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Introduction 

The objective is to prove two important inequalities of Riemann surface theory and to 

present them in such a way that one can see their close relationship. The first inequality 

is the minimal norm property of quadratic differentials first observed by Marden and 

Strebel [8]. Actually a somewhat different inequality is given. The minimum norm 

properties have many applications, one of which is a proof of the result of Hubbard and 

Masur [7] Concerning the existence of a unique holomorphic quadratic differential 

whose horizontal foliation and vertical measure realize a given measure class of 

measured foliations on a given Riemann surface. This result is given in section 7. The 

method of proof is quite different from the one in [7]. 

The second important inequality is the main inequality of Reich and Strebel. It has 

central importance in Teichmiiller theory and can be used to derive the infinitesimal 

form of Teichmiiller's metric [10]. Moreover, this inequality can be used to show that 

Teichmiiller's metric is the integral of its infinitesimal form [6]. A proof of this result by 

other methods was given by O'Byrne in [9]. 

Both of these inequalities turn out to be consequences of certain properties of the 

trajectory structure of a holomorphic quadratic differential. For the purposes of the 

"main inequality" we are able to bypass some of the theory of trajectories by means of 

an averaging device used by Teichmiiller. This averaging device also appears in the 

proofs of Teichmiiller's theorem given by Bers [4] and Abikoff [1]. But for the 

minimum norm property in the form given by Marden and Strebel [8], the detailed 

theory of trajectories seems to be necessary. 

(1) Research partially supported by the Research Foundation of CUNY. 
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w 1. The trajectory structure of quadratic differentials 

Throughout this paper it is assumed that R is a Riemann surface obtained from a 

compact surface by removing at most a finite number of points. The removed points are 

called punctures.  I f  g is the genus of  R and n is the number of punctures, we will 

assume 3 g - 3 + n > 0 ,  except when g= 1 we allow n to be zero. This is enough to ensure 

that the space of  integrable, holomorphic, quadratic differentials on R has positive 

dimension. By a quadratic differential ~ on R we mean a function defined on each 

coordinate patch in such a way that the expression ~(z)dz 2 is invariant. This means 

that if z~ and z2 are two different local coordinates defined in overlapping open sets in 

R, then the quadratic differential has two different representations ~P~(zl) and ~P2(z2) 

which are related by the equation ~(zO=V,.,2(z2)(dz2/dzO 2. Unless otherwise specified 

we will assume ~p is continuous except at a finite number of  points. We will not need to 

consider any weaker regularity properties. 

A quadratic differential qo(z) is holomorphic if in addition each q~i(zi) is a holomor- 

phic function of  z;. The order of a zero of  ~v is the order of the zero of  q~i(zi) and this 

does not depend on which local coordinate zi we use. If p in R and q~(po)=~0 and z is a 

local coordinate defined in a neighborhood of Po with Z(po)=Zo, we obtain a special 

kind of local coordinate r called a natural parameter,  by letting 

~(z) = V~v(z) dz. 
z0 

It is clear that if ~l(Zl(P)) and ~2(z2(P)) are two natural parameters coming from ~v and 

defined in overlapping coordinate patches U~ and /-/2, then 

~(zl(p)) = +r (1) 

for p in U~ 0 U2. 

Notice that dr 2 for any natural parameter ~ associated with q~. A para- 

metric curve y: I--->S is called a horizontal (vertical) trajectory of q~ if, given any local 

coordinate z defined in a patch overlapping the image of y, the function qo(y(t)) satisfies 

~v(y(t)) y'(t)2~>0 (~<0). This means that in the ~-plane, where r is a natural parameter, the 

curve ~,(t) is transformed into a horizontal (vertical) line. Clearly, this notion is 

independent of which local parameter you take. In fact, if you take two different 

natural parameters,  the transition mapping is of the form expressed by formula (1) and 

this preserves horizontal and vertical lines. 

In an obvious sense, the horizontal and vertical trajectories of q9 give two trans- 
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verse foliations in R in a neighborhood of  any nonsingular point of  q0. With a slight 

extension of  the notion of  transversality,  we can also include the singular points. Le t  

have a zero of  order  m at p in R. At any such point there will exist a local coordinate z 

with z(p)=0 such that qD(z)dz 2 takes the form zmdz 2. Let  d~=zm/2dz. Although for odd 

integers m, ~ is not a single-valued function of  z, for any integer m * - 2  a radial line tto 

(where t~>0 and [tol---1) emanating from the origin in the z-plane will be horizontal if 

(tto)mto2~>0, that is if tom+2= 1. It turns out that in order  for  ~ to have finite norm, m 

must be I>-1.  For  the case where m = l ,  the trajectories in the z-plane have the 

appearance shown in Figure I. 

