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A. Introduction 

We consider in this paper groups of MObius transformations of l~"=R"tJ {zc}. Such a 

group is called Kleinian if it acts discontinuously somewhere in 1~". The action of G 

extends to the (n+ D-dimensional hyperbolic space H"-I=R"•  zc) and G is geomet- 
rically finite if there is a hyperbolic fundamental polyhedron with a finite number of 

faces for the action of G in H ' ' - t  (for a more precise definition see [15. 1 B]). We prove 

in this paper that the Hausdor[f dimension dim~L(G) of the limit set L(G) of a 

geometrically finite Kleinian group G of 1~" is less than n (Theorem D). 

Our proof of this theorem is based on the following obser~'ation, Assume that G is 

of compact t3'pe, i.e. if IzI"-I=H"-IuI~ ''. then ((-I"-~\L(G))/G is compact. Then 

there is an integer q such that if we divide any n-cube Q of R" into q" equal subcubes, 

then at least one of these subcubes does not touch L(G). Let L4~Q) be the family of 

these subcubes which touch L(G). Then the n-measures of Q' E,Le(Q) do not add up to 

the n-measure of Q and we get 

E d(Q')~ <<" cd(Q)a (A 1) 
Q' 6 s Q ) 

for a = n  and c=l-1/q". Obviously. this remains valid for slightly smaller a<n and 

slightly bigger c< l .  Passing now to the families Y?(Q'). Q' E~(Q). we get an inductive 

argument which shows that the Hausdorff dimension of L(G) cannot exceed a<n. 
The existence of such q is based on a compactness argument. If 

r=d(QNL(G))/d(Q) is small, the existence of such q is clear, On the other hand, if say 

r~>I/2, let ZQ be the center of Q and let sQ be its side length. If ~Q=(ZQ. SQ)EH ' 1 .  
the hyperbolic distance of ~Q from the hyperbolic convex hull Hc  of L(G) (see Section 
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B) is bounded.  In the present  case, Hc,/G is compact .  Hence there is a compact  set 

C c H  "§ such that ~QEGC. Let  fl be a similarity of  R"x[0 ,  oc) such that fl(Q)=Qo 

where Q0 is a given standard cube. Now we factor  fl as 

f l=hg 

where g E G and g(~Q)E C and h is some MObius transformation. Thus h (,~Q0)E C 

and it follows that h varies in a compact  set of  MObius transformations. Now 

fl(Q N L( G) ) = Qo N hg(L( G) ) = Qo N h(L( G) ). (A2) 

Since every h(L(G)) is nowhere dense in 1~ n and h varies in a compact  set we can 

conclude the existence of  the required q. 

The argument above gives an easy proof  of the fact that dimH L(G)<n for groups 

of  compact  type. This paper  is an elaboration of  it to get the result for all geometrically 

finite Kleinian G. It turns out that, given an n-cube Q, we can define cube families At(Q) 

covering Q N (L (G) \ (pa r abo l i c  fixpoints)) and that these satisfy (A 1) for some a<n and 

c <  1 if Q satisfies a certain condition and then every Q' E AC~Q) satisfies this condition. 

Hence we can again apply an inductive argument to get the theorem. 

Incidentally, the above compactness  argument can be extended for all geometrical- 

ly finite G which do not contain parabolic elements of  rank n (cf. Section B). Then in 

(A 2) h(L(G)) E ~ where ~ is a family of  subsets of  1~ n which is compact  in a suitable 

topology and such that every F E  ~ is nowhere dense ([16]). If G contains parabolic 

fixpoints of  rank n, then 1~ ~ E ~ and thus this method cannot be extended to the general 

case, a new idea is needed.  This idea then allows to treat all parabolic fixpoints in the 

same manner  regardless of  rank. 

It is a consequence  of  our  theorem that the n-measure of  the limit set vanishes. 

However, if one wishes to have only this theorem, then our proof  could be simplified 

since then one does not need Lem m a  D which is the most complicated result needed in 

the proof. 

