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This paper contains the proof of the assertion in its title. My motivation for considering 

this problem was the following. Let M be a compact differentiable manifold and let D 

be an elliptic differential operator between the spaces of C ~ sections of two bundles on 

M. In [4] M. F. Atiyah proves that if index D>0, then, for every Galois covering 

AT/---~M, the operator / )  induced by D on ~ /has  nontrivial L 2 solutions/)u=0. Atiyah 

goes on to ask whether the same is true for coverings which are not Galois. His guess is 

that the answer is negative in general but that the counter-example will be difficult to 

construct. The simplest situation to consider in this connection is that of a surface and 

the operator whose index is the Euler characteristic. For infinite coverings, since every 

L 2 harmonic function would be constant and nonzero constants are not in L 2, Atiyah's 

question reduces to the question of existence of L 2 harmonic forms of degree one. It is 

shown here that a counter-example will not be found in this simple setting. 

From now on S will denote an oriented, compact surface of genus g=g(S)>l 

equipped with a smooth Riemannian metric. S--%S will be an arbitrary (usually infinite) 

covering of S, and A = A will be the Laplace operator on S with respect to the pull back 

metric. A differential (exterior form of degree one) on S is harmonic, i.e. Ao)=0, and in 

L 2 if and only if (cf. [15], Theorem 26) 

and 

dw=d~w=O 

oo. 
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Since * is a conformally invariant operation L 2 harmonic differentials are conformal 

invariants. Moreover every two metrics on S, and hence their pull backs to S, are 

mutually bounded. It follows (cf. [6], w 1) that the existence o fL  2 harmonic differentials 

on ~r is independent of the choice of metric and conformal structure on S, i.e. is 

determined by the topology of the covering ~r 

The paper is organized as follows. In the first section an isoperimetric inequality 

(cf. (1.2) below) for subsets of ~r is proved. This inequality was proved by Nishino [13] 

for the Poincar6 metric. The proof presented here is simpler than Nishino's proof and 

imposes no restriction on curvature. However, Nishino uses a more general notion of 

covering. Since L 2 harmonic differentials are conformal invariants, Nishino's result is 

sufficient for proving the theorem of the title. 

In w S i s  replaced by arbitrary Riemannian manifold for which the higher 

dimensional analog of (1.2) holds. Such manifolds are shown to carry nonconstant 

positive superharmonic functions. It is well known that a Riemannian manifold admits 

such functions if and only if the Brownian motion on it is transient, i.e. if a Brownian 

particle on M tends to infinity with probability one as time approaches infinity. 

Transience of Brownian motion was proved previously for simply connected manifolds 

of negative curvature by numerous authors [5], [14], [17], [19]. The result proved here 

is a generalization of their results since variable curvature and nontrivial fundamental 

group are allowed. It has a very simple proof, which, however, does not give any more 

detailed information about asymptotic behavior of Brownian paths (such as existence 

of angular limits proved in [14]). 

In w 3 the existence of L ~ harmonic differentials is proved. It is known from the 

work of Ahlfors [2] that, in the crucial case when S is planar, L 2 harmonic differentials 

on S exist if and only i fS carries a nonconstant harmonic function u with finite Dirichlet 

integral, j',ldul2<o0. Certain function theoretic consequences of this fact are derived. 

The most interesting is a new proof of Myrberg's theorem [12] that the logarithmic 

capacity of the limit set of a nonelernentary Kleinian group is positive. 

I am grateful to L. Bets, L. Keen, I. Kra, C. Series for helpful discussions, to D. 

Sullivan for explaining to me certain results of [18], and to M. Ohtsuka for bringing 

Nishino's work to my attention. Finally, my thinking about the problems discussed 

here was influenced by the study of simplicial L 2 cohomology of surfaces by D. 

DeBaun [8]. As a matter of fact, much of what is done in this paper can be carried out in 

simplicial setting leading to interesting results about certain random walks. This will be 

the subject of a separate paper. 
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w 1. An isoperimetric inequality 

In this section ~r are as in the introduction. In addition, it will be assumed that ~r is 

planar, i.e. that every simple closed curve disconnects. The following theorem was 

proved in [13] for the metric of constant negative curvature. 

THEOREM 1.1. For every open, relatively compact subset D of S with smooth 

boundary 

A(D) <<- aL(aD), (1.2) 

where A(.) stands for the area, L(.) is the length, and a>0  is a constant depending 
only on S and its metric. 