The  directions of  the vertical trajectories come from the equation to re+z=- 1. We 

say that two foliations are transversal at a singular point if they have cl- topological  

s tructure equivalent to the horizontal and vertical trajectories of  zmdz 2 for  some 

integer m ~  > -  1. 

w 2. Invariants for quadratic differentials 

Any nonconstant ,  holomorphic,  quadratic differential q~ on R carries with it several 

invariants. First of  all there is the area element  

= I (z)l dx dy = d,7 

where ~=~+i~l is any natural parameter .  F rom this one obtains the norm of  q~ by letting 

I1~11 = f fnlq (z)ldxdy �9 

Of course the area element  and the norm are defined even for nonholomorphic  

quadratic differentials. If  I1 01t<  and q0 is holomorphic on R, then it is e lementary (by 

switching to polar coordinates)  to see that q~ can have at most simple poles at the 

punctures  of  R. 

The expression ds --1 l'/21dzl is a line element.  The cp-length of  a piecewise 

differentiable arc 7 in R is l~O,)=feds~. Away from the singularities of  ~ and in terms 

of  a natural parameter  ~, one has ds2=d~2+dq 2, so local geodesics away from singulari- 

ties are just  straight line segments in the e-plane. However,  at singularities geodesics 

can have vertices. Although the curvature of  the metric dsq~ is not defined at singular 

points, in an intuitive sense the points where q~ is zero contribute to negative curvature.  

Since we will consider  the t rajectory structure of quadratic differentials which are 

holomorphic in R, there is a negative-curvature-like property which forces global 
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horizontal trajectories 

m= l  
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vertical trajectories 

Fig. 1 m = l  

geodesics to be unique. In our approach, we will not need to prove this, but the fact 

that q0 is holomorphic in R will enter in an essential way. 

For our purposes, the most important notion is the height of a curve. By definition, 

if ~, is a differentiable curve on R, its height with respect to q0 is given by 

= ~ I Ira ~X/-~~dzl. (2) h~(y) 

Similarly, its width is given by 

= fy IRe ~ff-~-~dzl. (3) 

Obviously the of-length of a curve is greater than or equal to its width and its height. 

We call a trajectory critical if, when it is continued in either direction, it meets a 

singularity of ~. Let b~ be the subset of R which consists of the union of all critical 

vertical trajectories. Since there are a finite number of singularities of q~, b~o consists of 

finitely many smooth images of intervals, and therefore, be has measure zero. (In the 

generic case, b~ is a dense subset of R.) 

w 3. A minimal norm property 

Now let ~O(z)dz 2 be a quadratic differential on R, but not necessarily holomorphic. 

All we need is sufficient regularity of ~o so that line integrals of the type 

h~(fl)=f/~lIm ~V'-~dzl are well-defined for every vertical segment fl of the holomor- 

phic quadratic differential. The following theorem is analogous to but quite different 
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from the minimal norm property given by Marden and Strebel [8]. The proof we follow 

imitates Teichm011er's averaging trick which is contained in Bers' fundamental paper 

[41. 

THEOREM 1. Let q~ be a holomorphic quadratic differential on R with 

]lq~ft=f fRIcp(z)]dxdy<~ and for  which every noncritical vertical trajectory can be 

continued indefinitely in both directions. Let ~O(z) dz z be another quadratic (not neces- 

sarily holomorphic) differential which is continuous on R. Assume there exists a 

constant M>0 such that for  every noncritical vertical segment fl, one has 

h~o(fl)<,hw(fl)+ M. Then 

(4) 

Remarks. (1) Any holomorphic quadratic differential q0 on a compact Riemann 

surface or a compact surface with finitely many punctures for which I1 11<  will satisfy 

the hypothesis on the trajectories of q0. 

(2) When we say the noncritical trajectories can be continued indefinitely in both 

directions, we do not exclude the possibility that they may be closed. 

To give the proof we need the following lemma. 

LEMMA 1. Let g be a continuous nonnegative function on R and let g be integrable 

with respect to the areal element Iq~(z)l dxdy induced by the holomorphic quadratic 

differential qg. Let q9 satisfy the hypotheses of  Theorem 1 and ~ be a natural parameter 

for  q~. Then the function h(~)=g(~+i~)+g(~-ir) is well-defined on R - b y  and 

f fRh(r = 2 f fRg( )d d . (5) 
Proof. First note that integrating over R and over R-b~o are equivalent since b~ is 

a set of measure zero. Since noncritical trajectories can be continued indefinitely in 

both directions, after choice of orientation, the expression g(~+ir) is well-defined for 

on any particular noncritical trajectory. Thus g(~+ir)+g(~-ir) is well-defined on 

R - b ~ ,  independently of the choice of orientation of any particular trajectory. Since the 

locally defined mapping ~--~+ir  has Jacobian identically equal to one, the expression 

h(~)d~drl has the same local mass as 2g(~)d~d~l and thus one has (5). 

To proceed with the proof of the theorem, let p be a point of R -  b~o and define a 

nonnegative function g(p) by 
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g(p)= f~ l lm  ~X/-~dsl, (6) 

where tip is the vertical segment for t? with height b and midpoint p. 