If  n-- 1, then it is known that dimH L(G)<n for geometrically finite Kleinian G, that 

is, for finitely generated Fuchsian groups of  the second kind. (Beardon [4], Patterson 

[8].) If  n=2  this has been proved by Sullivan [12] whose proof  should generalize also for 

n>2.  In any case, Sullivan's earlier paper [1 I, Section 3] implies that dimHL(G)<n for 

Kleinian groups of compact  type if one in addition knows that the n-measure of  L(G) 

vanishes. This latter result is classical if n = l  and well-known for n=2  (Ahlfors [1], 

Beardon-Maski t  [5]). It is true also for n>2  although we do not know an explicit 
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reference,  apart from the results of  our paper. (1) For  instance, it follows from Ahlfors 

[2, 7.13] since in the geometrically finite case a point x E L(G) is in the conical limit set 

unless it is fixed by a parabolic g E G as follows from the existence of  cusp neighbour- 

hoods (cf. Section B). Also, the method of  Beardon-Maski t  [5] should generalize for all 

n.  

On the other  hand, D. Sullivan [13] has shown that there are finitely generated 

Kleinian groups of R'- for which the Hausdorf f  dimension of  the limit set is 2 (although 

the areal measure is zero). Thus the condition that the groups are geometrically finite 

cannot  be relaxed. In fact, Ahlfors '  famous problem on the vanishing of the areal 

measure of  limit sets of  finitely generated Kleinian groups is still open. 

In the final section we show that the Poincar6 series for a geometrically finite 

Kleinian group of  1~ n converges for some exponent  s<n. Only very slight strengthening 

of  our  method is needed to obtain this theorem (Theorem E). 

Notation and terminology. We denote  the group of  Mrbius  transformations of  1~ n 

by M6b(n);  it includes also orientation reversing elements. Every g E M r b ( n )  has a 

unique extension to a M6bius transformation of  I:p§ we do not distinguish between g 

and its extension. As usual, we classify g E M r b  (n), g * i d ,  as elliptic, parabolic or 

loxodromic and loxodromic g can be also hyperbolic, see e.g. [15, 1 C]. 

A Mrbius group of  1~ n is a subgroup of  M r b  (n). It is a topological group in the 

topology of  maps of  1~ n given by uniform convergence in the spherical metric. It is then 

discrete if and only if its action in H ~§ is discontinuous (see the argument in Ahlfors 

[2, p. 79]). We denote  the limit set of  G by L(G) which is the accumulation set of Gx for 

x E H  "§ We denote  the set of points of  1~ ~ fixed by some parabolic gEG by P(G). 

Then P(G)cL(G). 

The hyperbolic metric of  H ~§ is given by Idxl/x~§ and is denoted by d:  the 

diameter  of  a set is d(A), the distance of  two sets d(A, B). We use this notation also for 

diameters in the euclidean metric of  R ~- ~. If confusion is possible we say which metric 

we mean. The euclidean distance of  two points is ]x-y I, the closed euclidean ball with 

center  x and radius r is B~(x, r), Bn=B~(0, 1) and B~(r)=B~(O, r). The boundary of a set 

(in 1~ ~§ is aA, the closure is clA and the interior intA (which may be taken also in 

R~). The standard basis of  R ~§ is el . . . . .  en+l. A similarity is a map which multiplies 

euclidean distances by a constant .  

(1) B. Apanasov's paper "'Geometrically finite groups of spatial transformations" (Russian). Siberian 
Math. J. 23:6 (1982). 16-27. contains this result. His definition of a geometrically finite group is different but 
leads to the same class of groups. (Note added in proof.) 
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B. Horoballs at parabolic fixpoints 

Let  G be a discrete M6bius group of  l~". In this section we pay special attention to 

parabolic elements in G and to the set P(G) of points fixed by some parabolic g E G. 

If  v E P(G), let Go={g E G: g(v)=v}. Then every g E Go is non-loxodromic and Go 

contains a free abelian subgroup H of  finite index ([15, Theorem 2.1]). The rank k of H 

depends only on v and we say k is also the rank of v. If  v has rank k, then a cusp 

neighbourhood U of v is a Go-invariant subset of ~I"+~\L(G) such that (g(U): g E G} 

is a disjoint family and Which is of the form 

h(U) = ( l ~ I n + l \ R * •  oo } (B 1) 

for some hEMOb(n)  with h (v )=~ .  Moreover, h-~(Rk• is compact for 

every r~>0. If  G is geometrically finite, then every v E P(G) has cusp neighbourhoods 

([15, Theorem 2.4]). 

