d ++_ ~ f--d u d 
z - 2 2 -- ed" 

The important point is that the length and rotation of the closed geodesic associat- 

ed to a primitive form Q=[a, b, c] depends only on the discriminant of Q. 

5. Prime geodesic theorems 

By a prime geodesic theorem we mean an asymptotic formula for the lengths of the 

closed geodesics on a Riemannian manifold M. Let C denote the set of closed geodesics 

(we distinguish between the two orientations of such a geodesic) on M. For y E C we let 

r(~') be its length. The counting function whose asymptotics are of interest to us is 

z~(x) = # {y E C: r(~,) ~< x}. (5.1) 

19-838286 Acta Mathematica 151. Imprim6 le 28 Decembr~ 1983 
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It is remarkable, that quite generally for any compact manifold of  negative section- 

al curvature Margulis [14] has proved an asymptotic formula for :r(x). In [18] various 

aspects of such theorems are discussed. 

Our interest here is in M's  which are quotients of ~3 by discrete groups, and for 

which the quotient is of finite volume (i.e. cofinite quotients). 

Let  M be such a manifold and as before let At be the first discrete eigenvalue of 

- A  on M. 

THEOREM 5.1. I f  2 t~5 /9  then 

~r(x) = Li(e2X)+O(e en) as x--~ oo 

where ~ is any number  greater  than 5/3, and where 

f u l 
Li (u) = J2 ~ dt 

as in the ordinary pr ime number  theorem. 

Remar ks  5.2. (i) If AI--<A2--<...--.<2k<5D then the above formula will hold with the 

addition of  k Li terms. 

(ii) Theorem 5.1 corresponds to a similar asymptotic formula for lengths of  closed 

geodesics on M's  which are compact  quotients of ~2, which is due to Selberg and 

Huber and is analyzed in great detail in Hejhal [9]. In fact using the same methods, i.e. 

those of  the Selberg zeta function, Gangolli and Warner [6] have proven a weaker form 

of (5.1). e2 x 
vr(x)- as x ~ oo. 

2x 

They prove this in greater generality (viz. in the case of cofinite quotients of rank one 

symmetric spaces). As pointed out to the author by Selberg, the zeta function method 

may be used to prove (5.1). However, since at present the result is not in the literature 

we will prove it here by a different method which is quite short and direct. For  more on 

this latter method in general rank one case (3), see Sarnak and Woo, to appear. 

(iii) Of corse Theorem 3.1 of section 3, tells us that the ;tt condition of  (5. l) holds 

for the manifolds M o  of this paper (any D). 

In order not to have to introduce any new notation we will prove (5.1) in the case 

of  M o  with one cusp only. Indeed the general case with a finite number of  cusps, can 

(3) See also D. L. DeGeorge, Ecole Normale Superieure, Annales Sc. Ser. 4, 10 (1977), p. 133. 



T H E  A R I T H M E T I C  A N D  G E O M E T R Y  O F  S O M E  H Y P E R B O L I C  T H R E E  M A N I F O L D S  283 

be handled similarly and is only notationally more involved. We will need the Selberg 

trace formula as it applies to such manifolds. 

(5.3) Le t  q~(s) be as in (2.19), the constant  term of  the Eisenstein series in the cusp at 

infinity, and let ~ + l = ; t j  as in (3.17). Le t  g be an even Co(R) test function and h its 

Fourier  transform. Then the trace formula takes the following form (we are a little 

sloppy in not describing various constants  precisely as they are of no consequence  in 

what follows) see [27], or Gangol l i -Warner  [6]. 

f_[ h(o  q0(l+it) "~ c2 h(r) r2dr 
J 

+hyperbolic+elliptic+c3g(O)+c4h(O)+c 5 f ~ h(t) F-~F (l+it)dt (5.3) 

The elliptic term is a sum over conjugacy classes of  elliptic elements of  F, while the 

hyperbolic is a sum over primitive hyperbolic conjugacy classes. The elliptic sum is a 

finite sum with a typical term of  the form 

f 
o0 

constant  x h(r) dr. (5.4) 

