On the vanishing of and spanning sets for Poincaré series for cusp forms

by
IRWIN KRA ${ }^{1}$)
State University of New York at Stony Brook
Long Island, NY, U.S.A.

§ 0. Introduction and summary of results

0.1. Let Γ be a finitely generated non-elementary Kleinian group with region of discontinuity $\Omega=\Omega(\Gamma)$ and limit set $\Lambda=\Lambda(\Gamma)$. Let $\lambda(z)|d z|$ be the Poincaré metric on Ω (normalized to have constant negative curvature -1). Fix $q \in \mathbf{Z}, q \geqslant 2$. A cusp form for Γ of weight $(-2 q)$ is a holomorphic function φ on Ω that satisfies

$$
\begin{equation*}
\varphi(\gamma z) \gamma^{\prime}(z)^{q}=\varphi(z), \quad \text { all } z \in \Omega, \text { all } \gamma \in \Gamma, \tag{0.1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\iint_{\Omega / \boldsymbol{\Gamma}} \lambda(z)^{2-q}|\varphi(z) d z \wedge d \bar{z}|<\infty \tag{0.1.2}
\end{equation*}
$$

Condition (0.1.2) is equivalent to

$$
\begin{equation*}
\sup \left\{\lambda(z)^{-q}|\varphi(z)| ; z \in \Omega\right\}<\infty \tag{0.1.3}
\end{equation*}
$$

Denote by $\mathbf{A}_{q}(\Omega, \Gamma)$ the space of cusp forms for Γ of weight $(-2 q)$.
If $\infty \in \Omega$, then for $\varphi \in \mathbf{A}_{q}(\Omega, \Gamma)$,

$$
\varphi(z)=O\left(|z|^{-2 q}\right), \quad z \rightarrow \infty
$$

We will be studying spaces of rational functions. A rational function f will be considered to be holomorphic at ∞ if

$$
f(z)=O\left(|z|^{-2 q}\right), \quad z \rightarrow \infty
$$

We will consider it to have a simple pole at ∞ if

[^0]$$
\lim _{z \rightarrow \infty} z^{2 q-1} f(z)
$$
is finite and non zero.
It will be convenient to work with the following set that contains the limit set. Let $\Lambda_{q}=\Lambda_{q}(\Gamma)$ denote the union of the limit set Λ with the set of fixed points $z_{0} \in \Omega$ of elliptic elements whose stabilizers in Γ are subgroups of order v not a factor of $q-1$; that is, with v satisfying
\[

$$
\begin{equation*}
q-1 \neq 0 \quad(\bmod v) \tag{0.1.4}
\end{equation*}
$$

\]

Note that Λ_{2} contains all elliptic fixed points in Ω; while Λ_{3}, for example, does not contain the elliptic fixed points in Ω whose stabilizers are of order 2.

We let $\mathscr{R}_{q}\left(\Lambda_{q}\right)$ denote the space of rational functions f that satisfy the following conditions:
(i) f is holomorphic on $\mathrm{C} \cup\{\infty\} \backslash \Lambda_{q}$,
(ii) all the poles of f at finite points in Λ_{q} are simple,
(iii) $f(z)=O\left(|z|^{-2 q}\right), z \rightarrow \infty$ if $\infty \notin \Lambda_{q}$, and
(iv) $f(z)=O\left(|z|^{-(2 q-1)}\right), z \rightarrow \infty$ if $\infty \in \Lambda_{q}$.

In view of the convention introduced earlier, we can reformulate the definition of $\mathscr{R}_{q}\left(\Lambda_{q}\right)$. A rational function $f \in \mathscr{R}_{q}\left(\Lambda_{q}\right)$ if and only if all the poles are simple and are located in Λ_{q}.

To simplify notation, we introduce an operator on functions as follows. If A is a Möbius transformation and $2 n, 2 m \in \mathbf{Z}$ with $n+m \in \mathbf{Z}$, then for every function f on a domain D, we define

$$
\begin{equation*}
\left(A_{n, m}^{*} f\right)(z)=f(A z) A^{\prime}(z)^{n} \overline{A^{\prime}(z)^{m}}, \quad z \in A^{-1}(D) \tag{0.1.5}
\end{equation*}
$$

Abbreviate $A_{n, 0}^{*}$ by A_{n}^{*}.
We note that $\mathscr{R}_{q}\left(\Lambda_{q}\right)$ is invariant under the set of linear operators $\left\{A_{q}^{*} ; A \in \Gamma\right\}$.
We can hence define for $f \in \mathscr{R}_{q}\left(\Lambda_{q}\right)$,

$$
\begin{equation*}
f(\infty)=(-1)^{q} \lim _{z \rightarrow \infty} z^{2 q} f(z) \tag{0.1.6}
\end{equation*}
$$

This is a well defined concept; the limit takes values in the extended plane.
If S is a subset of Λ_{q}, we let

$$
\mathscr{R}_{q}(S)=\left\{f \in \mathscr{R}_{q}\left(\Lambda_{q}\right) ; f \text { is holomorphic on } \Lambda_{q} \backslash S\right\}
$$

If $f \in \mathscr{R}_{q}\left(\Lambda_{q}\right)$, the then Poincaré series

$$
\begin{equation*}
\sum_{\gamma \in \Gamma} f(\gamma z) \gamma^{\prime}(z)^{q}, \quad z \in \Omega \tag{0.1.7}
\end{equation*}
$$

converges absolutely and uniformly on compact subsets of Ω, and yields a cusp form $\Theta_{q} f \in \mathbf{A}_{q}(\Omega, \Gamma)$ (see Proposition 1.5). Bers [4] has shown that

$$
\Theta_{q}: \mathscr{R}_{q}(\Lambda) \rightarrow \mathbf{A}_{q}(\Omega, \Gamma)
$$

is surjective. The starting point of this investigation was the following quantitative improvement of Bers' result.

THEOREM 1. Let $a_{1}, \ldots, a_{2 q-1}$ be $(2 q-1)$ distinct points in Λ_{q}. Let $\gamma_{0}=I$, $\gamma_{1}, \ldots, \gamma_{N}$ be generators for Γ. Let

$$
\begin{equation*}
S=\left\{\gamma_{j}\left(a_{k}\right) ; k=1, \ldots, 2 q-1, j=0, \ldots, N\right\} \tag{0.1.8}
\end{equation*}
$$

Then

$$
\Theta_{q}\left(\mathscr{R}_{q}(S)\right)=\mathbf{A}_{q}(\Omega, \Gamma)
$$

Note that

$$
\begin{equation*}
\operatorname{dim} \mathscr{R}_{q}(S) \leqslant(2 q-1) N \tag{0.1.9}
\end{equation*}
$$

We will see that in many instances it is possible, as a consequence of Theorem 1 , to choose from a presentation for Γ, a set S consisting of precisely ($2 q-1$)+ $\operatorname{dim} \mathbf{A}_{q}(\Omega, \Gamma)$ points, the points in S depending on only finitely many choices (see $\S 7$ and §8) so that

$$
\Theta_{q}: \mathscr{R}_{q}(S) \rightarrow \mathbf{A}_{q}(\Omega, \Gamma)
$$

is an isomorphism. The points of S will depend holomorphically on moduli and will give a global trivialization of the vector bundle of cusp forms of weight $(-2 q)$ over the deformation space of Γ (see § 11).

In [17] bases for $\mathbf{A}_{2}(\Omega, \Gamma)$ were obtained by different methods for Γ geometrically finite function groups. Hejhal [11] has obtained spanning sets for Poincaré series for Fuchsian groups, also by different methods. Bases for Schottky groups were found by Bers [5], for arbitrary q, and Hejhal [10], for low values of q. Wolpert [27] obtained bases for $q=2$ and Γ Fuchsian, by studying deformations of conformal structures. The methods of this paper are cohomological (see $\S 0.2$). The idea for Theorem 1 is already

[^1]present in Bers [4], where cohomological ideas were used but not pushed to the limit, and Hejhal [11, p. 357, example 2], where an explicit basis is constructed for $q=2$ and Γ a generic Fuchsian group of type (2,0). The reader is referred to [17] for more bibliographical remarks about this and some other problems considered in this paper.