A related notion is that of  a horoball at v. It is an open (n+l)-ball  Bc(-I  n+l such 

that OB is tangent to 1~" at v. Since 1~" is G~-invariant, also B is then G~-invariant. This 

is easy to see if v = ~  since then every gEGo is a euclidean isometry. From the 

expression (B 1) one sees that every cusp neighbourhood of v contains horoballs. We 

say that Be, v E P(G), is a complete set o f  horoballs for G if it is a disjoint family and if 

g(Bo) =Bg(v ) for g E G. 

Finally, we need the notion of  the hyperbolic convex hull HacI-I "+~ of G. It is the 

smallest convex and closed subset of I-I n+~ such that L(G)cc lH6 .  It is well-defined 

unless L ( G ) - { a  point} in which case we set H a = O .  We then set for m~>0 

= {x E H"+~: d(x, H a) <- m}. (B 2) 

The next lemma is the one in this paper in which the assumption that G is 

geometrically finite is utilized. 

LEMMA B. Let G be a geometrically finite Kleinian group o f  R". Then G has a 

complete set o f  horoballs and i f  By, v f P ( G ) ,  is such a set, then 

(H~a\(l.J {Bo: v E P(G)}))/G 

is compact for m~O. 

Proof. Since G is geometrically finite, we can pick a cusp neighbourhood Ue of  v 

for v EP(G) ([15, Theorem 2.4]) and, furthermore, we can assume that Uv, v EP(G), is a 

disjoint family and that g(Ue) = Uer ) for v EP(G). Next we pick horobaUs BecUe and 
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we can do this in such a way that they form a complete set of horoballs for G. Thus G 

has such a set. 

Let then Bv, v fi P(G), be a complete set of horoballs for G. We can assume that 

each Bo is contained in a cusp neighbourhood Uo as above. Now (((-In+1\L(G))\ 

(U{Uo:v6P(G)}))/G is compact by [15, Theorem 2.4] and  hence so is 

(I-I"da\(LI { Uv: v 6 P(G)}))/G which is a closed subset of it. If Uv is of the form (B 1) with 

h=id, then L(G) NRncRk•  "-~ and hence HacRkxBn-kx(O,~176 Consequently 

H~\BvcRkxB"-k+l(r)  for some r>0. Remembering that RkxB"-k+l(r)/Go is compact, 

we infer that (//"d~ N cl (Uo\Bo))/G is compact and the lemma follows since there are 

only a finite number of non-conjugate parabolic fixpoints. 

Remark. After this paper was completed, I have been informed that B. Apanasov 

has also proved results similar to Lemma B (using a slightly different definition of a 

geometrically finite group). See his paper "Geometrically finite hyperbolic structures 

on manifolds", Annals of Global Analysis and Geometry, 1:3 (1983), 1-22. 

C. The cube lemma 

We now give in a precise form the result on the subdivision of cubes which we 

mentioned in the introduction. 

We first fix some notation. We denote the set of n-cubes of R" by ~ , .  If Q 6 ~ , ,  

we let Za be its center and s o its side length and set 

zo = (zo, So) s H "+~, 

Q+ = Qx[o, so] fi ~',+1. 

If q>O is an integer, we let 

~f(Q, q) c Y/'. 

be the family of cubes obtained by subdividing Q into q" subcubes of side length sQ/q. 

LEMMA C. Let  G be a geometrically finite Kleinian group o f  A n and let Bo, 

ofiP(G), be a complete set o f  horoballs for  G. Let CcI-I "+1 be compact. Then there is 

an integer q>0 such that i f  Q fi ~f, and i f  Za fi By for no v 6 P(G), then, for  at least one 

Q' fi ~f(Q, q), Q'+ does not touch L(G) U GC. 

