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1. Introduction

Suppose A and B are Borel sets in the Euclidean n space R”. If they are sufficiently
nice, for example C! submanifolds or rectifiable of dimensions k and m with k+m=n,
then according to a well-known formula of integral-geometry

f%k+m—n(A N fB)dA, f = ctk, m, n) H*(A) H™(B),

where #° stands for the s dimensional Hausdorff measure and 4, is an invariant
measure on the group of isometries of R”. Thus in this case there is a precise relation
between the measures of A and B and of those of the intersections A NfB. The object of
this paper is to study to what extent there are such relations, necessarily less precise, if
either A or both A and B are completely general except for measurability assumptions.
Thus various Cantor type sets, graphs of nowhere differentiable functions etc. should
be included in our theory. Particular examples are the self-similar fractals, which
Mandelbrot [MB] has considered in connection of several physical phenomena and for
which Hutchinson [H] has presented a unified theory.

First to consider thic problem was Marstrand [MJ] who explored the geometric
properties of fractional dimensional subsets of the plane R%. He proved that if AcR? is
#° measurable with 0<#°(A)<x, 1<s<2, then for #° almost all x€A dimANnil=s—1
and 9~ Y(ANnl<« for almost all lines / through x. He also showed by an example that
#°~1(ANnl) may be zero for almost all lines / through any point of A. Marstrand’s
theorem was generalized to subsets of R” with lines replaced by m planes in [MP1]. In
[MP2] a potential-theoretic approach to this problem was presented. It was shown that
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by replacing the Hausdorff measure * by the capacity C; corresponding to the kernel
|x—y|~*, one obtains more precise results and also a new proof for the above theorem.
For example, if n—m<s<n, then for C; almost all x€A, C,.,,—,(ANV)>0 for almost
all m planes V through x, and

bC(A)< j C,opnlA N VVAA, . V<cC(A)

where b and c are positive constants independent of A and 4, ,, is a rigidly invariant
measure on the space of m planes in R”; the right hand inequality was proved in [MP3].

In Section S we prove analogous results when the intersections ANV are replaced
by AnfB, where f runs through the isometry group of R” and B is an m rectifiable
subset of R”, see Corollary 5.6, Theorem 5.8, Corollary 5.11 and Theorem 5.16. The
examples of Section 7 indicate that these results are false if the assumption on the
rectifiability of B is dropped. However in Section 6 we show that if we replace the
isometry group by the similarity group, that is, maps composed of translations, rota-
tions and homotheties, we get similar results without any rectifiability assumptions at
all. To be more specific, let 7,;R"—>R”, zER”", be the translation, 7,(x)=x+2z,
6, R"-R", rER,={1:0<t<x}, the dilation, J,(x)=rx, let £ be the Lebesgue meas-
ure on R” and 0,, the Haar measure on the orthogonal group O(n) of R”. Suppose 0<s,
t<n and s+t>n. We prove for example that (Theorem 6.8)

1
C(A) C(B)<c(n) f Pl f f C,.,.(AN(r,0800,)B)d¥"z df, g dZ'r,
0

and that if 0<#°(A)<< and 0<¥'(B)<, then
dimA n (r,0g0d,01_ ) )B=s+i—n

for H*XH*x0,xF almost all (x,y,g,r)EAXBXO(n)xR, (Corollary 6.12). The op-
posite inequality is in general false, see Example 7.2, but it holds if B has positive ¢
dimensional lower density at all of its points (Theorem 6.13). Note that the effect of the
map

Txogod,or_y:z|—>g(r(z—y))+x,

can be viewed as first applying rotation and homothety around y and then translating so
that y goes to x. Here we allow the possibility n=1, in which case O(1) can be neglected
as it contains only Id;, and —Id_,.
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The basic method will be developed in Sections 3 and 4. There we first define
natural intersection measures u N7, v of u and 7, v for £ almost all zER”, where u
and v are Radon measures on R” and 7,4 v: E—~ v(t;‘ E).To do this we slice the product

measure uXv by the »n planes of R"xXR” parallel to the diagonal; this idea comes from
Federer’s definition for intersections of currents, [F, 4.3.20]. We use the results of
[MP2] on such slicing. Replacing v by g.v or (g048,)sv, g€EO(n), rER,, we obtain
the intersection measures uNfi v, where f is an isometry or similarity, respectively,
and we study integral relations betwen these measures and x and v. For example, we
give conditions on u and v which guarantee that the intersection measures u N f;; v form
a kind of disintegration of 4 and v, that is, u and v can be recovered by integrating first
with respect to uNfs v and then over f’s in the isometry or similarity group, see (4.4)
combined with Theorem 4.8 and (6.4) combined with Theorem 6.6. In Sections 5 and 6
the measures u Nf;. v will be used as test measures for the capacities of the sets A NfB.

The results concerning capacities in [MP2] were proved for general lower semi-
continuous kernels K(x,y) and H(x,y)=|x—y|""™K(x,y) in place of |x—y|™ and
|x=y|"7°7™. Most of the results of Section 5 admit such a generalization in a
straightforward manner (the possible exceptions being Theorem 5.8 and Corollary 5.9),
whereas difficulties seem to arise in the case of Section 6. Another possible direction of
generalization would be to replace the isometry and similarity groups by other sub-
groups of the affine group of R". Our method relies on the fact that we are using groups
which are composed of a subgroup of the linear group with the translation group.

In {H 1] J. Hawkes has studied intersections from a different point of view. He has
given conditions in terms of certain entropy concepts for two fixed sets A and B which
lead to relations between the entropy and Hausdorff dimensions of A and B and their
intersection ANB.

2. Measures and capacities on R"

2.1. Measures. The Lebesgue measure on R” is denoted by #”, and the s dimensional
Hausdorff measure by °.Inparticular, #"=%". We let a(n)=%"B(0, 1), where B(x,r)
stands for the closed ball in R” with centre x and radius r. The Hausdorff dimension of
EcR" is

dim E = inf {s: #°(E) = 0} = sup {s: #*(E) = »}.
Let u be an (outer) measure on R”. If f: R"—R™, the image measure f; u is defined by

fu(E)=u(f'E) for EcR™.
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If g: R">R=R!U {0, —}, then
fg°fd/4=Jgdf# 78

provided the left hand side exists, [F, 2.4.18]. If ¢ is a 4 measurable non-negative
function on R", the measure ul_g is defined by

(,ul_w)(E)=f<pd/4 for EcR".
E

In case @ is the characteristic function of a 4 measurable set A, we set ul_A=ul @.
Then (ul_A)(E)=u(AnE).