Remark. Using the notation introduced in (0.1.5), we can rewrite (0.1.7) as

$$
\Theta_{q} f=\sum_{\gamma \in \Gamma} \gamma_{q}^{*} f, \quad f \in \mathscr{R}_{q}\left(\Lambda_{q}\right)
$$

0.2. We turn now to the more interesting vanishing problem raised by Poincaré [24, p. 249] (see also Petersson [23] and Hejhal [11]): Let Δ be a Γ-invariant union of components of the Kleinian group Γ. Find necessary and sufficient conditions for $\Theta_{q} f \mid \Delta$ to vanish (identically) for a given $f \in \mathscr{R}_{q}\left(\Lambda_{q}\right)$.

To begin the discussion of the vanishing problem, we introduce the subspace

$$
\mathbf{A}_{q}(\Delta, \Gamma)=\left\{\varphi \in \mathbf{A}_{q}(\Omega, \Gamma) ; \varphi=0 \text { on } \Omega \backslash \Delta\right\}
$$

and proceed to describe the Eichler cohomology groups.
Let D be an arbitrary Γ-invariant subset of $\mathrm{C} \cup\{\infty\}$. We let Γ act on the right on functions F on D by the formula

$$
\begin{equation*}
F \cdot \gamma=\gamma_{1-q}^{*} F, \quad \gamma \in \Gamma .\left(^{1}\right) \tag{0.2.1}
\end{equation*}
$$

The vector space $\Pi_{2 q-2}$ of polynomials in one complex variable of degree at most $2 q-2$ is invariant under this action; that is,

$$
\begin{equation*}
p \cdot \gamma \in \Pi_{2 q-2} \quad \text { whenever } p \in \Pi_{2 q-2} \text { and } \gamma \in \Gamma \text {. } \tag{0.2.2}
\end{equation*}
$$

Of course, formula (0.2.2) is valid on $\mathrm{C} \cup\{\infty\}$. A mapping $\chi: \Gamma \rightarrow \Pi_{2 q-2}$ is a cocycle provided

$$
\chi\left(\gamma_{1} \circ \gamma_{2}\right)=\chi\left(\gamma_{1}\right) \cdot \gamma_{2}+\chi\left(\gamma_{2}\right), \quad \gamma_{1}, \gamma_{2} \in \Gamma
$$

Such a cocycle is a coboundary if

$$
\chi(\gamma)=p \cdot \gamma-p, \quad \gamma \in \Gamma
$$

for some fixed $p \in \Pi_{2 q-2}$. The cohomology space $H^{1}\left(\Gamma, \Pi_{2 q-2}\right)$ is defined as the

[^2]vector space of cocycles modulo the vector space of coboundaries. We remark that if Γ is generated by N elements, then
\[

$$
\begin{equation*}
\operatorname{dim} H^{1}\left(\Gamma, \Pi_{2 q-2}\right) \leqslant(2 q-1)(N-1) \tag{0.2.3}
\end{equation*}
$$

\]

and equality holds in (0.2 .3) whenever Γ is a free group on N generators. Inequality (0.2.3) should be compared with (0.1.9).

Let $A \in \Gamma$ be a parabolic element. A cocycle χ is parabolic with respect to A provided there is a $v \in \Pi_{2 q-2}$ such that

$$
\begin{equation*}
\chi(A)=v \cdot A-v \tag{0.2.4}
\end{equation*}
$$

A cocycle is called parabolic if it is parabolic with respect to all parabolic elements of Γ; while it is called Δ-parabolic if it is parabolic with respect to every parabolic element in Γ determined by a puncture on Δ / Γ (here Δ is, as before, an invariant union of components of Γ). The image in $H^{1}\left(\Gamma, \Pi_{2 q-2}\right)$ of the set of parabolic (respectively, Δ parabolic) cocycles is denoted by $P H^{1}\left(\Gamma, \Pi_{2 q-2}\right)$ (respectively, $P H_{\Delta}^{1}\left(\Gamma, \Pi_{2 q-2}\right)$).

A function F on D (a Γ-invariant subset of $\mathbf{C} \cup\{\infty\}$) will be called an Eichler integral (for Γ, with support on D, of order $1-q$) provided that for each $\gamma \in \Gamma$, there is a polynomial $\chi(\gamma) \in \Pi_{2 q-2}$ so that

$$
\begin{equation*}
F \cdot \gamma-F=\chi(\gamma) \mid D \tag{0.2.5}
\end{equation*}
$$

In this case χ is a cocycle for Γ and we will call it, the period of the Eichler integral F, $\mathrm{pd} F$. Every cocycle is the period of some smooth Eichler integral supported on Ω (see [14, pp. 180-186]). $\left(^{2}\right.$) We will be mostly interested in Eichler integrals supported on Λ_{q}.

We note that every $p \in \Pi_{2 q-2}$ is an Eichler integral (supported on $\mathbf{C} \cup\{\infty\}$) and that the value of an Eichler integral at ∞ is given by

$$
\begin{equation*}
F(\infty)=(-1)^{1-q} \lim _{z \rightarrow \infty} z^{2-2 q} F(z) \tag{0.2.6}
\end{equation*}
$$

provided that this limit exists.
For $\varphi \in \mathbf{A}_{q}(\Omega, \Gamma), \mu=\lambda^{2-2 q} \bar{\varphi}$ is called canonical generalized Beltrami differential for $\Gamma .\left({ }^{3}\right)$ A continuous function F on \mathbf{C} is called a potential for μ provided

[^3]\[

$$
\begin{equation*}
F(z)=O\left(|z|^{2 q-2}\right), \quad z \rightarrow \infty \tag{0.2.7}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\frac{\partial F}{\partial z}=\mu \tag{0.2.8}
\end{equation*}
$$

in the sense of generalized derivatives. Such a potential F is said to vanish at ∞ if (0.2.7) is strengthened to

$$
F(z)=o\left(|z|^{2 q-2}\right), \quad z \rightarrow \infty
$$

Let $a_{1}, \ldots, a_{2 q-1}$ be $(2 q-1)$ distinct points in Λ_{q} (as in Theorem 1). Then for $z \in \mathbf{C}$,

$$
\begin{equation*}
F(z)=\frac{\left(z-a_{1}\right) \ldots\left(z-a_{2 q-1}\right)}{2 \pi i} \iint_{\Omega} \frac{\mu(\zeta) d \zeta \wedge d \zeta}{(\zeta-z)\left(\zeta-a_{1}\right) \ldots\left(\zeta-a_{2 q-1}\right)} \tag{0.2.9}
\end{equation*}
$$

defines the unique potential $F=F_{\varphi}$ for μ that vanishes at $a_{k}, k=1, \ldots, 2 q-1$. We introduce the convention that if $a_{k}=\infty$ for some k, then the terms $\left(z-a_{k}\right)$ and $\left(\zeta-a_{k}\right)$ are dropped from the formula (0.2.9).

We define $\beta^{*}(\varphi)$ to be the cohomology class of $\operatorname{pd} F_{\varphi}$. We obtain this way the Bers map

$$
\begin{equation*}
\beta^{*}: \mathbf{A}_{q}(\Delta, \Gamma) \rightarrow P H^{1}\left(\Gamma, \Pi_{2 q-2}\right) \cdot\left(^{4}\right) \tag{0.2.10}
\end{equation*}
$$

The map β^{*} is conjugate linear, and injective. The injectivity of β^{*} is the crucial fact that will yield (among other things) Theorem 1. This deep result is due to Ahlfors [1] for $q=2$ and to Bers [3] for $q>2$. A reference for most of the material of this section is the monograph [14].