Proof. We first show that there is q '>0  such that if QE~fn, then there is 

Q' E ~f(Q, q') such that 
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Q' nL(a)  = 9 .  (C 1) 

Let r=d(Q N L(G))/d(Q). If r~< 1/2, then clearly for big q' there is such Q' for which 

(C1) is true. Hence we can assume that r>l/2. Pick x, yEQNL(G) such that 

Ix-yl>d(Q)/2. Let L be the hyperbolic line with endpoints x and y. Then the hyperbolic 

distance d(~.Q,L)<c=log2+logn+X/-n. Now LcHa and hence s H~ as in 

(B2). In view of Lemma B there is a compact set C'cI-I "+~ such that zEGC' if zEH~ 

and z E Bo for no v E P(G). Hence ~Q E GC'. 

Fix a standard cube QoEYt'n. Let fl be a similarity of Rnx[0, oo) such that 

fl(Q)=Qo. Let M be the set of M6bius transformations of IZI "+~ such that h-~(s E C' if 

hEM. Then M is compact. Now there is gEG and hEM6b(n)  such that fl=hg and 

g(zo) E C'. Thus h E M and 

fl(Q N L(G)) = Qo N hg(L(G)) = Qo N h(L(G)) 

since L(G) is G-invafiant. Given h E M, there is qh such that, for at least one 

Q' E ff{(Qo, qh), Q' does not touch h(L(G)) and (C 1) now follows by compactness. 

If Q E YC,, and r>0, set 

B~=  {xEIZl"+l:x4:oo and Ix-zol<,so/r}. 

I f Q ' E ~ ,  and Q'NL(G)=O, then B~,NL(G)=~for r>~l-dQ for some dQ>O. Since 

H"+I\B~,  is hyperbolically convex, it follows that B~Q, NHc=~ for r~>l. Now 

d(OB~. +1 r NIT' ,BQ, NI-P+J)=logr for r>~l. Thus, when /~c  is as in (B2), 

H"dnB ~, = 9  (C2) 

for r>~e m whenever Q' NL(G)=~. 

Suppose that Ha:~O. Then GC=I-I~a for some m>0, and (C 1) and (C2) now imply 

the lemma. 

If HG=~,  then either L (G)=~  or L(G)= {x}. In the first case G is finite and hence 

GCcI-I "+~ is compact. Obviously the lemma is then true. In the second case there is a 

G-invariant horoball B at x such that GC=B and the lemma is again obvious. 

Remark. A further analysis shows that it would suffice in Lemma C to assume that 

s for no parabolic fixpoint of rank n, cf. [16]. This follows since if 

d(Q • L(G))/d(Q)>~ 1/2 and if s is in a small horoball Bo of a parabolic fixpoint of rank k, 

then fl(L(G)) is near some h ( l ~ ,  h E M6b (n). 
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D. The Hausdorff  dimension of  the limit set 

In this section we prove our first main 

THEOREM D. The Hausdorff dimension of the limit set of  a geometrically finite 
Kleinian group G of Rn is less than n. 

First some notation. We abbreviate L(G) as L and P(G) as P. Since M6bius 

transformations do not change the Hausdorff dimension, we can assume that L c R  n. If 

a cube Q E 5(n has side length SQ and t~> 1, we set 

O =Q• 

Q+ = Qx[0, So] E ~,,+t, (D I) 

Qt = QX[sQ/t, So] c H "+l. 

We fix a complete set of horoballs Bo, v E P, for G as in Section B. Having chosen Bo, 

we then define a smaller horoball B'cBo tangent to 1~" at v such that the hyperbolic 

distance 

d(B'o, 8Bo\{v}) = log 2+2V'-7. (D 2) 

Then also B',  o EP, is a complete set of horoballs for G. 

We also fix some y ~ H  n+~ such that GynBo=f~ for all vEP. This point is needed 

in the next section; for Theorem D we could replace the condition Q~ n (L 0 Gy)*f~ in 

(D 3) by a N/~=~. 