Radon measure always means a non-negative (outer) Radon measure. £" and
#°1_A, where A is #° measurable with #°(A)<o, are Radon measures. If f: R">R"
is continuous,  is a Radon measure on R" and f]supp u, the support of u, is proper,
then f;; 1 is a Radon measure on R™ [F, 2.2.17].

If u is absolutely continuous with respect to a measure v, that is vE=0 implies
uE=0, we denote u<<v. The following lemma, which follows from [F, 2.9.15], will be
useful:

LEMMA 2.2. Suppose that u is a Borel regular measure on R". If

liminf 6 ~"uB(x, 0) <  for u almost all x€ER",
510

then u<<<”.

2.3. Capacities. Let 0<s<n. The s-energy of a Radon measure u on R” is
L= f f |x—y|™" dux duy.

The inner s-capacity of a compact set FcR” is
CS(F) = Sup Is(;u)_la

where the supremum is taken over all Radon measures x4 with supp ucF and uR"=1.
For arbitrary EcR” we set

Cy(E) = sup {C(F): F compact c E}.
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The corresponding outer capacity C¥ is defined by
CHE)=inf {C(G): E< G, G open).

Then C; is an outer measure on R” and C#(E)=C(E) for Suslin, and hence Borel, sets
EcR” [L, Theorem 2.8, p. 156].

The following relations between capacities and Hausdorff measures are well-
known, see [L, pp. 196 and 200]:
C#(E)=0 implies #'(E)=0 for t>s,
H(E)< o implies C(E)=0.
Thus for Suslin sets E,
dim E = inf {s: C{(E) = 0} = sup {s: C{(E)>0)}.
For the proof of the following lemma see e.g. [MP1, 6.3].

LEMMA 2.4. If EcR", #*(E)<» and 0<t<s, then [g|lx—y|"'dH°y<x for ¥°
almost all xEE.

2.5. Rectifiable sets. A subset E of R" is called m rectifiable if there are a bounded
set AcR™ and a Lipschitzian map f: A>R” with E=fA. E is called (¥™, m) rectifiable
if #™(E)<w and there are m rectifiable subsets E;,E,,... of E such that
H™(E~VUZ, E)=0. By [F, 3.2.29] a set EcR" with #™(E)<® is (¥™, m) rectifiable
if and only if %" almost all of E can be covered with countably many m dimensional
C' submanifolds of R”.

3. Intersections of measures

Let 4 and v be Radon measures on R”. We shall construct for #” almost all zZER”
Radon measures uN7,;v, which can be regarded as natural intersections of the
measures u and 7,5 v. Here 7, is the translation

7 R"->R", 1,(x)=x+z.
We denote for zER"”, SER.

W= {(x,y) ER"XR": x =y},
W, = {(x,y) ER"XR": x = y+z},

6—848288 Acta Mathematica 152. Imprimé le 17 Avril 1984
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W, () = {(x,y) ER"XR": |[x—y—z| < 6}
= {(x,y) ER"XR": dist ((x,y), W< &6/V2}.

Let § be the subtraction map,
S:R*XR*"=>R"”, S(x,y)=x—y.

Then the orthogonal projection of R”XR"” onto the orthogonal complement
Wh={(x,y): x=—y} of Wis hoS where hi: R"->W*, h(z)=(z, —2)12.

We use [MP2, 3.1-4] to slice the product measure uXxv by the planes W,, zER". In
[MP2] only Radon measures with compact support were considered, but with minor
modifications this restriction can be removed. Note that C*(R"), which was errone-
ously claimed to be separable, should be replaced by C; (R”"), the space of non-negative
continuous functions on R” with compact support. We obtain for #” almost all zER"
Radon measures g, on R"XR” such that for any non-negative Borel function ¢ on
R”"XR" with [ @ duxv<w the following four statements hold:

supp o, = W, N suppuXxv. 3.1)

f(pdoz=lim a(n)"é"‘f @duxv (3.2
8.0 W6)

for " almost all zER". Moreover, if ¢ €CJ(R"XR") the ¥" exceptional set is
independent of ¢.

The function z+— j @ do, is X" measurable. 3.3)

ffcpdozdéf"zﬁf @ duxvy 3.4
E s7'E

for any ¥" measurable set E c R”. Here equality holds if Su(uXv)<<Z".

In [MP2] (3.4) was stated in the case E=R", but the general case follows by the
same proof.

Let p:R"XR"—R", p(x,y)=x, be the projection. Whenever o, is defined, we
define

u n TZ#Vzp#O'Z.

Then for any non-negative Borel functions ¢ and ¢ on R” with [ ¢ du<c and [y dv<e
the following four statements hold:
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suppu N T4 v ©suppu N 7, (suppv). 3.5)

f ) YPx—2)du N 1o vx = f p(x)p(y)do(x,y)

=lima(n)'o™" f @) Y() duxv(x,y) (3.6)
sl0 W8

for " almost all zER". Moreover, if @, ECy(R"), the ¥" exceptional set is
independent of ¢ and .

The function z+— f @-(yor_)dunr,vis £" measurable. 3.7

ffq;(qpor_z)dﬂ n rmvdg"zsf @x) Yp(y)duxvix,y) (3.8)
E ST'E

for any #” measurable set E = R". Here equality holds if Sa(uxv)<<2".

Proofs. We get (3.5) from (3.1) since
suppu N 7.3 v < p(supp o) = p(W, N suppuXv)
< p({(x,y): x=y+z} N (suppuX suppv)) = suppu N 7. (suppv).
To prove (3.6) we use (3.1) and (3.2) to get

f X Yx—2)du N 1,4 vx= f pX)Y(x—2)dp,0,x= f p(x) p(y)do(x,y)
W

4

=lima(n)'o™" J () p(y) duxv(x,y).
540 W.(6)

The first formula of (3.6) combined with (3.3) yields (3.7) and combined with (3.4) it
yields (3.8).

4. Intersections of measures and isometries

Let O(n) be the orthogonal group of R", and let 6, be the unique invariant Radon
measure on O(n) with 0,0(n)=1. We denote by I(n) the set of isometries of R”
equipped with the natural topology. Then each f€ I(n) has a unique representation in
the form

f=t1,0g with zER", gEO(n).
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There is an invariant Radon measure A,, on I(n) such that for any non-negative Borel

function @ on I(n)
J¢dln=]f¢(rzog)d$"zdeng.

For zER", g€0(n), f=1,0¢ and SER, we set

We= W, .= {(x,y):x=f} = {(x,y): x=g()+z},
WHO) = W, (0) = {(x,y): |x=f(y)| <3},
S R"XR"SR”,  S.(x,y)=x-g(Q).