The hyperbolic  sum, with the except ion of  a possible finite number of  terms (those 

hyperbolic transformations whose axes are also fixed by some elliptic transformation) 

is 

2 ~ ~ l~ IS(~)l 
{y} primitive k = I , ~ r , . . x  y,r ,  x , i j v ~ y I k r 2 _ ~ v g ) , / - k / 2 1 2  

hyperbolic 

g(k log IN(y)I). (5.5) 

We will write this as 

2 ~ ~ ak, yg(kr(y)). 
{y} k= i 

(5.6) 

To prove (5.1) we will apply the trace formula with carefully chosen test functions. 

Define 

{! 1 -  for Ixl ~< T Kr(x) = (5.7) 
for Ixl > T 
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Thus its t ransform/~r(~) is 

fix a > l  and let 

/~r(~)  = 4 4 sin T~ 
T~2 T2~3 (5.8) 

Thus 

HT(x) = aKar(x)-  Kr(x). 

o . , 9 .  

The following lemmas will allow us to eliminate most of the terms in the trace 

formula as far as certain asymptotics are concerned. 

LEMMA 5.10. Let iz be an even positive measure satisfying Iz{[O,x]}=O(x 3) as 

x---~oo and let ~p be a f ixed element o f  Scwartz class b D, with ~p even, ~p~O, (o>~0, ~(0)= 1. 

Then the following estimate is valid. 

as T--,oo, t---~O (the implied constants depend on ~p and ct). 

I Proof. Write the integral as fo+fl  and make direct estimates on f0 I and for the 

second case IHI ~<1/1~ P and integrate by parts. 

Let  ~p E 5~ as in the last lemma. For t > 0  let 

SO 

Finally let 

~, (~)  = ~fE~). 

gT, ~(X) = (HT*  ~ )  (x) so that hr, ~(~) =/~r(~)  ~(e~). (5.12) 

Now it follows from Weyl 's  law (and it may be easily deduced from the trace 

formula, or in our case one may also use the form of q~(s)) that 

f_' - ~ ' ( l + i t ) d t +  E l=O(x3). (5.13) 
x Irjl <~ x 
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Now using Lemma 5.10 in the trace formula (5.3) together with (5.13) and standard 

facts about F'/F, etc., that all the terms except E5 h(rj) , r i imaginary and the hyperbolic 

term, drop out to give 

1 I 

r k ,jCa 
(5.14) 

By (5.12) we see that the leading term on the right hand side is 

Z fll(rJ) ff)(erj) = s flT(rj)+O(e ear). (5.15) 
~r ,/tR 

The above rj's are of  the form rj=i b with hER and with 0<b<~l , to=l. (5.15) 
becomes 

7 (5.16) 

Hr. 
On the other hand on the left hand side of (5.14) we would like to replace gz,, by 

Now 
IGT. e(x)-ndu) I = O(e) 

and for Ixl>T+~, gr ,~ (X)  "~ Hr(x) - O. 
A trivial estimate shows that 

sr = O(  e "r) 
r(y) ~ T 

for some constant/~, therefore 

Z s My.,gr.~(kr(y))-s Z My.*nr(kr(y)) = o(er~Ue)" 
y k y k 

Thus we may write the left hand side of (5.14) as 

2 Z s My,*Hr(kr(y))+O(e er~)" 
y k 

(5.17) 

Putting (5.16), (5.17) and (5.I4) together we have 

4 ( ~  eartj etrtJ ) ( 
2 Z s  ' ' at} +0 ee~r+eer~ e~ 
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which on choosing e=e  -arl' yields 

2 (~tj (eartj er'J)~ 

(now all O signs are with respect to T--~oo). 