Notice that if an orientation of tip is selected, then g(p) can be rewritten as 

I b/2 I b/2 
g(p)= [ImV" ~p(p+it) idt I = (IReV ~ ~p(p+it) I+lRe x/~p(p-it) I)dt 

J-b~2 .jO 

and this formula is valid no matter which orientation is selected. Thus, one finds that 

ff, l" ff. g (p) d~ dr/= IRe ~ ~0 (p + it) I + I Re ~ ~0 (p-  it) I d~ dr/dt. 
dO 

From Lemma 2, the right hand side of this equation becomes 

2 IRe ~pX/-~-~ld~dr/dt 
.j O .I .JR 

and thus, we obtain 

I I  g(~)d~dr/=b I I I  Re ~X/-~-~I d~dr/. (7) 
.13R 33R 

A word concerning the meaning of the integral on the right hand side of (7) is in order. 

The variable ~ is assumed to be a natural parameter for the quadratic differential tp. If 

~l and ~2 are two natural parameters defined in overlapping neighborhoods and, if in 

terms of these parameters the quadratic differential ~0 is represented by ~Pl and ~P2, 

then ~p1(~1)=~02(~2) (d~2/d~O 2. Since d~2/d~i = + 1, the expression IIm ~V'-~-~] d~dr/ is 

defined independently of the choice of natural parameter. However, if one uses a local 

parameter z (not necessarily natural), the integrand in the right hand side of (7) ceases 

to be invariant. 
We can now proceed to the proof of the theorem. From the hypothesis we know 

that 

b <<- f~plRe WV~W(-~dzl+M 
where tip is the vertical segment of height b with midpoint p. This means that 

b-M<~g(p) for all p in R-b~. From (7), this implies 
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(b-M)ffRd~d~l <-bffR]Re~V-~ld~drl. (8) 

Dividing both sides by b and taking the limit as b approaches infinity, one obtains 

(9) 

Notice that 9(r for any natural parameter r so the integrand on the right hand side 

of (9) may be multiplied by 1 9X/--~-~ I without changing it. Of course, the purpose of this 

is to render it invariant under changes of holomorphic local parameters. Then (9) 

becomes 

ffR[9(z)ldxdy <~ ffRIRe ~V~-~ld~drl <~ ffRl ~X/-~ gV~--~ldxdy, (lO) 

and this proves the theorem. 

THEOREM 2. Let q~ and ~/ satisfy the same hypothesis as in Theorem 1. Then 

II ll llwll (11) 

and, if this inequality is an equality, then ~(z)=-qg(z). 

Proof. Schwarz's inequality gives 

f f  ,;211 11,,2, (12) tdxdy II lJ 

Substituting this into (lO) and dividing both sides by Iltpll 1/: yields (l 1). Moreover, if 

you have equality in (I 1), then (lO) and (12) yield 

.J JR 

and, when an application of Schwarz's inequality yields equality, the two functions 

must be multiples of one another. Thus [ ~X/-~l=c[ 9X/-~I. Since (10) is an equality, 

one has c = l .  Equality in (10) also forces ReX/~p(~)=_+l for any natural parameter ~. 

Since 9(~)= 1 and [9(~)[ = [~(~)[, this obviously forces ~p(~)= l, for any natural parameter 

~. Thus ~ = 9  and the proof is complete. 
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w 4. The main inequality 

In order to obtain the "main  inequali ty" of Reich and Strebel from Theorem 1, we need 

two lemmas. The first says that the height of a noncritical vertical segment is minimum 

among all homotopic arcs with the same endpoints. The second concerns the extent to 

which a quasiconformal self-mapping of R which is homotopic to the identity can 

distort heights. 

LEMMA 2. Let  q~ be a holomorphic quadratic differential on R and t~ be the 

universal covering surface o f  R. Let  fl be a differentiable mapping o f  a closed interval 

into a vertical trajectory o f  cp such that a lifting fi o f  fl is a one-to-one mapping into 1~. 

Let  Y be any differentiable mapping f rom the same interval into R with the same 

endpoints as fl and which is homotopic to fl with f ixed  endpoints. Then h~(fl)<-h~o(y). 

Proof. Our first step is to lift the curves fl and 7 and the differential q9 to the 

universal covering surface/? ,  where they become fl, )7 and ~. Notice that hr 

and hr162 We select the liflings of fl and Y in such a way that fl and )7 have 

coinciding initial and terminal points and there is a homotopy connecting fl and )7 with 

fixed endpoints in/~. 

The next step is to replace )7 by a homotopic curve made up of a chain of vertical 

and horizontal segments cliff ~ .... d n fin for which h~ (l-I~= l d i fli)<-.h,()7). To see that this 

can be done, we cover )7 by parametric disks parameterized by natural parameters. 

Then we take a subdivision {xi}iml of the interval such that each )7([xi_t,xi]) is 

contained in one parametric disk. ,Within each disk it is a simple matter to see that 

)7([xi-l,xi]) can be replaced by one horizontal and one vertical segment, such that the 

height of the vertical segment is less than or equal to the height of )7([xi-l,xi]). 