Having fixed $(2 q-1)$ distinct points $a_{1}, \ldots, a_{2 q-1}$ in Λ_{q}, we define

$$
\begin{aligned}
\mathscr{F}_{1-q}(\Delta, \Gamma)= & \left\{\text { restrictions to } \Lambda_{q} \text { of potentials } F_{\psi}\right. \text { that vanish } \\
& \text { at } \left.a_{k}, k=1, \ldots, 2 q-1, \text { with } \psi \in \mathbf{A}_{q}(\Delta, \Gamma)\right\}
\end{aligned}
$$

We construct next a basis for $\mathscr{R}_{q}\left(\Lambda_{q}\right)$ adapted to the $(2 q-1)$ distinct points $a_{1}, \ldots, a_{2 q-1}$. For $z \in \Lambda_{q}, z \neq a_{j}, z \neq \infty, \zeta \in \Omega$, set

$$
\begin{equation*}
f(z, \zeta)=\frac{-1}{2 \pi} \frac{1}{\zeta-z} \prod_{j=1}^{2 q-1} \frac{z-a_{j}}{\zeta-a_{j}} \tag{0.2.11}
\end{equation*}
$$

(with the usual convention if $a_{j}=\infty$ for some j) and if $\infty \in \Lambda_{q}, \infty \neq a_{j}$,
$\left(^{4}\right)$ It is shown in [12], [13] that β^{*} is the splitting map for a map $\beta: H^{1}\left(\Gamma, \Pi_{2 q-2}\right) \rightarrow \mathbf{A}_{q}(\Delta, \Gamma)$.

$$
\begin{equation*}
f(\infty, \zeta)=(-1)^{q} \prod_{j=1}^{2 q-1} \frac{1}{\zeta-a_{j}} \tag{0.2.12}
\end{equation*}
$$

If $f \in \mathscr{R}_{q}\left(\Lambda_{q}\right)$, then we can find $m \geqslant 1$ distinct points

$$
b_{1}, \ldots, b_{m} \in \Lambda_{q} \backslash\left\{a_{1}, \ldots, a_{2 q-1}\right\}
$$

and complex numbers $\beta_{1}, \ldots, \beta_{m}$ so that

$$
\begin{equation*}
f(\zeta)=\sum_{j=1}^{m} \beta_{j} f\left(b_{j}, \zeta\right), \quad \zeta \in \mathbf{C} \tag{0.2.13}
\end{equation*}
$$

The points b_{1}, \ldots, b_{m} and the constants $\beta_{1}, \ldots, \beta_{m}$ are uniquely determined by f. We define a surjective linear map

$$
\mathscr{K}: \mathscr{R}_{q}\left(\Lambda_{q}\right) \rightarrow \mathscr{F}_{1-q}(\Omega, \Gamma)^{*}
$$

from $\mathscr{R}_{q}\left(\Lambda_{q}\right)$ to the dual space $\mathscr{F}_{1-q}(\Omega, \Gamma)^{*}$ of $\mathscr{F}_{1-q}(\Omega, \Gamma)$ by the formula

$$
\begin{equation*}
\mathscr{K}(f)(F)=\sum_{j=1}^{m} \beta_{j} F\left(b_{j}\right), \quad F \in \mathscr{F}_{1-q}(\Omega, \Gamma) \tag{0.2.14}
\end{equation*}
$$

where $f \in \mathscr{R}_{q}\left(\Lambda_{q}\right)$ is given by (0.2 .13).
Remark. In defining \mathscr{K} we must insist that the same $(2 q-1)$ distinct points be used for normalization of the functions in $\mathscr{F}_{1-q}(\Omega, \Gamma)$ (that is, all the potentials must vanish at these points) and for the basis for $\mathscr{R}_{q}\left(\Lambda_{q}\right)$ (that is, all functions appearing in the basis must have poles at these points).

THEOREM 2. Given $f \in \mathscr{R}_{q}\left(\Lambda_{q}\right)$, then

$$
\Theta_{q} f|\Delta=0 \quad \Leftrightarrow \quad \mathscr{K}(f)| \mathscr{F}_{1-q}(\Delta, \Gamma)=0 .
$$

Since \mathscr{K} is such a simple algebraic operator, the solution to the vanishing problem is hence reduced to describing a basis for the space $\mathscr{F}_{1-q}(\Delta, \Gamma)$. The above theorem is a little more than an exercise in definition chasing. However, when combined with Theorems 3 and 4, it will turn out to be a powerful tool in attacking the vanishing problem (see, for example, § 0.7).
0.3. In many cases, the spaces $\mathscr{F}_{1-q}(\Omega, \Gamma)$ can be determined by essentially algebraic data.

Theorem 3. If the Bers map

$$
\begin{equation*}
\beta^{*}: \mathbf{A}_{q}(\Omega, \Gamma) \rightarrow P H^{1}\left(\Gamma, \Pi_{2 q-2}\right) \tag{0.3.1}
\end{equation*}
$$

is surjective, then $\mathscr{F}_{1-q}(\Omega, \Gamma)$ can be determined algebraically from the parabolic cocycles for Γ.

We must explain the content of the theorem. Let $a_{1}, \ldots, a_{2 q-1}$ be fixed points of loxodromic elements of Γ. Given a basis for the parabolic cocycles for Γ, we can from this basis construct the values, at the loxodromic fixed points (and certain other points), of functions that form a basis for $\mathscr{F}_{1-q}(\Omega, \Gamma)$. (See § 4.1.)

In many cases (for Schottky groups, § 7, and quasi-Fuchsian groups, § 8, for example), the description of $P H^{1}\left(\Gamma, \Pi_{2 q-2}\right)$ involves only linear algebra-the evaluation of kernels of linear operators, mostly. Thus, for groups with rather simple algebraic presentations, and for rational functions with poles only at (loxodromic) fixed points, Poincaré's vanishing problem has a purely algebraic solution.
0.4. The Bers map β^{*} of $(0.3 .1)$ is surjective whenever Γ is a Fuchsian, quasiFuchsian, or Schottky group [14, p. 215]. Nakada [22] has shown that for $q=2$, the map β^{*} is surjective for every geometrically finite function group. $\left(^{5}\right.$) Thus in principle, given such a group Γ, one should be able to construct a finite algorithm to decide whether or not $\Theta_{q} f=0$ for a given $f \in \mathscr{R}_{q}\left(\Lambda_{q}\right)$. We state the most explicit construction of such an algorithm in

THEOREM 4. Let Γ be a Schottky group or a finitely generated Fuchsian or quasiFuchsian group of the first kind given by a standard presentation on a canonical set of generators. Let $f \in \mathscr{R}_{q}\left(\Lambda_{q}\right)$ have poles only at fixed points. Then there exists a finite algebraic algorithm that determines whether or not $\Theta_{q} f=0$.

Theorem 4 contains a solution to Poincarés vanishing problem. The first algebraic decision procedure for the solution of the vanishing problem was obtained by Hejhal [10], [11]. His methods apply to a more limited class of groups (covering groups of compact Riemann surfaces of genus $g>1$ and Schottky groups) and low values of q. Our approach has the advantage of greater algebraic simplicity (see § 0.7). Transcendental methods involving information about Weierstrass point can lead to vanishing theorems (see Petersson [23]). There are also formal reasons why a Poincaré series vanishes. See Ljan [18] and Metzger [20], as well as § 6.
$\left.{ }^{5}\right)$ The results of [21] should yield the same result for all q.
0.5. Let Γ be a finitely generated Fuchsian group of the first kind acting on the unit disk Δ. Then $\Lambda=\partial \Delta$, the unit circle, and $\Omega=\{z \in \mathbf{C} \cup\{\infty\} ;|z| \neq 1\}$. It is of interest to determine when a Poincaré series vanishes only on Δ. This involves determining $\mathscr{F}_{1-q}(\Delta, \Gamma)$ from $\mathscr{F}_{1-q}(\Omega, \Gamma)$.

Theorem 5. Let Γ be a finitely generated Fuchsian group of the first kind acting on the unit disk Δ. Then there exists a positive integer $m=m(\Gamma, q)$ such that for $F \in \mathscr{F}_{1-q}(\Omega, \Gamma)$, we have

$$
F \in \mathscr{F}_{1-q}(\Delta, \Gamma) \Leftrightarrow \int_{0}^{2 \pi} e^{i(1-k-2 q) \theta} F\left(e^{i \theta}\right) d \theta=0, \text { for } k=0,1, \ldots, m .
$$

0.6. Combining Theorems 1 and 2 can lead to interesting consequences. An example is the theorem below.

Definition. A point $a \in \Lambda_{q}$ will be called a q-uniqueness point (or a uniqueness point) if either
(a) a is a fixed point of a loxodromic element of Γ, or
(b) $a \in \Omega$, or
(c) the maximal finite cyclic subgroup stabilizing a has order v satisfying (0.1.4).

The set of q-uniqueness points for Γ will be denoted by Λ_{q}^{0}. Note that Λ_{q}^{0} is a dense subset of Λ_{q}.