We prefer to rewrite this slightly: instead of summing over y primitive and then 

over k, we sum over all conjugacy classes of hyperbolic transformations, and then the 

coefficient ~r depends on the primitive element covered by y. Actually in our asympto- 

tics the nonprimitive terms are easily seen to be smaller than the O term. So we write 

the above as 

2 (~ti (e~T'J ertJ]~ Zr MyHr(r(Y))=-~ at~ ~ j j +O(T). (5.19) 

Let 

F(T)=  2 Mr(I-Ir(TY)I)2 (5.19)' 
y, r(y) ~< T 

so that (5.18) can be written as 

Now define 

2 (~tj (eartJ ertJ~ 
/ / (5.20) 

.,(x)= ~ ~t. (5.21) 
r(y) ~ x 

Since Me~>0, :r~ is increasing. It is clear that 

and if G(s) = ~l(u) du dv 
S 2 

then G(s) = --~ F(s), and G" = ~l. 

(5.22) 

Then from (5.20) 

o 
(aT) z T ,'lpZ TL J / 
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o r  

= e } + O(T3). (5.23) G(aT) G(T) E \  at) t) / 
a tj 

Since G is increasing and a > l  the last allows us to conclude that 

G(s) = O(e s) 

and setting a T = s  in (5.23) yields 

stj 
G(s)= +O(e ), 

since a is arbitrary we have 

as $---~ oo; 

G(s) = "-'~ ~ + O(g'), as Ve > 0. (t) (5.24) 

Since :r, is increasing (though not continuous), we have by (5.22) that for any h>0 

G ( x -  2h ) + G ( x ) -  2 G ( x -  h ) <~ :rl(x) <~ G(x + 2h ) + G ( x ) -  2G(x + h ) 
h 2 h 2 (5.25) 

and by (5.24) this gives 

choosing h=e  -x/3 

x-~ etJ ~ / ,,t~ \ 
sq(x) = 2 . , - - + O l h e ~ + ~ _ 2  I 

, tj \ h ~  

~X 
~l (x) = E e" +O(e(2/3+t)x). 

,j 
(5.26) 

It is easy to see that only the primitive ~,'s come into the above asymptotics also by 

assumption of the theorem i.e. that ; t~5/9 means that, q<2/3, so we have 

E log IN( )I 
yprim IN(Y)'/Z-N(~')- ml 2 

log tN(y)I ~ x  

= eX+O(e(2/s+,)x). 

A simple calculation from here shows that 

from which (5.1) follows. 

2 
E log ]N(y)[-- -~-x-~''/s+~'"t- u t x  ) 

/ .  
log tN(y)! ~ x 
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6. Unit asymptoties 

In order  to obtain our  main result on the class number  asymptotics  we need to know the 

asymptotics of  the cardinality of  the sets 

9,, = ( d e  ~:  leu[ ~< x} 

as x - - ~  (the notation and setting begin as in section 4). This section is devoted to this 

question. 

THEOREM 6.1. 

such that 

There is a constant  ck>0 depending on the f ield K = Q O c / - D  ), 

]~xl = ckx2+O(xa) as x - *  oo 

where fl is any number  greater than 4/3. 

The constant  Ck may be computed and we will say more about its value later in this 

section. 

The argument  is similar to that in Sarnak [17] and so we will only outline the proof  

of  Theorem 6.1. 

Consider the sets 

Ex= {(d,k): d E ~ ,  k~> l, k E Z  and lekdl<~x} 

and let Vdl(x) = IExl, and lp(x) = lS~x[. It is clear that 

1DI(X ) = 1D(X)-}-V)(XI/2)-.}-V)(XI/3 ) 

so that since we will show that ~Ol(x)=O(x2), we see that 

V,:l(x) = q,(x)+O(x). (6.1) 

As we saw in section 4, e k d E ~ ,  k~>l yield solutions to t2-du2=4.  Also every 

solution of  t2 -du2=4 for  which let, m[>l is one of  e,~ or -e~(we  are assuming, as we 

may in these asymptot ics ,  that d is not one of  the finite number  of  exceptions for which 

the group of  solutions is not cyclic). 