Let x and v be Radon measures on R”. For any g € O(n) we apply Section 3 to the
measures 4 and gy v to find that

K nf#v=/4 n T8V Withf= .98

exists for £” almost all z € R". Furthermore, one verifies as in [MP2, 3.3] that the set of
all f€I(n) for which u N f.v is defined is a Borel set. Hence by Fubini’s theorem
4N fuvis defined for A, almost all f€I(n). It follows readily from (3.5)—(3.8) that for
any non-negative Borel functions ¢ and ¢ on R" with [@du<e and [y dv<o the
following four statements hold:

suppu N fiv csuppu N f(suppv). 4.1

j PO Y (D)) dun fyvx = !51?(1) a(n)™' 67" f @(x) p(¥) duxv(x,y) “4.2)

W,(0)

with f=r,0¢ for #" almost all zER". Moreover, if ¢,y € Cg(R"), the £" exceptional
set is independent of ¢ and y.

The function f+— f @-(wof Ndun fuv is 4, measurable. 4.3)
fj plyof ) du ﬂfgvdl,,foqadyJ' Ypdv; 4.4)

here equality holds if S,«(uxv)<<¥”" for 6, almost all g€O(n). Observe that
SenUXV)=SsUXguv).

LEMMA 4.5. Given g € O(n) there is a set E,cR" such that £"(R"~E.)=0 and for
all zEE, and for every non-negative lower semicontinuous function ¢:R">R
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f @dun (r,08),.v<Ilim inf a(n) ™! 6"’f @(x) duxv(x,y).
340 W, 0

Proof. Approximating ¢ from below by an increasing sequence of continuous
functions with compact support, one derives this immediately from (4.2) and the
monotone convergence theorem.

LEMMA 4.6. If S uuxv)<<Z" for 6, almost all g€O(n), then un
(zx0got_y)uv is defined and un (r,0gor_)uv(RM>0 for uxvxe, almost all
(x,y, g) ER"XR"XO(n).

Proof. Note that
080T, =T, ()8 = Ts,.y)®8-

For any g€0(n), un (r,08)sv exists for £" almost all ZER". If S, u(uxv)<<¥”,
this implies x N (ng(x, O &V exists for uxv almost all (x, y). As in {MP2, 3.3] one sees

that the set of those (x,y, g) ER"XR"XO(n) for which un g . . v exists is a Borel set.
xea

Hence the first statement follows from Fubini’s theorem, and the second as in [MP2,
3.3].

LEMMA4.7. There is a constant ¢ depending only on n such that for any x, y ER",
x+0, and ER,

0,{g: |x—g(y)| <8} <co" x|~
Moreover,
0.{g: |x—gW <3} =0 if|x|—Iyl|>0.

Proof. If ||x|—|y||>0, then {g:|x—g(y)|<d}=0. Suppose ||x]—|y||<d, x+0+y. Then
|x—g(»)|<0 implies |x/jx|—g(/|y))|<2d/|x|, because

b= yyDI < =g+~ Ixl/Iy) €0 = [x—g W)+ lixi— Iyl < 20.

Thus we may assume x,y€S" '={z€ER™|z|=1}. Defining ®:0(n)—S""' by
D(g)=g(y), we have by [F, 3.2.47]

0,.{¢: x—g()| <6} = 0P Nz |x—2| <O} =c, X" {ZES" i x~2| <O} <, 0",

where ¢, and ¢, depend only on n.
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Next we derive conditions under which the absolute continuity assumption of (4.4)
is fulfilled.

THEOREM 4.8. Suppose that 0<s<n-—1,

(D f [x—u|*duu <o for u almost all xER",

and that there is b, 0<b<o, such that

) v{v:|ly—~v|-r| <o} < bdr" !

Sfor v almost all yER" and for 6,r€ER.. Then S u(uxv)<<Z" for 0, almost all
2EO(n).

Proof. By standard methods (cf. [MP2, 2.5]) one verifies that the function

x,y, 8 lirglliglfé_”sg#(va) (B(S(x,¥),0))

= liminf 6 ~"uxv{(u, v): |[x—u—g(y—v)| < 6}
al0

is a Borel function on R"XR"XO(n). If x satisfies (1) and y (2) we have by Fatou’s
lemma, Fubini’s theorem and Lemma 4.7

f liminf 675, (ux») (B(S,(x, ), 6)) d6, g
él0
Sliminfé_”fﬂXv{(u,v): |x~u—gly—v)|<d}db,g
040
=liminf6"’f0,,{g:|x—u—g(y—v)|$6} duxv(u,v)
6l0
Scliminfé"f [x—u|'"" duxv(u, v)
810 {(u,v): flx—ul=ly-v]| < 6}
=climinfd_‘fv{v:||x—u|—|y—v||sé}lx—u|""d/m
510

< bcf |x—ul™ duu < .

It follows from Fubini’s theorem that for 6, almost all g € O(n)
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lim infé_”Sg#(,uXV) (B(Sg(x, ¥), 0)) <
510

for uxv almost all (x,y), and by the definition of S,.(uXv)

limlinfé'"Sg#(,ux V)(B(z,0)) <
510

for S,«(uxv) almost all zER". This combined with Lemma 2.2 completes the proof.

COROLLARY 4.9. Suppose that m is an integer, 0<m<n, [|x—u|™"" duu<o for u
almost all x€ER", and that B is an (#™, m) rectifiable ¥™ measurable subset of R".
Then SpuuX(H"_B))<<Z" for 0, almost all g € O(n).

Proof. We can express B as B=U;ZyA; where #™(Ap)=0 and A; is an ™
measurable set contained in an m dimensional C! submanifold M; of R”. Each point of
M; has a neighborhood U in M; such that there is a bilipschitzian map h: U—»VcR™.
Then v=53"]_U satisfies the condition (2) of Theorem 4.8 with s=n—m. It follows that
B can be written as B=U;~, B; where each B; is an %™ measurable subset of R” and
Seu(ux(H"_B)<<Z" for 6, almost all g€O(n). Then also S u(uX(¥"_B))<<
Z" for 6, almost all g € O(n).

COROLLARY 4.10. Let m and B as in Corollary 4.9. Suppose that n—m=<s<n and
that A is an #° measurable subset of R" with #°(A)<o. If either n—m<s or n—m=s
and A is n—m rectifiable, then S u((¥1_A)X(X"_B)<<ZE" for 0, almost all
g€ 0(n).