Remarks. (1) Non fixed points are never uniqueness points. We shall call them non-uniqueness points.
(2) Parabolic and elliptic fixed points may or may not be uniqueness points.

Theorem 6. Let Γ be a finitely generated non-elementary Kleinian group. Assume that

$$
\beta^{*}: \mathbf{A}_{q}(\Omega, \Gamma) \rightarrow \boldsymbol{H}^{1}\left(\Gamma, \Pi_{2 q-2}\right)
$$

is surjective. Let $\Lambda_{0} \subset \Lambda_{q}$ be a non-empty Γ-invariant set consisting only of q-uniqueness points. Then

$$
\Theta_{q}: \mathscr{R}_{q}\left(\Lambda_{0}\right) \rightarrow \mathbf{A}_{q}(\Omega, \Gamma)
$$

is surjective and its kernel is spanned by

$$
\left\{f-A_{q}^{*} f ; f \in \mathscr{R}_{q}\left(\Lambda_{0}\right), A \in \Gamma\right\}
$$

0.7. In this paragraph we illustrate the main ideas in the proofs of Theorems 3 and 4, and outline the algebraic procedure for determining whether or not a Poincaré series of a rational function vanishes. Let Γ be a non-elementary finitely generated Kleinian group with the following two properties.
(i) the map β^{*} of (0.3.1) is surjective, and
(ii) one can construct algebraically a basis for $P H^{1}\left(\Gamma, \Pi_{2 q-2}\right)$.

Fix $(2 q-1)$ distinct points $a_{1}, \ldots, a_{2 q-1}$ in Λ. Assume there are loxodromic elements L_{j} in Γ with $L_{j}\left(a_{j}\right)=a_{j}, j=1, \ldots, 2 q-1$. Let $f \in \mathscr{R}_{q}(\Lambda)$ be given by (0.2 .13) and assume that there are loxodromic elements $T_{j} \in \Gamma$ with $T_{j}\left(b_{j}\right)=b_{j}, j=1, \ldots, m$. How do we determine whether or not φ, the Poincaré series of f, vanishes on Ω ? Note that (see (2.4.1))

$$
\varphi(\xi)=\sum_{j=1}^{m} \beta_{j} \varphi\left(b_{j}, \zeta\right), \quad \zeta \in \Omega
$$

where $\varphi\left(b_{j}, \cdot\right)$ is the Poincaré series of $f\left(b_{j}, \cdot\right)$. Let $\left\{\psi_{k}\right\}_{k=1}^{d}$ be any convenient basis for $\mathbf{A}_{q}(\Omega, \Gamma)$. This basis is needed in the proof of the theorems; not in the algorithm for deciding whether $\varphi=0$ or $\varphi \neq 0$. Let F_{k} be a potential for $\lambda^{2-2 q} \bar{\psi}_{k}$ that vanishes at a_{j}, $j=1, \ldots, 2 q-1$, and use the Petersson scalar product (2.4.2) to conclude that (see (2.4.3))

$$
F_{k}\left(b_{j}\right)=\left\langle\varphi\left(b_{j}, \cdot\right), \psi_{k}\right\rangle_{\Gamma}
$$

Thus

$$
\varphi=0 \Leftrightarrow \sum_{j=1}^{m} \beta_{j} F_{k}\left(b_{j}\right)=0, \quad k=1, \ldots, d
$$

Let $P_{k}=\operatorname{pd} F_{k}, k=1, \ldots, d$. Let $\left\{Q_{k}\right\}_{k=1}^{d}$ be any explicit basis for $P H^{1}\left(\Gamma, \Pi_{2 q-2}\right)$; that is, the cohomology classes of these cocycles project to a basis for $\mathrm{PH}^{1}\left(\Gamma, \Pi_{2 q-2}\right)$. It involves no loss of generality to assume that $\beta^{*}\left(\psi_{k}\right)=Q_{k}, k=1, \ldots, d$. To complete the algorithm we must compute $F_{k}\left(b_{j}\right)$ algebraically.

To evaluate P_{k}, observe that for $k=1, \ldots, d$, there is an $R_{k} \in \Pi_{2 q-2}$, such that

$$
Q_{k}(T)(z)=P_{k}(T)(z)+R_{k}(T z) T^{\prime}(z)^{1-q}-R_{k}(z)
$$

for all $T \in \Gamma$, all $z \in \mathbf{C}$. Hence

$$
Q_{k}\left(L_{j}\right)\left(a_{j}\right)=0+R_{k}\left(a_{j}\right)\left[L_{j}^{\prime}\left(a_{j}\right)^{1-q}-1\right]
$$

for $j=1, \ldots, 2 q-1$. Knowledge of $R_{k}\left(a_{j}\right)$ for $1 \leqslant j \leqslant 2 q-1$, determines R_{k}. We can now
compute $P_{k}(T)(z)$, hence in particular $P_{k}\left(T_{j}\right)\left(b_{j}\right)$. This computation can be quite lengthy if T_{j} is a long word in the generators of Γ. In any event, we are almost home:

$$
\begin{gathered}
F_{k}\left(T_{j} z\right) T_{j}^{\prime}(z)^{1-q}-F_{k}(z)=P_{k}\left(T_{j}\right)(z) \\
F_{k}\left(b_{j}\right)\left[T_{j}^{\prime}\left(b_{j}\right)^{1-q}-1\right]=P_{k}\left(T_{j}\right)\left(b_{j}\right) \\
F_{k}\left(b_{j}\right)=\frac{P_{k}\left(T_{j}\right)\left(b_{j}\right)}{T_{j}^{\prime}\left(b_{j}\right)^{1-q}-1}, \quad 1 \leqslant j, k \leqslant d
\end{gathered}
$$

Remark. If Γ is Fuchsian and $\Gamma \subset P S L(2, \mathbf{R})$, then for symmetric rational functions (those $f \in \mathscr{R}_{q}\left(\Lambda_{q}\right)$ with $\overline{f(\bar{z})}=f(z)$, all $z \in C$), the vanishing of $\Theta_{q} f$ on Ω is equivalent to its vanishing on the upper half plane (because $\overline{\Theta_{q} f(\bar{z})}=\Theta_{q} f(z)$, all $z \in \Omega$). Hence for such functions Theorem 5 is not needed.

Bibliographical remarks. This work is based on the development of the Eichler cohomology machinery in the fundamental papers of Ahlfors [1], [2], and Bers [3], as well as in the author's papers [12], [13]. The main results of these five papers are the principal subjects of the author's mostly expository monograph [14]. For the convenience of the reader, references will most often cite [14] rather than the original sources. Slightly weaker versions of most of the above results were announced in [15].

For Fuchsian groups an essential difference between our methods and those of [11] is that we work with Poincaré series while Hejhal uses relative Poincaré series. Readers interested in pursuing the precise relationships between these methods and those of Hejhal should consult [11] equations (65), (77), (111) and page 373 lines 19-25. Additional remarks on the comparison of the two approaches will appear in Hejhal's forthicoming elaboration of [11]. It should be pointed out that both approaches are powerful tools for effectively
(i) deciding when a Poincaré series of a rational function vanishes (identically), and
(ii) constructing explicit bases for the spaces of cusp form consisting (respectively) of Poincaré series and relative Poincaré series.

I am happy to thank Dennis Hejhal and the referee for many helpful suggestions.