Fix now an integer q > l  such that if QE~n and OnB'o=f~ for all vEP, then for at 

least one Q' E ~(Q, q), Q~_ N (L 0 Gy)=0.  By Lemma C, there is such a q. Using this q, 
we define for Q E ~ .  

s = {Q' E~(Q,2iq):i>~o, Q'+fl(LUGy).f~ and O' NB'=f~ for all vEP 

and that this is true for no Q" ~ Q', Q" E ~(Q, 2/q) with 0 ~<j < i}. (D 3) 

Then obviously 

Q' n B" = ~ (D 4) 

for all vEP and Q' E&ffQ). Let VQ={VEP:BoNQx{so/q}~:f~ }. Then 

13 Q+ = Qx [0, so/q] N (Gy O (L\VQ)). (D 5) 
Q'~.~Q) 
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To prove (D 5), pick x from the right-hand side of (D 5). Let z=x if x 6 Gy. If x E L \  VQ, 
let z be a point of the form z=(x,a) where aE(O, SQ/q] and zEBv for no vEP; 
obviously there is such z. Thus in all cases z~Bv if v 6P.  Pick now Q' E X(Q, 2iq), i>~O, 
such that z E Q~. If z' E {~', then d(z, z') <~log 2 + X/'-n- and hence (~' N B'v =Q for all v E P 

by (D2). It follows that there is Q"E X(Q, 2iq), O<~j<~i, such that Q"~Q' and Q"E..~(Q). 
Then z E Q~_, and (D 5) follows. In particular, 

~(Q) covers QN(L\VQ). (D6) 

If, in addition, {2 n B~=~ for all v E P, then, considering the n-measure, we get by the 

choice of q, 

E d(Q')" <~(1-1/q")d(Q)". (D7) 
Q' 6 ~(Q) 

We now construct inductively cube families covering L \ P .  Pick first some cube 

QoEX, such that (Qo)+~LOGy and that {2oNB'=~3 for all vEP. Since ~ r  there is 

such Qo. We then define inductively cube families ~ ,  i~>0, and ZP by 

Af0 = {Qo}, 

~,.+j= u &O(Q) for i > o ,  and (D8) 
Q 6 ~  i 

u 
/~>0 

We note the following properties of these cube families, which follow from 

(D4)-(D6). 

~/ covers L \ P  for all i, (D9) 

if Q6~? ,  then - ' QNBv=(3 forall  vEP, (D10) 

LJ Oq ~ Gy. (D l l )  
QE~e 

We give some explanation of only (D I1). Note that if zEGy, then, by (D5), either 

z6 (Qo)q or there is Q' E~9?(Q0)c~ such that z6  Q~_. In the last case, again by (D5), 
t it either z6 Qq or there is Q"E.5~(Q')cZf such that zE Q+. This process cannot go on 

indefinitively, and we eventually find Q E ~ such that z E Qq, implying (D 11) which is 

needed in the next section. 
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If  we can show that for some a 6 (0, n) and c 6 (0, 1) 

Z d(Q)~ <<- c Z d(Q )~ (D 12) 

then it follows immediately that dimHL=dimHL\P<~a<n. Furthermore,  then the a- 

dimensional Hausdorff  measure of L \ P  is zero and so is that of L. By (D 7), (D 12) is 

true for a--n and c - -1 -1 /q  n. Thus, to get the result that the n-measure of L is zero, we 

need proceed no further. 

The validity of  (D 12) for some a<n and c<1 is an immediate consequence of  

LEMMA D. There is ao6(O,n) and c6(0 ,  I) such that if Q6tK, and if 

ONB'v=Q for all v6P, then for all a~ao, 

Z d(Q')~ <~ cd(Q)% (D 13) 
Q' e ~Q) 

Proof. By (D7), we know that this is true for a=n and c=l-I/qn. Starting from 

this fact, we now prove this improvement of  (D 7). Since the lemma is unaffected by a 

change of scale, we can assume that 

d(Q) = 1. 

Let  

V= {vEP : B'oNQ• {s~q } * fD}. 