Proof. If n—m<s, then by Lemma 2.4 #°(A)<wx implies [ ]x—u|"" " d¥H u<o
for #° almost all x€ A, and the result follows from Corollary 4.9. Suppose s=n—m.
Then (" "_A)X(H™_B)=3#" (AXB) and AXB is (¥",n) rectifiable by [F,
3.2.23]. A slight modification of the argument given in the last paragraph of [MP2, 5.1]
shows that S,+(#"_(AXB))<<Z" for 6, almost all g € O(n).

Remark 4.11. Suppose that k and m are positive integers, n<k+m, AcR" is A
measurable and k rectifiable, B<R" is #™ measurable and (¥, m) rectifiable. Using
[F, 3.2.23] as in Corollary 4.10, the co-area formula [F, 3.2.22] and Lebesgue’s theorem
on differentiation of integrals [F, 2.9.8] as in [A, 1.3(4)], one can compute the intersec-
tion measures (¥4_A) Nf(¥™_B) for A,, almost all f€ I(n). One then finds

(F*L_A) N fu(F™LB) = (" ™" _(AnfB)L vy
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where for f=7,0g, ys: R™>R is given by
Yr(x) =247 ap J,(Se|AXB)(x,f ' (x)).

For the definition of the approximate Jacobian apJ,(S.|AXB) see [F, 3.2.22 and
3.2.16].

5. Capacities and Hausdorff measures of intersections of sets

In this section we study capacities and Hausdorff measures of the intersections A NfB,
when f€1(n) and B is (¥, m) rectifiable, Throughout this section we assume that u
and v are Radon measures on R” and 1<m<n. Throughout 5.1-5.5 we assume that for
some b, 0<b<oo,

v{v: |lv—y|—rl <8} < bor™! 5.1

for v almost all yER” and for J, r€ER,.
The following lemma can be verified as Lemma 4.2 in [MP2].

LEMMA 5.2. Let 0<s<x. The functions
f'_')IS(:u ﬂf#V), fel(n)’
(X,y,g)'—')ls(.“ n (rxogOr—y)# 'V), (x,y’g)ERannxo(n)’

- flx—ur’ du N fevu, (x,f)ER"XI(n),

are Borel functions.

Below we shall consider upper and lower integrals of the function fi>Cy(A NfB),
fE€I(n). In case A and B are compact, it is easily seen to be upper semicontinuous (cf.
[MP2, 4.6]), whence it is a Borel function whenever A and B are o-compact. We give
the following general result on its measurability, which however will not be needed in
this paper:

LEMMA 5.3. If 0<s<n and A and B are Suslin subsets of R", then the function
J>CJ{ANSB) is A, measurable.

Proof. The set

E=AxBxI(n) n {(x,y,):x=f(y)}
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is a Suslin set in R"XR"XI(n). Letting E(f)={(x,y): (x,y,HEE} we deduce from [D,
II1,12] that the function f>Cy(E(f)) is A, measurable. The map ¢ ANfB—E(f),
@r(x)=(x,f~'(x)), is onto and |pAx)—@x")|=V 2 |x—x'|for all x,x' €ANSB, whence
C(ANfB)=2"2C(E(f)), and the result follows.

THEOREM 5.4. There is a constant ¢ depending only on n such that for any s,
n—m<s<n,

J I 0 fuv)dAd, f< bel () v(R").

Proof. Set g=s+m—n. The various applications of Fubini’s theorem can be
justified by Lemma 5.2. By Lemma 4.5, Fatou’s lemma and Fubini’s theorem we have

j LN fyv)di,f

=fff|x-u|‘qdu N fevxdun fuvuda, f

810

= J’J'f liminf a(n) ! 6'"[ |x—u|"? duxv(x,y)du 0 (r,0 g),, vu d¥"z db, g
ws z(é)

sliminfa(n)"é‘"ffff |x—u|""duxv(x,y)du n (r,0 g), vu d¥"2d0, g
(SJ,O wg z(a)

=liminfa(n)™! 6'"fff f|x—u|“’ dun (r,08), vuduXvix,y)d¥"z do,g.
510 W, ©

Recalling that W, .(6)={(x,y): |x—g(y)—z|<d} we use Fubini’s theorem and (3.8), with
v replaced by gy v, to get

J(g) = ff f|x—u|“’ du N (z,08), vuduXv(x,y)d£"z
Wy {0)

= ff f |x—u|™du n (zr,0 g), vu dL "z duxv(x,y)
(z:|x—g()-2=<0}

$jf |x—u|™? duxv(u, v) duXv(x,y).
{(ue, v): |x—g(y)—(u—g(v))|<d}

Denote

As={(, v, x, Y) ER™* |lx—u|~ly—v|| <6}
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Integrating with respect to 6, using Fubini’s theorem, LLemma 4.7 and (5.1) we obtain

jJ(g)dGngsjfen{g: x—u—gly—v)| <o} |x—u|""duxv(u,v) duxv(x,y)

<c, o' f [x—u|' """ duxuXvXv(u, x,v,y)
Aé

=c, 6"‘1fffv{v:||x—u|—|y—v||s6}|x—u|’_“’"dp¢xd,uudvy
< bc, 6”[f|x—u|‘sdﬂxduuv(R"),

where ¢, depends only on n. Combining this with the first inequality, we complete the
proof.

As in [MP2, 4.6] this energy-inequality leads to an integral inequality for capaci-
ties:

THEOREM 5.5. Let n—m<s<n and let ¢ be the constant of Theorem 5.4. If AcR”
and B is a v measurable subset of R", then

C,(A) v(B) < bc f Coon_nANfBYdA S

*

Proof. We may assume A and B are compact. Then the integrand is 4,, measurable.
Let g=s+m—n. We may assume C,(4)>0. Let £>0 and choose a Radon measure u
with suppucA, w(R™=1 and I (u)<C,(A)"'+¢&. Let J be the set of those f€I(n) for
which unfy(vL_B) (R")>0. For f€J put

=@ N fe(v_BYR") ' un fu(vL_B).

Then suppuscAnfB and udR™=1, whence I, (u)~'<C,(ANfB). Since n—m<s and
I (<o imply I,,_,,(u)<o, we deduce from Theorem 4.8 and (4.4)

f un fvL_B)(R")dA,f=v(B).

Thus by Hélder’s inequality and Theorem 5.4

2
v(B)* = < f # 0 f(vL_B)(R") di,,f)
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< f] U0 fu o _BYRY L () dA,f f, I(u)™ dA,f

= f] LGN f(v_B)dA,f f, L) di,f

< bel (u) v(B) f C (A N fB)dA,f

<bc(C,(A) '+¢&)v(B) f C,(AnfB)dA,f.

Letting £ | 0 we obtain the result.