§ 1. Some preliminaries (computations involving rational functions)

1.1. If Γ is a finitely generated non-elementary Kleinian group with region of discontinuity $\Omega=\Omega(\Gamma)$ and limit set $\Lambda=\Lambda(\Gamma)$, then for any Möbius transformation $A, A \Gamma A^{-1}$ is
a finitely generated non-elementary Kleinian group with region of discontinuity $A(\Omega)$ and limit set $A(\Lambda)$. Furthermore, $A\left(\Lambda_{q}\right)=A\left(\Lambda_{q}(\Gamma)\right)=\Lambda_{q}\left(A \Gamma A^{-1}\right)$. The operators

$$
A_{q}^{*}: \mathbf{A}_{q}\left(A(\Omega), A \Gamma A^{-1}\right) \rightarrow \mathbf{A}_{q}(\Omega, \Gamma)
$$

and

$$
A_{q}^{*}: \mathscr{R}_{q}\left(A\left(\Lambda_{q}\right)\right) \rightarrow \mathscr{R}_{q}\left(\Lambda_{q}\right)
$$

are (surjective) C-linear isomorphisms.
If we denote the Poincaré series operator Θ_{q} for the group G by $\Theta_{q, G}$, then the following is a commutative diagram:

The above considerations show that it suffices to prove Theorem 1 under the hypothesis that $\infty \notin \Lambda_{q}$. Furthermore, the definition of $f(\infty)$ for $f \in \mathscr{R}_{q}\left(\Lambda_{q}\right)$ given by (0.1.6) makes the equation

$$
\left(A_{q}^{*} f\right)(z)=f(A z) A^{\prime}(z)^{q}
$$

valid even at $z=\infty$.
1.2. Let D be a Γ-invariant set (for example, Ω, Λ or Λ_{q}). A function F defined on $A(D)$ is an Eichler integral for $A \Gamma A^{-1}$ that vanishes at $a \in D$, if and only if $A_{1-q}^{*} F=F \cdot A$ is an Eichler integral for Γ supported on D that vanishes at a. Furthermore, if Δ is a Γ invariant union of components of Γ, then

$$
A_{1-q}^{*}: \mathscr{F}_{1-q}\left(A(\Delta), A \Gamma A^{-1}\right) \rightarrow \mathscr{F}_{1-q}(\Delta, \Gamma)
$$

is an isomorphism. Here the Eichler integrals in $\mathscr{F}_{1-q}\left(A(\Delta), A \Gamma A^{-1}\right)$ are normalized to vanish at $A a_{j}$, while those in $\mathscr{F}_{1-q}(\Delta, \Gamma)$ vanish at $a_{j}, j=1, \ldots, 2 q-1$. Let us introduce the pairing

$$
\begin{equation*}
\mathscr{R}_{q}\left(\Lambda_{q}\right) \times \mathscr{F}_{1-q}(\Omega, \Gamma) \rightarrow \mathbf{C} \tag{1.2.1}
\end{equation*}
$$

defined by

$$
\begin{equation*}
(f, F)_{\Gamma} \mapsto \mathscr{K}(f)(F), \tag{1.2.2}
\end{equation*}
$$

where \mathscr{K} is defined by (0.2 .14).
Proposition. For $f \in \mathscr{R}_{q}\left(A\left(\Lambda_{q}\right)\right)$ and $F \in \mathscr{F}_{1-q}\left(A(\Omega), A \Gamma A^{-1}\right)$, we have

$$
\begin{equation*}
(f, F)_{A \Gamma A^{-1}}=\left(A_{q}^{*} f, A_{1-q}^{*} F\right)_{\Gamma} \tag{1.2.3}
\end{equation*}
$$

The above proposition will be proven in $\S 1.4$, after we derive some useful relations between rational functions in § 1.3.
1.3. Let us rewrite the functions f introduced in $\S 0.2$ in the following form:

$$
\begin{equation*}
f_{\alpha}(a, \zeta)=\frac{-1}{2 \pi} \frac{1}{\zeta-a} \prod_{j=1}^{2 q-1} \frac{a-a_{j}}{\zeta-a_{j}} \tag{1.3.1}
\end{equation*}
$$

where $\alpha=\left(a_{1}, \ldots, a_{2 q-1}\right) \in \mathbf{C}^{2 q-1}$ has distinct entries and $a \neq a_{j}, j=1, \ldots, 2 q-1$. Let A be a Möbius transformation and write

$$
\begin{equation*}
a=A b, \quad a_{j}=A b_{j}, \quad \beta=\left(b_{1}, \ldots, b_{2 q-1}\right) . \tag{1.3.2}
\end{equation*}
$$

Using the fundamental identity

$$
\begin{equation*}
(A z-A \zeta)^{2}=(z-\zeta)^{2} A^{\prime}(z) A^{\prime}(\zeta) \tag{1.3.3}
\end{equation*}
$$

we conclude that

$$
\begin{align*}
f_{a}(a, A \zeta) A^{\prime}(\zeta)^{q} & =\frac{-1}{2 \pi} \frac{1}{A \zeta-a} \prod_{j=1}^{2 q-1} \frac{a-a_{j}}{A \zeta-a_{j}} A^{\prime}(\zeta)^{q} \\
& =\frac{-1}{2 \pi} \frac{1}{A \zeta-A b} \prod_{j} \frac{A b-A b_{j}}{A \zeta-A b_{j}} A^{\prime}(\zeta)^{q} \tag{1.3.4}\\
& =\frac{-1}{2 \pi} \frac{A^{\prime}(b)^{q-1}}{\zeta-b} \prod_{j} \frac{b-b_{j}}{\zeta-b_{j}}
\end{align*}
$$

or equivalently

$$
\begin{equation*}
f_{A \beta}(A b, A \zeta) A^{\prime}(b)^{1-q} A^{\prime}(\zeta)^{q}=f_{\beta}(b, \zeta) \tag{1.3.5}
\end{equation*}
$$

We introduce the convention (which agrees with earlier usage) that $f=f_{\alpha}$. Thus the last equation can be rewritten as

$$
\begin{equation*}
f(a, A \zeta) A^{\prime}(\zeta)^{q}=f_{\beta}(b, \zeta) A^{\prime}(b)^{q-1} \tag{1.3.6}
\end{equation*}
$$

Comparing residues we see that

$$
\begin{equation*}
f(a, A \zeta) A^{\prime}(\zeta)^{q}=A^{\prime}(b)^{q-1}\left[f(b, \zeta)-\sum_{k=1}^{2 q-1}\left(\prod_{j \neq k} \frac{b-b_{j}}{b_{k}-b_{j}}\right) f\left(b_{k}, \zeta\right)\right] \tag{1.3.7}
\end{equation*}
$$

Remark. If $b=a_{l}$ for some l, then the term $f(b, \zeta)$ is to be dropped from formula (1.3.7). Similarly, if $b_{k}=a_{l}$ for some pair of indices k, l, then the $f\left(b_{k}, \zeta\right)$ term is to be dropped.

To verify (1.3.7), we define the function

$$
h(\zeta)=f_{\beta}(b, \zeta)-f_{a}(b, \zeta)+\sum_{k=1}^{2 q-1}\left(\prod_{j \neq k} \frac{b-b_{j}}{b_{k}-b_{j}}\right) f_{a}\left(b_{k}, \zeta\right)
$$

following the convention in the above remark (only for the index α). We observe that h is a rational function with simple poles, and note further that it has zero residue at $\zeta=b$ and $\zeta=b_{k}$ provided $b \neq a_{l}$ and $b_{k} \neq a_{l}, 1 \leqslant k, l \leqslant 2 q-1$. Thus h has at most simple poles at $\zeta=a_{j}, j=1, \ldots, 2 q-1$ and vanishes to at least order $2 q$ at infinity. Thus h is identically zero.
1.4. We are now ready to prove Proposition 1.2. Fix $F \in \mathscr{F}_{1-q}\left(A(\Omega), A \Gamma A^{-1}\right)$. By linearity, it suffices to verify (1.2.3) for a basis for $\mathscr{R}_{q}\left(A\left(\Lambda_{q}\right)\right)$. We assume that Eichler integrals in $\mathscr{F}_{1-q}\left(A(\Omega), A \Gamma A^{-1}\right)$ vanish at $a_{j} \in A\left(\Lambda_{q}\right), j=1, \ldots, 2 q-1$. Thus for f given by (1.3.1) with $a \in A\left(\Lambda_{q}\right) \backslash\left\{a_{1}, \ldots, a_{2 q-1}\right\}$

$$
(f, F)_{A \Gamma A^{-1}}=F(a),
$$

and using (1.3.5), we see that

$$
\begin{aligned}
\left(A_{q}^{*} f, A_{1-q}^{*} F\right)_{\Gamma} & =A^{\prime}(b)^{q-1}\left(A_{1-q}^{*} F\right)(b) \\
& =A^{\prime}(b)^{q-1} F(A b) A^{\prime}(b)^{1-q}=F(A b)=F(a)
\end{aligned}
$$

Remarks. (1) As a consequence of Proposition 1.2, it suffices to prove Theorem 2 under the assumption that $\infty \notin \Lambda_{q}$.
(2) The pairing (1.2.1) can be extended to a bigger space of Eichler integrals. Let D be a Γ-invariant subset of $\mathrm{C} \cup\{\infty\}$. Let $a_{1}, \ldots, a_{2 q-1}$ be $(2 q-1)$ distinct points in D. We define

$$
\mathbf{F}_{1-q}(D, \Gamma)=\left\{F \text { is an Eichler integral on } D ; F\left(a_{j}\right)=0, j=1, \ldots, 2 q-1\right\}
$$

Clearly, $\mathbf{F}_{1-q}\left(\Lambda_{q}, \Gamma\right) \supset \mathscr{F}_{1-q}(\Omega, \Gamma)$ and formula (1.2.2) defines a pairing

$$
\mathscr{R}_{q}\left(\Lambda_{q}\right) \times \mathbf{F}_{1-q}\left(\Lambda_{q}, \Gamma\right) \rightarrow \mathbf{C} .
$$

Proposition 1.2 remains valid under the assumption that $F \in \mathbf{F}_{1-q}\left(A\left(\Lambda_{q}\right), A \Gamma A^{-1}\right)$.
1.5.