Proof. According to "Metrisch-topologischer Hauptsatz" of Ahlfors [1] 

A(S) max (-x(D), 0) I> 2(g-  l) A(D)-kL(OD), (1.3) 

where g=g(S)> I, k>0 is a constant depending only on S and X(') stands for the Euler 

characteristic. Since S is planar 

z(D) = 2 -N ,  

where N is the number of boundary components of D. If N = l , 2 ,  (1.3) implies the 

isoperimetric inequality (1.2) so that it is enough to assume N~>3. In this case (1.2) 

yields 

A(S) N >>- 2(g-  1) a ( o ) -  kL(aO). 

Now choose b>0 so small that the following conditions are satisfied. Every simple 

curve y in the base surface S of length smaller than b is contained in a convex, evenly 

covered coordinate neighborhood and bounds a disc of area less than �89 

Assume first that all boundary curves of D have length at least b. Then N~L(aD)/b 

and (1.2) holds with 

a= (2g-2)- ' (k+ A(S) ) 
b " (1.4) 

To prove the case of general D list the "shor t"  (i.e. of length smaller than b) 

curves on aD, y~, Yz . . . . .  7,,. These curves can be divided into two classes as follows. 

Since ~ is planar S\Yi,  has two components for every i= 1,2 . . . . .  m. Moreover, since 7; 

is "shor t" ,  one of the components of S\y,-  is a disc B~. Either B~cD or Bic- ,~D.  The 

two possibilities are illustrated in Figure 1. 
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L~ ob~ a r Y 

Fig. 1. 

Renumber  {7i}i'=1 so that ~q, 72 . . . . .  7k bound "ho le s "  BiCD and ~'k+l . . . . .  ~m bound 

small discs Bf-D.  Let  DI=D t.J I.J~= l Bi, i.e. D l is D with "all holes plugged".  Clearly 

A(D 0 A(D) 

Hence  it will suffice to prove (1.2) in case D=D~ that is, when 

D=D' UB~ UB2t3... t.JBm, D' has only " long"  boundary components  and each Bi is a 

topological disc whose boundary  has length smaller than b. The inequality (1.2) holds 

for D'  with a given by (1.4). By the assumption on b, :r[/~i is an isometry so that 

L(~/ i) L(x(~/i)) 

A(B i) A(gr(Bi)) " 

By Hilfsatz 1 of  [1] the isoperimetric ratio 

L(y) 
min (A(SO, A(S2)) ' 

where ~ is a simple smooth curve on S separating S into two components,S~ and Sz, is 

bounded below by a positive constant  h. Hence,  since A(:r(B~))<�89 

L(yi) 
- - ~ > h  for i =  1,2 . . . . .  m. 
A(B i) 
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It follows that (1.2) holds for a general D with 

a =max  ( 1 ,  (2g-2)-1 ( k + - A - ~ ) ) .  

Clearly the constant a depends on S and its metric but not on S or D. 
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w 2. Positive superharmonic functions 

Let M be an open, oriented Riemannian manifold of dimension n>~2, such that the 

analog of (1.2) holds. Namely, assume there exists a constant h>0 so that for every 

relatively compact D of M with smooth boundary 

Vn_1(OD) 
~>h. (2.1) 

v~(D) 

Here Vk(') denotes the k-dimensional volume with respect to the Riemannian metric of 

M. 

THEOREM 2.2. Suppose the manifold M satisfies the conditions above. Then M 

carries a nonconstant positive superharmonic function. In particular the Brownian 

motion on M (i.e. the minimal diffusion process associated to the Laplace-Beltrami 

operator, cf. [5]) is transient. 

Proof. The sign convention used here is such that A=-dZ/dx 2 in R ~. According to 

Cheeger [7], the first eigenvalue 2(D) for the problem 

Au = ;tu on D, ulao = O, 

satisfies ,~(D)>~h2/4, for every open, relatively compact set D c M  with smooth bound- 

ary. By Theorem 1 of [9] or Theorem 1 of [17] the equation 

Au = 2u (2.3) 

has a positive solution for every 2~<h2/4. Let v>0 be a solution of (2.3) for an arbitrary 