COROLLARY 5.6. Suppose that m is an integer, |<m<n, n—m<s<n, and that B is
an K™ measurable (3™, m) rectifiable subset of R" with H™(B)>0. Then there is a
positive number $(B) such that for any AcR"

BB)C(A) =< f C,.m (A QfBYdA,S.

*

Proof. As in the proof of Corollary 4.9 we find a compact subset D of B such that
H™(D)>0 and v=3H"__D satisfies (5.1) with some b. We can then take S(B)=#"(D)/
(bc), where c¢ is as in Theorem 5.4.

Remark 5.7. (1) In general it is not possible to choose S(B) to be of the form
B#™(B) where 8 would depend only on m, n and s. In fact, the right hand side of
Corollary 5.6 is bounded when A and B vary in a fixed ball. However, one can take
B(hB)=(Lip h)"B(B) whenever h is a similarity of R”. Thus for example for (n—1)-
spheres B, f(B)=8,#"""(B).

(2) The opposite inequality in Corollary 5.6 is false. For example, if A is a ball of
radius r, then, for a fixed B, as r—x the left hand side behaves like 7 and the right hand
side like r”. Nevertheless, using the inequality of [MP3], we can prove the following:

THEOREM 5.8. Suppose that m is an integer, lsm<n, n—m<s<n, 0<R<», and
that B is a compact m dimensional C' submanifold of R". Then there is a positive
number y(B, R) such that for all sets A = R" with diam A<R,

f Clim—nlA N fB)dA,f< y(B, R) CS(A).
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Proof. By the definition of the outer capacity we may assume that A is open. We
may also assume that A is contained in B(0, R). Suppose that E is a compact subset of B
such that diam E<R and that there is an orthogonal projection P: R"—V of R” onto a
linear m dimensional subspace V with P|E one-to-one and Lip (P|E)~'<2. For g € O(n)
define

E, .=(t,08)E fora€gV+,
E,=U{E, s;;a€gV*},
@ E,—>gVh, @i x)=a ifx€E, ,.

Note that E, ,NE, ,=@ for a+b as P|E is one-to-one. Then Lip,<3 and ¢, {a}=
E, .. Let g=s+m—n. It follows from [MP3, Theorem 3.1] that

j Cq(A nE, ) d#H" "a<cCfAN Eg) =cC,(A)
gVt

where ¢ depends only on m, n and s. Select x, such that —x, €EgE. Then
AN(r,0g) E=C whenever z€ER"~B(x,, 2R). Hence

f CMAN(1,08)E)d¥"z = f f CA N (z,07,08) E)d%" "a d™b
gV Jgvt

=f f Cz_,A) N (r,o)E}d¥X" " "adH"b
g(VnB(ng,ZR)) gvt

< ca(m)2"R™C (A).
Integrating over O(n) we get

j CANfE)dA, f< ca(m)2"R"C(A).

We can cover B with finitely many sets E, ..., E; which satisfy the assumptions that
were made on E. Therefore

k
j CLANSBYALF< D, | C(A NfE)dA,f<kea(m)2"R"C(A).

i=1

COROLLARY 5.9. Let m, s and B be as in Theorem 5.8. If AcR” and C¥(A)=0,
then C%.,,_.{A0fB)=0 for A, almost all f€I(n).
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THEOREM 5.10. Suppose that n—m<s<n, [|x—u|"*duu<o for u almost all
x€ER" and that v=L7_ v; where each v; satisfies (5.1) for some b;. If A is a u measur-

able and B a v measurable subset of R", then
Coim-nlAN(z,0g01_)B)>0
Jor uxvx#0, almost all (x,y, g) EAXBXO(n).

Proof. Obviously we may assume v satisfies (5.1). Since A and B can be approxi-
mated in measure from within by compact sets, we may assume that they are compact.
Considering the restrictions we may also assume that suppucA and suppvcB. By
Theorem 4.8 S u(uxv)<<¥" for 1, almost all g€O(n), by Lemma 4.6 un
(rx0got1_,)yv is defined and un(z,0gor_,)(R")>0 for uxvx0, almost all (x,y, g),
and by (4.1) suppun(z,0gor_,)svcAN(r,ogoer_,)B. From Theorem 5.4 we infer
that for 8, almost all g € O(n)

I un(r,og),v)<oe for £" almost all zER",

which in view of the facts S n(uxv)<<£" and 71,0go07r_,=7,  0g implies
qes

Ly N (zr,0g07 ), v)<oe for uxv almost all (x,y) ER"XR".

Recalling Lemma 5.2 we get from Fubini’s theorem I, p,_,(uN(7,0g07_;)nv)<o
for uxvx 8, almost all (x, y, g) ER"XR"XO(n), and the assertion follows.

COROLLARY 5.11. Suppose that m is an integer, n—m<s<n, AcR", and B is an
H™ measurable (K™, m) rectifiable subset of R*. Then there is EcA such that
C{(A~E)=0 and for xEE

CosmnlAN(r,0g07_)B)>0 for #™X0, almost all (y, g) € BXO(n).
Proof. Otherwise the set of those x €A for which
H"x0,{(y,2) EBXO(n): Csyp—n(A N (r,0g07_,)B)=0}>0

contains a compact set D with C(D)>0. Then there is a Radon measure x4 with
suppucD, w(D)>0 and [ |x—u|™* duu< for all xER". As in Corollary 4.9 we see that
v=3("_B satisfies the condition of Theorem 5.10, and a contradiction follows.

COROLLARY 5.12. Suppose in addition to the assumptions of Corollary 5.11 that
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A is ¥ measurable with ¥°(A)<x. Then for H°XH"x0, almost all (x,y,g)€
AXBXO0(n)

dimAN(r,ogot_y)B=Zs+m—n.

Proof. Apply Theorem 5.10 to the measures u=#’_A and v="_B with s
replaced by an arbitrary ¢, n—m<t<s, and recall Section 2.3 and Lemma 2.4.
The following lemma and its proof are essentially from [LV, 6.3]:

LEMMA 5.13. Suppose that m is an integer, 1sm<n, n—m<s<n, EcR™ and
a: E-R" is Lipschitzian. Then there is a positive number ¢ such that for all AcR"

»*
f " MA N 7,(aE))dZ"z < cKEM(E) #H(A).
Proof. Define y: R"XE—R"XE by y(z, y)=(z+a(y), y). Then y is bilipschitzian,
and putting F=y~'(AXE) we have by [F, 2.10.45] for some ¢, ER.
HmHS(F)< (Lipy )" SH " (AXE) < c; L™(E) #°(A).