Proposition. The Poincaré series operator Θ_{q} maps $\mathscr{R}_{q}\left(\Lambda_{q}\right)$ onto $\mathbf{A}_{q}(\Omega, \Gamma)$.
Proof. Bers [4] has shown that Θ_{q} maps $\mathscr{R}_{q}(\Lambda)$ onto $\mathbf{A}_{q}(\Omega, \Gamma)$. Hence it remains to show that $\Theta_{q} f$ converges uniformly on compact subsets of Ω for $f \in \mathscr{R}_{q}\left(\Lambda_{q}\right)$ with a pole in Ω, that $\Theta_{q} f$ is regular everywhere, and satisfies the cusp condition (see [14, p. 117] for a definition and proof) at each puncture. Since $\mathscr{R}_{q}\left(\Lambda_{q}\right)$ is a subspace of the Banach space of integrable functions on Ω with respect to the measure $\lambda(z)^{2-q}|d z \wedge d \bar{z}|$, $\Theta_{q} f$ converges uniformly on compact subsets of Ω (see [14, pp. 121-123]) and satisfies

$$
\iint_{\Omega / \Gamma} \lambda(z)^{2-q}\left|\left(\Theta_{q} f\right)(z) d z \wedge d \bar{z}\right| \leqslant \iint_{\Omega} \lambda(z)^{2-q}|f(z) d z \wedge d \bar{z}| .
$$

To show that $\Theta_{q} f$ is regular on Ω, we may assume that f is given by (1.3.1) with $a=0 \in \Lambda_{q} \backslash \Lambda$ and $a_{j} \in \Lambda$ for $j=1, \ldots, 2 q-1$. Furthermore, we normalize Γ so that the stabilizer of 0 is generated by

$$
E(z)=K z, \quad \text { all } z \in \mathbf{C} \cup\{\infty\},
$$

where

$$
K=e^{2 \pi i \nu},
$$

and v satisfies (0.1 .4).
Let G be a subgroup of Γ; the Poincaré series operator $\Theta_{q}=\Theta_{q, \Gamma}$ for the group Γ can always be factored as

$$
\Theta_{q, \Gamma}=\Theta_{q, \mathrm{\Gamma} / \mathrm{G}} \circ \Theta_{q, G},
$$

where $\Theta_{q, G}$ is the Poincaré series operator for the group G, and $\Theta_{q, \Gamma / G}$ is the relative Poincaré series operator defined on G-invariant functions (functions f such that $A_{q}^{*} f=f$ for all $A \in G$) by the formula

$$
\Theta_{q, \Gamma / G} f=\sum_{\gamma \in \mathrm{\Gamma} / G} \gamma_{q}^{*} f,
$$

where the sum runs over left coset representatives for Γ modulo G.

If we let G be the cyclic subgroup generated by E, it suffices, in order to finish the proof of the proposition, to show that $\Theta_{q, G} f$ is regular at zero. We start with

$$
f(\zeta)=\frac{1}{2 \pi} \frac{1}{\zeta} \prod_{j=1}^{2 q-1} \frac{a_{j}}{\zeta-a_{j}}
$$

and observe that

$$
f(E \zeta) E^{\prime}(\zeta)^{q}=\frac{1}{2 \pi} \frac{1}{\zeta} K^{q-1} \prod_{j=1}^{2 q-1} \frac{a_{j}}{K \zeta-a_{j}}
$$

This function is holomorphic on $\Omega \backslash\{0\}$ (because $K^{-1} a_{j}=E^{-1}\left(a_{j}\right) \in \Lambda$, for $j=$ $1, \ldots, 2 q-1$). Thus we must show that the residue at 0 of

$$
\left(\Theta_{q, G} f\right)(\zeta)=\sum_{j=0}^{\nu-1} f\left(E^{j} \zeta\right)\left(E^{j}\right)^{\prime}(\zeta)^{q}, \quad \zeta \in \Omega
$$

is equal to 0 . We note that the residue of $\left(E^{j}\right)_{q}^{*} f$ at 0 is

$$
\frac{1}{2 \pi}(-1)^{2 q-1}\left(K^{q-1}\right)^{j}=\frac{-1}{2 \pi}\left(K^{q-1}\right)^{j}
$$

Thus the residue of $\Theta_{q, G} f$ at 0 is

$$
\frac{-1}{2 \pi} \sum_{j=0}^{\nu-1}\left(K^{q-1}\right)^{j}=\frac{-1}{2 \pi} \frac{1-K^{(q-1) v}}{1-K^{q-1}}=0
$$

by (0.1.4).
Remark. If f is given by (1.3.1) with $a_{j} \in \Lambda, j=1, \ldots, 2 q-1$, and $a \notin \Lambda_{q}$, then $\Theta_{q} f$ is holomorphic on $\Omega \backslash \Gamma a$, satisfies the cusp condition at each puncture on Ω / Γ, and has a simple pole at a with residue $-v$ ($v=$ order of stabilizer of a in Γ). The q-differential obtained by projecting $\Theta_{q} f$ to Ω / Γ is regular everywhere except the image of a (where it has a pole of order q), the images of the other elliptic fixed points (if the stabilizer of such a point has order μ, then the pole has order $\leqslant[q-q / \mu]$), and the punctures (where it has a pole of order $\leqslant q-1) .\left({ }^{6}\right)$

[^4]
§ 2. Spanning sets for Poincaré series (proof of Theorem 1)

2.1. We begin the proof of Theorem 1. By the results of $\S 1.1$, we may assume, without loss of generality, that $S \subseteq \mathbf{C}$.

We start with the injectivity of the Bers map β^{*} of (0.3.1) and conclude that

$$
\operatorname{dim} \mathscr{F}_{1-q}(\Omega, \Gamma)=\operatorname{dim} \mathbf{A}_{q}(\Omega, \Gamma)=d
$$

We assume that $d>0$, since otherwise the conclusion of Theorem 1 is satisfied. Proposition 1.5 showed that $\Theta_{q}\left(\mathscr{R}_{q}(S)\right) \subset \mathbf{A}_{q}(\Omega, \Gamma)$, and thus we must show that $\Theta_{q}\left(\mathscr{R}_{q}(S)\right)$ contains d linearly independent cusp forms.

It was shown in [14, Lemma 2.5 of Chapter V] that for $\varphi \in \mathbf{A}_{q}(\Omega, \Gamma), \beta^{*}(\varphi)=0$ if and only if the potential F_{φ} for $\mu=\lambda^{2-2 q} \bar{\varphi}$ constructed by formula (0.2.9) vanishes identically on Λ. We need

Lemma. For $\varphi \in \mathbf{A}_{q}(\Omega, \Gamma)$,

$$
\varphi=0 \Leftrightarrow \beta^{*} \varphi=0 \Leftrightarrow F_{\varphi} \mid \Lambda_{q}=0
$$

Proof. For the convenience of the reader we repeat the arguments of [14] that yield the above result. Assume that $\beta^{*} \varphi=0$. Thus there exists a $p \in \Pi_{2 q-2}$ so that

$$
\chi_{\varphi}(\gamma)=F_{\varphi} \cdot \gamma-F_{\varphi}=p \cdot \gamma-p, \quad \text { all } \gamma \in \Gamma
$$

(abbreviate χ_{φ} by χ and F_{φ} by F). Thus

$$
\begin{equation*}
(F-p) \cdot \gamma=(F-p), \quad \text { all } \gamma \in \Gamma \tag{2.1.1}
\end{equation*}
$$

For $z_{0} \in \Lambda_{q} \backslash \Lambda$, let E be the generator of the stabilizer of z_{0}. Then $E^{\prime}\left(z_{0}\right)^{1-q} \neq 1$ by (0.1.4). Thus from (2.1.1), we see that

$$
(F-p)\left(z_{0}\right)=0
$$

The same conclusion holds (by the same argument) at the loxodromic fixed points; and thus by the continuity of $F-p$, and the density of the loxodromic fixed points in Λ, for all $z_{0} \in \Lambda$. Thus $F-p$ vanishes on Λ_{q}. But $F\left(a_{j}\right)=0$ for $j=1, \ldots, 2 q-1$, and thus $p=0$ and $F \mid \Lambda_{q}=0$.