Thus we are counting 

� 8 9  d ~ . ~  and l<le,,.l~<x}. 
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N o w  

et'u = 2 2 " 

Thus we want to count  

Indeed 

~P2(x) = �89 {(t, u, d): Itl ~x ,  t2 -du  2 = 4, dE 9} .  

W(x) = v/~(x)+O(x) = q,2(x)+O(x). 

Without increasing the error term so far, we may allow d to be a perfect  square in 

the above, so that we are looking at 

~p3(x) = �89 # {(t, u, d): Itl <. x, t2 -du  2 = 4, d = /32, d 4= 0 (rood 4), some/3}.  

So if we fix/31,/32,/33,/34 which are representatives of the squares modulo 4, with 

say t31 =0,132= 1 then we will need 

Nj(x) = # {(t, u,/): t2-(4/+/3j) u 2 = 4, lu I ~< x, Itl ~ x} 

=�89 mod(4uZ), lul<-x, [t[<-x}+O(x) (6.2) 

so that 

and 

then 

4 
= + E 

2 j = l  

To calculate the asymptot ics  of  (6.2) in (6.2) let 

Sj(x, u) = # {Itl ~< x: t 2 ~ (/3u2+4) (mod 4u2)} 

ST(u) = # residue class solutions of  t 2 -= (/3iu2+4) (mod 4u 2) 

LEMMA 6.4. 

S(x, u) = 

Nj(x) = E Sj(u,x). (6.3) 
lul ~ x 

:rx2 S*(u) 
V( ff; L) N(4u 2) 

+ 0 (S*(u) x ~3 + S*(u)] 
\ N(4u 2) J)3 / 
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LEMMA 6.5. Let L be a fixed lattice in R 2 and p be any point in R 2, then 

{4 ~L: 12-pl <-R) = stg---~2 +0(R2/3)+0(1). 
V(L) 

The O(1) is put there so as to include R--*0 as well, also the implied constant is 

independent of  p. 

Proof of  Lemrna 6.5. This is a standard lattice point result-- the proof shows that 

the error term is independent of  p, see [25]. 

Proof of  Lemrna 6.4. 

Sj(x, u) = # {t: Itl <.x, t 2 -- u2flj (mod4u2)}. 

Let tl . . . . .  tk where k=Sf(u) be a representative set for the residue classes of the 

congruence defining the set in Sj. Now 

# {Itl <~ x: t -- tj mod (4u2)} = # {4 E ~: Itj+a2u21 <~ x) 

# 2 E f t :  4 -  
14u 2 

which by Lemma 6.5 

six: / x 2/3 \ 
V ( , ~ Z ~ ( 4 u 2  ) 4 - 0 ~ ) + 0 ( 1 )  

from which the result follows by adding over the classes. 

Nj~x) = ~ s~.(u, x) 
lul ~ x 

We will split this sum as follows (j  fixed) 

( 2 + 2 + 2 IS(u ,x)=I+lI+I l I .  
lul~x m xln<lul~x~3 xVS<lul~/ 

, 

I -  V(~t ) N(4u2) N(4u2)l/3 
lul~x I/2 \ lul~x m 

which follows from L e m m a  6.4 and the estimate 

IS*(u)l = o@19, vt > 0. 
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T h e r e f o r e  

F o r  xl/2 <lul~x2/3  

t he re fo re  

~x------~2 .~.o S*(u----L +O(x~+')" 
I = V(~:L) N(4u2) 

= ~ ,  S(x ,  u).  II 
x ~:~ < lul ~ x ~3 

X 2 
- - ~ < 1  
N(u  2) 

IS(x,  u)l  = x 4/3§ 
lul ~ x  ~3 

Final ly  

III= E 
x ~3 < lul ~ x 

T h e  condi t ion  impl ies  

S(u) ~ # {it, n, u): Itl ~ x, t 2 -4u  2 = 4, x 2/3 < lul ~ x}. 

ku  2 = ( t - 2 )  ( t+2) .  