Set D(z)={y €ER": (z, y) EF} for zER". Then [F, 2.10.27] implies
f KD AL 2 < ¢, HTTHF) < ¢, ¢y T(E) HE(A).

Letting p: R"xE—R" be the projection, we have ANt (aE)cpy({z}XD(2)), and the
required inequality follows.

Remark 5.14. If B is an m dimensional C' submanifold of R”, one can modify the
above proof to show that [*J°*" "(ANt(B))dL "z<cH™(B) #°(A), where c¢ de-
pends only on m, n and s. Probably this is true also if B is m rectifiable.

LEMMA 5.15. If A and B are Suslin subsets of R” and 0<t<, then for every real
number a the set

{(x,y, ) ER"XR"XO(n): ¥(A n (1,9g97_,)B)>a}
is a Suslin set.

Proof. Denote

E=AXBXR"XR"XO0(n) N {(u,v,x,y,g):u=(r,0g07_,)(v)},
E(x,y,8) ={(u,v): (u,v,x,y,8) EE} for (x,y,g) ER"XR"XO(n).
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Then E is a Suslin set and by [D, VI,21] the set {(x,y, g): #'(E(x,y, g))>a} is
a Suslin set for every a ER!. But since u€A N(r,ogot_,)B if and only if
(u(r,0g07_)" ! (W) EE(x,y,g), we have

H(AN(0gor_,)B)=2""2%(E(x,y,g)),
and the lemma follows.

THEOREM 5.16. Suppose that m is an integer, 1<m<n, n—m<s<n, A and B are
Suslin subsets of R", #°*(A)<x and B is m rectifiable. Then for H*X H™x0,, almost
all (x,y, g) EAXBXO0(n)

(1) " "MAN(r,0g07_))B)<
and
(2) dimAN(zy0go1_,)B=s+m—n.

Proof. Due to Corollary 5.12 it suffices to prove (1). This follows since Lemma
5.13 implies for any g€O0(n), ¥* "™ "An(r,0g)B)<x» for ¥£" almost zER", since
Corollary 4.10 implies S, .((#°L_A)X(H™"__B))<<¥" for 6, almost all g€ O(n), and
since Lemma 5.15 implies that the function (x,y, g)>¥**" "(AN(r,0go01_,)B) is
H° X H™ %6, measurable.

6. Similarities and intersections

Here we shall consider intersections A NfB, where fis a similarity map of R”, without
any smoothness or rectifiability assumptions on either A or B. By a similarity we mean
a map f: R"—>R” such that there is r ER with |f(x)—f(y)|=r|x—y] for all x,y ER". Then
r=Lipf and f has a unique decomposition as

f=1,0g00,, zER" g€O(n), r€ER,,
where
0,:R"->R", 5,(x) = rx.
We denote by S(n) the space of all similarities of R” and for 0<a<b<w
Se.6(n)={fE€ES(n):a< Lipf<b)}.

For any t€R, we define the Borel measure o, ,on S, (n) such that
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jq)da;,b= fbr"l f f @(r,08008,)d<L"z2d0, g dL'r
for any non-negative Borel function ¢ on S, 5(n), and we put o'=g ., and o=0'. For
SES(n) and 6 ER, we let
WAHO) = {(x,y) ER"XR": [x—f(y)| < d}.
If g€0(n) and rER, we define
Se.nR"™XR"—R" by S8 Ax,y)=x—g(ry).

Let x and v be Radon measures on R”. For any r ER, we can apply Section 4 to
the measures x4 and J,.: v to conclude that for g € O(n) the intersection measures

uNfav=un(r,0g)s,+v) with f=r,0g04,

exist for £" almost all zER". As in Section 4 we see that uNfy v is defined for o al-
most all f€ S(n), and from (4.1)-(4.4) we infer that the following four statements hold
whenever ¢ and y are non-negative Borel functions on R™:

suppu N f v < suppu N f(suppv). (6.1)
j PO Y x)dun fvx = !sl?g a(n)™' 67" fw,(a) @(x) Y(y) duXv(x,y) (6.2)
with f=7,0g04, for any g € O(n) for £" almost all zER".
The function f— j eof Ndun f,vis o' measurable. 6.3)
fj ppof Ydun f,vdo! f< t“(b’—a’)j (pd,uf Ydv; (6.4)

here equality holds if S, ,(uXv)<<%" for 6,x¥" almost all (g,r) € O(n)xR... Note
that S, ,(UXV)=8p0:(UX0,4 V).
For the rest of this section s, t and q will be real numbers such that

0<s<n, 0<t<n, O0sg=s+t—n.

LEMMA 6.5. Suppose that a and B are Borel measures on R" such that

J‘|x|"sdocx<°o and f|)’|_'dﬂy<°°.
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Then for 0<a<b<w

b
limsupd'"Jf r'10,{g: Ix—g(ry)| < 0} dL'rix| " daxB(x,y)

840

<c(a, b) [~ Iy~ daxB(x, y)
Ala, b)

where
A(a, b) = {(x,y) ER"XR": aly| < |x| < bly|},
c(a, b) = comax {(b/la)' ", (a/b)' !}

and ¢y depends only on n.

Proof. Let 0<d<1 and define
b
Jx,y) = J' r"‘@n{g: |x—g(ry)| <5} dF'r
for (x,y) ER"XR". Using Lemma 4.7 we find that
Js(x,y) = J r'7'6,{g: |x—g(ry)| <6} d£'r.
la, b0 {r: {|x|—rly]| <8}

Letting
As={(x,y) ER"XR": a|y|—0 < |x| < b|y|+}

we have A(a, b)=N;=9A;s and [a, b1n {r: ||x|—rly||<d} =D for (x,y) € A5, whence
A,

Set

Bs = {(x,y) EAs: |x| <20},
Cs={(x,y) EAs: aly| < 26},
Ds = {(x,y) €EAs: x| >26, aly| > 20}.

Then As=B;UCsUDs. For (x,y)EBs we have |x|<20 and |y|<a™'(lx|+d)<3a™'9.
These inequalities imply

57T <2 g |,

7848288 Acta Mathematica 152. Imprimé le 17 Avril 1984
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from which
) limlsup 6‘”[ Js(x, ) |x|"9dax f(x,y)
810 s,

b
<lim supj r"‘dr2""3‘a"J |x|”*ly| " dax B(x,y) = 0.