The converse is, of course, obvious. The first equivalence is a restatement of the injectivity of β^{*}.
2.2. We continue with the proof of (and notation introduced by) Theorem 1.

Lemma. For $\varphi \in \mathbf{A}_{q}(\Omega, \Gamma)$,

$$
\varphi=0 \Leftrightarrow \beta^{*} \varphi=0 \Leftrightarrow F_{\varphi} \mid S=0 .
$$

Proof. It suffices to show that $\chi=\chi_{\varphi}=0$ whenever $F \mid S=0\left(F=F_{\varphi}\right)$. We compute for the generator $\gamma_{j}, j=1, \ldots, N$ of Γ,

$$
\chi\left(\gamma_{j}\right)\left(a_{k}\right)=F\left(\gamma_{j} a_{k}\right) \gamma_{j}^{\prime}\left(a_{k}\right)^{1-q}-F\left(a_{k}\right)=0
$$

for $k=1, \ldots, 2 q-1$. Hence the polynomial $\chi\left(\gamma_{j}\right) \in \Pi_{2 q-2}$ vanishes at $2 q-1$ distinct points, and must be the zero polynomial. We conclude that χ vanishes on the generators. Hence $\chi=0$, and the injectivity of β^{*} shows that $\varphi=0$.

COROLLARY. The restriction of functions in $\mathscr{F}_{1-q}(\Omega, \Gamma)$ to S is an isomorphism.
2.3. We now select d distinct points b_{1}, \ldots, b_{d} in $S \backslash\left\{a_{1}, \ldots, a_{2 q-1}\right\}$ and d functions $F_{1}, \ldots, F_{d} \in \mathscr{F}_{1-q}(\Omega, \Gamma)$ so that

$$
\begin{equation*}
F_{j}\left(b_{k}\right)=\delta_{j k}, \quad 1 \leqslant j, k \leqslant d \tag{2.3.1}
\end{equation*}
$$

(Here $\delta_{j k}$ is the Kronecker delta function.) For the convenience of the reader, we reproduce a standard argument.

Choose any point $b_{1} \in S$ such that not every $F \in \mathscr{F}_{1-q}(\Omega, \Gamma)$ vanishes at b_{1}. Choose $F_{1} \in \mathscr{F}_{1-q}(\Omega, \Gamma)$ so that $F_{1}\left(b_{1}\right) \neq 0$. Without loss of generality $F_{1}\left(b_{1}\right)=1$. By induction we show that having chosen $F_{1}, \ldots, F_{n} \in \mathscr{F}_{1-q}(\Omega, \Gamma)$ and $b_{1}, \ldots, b_{n} \in S$, $1 \leqslant n<d$ so that the $n \times n$ matrix

$$
\left(F_{j}\left(b_{k}\right)\right), \quad 1 \leqslant j, k \leqslant n
$$

is the identity matrix, then we can select $b_{n+1}, \tilde{F}_{1}, \ldots, \tilde{F}_{n+1}$ so that

$$
\left(\tilde{F}_{j}\left(b_{k}\right)\right), \quad 1 \leqslant j, k \leqslant n+1
$$

is the identity matrix and the linear span of $\tilde{F}_{1}, \ldots, \tilde{F}_{n+1}$ is the same as the linear span of $F_{1}, \ldots, F_{n}, \quad \tilde{F}_{n+1}$. Let $\mathbf{B} \subset \mathscr{F}_{1-q}(\Omega, \Gamma)$ be the linear span of F_{1}, \ldots, F_{n}. Then $\operatorname{dim} B=n$. Let

$$
e: \mathscr{F}_{1-q}(\Omega, \Gamma) \rightarrow \mathbf{C}^{n}
$$

be defined by $e(F)=\left(F\left(b_{1}\right), \ldots, F\left(b_{n}\right)\right)$. By the induction hypothesis e is surjective. Hence

$$
\operatorname{dim} \operatorname{Ker} e=d-n>0,
$$

and there is a point $b_{n+1} \in S$ and a function $\tilde{F}_{n+1} \in \operatorname{Ker} e$ such that $\tilde{F}_{n+1}\left(b_{n+1}\right)=1$. Finally we define

$$
\tilde{F}_{j}=F_{j}-F_{j}\left(b_{n+1}\right) \tilde{F}_{n+1}, \quad j=1, \ldots, n .
$$

Definition. Given a finite set S with $\left\{a_{1}, \ldots, a_{2 q-1}\right\} \subsetneq S \subset \Lambda_{q}$, we let b_{1}, \ldots, b_{n} be the distinct points in $S \backslash\left\{a_{1}, \ldots, a_{2 q-1}\right\}$. We define the evaluation map

$$
e_{S}: \mathscr{F}_{1-q}(\Omega, \Gamma) \rightarrow \mathbf{C}^{n}
$$

by

$$
e_{S}(F)=\left(F\left(b_{1}\right), \ldots, F\left(b_{n}\right)\right), \quad F \in \mathscr{F}_{1-q}(\Omega, \Gamma) .
$$

2.4. The next step is to consider the rational functions $f(z, \zeta)$ defined by (0.2 .11) and (0.2.12) for $z \neq a_{j}, j=1, \ldots, 2 q-1, z \in \Lambda_{q}$ and $\zeta \in \mathbf{C}$, and to study the Poincaré series

$$
\begin{equation*}
\varphi(z, \zeta)=\sum_{y \in \Gamma} f(z, \gamma \zeta) \gamma^{\prime}(\zeta)^{a}, \quad \zeta \in \Omega . \tag{2.4.1}
\end{equation*}
$$

We claim that the cusp forms

$$
\varphi\left(b_{1}, \cdot\right), \ldots, \varphi\left(b_{d}, \cdot\right)
$$

form a basis for $\mathrm{A}_{q}(\Omega, \Gamma)$.
To verify this claim, we introduce the final ingredient in the proof. The Petersson scalar product on $\mathbf{A}_{q}(\Omega, \Gamma)$ is given by

$$
\begin{equation*}
\langle\varphi, \psi\rangle_{\Gamma}=i \iint_{\Omega / \Gamma} \lambda(z)^{2-2 q} \varphi(z) \overline{\psi(z)} d z \wedge d \bar{z} . \tag{2.4.2}
\end{equation*}
$$

A calculation shows that the potential $F=F_{\psi}$ for $\mu=\lambda^{2-2 q} \bar{\psi}, \psi \in \mathbf{A}_{q}(\Omega, \Gamma)$, satisfies

$$
\begin{align*}
F_{\psi}\left(b_{k}\right) & =\frac{\left(b_{k}-a_{1}\right) \ldots\left(b_{k}-a_{2 q-1}\right)}{2 \pi i} \iint_{\Omega} \frac{\lambda(\xi)^{2-2 q} \overline{\psi(\zeta)} d \zeta \wedge d \xi}{\left(\zeta-b_{k}\right)\left(\zeta-a_{1}\right) \ldots\left(\zeta-a_{2 q-1}\right)} \\
& =i \iint_{\Omega} f\left(b_{k}, \zeta\right) \lambda(\zeta)^{2-2 q} \overline{\psi(\zeta)} d \zeta \wedge d \bar{\zeta} \tag{2.4.3}\\
& =i \iint_{\Omega \Gamma} \varphi\left(b_{k}, \zeta\right) \lambda(\zeta)^{2-2 q} \overline{\psi(\gamma)} d \zeta \wedge d \overline{ } \\
& =\left\langle\varphi\left(b_{k}, \cdot\right), \psi\right\rangle_{\Gamma}, \quad k=1, \ldots, d .
\end{align*}
$$