2 E (0, h2/4]. Then Av=2v>0 so that v is a nonconstant positive superharmonic func- 

tion. Existence of such functions implies transience (see e.g. [17], Part I where 

transience is referred to as 0-transience). 
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w 3. Functions and differentials on Riemann surfaces 

In this section S will be an open oriented Riemannian surface. Later on it will be 

assumed that S covers a compact surface. If the isoperimetric inequality (1.2) holds for 

subsets of S with some constant a>0 ,  then S carries a nonconstant positive superhar- 

monic function by Theorem 2.2. In the language of classification theory of Riemann 

surfaces (cf. [3]) this means that S is hyperbolic. The connection between the type 

problem and the isoperimetric problem has been observed by Ahlfors [I] for simply 

connected surfaces, but it is new for surfaces S with :tl(S)=t={e}. In case the surface S is 

planar one can conclude much more. 

THEOREM 3.1. Let S be a planar Riemannian surface for  whose subregions the 

isoperimetric inequality (1.2) holds. Then 

(a) S admits a nonconstant bounded harmonic function, 

(b) S carries a nonconstant harmonic function with finite Dirichlet integral, 

(c) The action ofztl(S) on the unit circle [zl= 1 in the complex plane (induced by a 

conformal indentification o f  the universal covering o f  S with the unit disc) is not 

ergodic. 

Proof. S is hyperbolic by Theorem 2.2. For planar surfaces hyperbolicity is 

equivalent to (a) and (b) by Theorem 7 E, Chapter IV of [3]. Let U be the unit disc in 

the complex plane and let F be the Fuchsian group such that F \ U  is conformally 

equivalent to S. The pull back of a nonconstant bounded harmonic function from 

S = F \  U to U defines a F-invariant bounded nonconstant harmonic function on U. By 

the theorem of Seidel [16] the action of F on the unit circle is not ergodic. 

Note that if u is a nonconstant harmonic function with finite Dirichlet integral 

f Idul 2, then co=du is a nontrivial L 2 harmonic differential. This obvious remark will be 

used in the proof of the main result of this paper. 

THEOREM 3.2. Suppose S---~S is an arbitrary covering o f  a compact Riemann 

surface S o f  genus g(S)>l .  Then S carries a nonzero L 2 harmonic differential, and 

consequently a nontrivial L 2 abelian differential. 

Proof. If q~ is a real harmonic differential, to=cp+i-~cp is analytic and [to12=2 [(pl 2. 
Thus it will suffice to prove the existence of an L 2 harmonic differential. If S is not 

planar this is classical (cf. [3], Chapter V, w 20 E). If S is planar, choose a metric on S 

compatible with the conformal structure and equip S with the pull back metric. By 
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Theorem I. 1 and Theorem 3.1 (b) S carries a function u with du~-O and f~ Idul2< oo. As 

remarked above q~=du is a differential with required properties. 

As an application of ideas used in the proof of Theorem 3.2 one can give a new 

proof of the main theorem of Myrberg [12] (cf. [10] for definitions and terminology 

concerning Kleinian groups). 

THEOREM 3.3. The logarithmic capacity o f  the limit set A(F) of  a nonelementary 

Kleinian group F is positive. 

Proof. It is well known (cf. [12]) that a nonelementary Kleinian group F contains a 

Schottky group F~ with two generators. Since A(Fl)cA(F) it is enough to prove the 

theorem for F=F  1. Let fI=ff/(F) be the region of discontinuity for F. It is quite easy to 

prove and well known (cf. [10]) that for a Schottky group F with two generators ~ is 

connected, F acts properly discontinuously and freely on ~ = S  and S = F \ f l  is compact 

of genus two (cf. [10]). Having chosen an appropriate Riemannian metric on S one can 

apply Theorem l . l  and Theorem 3.1 (a) to conclude that f2=S carries nonconstant 

bounded harmonic function. It follows from [3], Chapter V, 22B that A = C \ Q  has 

positive logarithmic capacity. 

Remark. Conversely, if S--%S is a planar covering of a compact Riemann surface 

of genus g > l ,  then by a theorem of Maskit [11], there exists a Kleinian group F such 

that the covering S--%S is conformally equivalent to U--~F\U,  where U is a compo- 

nent of Q(F). Myrberg's theorem implies then that S is hyperbolic and carries nonzero 

L 2 harmonic differentials. Thus, Theorem 3.2 can be regarded as a generalization of 

Myrberg's theorem to the case where the Kleinian group is not present. 
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