N o w  if fo r  e x a m p l e  ( t - 2 ,  t + 2 ) = ( 1 )  ( the o the r  possibi l i t ies  are  similar)  we have  

u = y z  with y2 [ t -2 ,  z21 t + 2  

=*- t -= + 2  (mod  v2), Itl ~< x 
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w h e r e  

x t/3 < Ivl < x I/2. 

F o r  each  t the n u m b e r  o f  cho ices  for  (k, u) is o(Itle), r e > 0 .  T h e r e f o r e  

X2+~ X2/3+~ 

x 1z3 < Ivl ~ x in 

\ .Ix I'r4 Jx '/' _ _ d r  

= O(x ~3+ ' ) .  
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Therefore combining estimates for I, II and III 

=x  2 Sj*(u) ~.O(x4/3+,), 
Nj(x) = V( ~;L) ~,o N(4u2------~ " 

and so 

4 

1 j~l Nj(X) -~- CkX2-1-O(x413+e), vAx)  = - ~  = 

where 

Ve>O; 

V e > 0  

ck-  2 V(J; L) =1 

This completes the proof of Theorem 6.1. One can "evaluate" the ck even further. 

For example if D - 3  (mod 16) then using Euler products (E j41 ST(u) being closely related 

to a multiplicative function) we can show that 

~t (~k(2))2 x (rational). 
c k - 2X/~. r 

Since not much is known about rationality properties of r ~k(4), we do not 

give the details of this computation. The computation is tedious but straightforward. 

7. Class number asymptotics and the Selberg zeta functions 

By Corollary 4.1 and Theorem 5.1 and (3. I) we have 

THEOREM 7.1. 

E h(d)=Li(eZ~)+O(erX), where y>~.  
dE ~(exr~) 

THEOREM 7.2. 

~a h(d)=Li(x4)+O(xr), ~,> ~. 
d ~  x 

1 ~ h(d) = 1 Li (x4______~) ~_O(xr), 
I~xl d ~ ,  Ck X 2 

where 9/> ~. 
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Proof. Use Theorems 7.1 and 6. I. 

Remark 7.3. Using congruence subgroups of F o of level P a prime ideal of ~70, one 

can in a fashion similar to Sarnak [17], obtain average asymptotic for 

where 

De, x = {d 

(7.4) Selberg zeta function. 

x+~/-~Y satisfies yEP} E ~x:ed-- 2 

We now show how the Selberg zeta function for ~/Fo may be viewed as a 

completely arithmetically defined function associated to K. By section 4 we have 

identified the lengths and Poincar6 maps of the closed geodesics. Using this and 

Selberg's definition of a zeta function, see Gangolli-Warner [6] we define, for Re (s)>2, 

Z (s) = I-I 1-I 1-I (7.5) 
d E ~  m n 

The point is that the logarithmic derivative of Zx(s), is the hyperbolic term in the 

trace formula (5.3) with 

I hs(r) = 
(s-- l)2+r 2" 

From this, as is by now standard in such situations, meromorphic continuation, 

functional equation, and zeros and poles of Zx(s) may be read off. The functional 

equation is about the line Re(s)=l .  Zx(s) has zeros at l+_irj, and these are the only 

ones in Re (s)~>l. Thus there is a zero at s=2 and possibly a finite number in the interval 

(1,2). So the analogue of the Riemann hypothesis is essentially true, and by the main 

theorem of section 3 besides the zero at 2 (which is the analogue of the pole in the more 

familiar zeta function cases) there are no zeros in Re (s)>3/2. 

By Remark 3.14, we can show that for K=Q(V -1  ) there are no zeros in (1,2). 

Besides these zeros one also has zeros coming from the q0'/q~ term in the trace formula 

and from (2.19) these are at the point Q where Q is a nontrivial zero of ~x(s). That the so 

simply defined zeta functions of (7.5) should have such nice and well understood 

analytic properties, is to us rather remarkable. 
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