The third step is to observe that we may a s s u m e  d l ~  1 . . .  (~n~n has no self- 

intersection. This is achieved in two stages. First one arranges for the number of points 

of self-intersection to be finite. The only way they could be infinite is for part of a 

segment di (or fli) to coincide with part of segment dj (or fl). If  this happens it is clear 

that dj or flj may be shifted slightly to the side in one of the parametric disks without 

losing the homotopy.  The second stage prescribes a way of reducing the number of self- 

intersections by at least one. You move along the path until you come to the first self- 

intersection point. Then you proceed along the path marking as you go in red until you 

return to that intersection point. The part marked in red may contain further intersec- 

tion points. Whether  it does or not, you delete from the path the part marked in red. 
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You have reduced by at least one the number of self-intersection points and you have 

not lost the homotopy because/~ is simply connected. 

The fourth step is to observe that you may a s s u m e  ( ~ l ~ l  . . . . .  (~n~n does not 

intersect fl except at the two endpoints. Since the inequality to be proved is 

h~(fl)~<En=l h~(fli), one simply deletes the segments where fl is common with any of the 

fie and then one proves the inequality between each successive point of intersection. 

The fifth and final step is to treat the case where fl and 61ill ... 6nfln joined at the 

two endpoints make up a simple closed curve C. We will do this by defining a measure- 

preserving injective map from fl into IJi~ ~ fli defined at all but a finite number of points 

of  ft. Given a point on fl, we consider the horizontal trajectory a passing through this 

point inside the curve C. Since q3 has only finitely many zeros inside C, by omitting 

consideration of finitely points of fl we can assume the horizontal trajectory is noncriti- 

cal inside of C. It must be a crosscut, by which we mean ~ is a simple arc with two 

endpoints on the curve C. We will omit the proof of this rather elementary fact. It 

depends on the fact that ~ has no poles. A second important fact is that, while one of its 

endpoints is on fl, the other endpoint must be on one of the fls. If it also were located on 

fl, then we would have the picture shown in Figure 2. 

Ul 

Fig. 2 

The crosscut t2 would have to return to the same side of f l  since it always remains inside 

the curve C. Le t  C1 be the simple closed curve made up of t2 and the part of  fl lying 

between the two endpoints of a. Along d and fl arg (q0(z)dz 2) is constant and thus 

d(arg~(z))=-2darg(dz). The change in argdz along the closed curve C1 is 2zt. The 

change in arg dz along 6 and fl is z~, because the change at each vertex u I and o 2 is n/2. 

Therefore, the change in arg q0(z) on t2 and fl is -2zt. 

Finally, since q0 is nonsingular at Vl and v2, the change in arg tp(z) at vl and v2 is Jr. 

Hence the total change in argq0(z) as you move around C1 is -~r. But the argument 

5-848288 Acta Mathematica 152. Imprim6 le 17 Avril 1984 
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principle tells us this must be equal to 2~r times the number of zeros minus the number 

of poles. Since there are no poles we have a contradiction and we conclude that the 

crosscut ~ cannot return to ft. 

We see that the crosscuts map fl into tJfli. Since the measure [dr/[ is preserved 

(where r  a natural parameter) as you move along horizontal trajectories, we 

have 

<. 

Remark.  A better form of Lemma 2 is true for measured foliations (which are 

defined in section 7). Let Idv[ be a measured foliation and let fl be any curve which is 

quasitransversal to the leaves of the foliation Idol. (These leaves are the curves along 

which v-const .)  Let y be any curve with the same endpoints as fl and which is 

homotopic to ft. Let hv(y)=fe Idol. Then hv(fl)<.ho(y). Hence Lemma 2 would follow on 

letting Idol=llm ~ dzl. 
We will not need this stronger form of the lemma. We mention it only to observe 

that the fact q~ is holomorphic is not essential. All that is necessary is that its 

singularities take a form to which the argument principle can be applied. 

LEMMA 3. Let  q7 be a holomorphic quadratic differential on R with I1 11<oo. Let  f 

be a quasiconformal self-mapping o f  R which is homotopic to the identity. Then there 

exists a constant M such that for  every noncritical vertical segment fl o f  ~o, one has 

h~(fl) <. hq~(f(fl))+ M. 

The constant M depends on q~ and f but not on ft. 

Proof. Let /~  be the completion of R with the n punctures added to it. So/~ is 

compact with no punctures. Since f is quasiconformal, f extends to f a quasic0nformal 

self-mapping of/~ andff ixes  the punctures becausef is  homotopic to the identity on R. 

The line element ds~o=l~01 '~2 Idzl determines a finite-valued metric on/~. To see that the 

distance from a point in R to a puncture is finite, one observes that q0 has at most simple 

poles and so to find the length of a short arc ending at a puncture, one has to calculate 

an integral of the form fgt-l/2dt and this clearly converges. 

Le t f t  be the homotopy connect ingfto  the identity, sofo(p)=p andfl(p)=f(p). Let 

l(p) be the infimum of the q0-1engths of all curves which go from p to f(p) and which are 

homotopic with fixed endpoints to the curve ft(p). Clearly, l(p) is a continuous function 

on the compact set/~. Let MI be the maximum of this function. 
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Now let/3 have endpoints p and q. The segment/3 and the curve which consists of 
ft(P) followed by f(fl) and then followed by fl-t(q) is clearly homotopic to/3 with fixed 
endpoints. So by Lemma 2 

h~o(13) <~ h~o(ft(p)) + hqD(f(fl)) + hw(fl- t(q)). 