Since ONB'~=Q• for all vEP, it follows that 

1/~r if v E V.  Since d(Bo)=2e2V~d(B'~) by (D 2), the euclidean diame- 

ters satisfy 

1/X/--ff-q <~ d(B'~) < d(B v) <~ 4e2V~-/V"-h -- (D 14) 

for v6  V. It follows that there is e=e(q, n)>0 such that Io-o'l~>~ if v, v ' 6  V and v4:v'. 
Thus the number of points in V 

for some N=N(q, n). 
Let  

card V ~< N (D 15) 

~,  = ..~,(Q) ~ ~r(Q, q). 
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If Q' E ~ ' ,  then Q' E ~(Q, 2iq) for some i>o. Hence there is Q"E ~(Q, 2i-lq) such that 

Q"~Q'. Then Q"di~e(Q) by (D3) and hence -" ' Q NBo~Q for some vEP since in any case 

Q~ n(GyUL)=Q'+ N(GyUL):t:r 

z' E Q', It follows by (D 2) that 

Pick z" E -' . . . .  Q NB o. Then d(z ,z ' )<log2+2V-~- for all 

Q' ~- B \ B '  (D 16) - -V ~ O" 

If Q' E ~ ' ,  we denote by VQ, the point of V satisfying (D 16) (which is obviously 

unique). We show that there is m=m(q, n)>l  such that 

Ix-%,12/m <~ % <~ mlx-%,l 2 (D 17) 

Now, we have SQ,<-I/2qX/--~<~d(B'o)/2<d(Bo)/2 by (D14) 

The sets aB o, and aB o are n-spheres and considering the 

when xE Q' and Q' E ~ ' .  

where we have set V=VQ,. 

equation of the lower hemispheres of them we find m > l  such that 

Q.'= Q'X{SQ,} c {(x, t )ERn• ~): Ix-vl2/ra<~t ~< re}x-o}2). 

In view of (D 14), m=m(q, n) and (D 17) follows. 

To get (D 13), we use (D 17). Let a>n/2. Then 

d(Q') ~ = n~/2s~, = n ~a2 fQ, s~. ~ d/z 

where/z is the Lebesgue measure of R n. Thus for r~0 

fz -ol<~, Iz-vl2(~-~) dlz(Z) = W ~ frx2(~-n)+(~-I) dx - ~~ ~rZa-n/(2ct-n) >~ c~ 2 - (D18) 

where w~ is the (n-1)-measure of S ~-1 and Co=m~-an-a/2=co(n, q) and where the sum 

is taken over Q' E ~ '  such that V=VQ, and that Q'r-B~(v, r )={zE Rn: Iz-ol<~r}. 
If Q' E~D(Q) and d(Q')<l/q, then Q' E ~ ' .  Hence OQ, is defined and, by (D 17), 

Q' c Bn(vQ,, (me') I/2) 

if Q'E&~ and d(Q')<~E'<l/q and where VQ,~.V. Suppose that e'<l/q and that 

a>~2n/3. Then (D 18), (D 15) and the above inclusion imply 

2 d(Q')~ ~ CI E'nl6 (D 19) 
Q' ~. ,.Lff Q) , d( Q ' ) <~ ~ ' 
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where c~=3Nw,, mn/6/Co n=cl( q, n). Fix now e'=e'(q, n) E (0, 1/q) such that 

cle'"/6<~l/3q n. This done, we can then find ao=ao(q,n)E[2n/3,n) such that 

d(Q')~<(1 + 1/3q")d(Q')" for a>~a o if Q'E &O(Q) and d(Q')>~e '. Hence by (D 19) and (D 7) 

Z d(Q')a <" 1/3q"+(1 + 1/3q") (1-1/q") < (1-1/3q") d(Q) ~. 
Q' E.o~(Q) 

and the lemma is true for this ao and c=l-1/3q". 

Finally, we note that by (D 12) the sum 

Z d(Q)a < ~ (D 20) 
Qr 

for a~ct0. Our proof of the convergence of the Poincar6 series gs of G for s>-ao in the 

next section is an almost direct consequence of (D 20). 

Remark. If G is non-elementary, i.e. if the limit set of G contains more than two 

points, then dimaL(G)>0. This follows from Beardon [3, Theorem 13] since we can 

find a Schottky subgroup G'cG and a quasiconformal f of 1~ n such that f G ' f  -~ is 

Fuchsian (cf. [14, pp. 334-335]). N o w f m a p s  sets of positive Hausdorff dimension on 

sets of positive Hausdorff dimension (Gehring-V~iis~il~i [6]). See also Sullivan [11, 

Section 3]. 