510 5,
For (x,¥) €Cs, [y|<2a™'6 and |x|<(2a~'b+1)3J, and we get in the same way

(2 lim sup 6'"J Js(x, V) |x[" daxpB(x,y) =0.
810 c

[}

For (x,y)€Ds we have aly|/2<|x|<2b|y|. Therefore by Lemma 4.7, with ¢, depending
only on n,

Jsx, x| =<, 6"_1|x|""f r\dPrx] e
{a, BIn{r:{|x|—rly||=6}

<c¢, 6" "'max {a"", """} 26]y|" |x|'~
<2c,0"max {a'~',b"'} max {(a/2)"", (26)' "} x|~ [y
<c(a,b)o"|x|~*|y|™

where c(a, b)=c;2""  max {(a/b)'"!, (b/a)’'}. Hence

limsupd'”j Jé(x,y)[xI"’daxﬂ(x,y)<c(a,b)limsupf x| | T daxB(x, y)
540 D, 5l0 Jy,
=c(a,b)f Ix|7* [y| " dax B(x, y).
Ala, b)

Combining this with (1) and (2) we get the lemma.

THEOREM 6.6. If I w)<® and I(v)<®, then S, ,uxv)<<$" for 6,x%
almost all (g, EOR)XR,.

Proof. We may suppose that 4 and v have compact supports, and consequently
that g=s+t—n=0. For 0<a<b<o we have by Fatou’s lemma, Fubini’s theorem
and Lemma 6.5 applied to the measures a=S;(uxu) and S=Sx(vXv) (recall that
S(x,y)=x—y)
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b
jf Fl f lim infé_"Sg,,#(,uX v)(B(S, ,(x,y), d))do,g dLrduxv(x,y)

640

b
sliminfé‘”ff r'_'fva{(u,v):|x—u—g(r(y—v))l$é}dﬂngdfflrd,uXv(x,y)
510 .

b
=limlinf6‘"f‘l'j r'"'@,,{g: |x—u—g(r(y—v))| < 6} dLr duxu(x, u) dvxv(y,v)
sl0 .

b
=liminf6‘”fJ’ r10,{g: |x—g(ry)| < 0} d¥'r daxB(x,y)
840 .

<c(a, b)j x| |y) ™ daxB(x,y)
=c(a, b) I (w) [ (v) <.
It follows that for 6,x %' almost all (g, r) € O(n) xR

lim inf 775, (X (B(S,, (¥, ), 6) < =

for uxv almost all (x,y) ER"XR”, which implies

lim inf 877, (X 7) (B(S,, (2, ) <

for S, ,+(uxv) almost all zER", and further by Lemma 2.2, S, ,»(uxv)<<Z".

THEOREM 6.7. There is a constant ¢ depending only on n such that
f Foy i 0 fov) do'f< el ) L(v).

Proof. From the proof of Theorem 5.4, with v replaced by 6,4 v, we see immedi-
ately that for any r€R..

ff LN (r,0g00),v)dL"zdb,g
Slirgtlinfa(n)"é"‘ffen{g: |x—u—glr(y—v))| < 8} |x—u|™7 dux(u, v) duxv(x,y).
0

Integrating over an interval [a, 2a], 0<a<<, using Fatou’s lemma, Fubini’s theorem
and Lemma 6.5, we obtain
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2a
f rl—lfjlq(;u n (Tzogodr)# V)dgnzdeng dflr

< czf lx—u|™* [y—v| " duxuxvxvix,u,y,v),
Ala)
where
A(a) = {(x,u,y,v) ER"* aly—v| < |x—u| < 2aly—v|}

and c, depends only on n. Applying this inequality to the intervals [27%,27*1],
summing over all integers i and observing that AQ~)NAQR™)=D unless |i—j|<1, we
obtain the required inequality.

THEOREM 6.8. Suppose that n<s+t and let ¢ be the constant of Theorem 6.7.
Then for any A, BcR" and 0<a<b<w

b —a')’ C,(A) C,(B)5cf CoiANfBYdO! , f
Proof. We may assume that A and B are compact with C,(4)>0 and C(B)>0. Let
£>0. Then there are Radon measures # and v such that suppucA, suppvcB,
uRH=v(R"=1, I(w)<C,A)~'+¢ and I(»)<CAB)~'+¢. Replacing 1, by o , and
using Theorem 6.6, (6.4), Theorem 6.7 and (6.1) we argue exactly as in the proof of
Theorem 5.5 to get

2
rib—a'y = ( f # N [ v(R") da;,bf>
<c(CA) ' +&)(C(B) ' +2) f CfAnfB)da,,f,

from which the theorem follows.

Remark 6.9. If B is a compact m dimensional C' submanifold of R” with
H™(B)>0, it follows from Theorems 5.6 and 5.8 that the right hand side in Theorem 6.8
behaves like b*—a* as a function of a and b. For b—a large this is like (b'—a’)? but for
b—a small it gives a better lower bound than Theorem 6.8.

THEOREM 6.10. Suppose that n<s+t, [|x—u|™*duu<e for u almost all xER",
[ly—v|"*dvv<ee for v almost all yER", A is a u measurable and B a v measurable
subset of R". Then for uxvx0,x ¥ almost all (x, y, g, ) EAXBXO(n)XR.,.
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Cerr-nlA N (1,08006,07_,) B) >0.

Proof. Approximating y and v we may assume I, (u)<o and [,(v)<o. As in the
proof of Theorem 5.10 we may also assume that A and B are compact and that supp
ucA and suppvcB. By Theorem 6.6 S, ,u(uxv)<<¥" for 6,x¥' almost all
(g, E€O0(M)XR, and by Theorem 6.7 I,(uN(r,0800,)4v)<x for £"x0,XF almost
all (z,g,r)ER"XO(n)XR,. Using these facts we complete the proof as in Theorem
5.10.

COROLLARY 6.11. Suppose that n<s+t, AcR" and BcR" with C{B)>0. Then
there is a subset E of A with C{A~E)=0 and with the following property: For every
XEFE there is a subset B, of B such that C{(B,)>0 and for all yEB,

Cs+t——n(A n (Txog o(sro T—y)B) >0
for 6,xF almost all (g, r) € O(M)XR..

Proof. Let v be a Radon measure with compact support such that K= suppvcB,
v(R")=1 and I(v)<x. Then C(F)>0 whenever FcB is v measurable with v(F)>0. Let
D be the set of those x €A for which the set of all y € B such that

0, x £ {(g, N EOM)XR:C,(A N (r,0g99,01_,)B)=0}>0

has positive v measure. It suffices to show Cy(D)=0. If C,(D)>0, there is a Radon
measure y with compact support such that H= suppucD, uR”)=1 and [ (u)<w. By
the definition of D and the fact that the function (x, y, g, P—C,(HN(z,0g0d,07_,) K)
is a Borel function, we infer from Fubini’s theorem that the set of those
(x,y,8,)EHXKXO(m)XR, for which C,(Hn(r,0g0d,07_)K)=0 has positive
uxvxg,x ¥ measure. But this contradicts Theorem 6.10.