Since the 9-length of a curve is greater than its height and the first and third terms in 
this inequality are bounded by M1, the lemma is proved if we let M=2M1. 

THEOREM 3. Let 9 be a holomorphic quadratic differential on R with 11911<00. Let 
f be a quasiconformal self-mapping of  R which is homotopic to the identity and let 
~(z)=fJfz be the Beltrami coefficient of f .  Then 

H91] ~ YfR ]9 (Z)[ I1--/Z(Z)I_ ~U(Z)129(z)/Ig(z)] ]2 dxdy. (13) 

Proof.  As was mentioned in the remarks to Theorem 1, the noncritical vertical 
trajectories of 9 can be continued indefinitely in both directions. Let ~p be defined by 

~p(z) = 9 ( f  (z) ) f2(z) (1 -/~(z) 9(z)/lg(z)t) 2. (14) 

We will show that ~p satisfies the hypotheses of Theorem 1. An elementary calculation 
shows that ~p is a quadratic differential. From Lemma 3, h~(fl)<~hq~(f(fl))+M for all 
noncritical vertical segments ft. From the definition of h.,  we have 

= ( lira ~r 9 ( f  ) dfl. h~(f(fl)) 
JI 

Since df=f  z dz+f~d~=fz(l +l~(d~/dz)) dz, by introducing V~-  from (14), this last integral 

becomes 

h~(fffl)) = f~ Im ~V--~) (1 +/~ d-~-) ( 1 - g  i-~] ) - l  dz . 

Since 9(z)dz2<O along the vertical segment/3, one easily sees that 9/[91=-d~/dz along 
/3. The final result is that h~(f(fl))=hw(fl). Hence from Lemma 3, h~o(fl)<-hw(fl)+M for 
all vertical segments ft. By Theorem 1, this tells us that 

<<. f f l ~V'-~-~V~-~ldxdy. (15) 11911 
)JR 
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Substituting (14) into (15) yields 

I o(f(z))l '/2 If l I 1-  0/1 111 01 I/2 dxdy. [l oll 
J3R 

(16) 

Introducing a factor of  (1-Lu[2) 1/2 into the numerator and denominator of (16) and 

applying Schwarz's inequality yields 

1/2 2 ~ 1/2 

The first integral on the right hand side of this expression is simply IIq011 ~/2 and so we 

have (13). 

Remark 1. If, instead of using the stronger inequality (4), one uses the inequality 

(11), then one obtains 

IIq011 ffR Iq0 (w)l l1 -/~(Z)l -cP(z)/lcp(z)[Lu(z)l 2 12 du do 

where w=u+iv=f(z). This is exactly the same as (12.2) of [4, page 111] and it is enough 

to prove Teichmiiller's uniqueness theorem, but it does not yield (13) which is more 

useful in Teichmiiller theory [6]. 

w 5. Minimal norm property again 

Given a closed curve 7 in R, define hr to be the intimum of the values of h~(7') 

where 7' varies over all closed curves in R freely homotopic to 7. Let STbe the set of all 

homotopy classes of simple closed curves in R which are not homotopically trivial and 

not homotopic to a puncture. The following is a slight generalization of a theorem of 

Marden and Strebel [8]. 

THEOREM 4. Let q~ be a holomorphic quadratic differential on R and ~0 another 

quadratic differential on R (not necessarily holomorphic). Assume [Im ~V~-~) I is a 

bounded function on R as a function of natural parameters ~. Suppose there is a 

number M~O such that h~[~]<~hw[7]+M for all 7 in ST. Then 

<~ f ( lV'-~ V ~ [  dx de <~ II ll ,/211~ll'/2 (17) II l[ 
J JR 
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and I1~11=11~11 only i f  qg=~. The same conclusion remains valid if  we assume 

hr only for those y which have the special form y=alf l l  a2f12 where al 

and az are arbitrarily short horizontal trajectories o f  q~, fll and f12 are vertical 

trajectories o f  q~ and the path y is quasitransversal to horizontal trajectories o f  q~. 

Remark. To say that V is quasitransversal to the horizontal trajectories means 

may move along a horizontal trajectory but if it enters from one side it must exit from 

the other. The path al fll a2f12 is quasitransversal if it makes alternately left and right 

turns. 

We omit the proof as we cannot improve on the method given by Marden and 

Strebel [8]. We remark however that their proof remains valid with the weaker 

hypothesis obtained by introducing the number M. Furthermore, the stronger conclu- 

sion (17) goes through in the same way we made the step from formula (9) to (10). 

w 6. Convergence of quadratic differentials 

Let Q be the space of integrable holomorphic quadratic differentials on R where R is 

compact except for a finite number of punctures. As before, 6e is the set of homotopy 

classes of simple closed curves not homotopically trivial and not homotopic to a 

puncture. Let R+ ~ have the product topology. The following is contained in the papers 

of Hubbard and Masur [7] and Marden and Strebel [8]. 