E. The  convergence  o f  the Poincar~ series 

Let G be a discrete MObius group of 1~ n. Following Sullivan [11], we define the 

absolute Poincar~ series gs of G for s~>0 by 

gs (x'y) = Z e-~d(x'etY)) 
gEG 

and where x, yEH n+~. If it converges for one pair x, y f iH n+l, then it converges for 

all. The convergence of g, is equivalent to the convergence of 

Ig'(z)l ~ 
gEG 

for zEH "+1 (Ahlfors [2, p. 93]). This is the form in which Poincar6 introduced the 

series for Fuchsian groups [9, p. 194]. 
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Using (D 20) we can now easily establish that gs converges for s>-ao E (0, n) if G is 

geometrically finite and Kleinian. 

THEOREM E. Let G be a geometrically finite Kleinian group o f  R~. Then the 

PoincarO series g~ o f  G converges for s>-ao E (0, n) where ao is as in (D 20). 

Proof. We use the notation Q+ and aq and as in (D 1) for cubes Q E ~n- Let now G 

be a discrete MObius group of 1~ n, t> l ,  and yEI-V +~. 

Then for any Q E ~n, the number of g E G for which g(y) E Qq, 

card {g E G: g(y) E Qq} <~ N (E 1) 

for some N=N(G,  y, q). Since the hyperbolic diameter d(Qq)<~logq+(q+ l)V"n-=r we 

can take N to be the number of g E G  such that d(g(y),y)<.r. Another fact which we 

need is that 

d(e~+ 1, Y) >- log 1/sQ = log (d(Q)/X/-~) (E 2) 

if y EQq for any q~>l and Q E~,, such that SQ<.l. This fol lows since 

y=(x,u)~Rnx(O, oo) where u<~sa and since d(e,+j,en+l/SQ)=logl/sQ. It follows 

that, if z=en+l, then for every Q E ~  the sum 

Z e-Sd(z' g (y)) <~ Nd(Q)~ (E 3) 
gEG, g(y)EQq 

where N=N(G,  y, q). 

This is valid for any discrete G. Assume now that G is geometrically finite and 

Kleinian. We can assume that the situation is as in Section D. Let the point y E I-I n§ , 

the integer q > l  and the cube QoEXn be as there. We can assume that 

sQ0= 1. Define the cube families ~fi and ~ by (D 8). Then every point of Gy is in some 

Qq, Q E ~ ,  by (Dl l ) .  By (D20), Eae~d(Q) s converges for s>-ao. Then (E3) implies 

that gs converges for s>~ao and the theorem is proved. 

Remarks. Beardon [4] proved Theorem E for n= l  (i.e. for finitely generated 

Fuchsian groups of the second kind) and Patterson [8] proved it for groups not 

containing parabolic elements (when n= 1). Sullivan [12] proved it for n=2 and his proof 

probably generalizes also for n>2. 

If G is any discrete MObius group of l~'*, then the Poincar6 series converges for 
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s>n (Ahlfors [2, p. 84], originally Poincar6 [9] for n =  1) and if G is Kleinian, then it 

converges  for s>>-n (see Lehne r  [7, p. 178] whose p roof  can be generalized also for 

n > l ) .  

We then c o m m e n t  on the relation of  dimHL(G) to the exponent o f  convergence 

6(G) of  G which is the infimum of  numbers  s for which gs converges.  Thus 6(G)<<.n, as 

we observed  above. One can show that  the Hausdor f f  dimension of  the so-called 

conical (or radial) limit set of  G does not exceed  6(G) (Sullivan [11] by a method due to 

Bea rdon-Mask i t  [5]). In the geometr ical ly  finite case,  a point x E L(G) is in the conical 

limit set unless it is a parabol ic  f ixpoint which points form a countable set. Hence  

dimaL(G)<~6(G) for  geometr ical ly  finite G. One suspects  that in fact then 

dimHL(G)=~(G). At least  this is so in many  cases,  see Sullivan [11, 12] who proved 

this if  n ~ 2  or if G is of  compac t  type by  considerat ions involving a canonical  measure  

in the limit set originally cons t ruc ted  by Pat terson [8] (where this was proved for many  

groups of  1~1). 
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