I do not know if C(B,)>0 can be replaced by C(B~B,)=0.

COROLLARY 6.12. Suppose that A is an ¥° measurable and B an ' measurable
subset of R"™ with #*(A)<x and #H'(B)<w. Then

dim(AN(z,0g06,01_ )B=s+t—n
Sor H°XH'x0,x L almost all (x,y,2,r)EAXBXO(n)XR,.

Proof. Combine Theorem 6.10 with Lemma 2.4 and Section 2.3.
In general the opposite inequality is false, but it holds if B has positive ¢ dimension-
al lower density at all of its points:



102 P. MATTILA

THEOREM 6.13. Suppose that A and B are Suslin subsets of R" with #*(A)<w«
and '(B)<« and that

liminfé~*%'(B N B(x,6))>0 for all x€B.
310

Then
dimAn(z,0g0d,01_) )B=s+t—n
for X H'X0,X L almost all (x,y,g,r) ER"XR"XO(n)XR,.

Proof. Let g€O0(n) and rER,. A result of Besicovitch and Moran [BM] implies
dimAX((god,) B)=dimA+dim B, and so #***(Ax((ged,) B)=0 for t<u. Using this,
[F, 2.10.27] and the similarity of the sets ANr(god,)B) and (AX(god,)B)nNW,, we
obtain

*

f HMA N T (g00) BY AL L= z(ﬂ-s-wﬂf HTM(AX((g0 ) B) N W) d L'

<c, H*TAX(g00,)B)=0

for t<u. Thus dimAn(r,0god,) B<s+i—n for £" almost all zER". From Lemma 2.4
and Theorem 6.6 we see that S, ,«((H°L_A)X(H_B))<<Z" for 0,x¥ almost all
(g, )EOm)XR,. For any such (g,r) dimAn(r,eged,ot_,)B<s+t—n for H*XH’
almost all (x,y) EAXB. The theorem follows now from Fubini’s theorem, the obvious
modification of Lemma 5.15 and Corollary 6.12.

Remark 6.14. (1) The lower density assumption on B holds if B is self-similar, see
[H, 5.3(1)].

(2) Clearly the above proof requires only the equality dim AxB=dimA+dimB. A
recent sufficient condition for this, more general than the positiveness of lower density,
was given by Tricot [T].

7. Examples

We construct two examples to illustrate the sharpness of the preceding results. For
simplicity we consider only subsets of the real line, but quite likely such examples
could be given in any R”. Of course the situation is somewhat different and more
complicated for n=2 as rotations play then an essential role.
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The first example shows that Corollaries 5.6, 5.11 and 5.12 do not hold for general
sets B. We could also use Hawkes’ work on the Cantor ternary set [H 2], but it does not
display the worst possible situation.

EXAMPLE 7.1. For any s, 0<s<1, there are compact subsets A and B of R such
that dim A=dim B=s and for any zER!, ANnt,B contains at most one point.

Proof. We assume 0<s<]1. It is clear that only slight modifications are required to
handle the extreme cases. Take a strictly increasing sequence (n,) of positive integers
with n;=1 and define positive numbers d, by

=1, ndp=d
Choosing the sequence (n;) sufficiently rapidly increasing, the numbers ¢, defined by
(=D e +3(n—D dy,  +d,,, = d,
satisfy
(D) 4npdpy < cq.

We define inductively intervals [; ; and J;

y of length d, for 1<i,<n,, l<k=m,

m=1,2,..., as follows: Take 1;=J,=[0,1]. Assuming that I, ,=[a,a+d\] and J;

-y

=[b, b+d,] have been selected, we define for i=1, ..., nt.,

I .= [a+=Depati-1)c,+dy,),

1

Ji = [b+(—1) ¢, +3(—Dd,,,, b+(i—1) ¢, +3G,— 1) d,,,+d,,1]
Letting

"l(’

A=Nn UL , and - B=N U Ji,.

k=1ij...i, k=Yi,..i

we have dim A=dim B=s, cf. [F, 2.10,18]. Using (1) one verifies that for any zER! and
k=1, 2,... there is at most one pair of sequences iy, ..., i, and j;, ...,j, such that

Pirt 28!
iL=J1 Ii""iki n _[l=‘-J] TZ‘Ij,.,.jkj Q.

From this it follows that ANz, B is either empty or a singleton.
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The second example shows that the lower dénsity assumption cannot be removed
in Theorem 6.13.

EXAMPLE 7.2. For any s, 0<s=<1, there are compact subsets A and B of R! such
that dim A=dim B=s and dim A Nt(d,B)=s for all z€[0, 1/2] and r€[1/2,1].

Proof. Again we only treat the case 0<s<1. Let 0<s;<s<l1, s; 1 s, [=[0, 1], and let
L be the set of the lines {(x, y): y=ax+b} with 1<a<2, —1/2<b<0. We say that a line /
intersects a rectangle R<R? maximally if #'(nz,R)<¥'(InR) for all zER?. We
choose uniformly distributed disjoint subintervals I, ..., Iml of I of length d; such that

m,di=1. We can take d, so small that the following condition is also satisfied:

If l€ L and p is the number of those rectangles I;x1I, i=1,...,n;, which [ intersects
maximally, then p=d, “'m,. Thus pd;'=1.

Next we choose uniformly distributed disjoint intervals J, ..., J,Il of I of length ¢,

such that n, ej=1. We can take e, so small that the following condition also holds:

If /EL intersects maximally a rectangle I;xI and ¢ is the number of those
rectangles I,XJ;, j=1,...,ny, which [ intersects maximally, then g=e, "'n;. Thus ge;'
=1.

Next for each i=1,...,m; we select uniformly distributed disjoint subintervals
L,..., Iimz of I; with length d, such that m, d;=d). We can again take d so small that the

following condition holds.

If IEL intersects maximally a rectangle I;xJ; and p is the number of those
rectangles I xJ;, k=1, ..., n,, which [/ intersects maximally, then del"d;_szmz. Thus
pdy=1.

It is now obvious how we continue to find the intervals
[,oI;>...and J;oJ; ;> ... Defining A and B as in Example 7.1, we have

dim A=dim B=s. Using the facts about the maximal intersections in the above con-
structions and [F, 2.10.28], one finds dim(AxB)nl=s for all /€L, whence
dim(AX(5,B)Nnl=s for all r€[1/2,1], z€[0,1/2], where I,={(x,y):y=x—z}. This
implies dim A N7,(d,B)=s.
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