THEOREM 5. The mapping dp: Q--->R~+ defined by ~(~)=(h~[y];yE b ~ is injective 

and bicontinuous onto its image. 

Proof. The fact that qb is injective follows from the uniqueness part of Theorem 4. 

To show that it is continuous assume Let [~] be in re. Then there is a 

representative y' of [~,] which is transversal to the horizontal foliation coming from q~. 

So h~o(~')=h~[v]. For large n, y' will also be transversal to the horizontal foliations of 

the q~,. Hence h~[y]=h~(y') for large n. It is obvious that hr converges to 

h~(y'). Hence he[y] converges to h~o[y] and this shows �9 is continuous. 

Now assume q0, is a sequence of elements of Q and h~0 [y] converges for each y 

in 9~ Then we claim I1 ,11 is bounded. If not, we may take a subsequence 

~ n  k for which I1~.,1t ~ ~. By forming gk= ~.,/11 ~0,11 we get a sequence of elements of Q 

such that Ilgktl = 1 and hg,[y]---~0 for each y in b ~. Since Q is finite dimensional we may 

take a limit point g of the sequence gk. Then Ilgll= 1 and hg[y]=O for all y. Obviously 
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this is impossible (Theorem 4 would imply that IIgll=0). Hence the original sequence ~0 n 

is bounded and, thus, some subsequence Cpn k of it converges to a limit, say tp0. By the 

hypothesis any other convergent subsequence would have to converge to a limit with 

exactly the same heights and, hence to the same limit. Therefore the sequence q9 n itself 

converges. 

w 7. Measured foliations 

Let R be a C ~ orientable surface of  genus g which is compact except for a finite number 

n of punctures and assume 3 g - 3 + n > 0 .  A measured foliation with measure Idol on R 

with singularities of order kl . . . . .  k m at the points p~ .... .  Pm is given by an open cover 

Ui of R - { p l  . . . . .  Pro} and C l functions vi on each Ui such that 

(a) dvi= q- dvj on Ui N Uj. 

(b) At each point Pi there is a local C~-chart (u, v): V---~R 2 such that for z=u+iv, 
k/2 

doi=Im (z dz) on V n U i for some branch of z */2 in U i n V. 

(c) ki>~O at all points p; in R and k j ~ -  1 if pj is a puncture of R. 

The leaves of the foliation are curves along which v is constant. The height of an arc y is 

defined analogously to the way it was in (2); ho(y)=fyldvl. Moreover the height of an 

element [y] of b ~ is defined by ho[y]=infhv(y ') where the infimum is taken over all 

y 'E  [y]. We will denote a measured foliation by the symbol Idol. Two measured 

foliations Idyll and Idv21 a r e  called measure equivalent if hot[y]=hv2[y]for all y in 6e. 

THEOREM 6 [7]. Given a measured foliation Idol on R and a complex structure on 

R, there exists a unique holomorphic quadratic differential q9 in Q such that the 

foliation given by the horizontal trajectories o f  q~ and the measure IlmX/~-dzl is 

measure equivalent to Idol. 

Proof. The uniqueness is taken care of by Theorem 4 (or the part of Theorem 5 

which says that qb is injective). The existence depends on the following general facts. 

(1) Given a measured foliation, there is a measure equivalent foliation which has a 

transverse measured foliation [7]. 

(2) The convergence criterion contained in Theorem 5. 

(3) The density of Jenkins-Strebel differentials [5, 8]. 

(4) The existence of Jenkins-Strebel differentials with prescribed heights [11]. 

(5) The existence of  solutions to the Beltrami equation [2]. 
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Before giving the proof we need to explain items (3) and (4). 

A Jenkins-Strebel differential q0 on R is an element of Q all of whose noncritical 

horizontal trajectories are closed. The totality of all these noncritical trajectories form 

an open set in R with at most 3 g - 3 + n  components and each component is a cylinder 

(or annulus). Each cylinder has a height which is measured by the vertical measure 

IImX/qJ(z)dzl. Given any set of m (~<3g-3+n) elements [71] . . . . .  [Tm] of 6e represent- 

able by disjoint simple closed curves and any set of positive numbers h~ ..... hm, there 

exists a Jenkins-Strebel differential q~ with associated of cylinders A1 . . . . .  Am such that 

the core curve of each A; is in the homotopy class of 7; and such that the height of A; is 

h;. By the core curve of A; we mean a curve which loops around Ai o n c e .  This fact is 

proved most neatly by Renelt [11]. 

The second important fact is that Jenkins-Strebel differentials are dense in Q. This 

was first proved for compact surfaces by Douady and Hubbard [5] and in the case we 

consider here is proved by Marden and Strebel [8]. 

Outline of proof of existence part of Theorem 6. 

Step 1. Given the measured foliation on R, replace it by a measure equivalent foliation 

Idol which possesses a transverse measured foliation Idul. We require the mapping 

which takes the horizontal and vertical trajectories of zkdz 2 in a neighborhood of the 

origin in the complex plane onto the horizontal trajectories of a singularity of Idol and 

Idul to be a Cl-mapping. 

Step 2. From the two measured foliations we construct a quadratic differential as 

follows. Given coordinate patches Ui and U2, let ui and v; represent u and v in Ut. If 

u~ is given, pick the sign of v~ so that f~=ul+ivj has positive Jacobian in U1. In the 

patch U2 let u2 be given and select the sign of 02 so that f2=u2+ioz has positive 

Jacobian. In U~ fl/-}2 we know that u~=+u2+(const). Because of the Jacobian condi- 

tion, we must have Ol=+V2+(const) with the signs occurring in the same order. Thus 

fl  = +f2+(const). 

Step 3. We introduce a complex structure on R and a holomorphic quadratic 

differential such that the heights of ~p with respect to this complex structure are the 

same as the heights of Idol. The way to do this is to form the Beltrami differential 

l~(z) (dZ/dz)=(f~)J(fi)z where the~. are the mappings in Step 2. Notice that the sign of/x 

is unambiguously defined in overlapping patches Ui N Uj. The condition that the Jacobi- 

. an is positive and that the transition mappings are C ~ in a neighborhood of singularities 
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ensures that [Lu[[~<l. Hence, the Beltrami equation can be solved [2] and a complex 

structure introduced on R with respect to which the f,- are holomorphic. Let z~ be a 

local parameter for this new complex structure and form 

~(zOdz~= Of dz~ . 

Using the Cauchy-Riemann equations a calculation shows that Im ~/~0(zl)dzj =dr. 

Step 4. Take a sequence ~n of Jenkins-Strebel differentials on R~ which converge 

to ~. Then construct on R a sequence q~n of Jenkins-Strebel differentials such that q~ 

has the same core curves as ~p, with the same corresponding heights. Now apply the 

convergence theorem (Theorem 5). Since the heights of q~ converge, cp,~ converges to a 

holomorphic quadratic differential q~ on R with the same heights that ~ has on R#. 

Finally, observe that since h~,[7]=ho[7] we also have h~[y]=hv[7] for all 7 in 5e. 

w 8. The  n o r m  functional  on Teichmii l ler  space 

Let the Riemann surface R together with the measured foliation [dv[ be given. As usual, 

R is compact except for a finite number of punctures. One can pose an extremal 

problem which is a kind of generalization of extremal module. Let C(R) be the set of all 

continuous quadratic differentials ~p dz 2 on R. Let Q(R) be the subset of C(R) consist- 

ing of those elements which are holomorphic. Let 

M[v] = inf{ll~]l; where ~ E C(R) and h~[7] i> h~[y] all 7 in 5e}. (18) 

Notice that M[v] depends only on the measure class of the measured foliation Idvt since 

the dependency on the measured foliation only enters through the numbers ho[7]. 

Furthermore, M[v] depends on the complex structure for R. This dependency comes 

through the definition 

= inf f I I m ~  dzl h~[7] 

since the entity IIm ~ dzl depends on the complex structure. 

THEOREM 7. Let Idol be a measured foliation on R. The infirnnurn M[u] in (18) is 

achieved by a unique element ~ o f  C(R). It is the same q~ as the unique holornorphic 

quadratic q~ in Theorem 6for  which h~o[y]=hv[Fl for all 7 in b ~ 
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Proof. Theorem 6 tells us that there is a holomorphic quadratic differential q0 for 

which hv[y]=h~[v] for  all ~, in 5e and Theorem 4 tells us that II~ll~llWll and equality 

holds only if qo=~p. 

Now let [fl,R1] be a point in the Teichmiiller space. This means f:R---~R1 is a 

quasiconformal mapping and the class [f i ,Rl]  consists of all similar pairs (f2,R2) 

with f2:R~R2 for which there is a conformal mapc:Ri---~R2 such that f2 ~ o c o f  1 is 

homotopic to the identity. The class [fl,R~] depends only on t~=f~/flz and we say 

/z1~2 if (fl,R1) and (f2,R2) are similar in the above sense. When /~=f~/fz, we will 

write R,  in place of R I. 

The measured foliation Idol induces by its heights a measure class of measured 

foliations on all of the surfaces R~, by considering the measure Idvof-ll. Clearly 

h~(7)=hoo f ~(f(7)). Also it is clear, since c ofl(~,) is homotopic to f2(7), that the induced 

measure class of measured foliations on R~, depends only on the Teichmiiller class of/~. 

Therefore, the solution Mu[v]=M[v o f  -l]  to the infimum problem (18) on the surface 

R~ depends only on the Teichm011er class of/~. So for fixed v, we may consider M~[v] 
to be a function on Teichm011er space. 

LEMMA 4. K-IM[vl<.Mn[vl<.KM[v] where K= (1 + I ,11 )/(1-ILull ). 

Proof. Let q~, be the unique holomorphic quadratic differential on Ru for which 

ho[7]=h%[f(7)]. We know that M [v]=ll%ll. Let 7 be any loop in R. Then 

fs( IImN/ %(w) dwl = f~ IImV'-~,(f(z))fz(l+/~(d~/dz))dzl ~ (l+k) lr 
y) 

where ~(z)=cp~,(f(z))f 2 and 1r is the t~-length of 7. Since this inequality holds for 

every path 7, we see that h~[),]<~(1 +k)lr for all 7. Therefore 

( l+k)  2 l%(f(z))l=lf 12dx dy (1 +k) 2 I1 11 1 _---~V 

and this yields M[v]<~KM,[v]. The opposite inequality follows by applying the same 

reasoning to the quasiconformal mapping f -1  

Remark. Lemma 4 shows that M,[v] is a continuous function on T(R) since clearly 

K-1Mo[v]<<.M~,[v]<<-KMo[v] where K is the dilatation of the mapping f ~  (f~)-l. 
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THEOREM 8. M~[v] is a differentiable function on the Teichmi;dler space T(R) and 

' 
logM~[v] = logM[vl+2Re i- ~ -  ~godxdy+o(IL.II~) 

where go is the unique holomorphic quadratic differential on R for which lira ~V'-~dz[ 

realizes the measured foliation with measure Idv]. 

Proof. Let gof, be the unique holomorphic quadratic differential on R~, with the 

same heights as [dv of-11 where f: R-,RI, and f J f z=  ~. Form the differential 

1-" t.~ go(Z) '~2 ~(Z) = go,(f(z)) f2 z ~.~,., 7..'-:7." (19) 
Igo(z)[ } " 

c~ is a quadratic differential on R and there exists a constant M such that for every 

vertical segment/3 on R we have 

~ l lm V ' - ~  dzl <. f l lm ~V'-~-~ dzl + M. 

The reason for this is Sallm ~ dzl = S~llm X~ go,(f ) dfl, where/3=f(fl). Take 7 on R 

of the form ~'=al/3! a2/32 where a2 and/32 may both reduce to a point. By Theorem 4 

we may consider only those elements of 0~ are of this form where the go-lengths of 

al and a2 are arbitrarily small. Let ~=f(7) and similarly di=f(ai) and ~i=f(fli) for i= 1 

and 2. The bound on I~,11~ forces a bound on the go,-lengths of dl and d2 because of 

Lemma 4. 

Now h~ [~]=h~[7] by the definition of go and go,. Hence 

hr ~v / go#(w) -dwl<~fZ, o~ II m ~/ go,(w) dwl+M= fat 0~2 Jim ~ d z l  +M. Thus 

hr U/32)+M. This is true for every pair of vertical segments/3! and 132 

which, after joining short horizontal segments al and a2, become closed curves 

transversal to the horizontal foliation of q0. We conclude that 

ffRIgoldxdy ~ f f  lv~llV~ldxay. (20) 

Upon multiplying the integrand on the right hand side of (20) in numerator and 

denominator by Ifzl(1-Lul2) ~/z and applying Schwarz's inequality (with the term 

W~(f(z))tlfzl (1-[ulZ) '~2 lumped together), we find that 

Ilgoll --< II go, ll ''~ (ff,  (z)l I1-a(go/lgol)l~dXl_Lul2 dr ,]~'/2 



Ilgoll ~ 1 i f  
Ilgo,,ll 

and so 
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Squaring both sides and dividing by Ifgoll IlgoAI we get 

Igol II-Ix(go/Igol)12 dxd. <~ 1-  2--~--- Re f f Ixgodxdy+O(lb.ltL) 
1-1~( " Ilgolf 
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logllgo~,ll/> logllgoll+2Re ii--~-ii ff ,go+o(llixll :). 
To get a reverse inequality we will apply a similar argument to the inverse mapping 

fi o f f ; f l - l o f ( z ) = z .  The Beltrami coefficient /xi o f f l  is related to Ix by 

Ixl(f(z))=-Ix(z)/O where O=fz/fz. Note that Itull==ltUlll=. The analogous argument 

I1%11 ~ 1 (fR I1-~'(%'/1%'1)1~ 
Ilgoll II-i-~-~H.II~ I%,1 l_l~,l ~ , 

g 

yields 

and so 

log Ilgoll ~ log Ilgo~ll+2 Re ~ IXl go~+o(l~llL). 
g 

The integral on the right hand side of  this inequality transforms into 

' 
- 2 Re ~ IX (z) go,(f(z)) f2z(z) dx dy. 

Notice that as long as we assume IX is C 1 on the interior of R, then gou(f(z))fEz(z) 

converges uniformly to g0(z) as [luNg--->0. Also Lemma 4 shows that IlgoAI converges to 

Ilgoll. The fact that go,(f(z))fEz(z) converges in Ll-norm to Ilgoll follows from the next 

well-known lemma in functional analysis. 

LEMMA 5. Suppose fn(z) is a sequence o f  L1 functions on a domain D. Suppose 

fn(z) converges uniformly on compact subsets o f  D to f(z) and suppose 

IIT, II= Y f D [fn(z)l dx dy--> f f D IT(z)I dx dy=IITII. Then IIf,-fN--,0. 
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