Thus every point $b_{k}, k=1, \ldots, d$, defines a conjugate linear functional on $\mathbf{A}_{q}(\Omega, \Gamma)$ by the formula

$$
\mathbf{A}_{q}(\Omega, \Gamma) \ni \psi \mapsto F_{\psi}\left(b_{k}\right) \in \mathbf{C}
$$

Choose the basis F_{1}, \ldots, F_{d} of $\mathscr{F}_{1-q}(\Omega, \Gamma)$ that satisfies (2.3.1), and write $F_{j}=F_{\psi_{j}}, \psi_{j} \in \mathbf{A}_{q}(\Omega, \Gamma), j=1, \ldots, d$. We see that $\psi_{1}, \ldots, \psi_{d}$ is a basis for $\mathbf{A}_{q}(\Omega, \Gamma)$ and

$$
\left\langle\varphi\left(b_{k}, \cdot\right), \psi_{j}\right\rangle_{\Gamma}=F_{j}\left(b_{k}\right)=\delta_{j k}, \quad 1 \leqslant j, k \leqslant d,
$$

which shows that $\varphi\left(b_{k}, \cdot\right), k=1, \ldots, d$, is also a basis for $\mathbf{A}_{q}(\Omega, \Gamma)$. This completes the proof of Theorem 1.
2.5. We will need a converse to Theorem 1 .

Theorem. Let Γ be a finitely generated non-elementary Kleinian group. Let $a_{1}, \ldots, a_{2 q-1}$ be $(2 q-1)$ distinct points in Λ_{q}. Let b_{1}, \ldots, b_{d} be $d>0$ distinct points in $\Lambda_{q} \backslash\left\{a_{1}, \ldots, a_{2 q-1}\right\}$. Then $\varphi\left(b_{1}, \cdot\right), \ldots, \varphi\left(b_{d}, \cdot\right)$ forms a basis for $\mathbf{A}_{q}(\Omega, \Gamma)$ if and only if

$$
\begin{equation*}
F \mapsto\left(F\left(b_{1}\right), \ldots, F\left(b_{d}\right)\right) \in \mathbf{C}^{d} \tag{2.5.1}
\end{equation*}
$$

is an isomorphism of $\mathscr{F}_{1-q}(\Omega, \Gamma)$ onto \mathbf{C}^{d}.
Proof. The proof of Theorem 1 showed sufficiency, and we need only establish necessity. Thus assume that $\varphi\left(b_{1}, \cdot\right), \ldots, \varphi\left(b_{d}, \cdot\right)$ forms a basis for $\mathbf{A}_{q}(\Omega, \Gamma)$. Let $\varphi_{j}=\varphi\left(b_{j}, \cdot\right)$ and $F_{j}=F_{\varphi_{j}}, j=1, \ldots, d$. Then F_{1}, \ldots, F_{d} forms a basis for $\mathscr{F}_{1-q}(\Omega, \Gamma)$, Further, the matrix

$$
\left(\left\langle\varphi_{j}, \varphi_{k}\right\rangle_{\Gamma}\right), \quad 1 \leqslant j, k \leqslant d,
$$

is non-singular. But as we saw earlier

$$
\left\langle\varphi_{j}, \varphi_{k}\right\rangle_{\Gamma}=F_{k}\left(b_{j}\right), \quad 1 \leqslant j, k \leqslant d .
$$

Hence the vectors $\left(F_{k}\left(b_{1}\right), \ldots, F_{k}\left(b_{d}\right)\right) \in \mathbf{C}^{d}, k=1, \ldots, d$ form a basis for \mathbf{C}^{d}.
Remarks. (1) The Petersson scalar product also exhibits an invariance similar to (1.2.3). For any Möbius transformation A, and $\varphi, \psi \in \mathrm{A}_{q}\left(A(\Omega), A \Gamma A^{-1}\right)$,

$$
\langle\varphi, \psi\rangle_{A \Gamma A^{-1}}=\left\langle A_{q}^{*} \varphi, A_{q}^{*} \psi\right\rangle_{\mathrm{r}} .
$$

(2) The map (2.5.1) is e_{S} for

$$
S=\left\{b_{1}, \ldots, b_{d}, a_{1}, \ldots, a_{2 q-1}\right\}
$$

§ 3. Cusp forms belonging to a character (a generalization of Theorem 1)

3.1. Let ϱ be a character on Γ; that is, ϱ is a homomorphism of Γ into the unit circle $\{z \in \mathbf{C} ;|z|=1\}$. To define the space $\mathbf{A}_{q}(\Omega, \Gamma, \varrho)$ of cusp forms of weight $(-2 q)$ belonging to the character ϱ, we substitute for (0.1.1), the condition

$$
\begin{equation*}
\varphi(\gamma z) \gamma^{\prime}(z)^{q} \varrho(\gamma)=\varphi(z), \quad \text { all } z \in \Omega, \text { all } \gamma \in \Gamma . \tag{3.1.1}
\end{equation*}
$$

The Petersson scalar product (2.4.2) gives $\mathbf{A}_{q}(\Omega, \Gamma, \varrho)$ a Hilbert space structure, since once again (0.1.2) and (0.1.3) are equivalent. The group Γ now acts on $\Pi_{2 q-2}$ by

$$
\begin{equation*}
(p \cdot \gamma)(z)=p(\gamma z) \gamma^{\prime}(z)^{1-q} \varrho(\gamma), \quad p \in \Pi_{2 q-2}, \gamma \in \Gamma, z \in \mathbf{C} . \tag{3.1.2}
\end{equation*}
$$

The above formula generalizes (0.2 .1). The corresponding cohomology group will be denoted by $H^{1}\left(\Gamma, \Pi_{2 q-2}, \varrho\right)$.

For $\varphi \in \mathbf{A}_{q}(\Omega, \Gamma, \varrho)$, formula (0.2.9) again defines a potential for $\mu=\lambda^{2-2 q} \bar{\varphi}$, and if $(0.2 .5)$ is modified to

$$
\begin{equation*}
\chi(\gamma)(z)=F(\gamma z) \gamma^{\prime}(z)^{1-q} \overline{\varrho(\gamma)}-F(z), \quad \gamma \in \Gamma, z \in \mathbf{C} \tag{3.1.3}
\end{equation*}
$$

then we obtain a map

$$
\beta^{*}: \mathbf{A}_{q}(\Omega, \Gamma, \varrho) \rightarrow H^{1}\left(\Gamma, \Pi_{2 q-2}, \bar{\varrho}\right)
$$

The proof that β^{*} is injective follows the one given, for example, in [14, pp. 186-191] for the trivial character.
3.2. The Poincaré series operator must be modified to (compare with (0.1.7))

$$
\begin{equation*}
\left(\Theta_{q} f\right)(z)=\sum_{\gamma \in \Gamma} f(\gamma z) \gamma^{\prime}(z)^{q} \varrho(\gamma), \quad z \in \Omega \tag{3.2.1}
\end{equation*}
$$

With these modifications Theorem 1 is valid for an arbitrary character ϱ, provided $S \subset \Lambda$.

THEOREM. Let $a_{1}, \ldots, a_{2 q-1}$ be $(2 q-1)$ distinct points in Λ. Let $\gamma_{0}=1, \gamma_{1}, \ldots, \gamma_{N}$ be generators for Γ. Define S by (0.1.8). Then $\Theta_{q}\left(\mathscr{R}_{q}(S)\right)=\mathbf{A}_{q}(\Omega, \Gamma, \varrho)$.

Remarks. (1) It is interesting to note that as long as $S \subset \Lambda$, then the set of rational functions whose Poincaré series span the space of cusp forms does not involve the character ϱ.
(2) Were we to consider sets S that contain elliptic fixed points, then we would have to take into account the character ϱ in defining the sets $\Lambda_{q, \varrho}$ that would replace Λ_{q}.
(3) We will henceforth ignore characters. Most of the subsequent analysis carries over for an arbitrary character ϱ. We can also work with forms of weight ($-2 q$), $q \geqslant 2$, with $2 q \in \mathbf{Z}$, provided we can choose square roots of the derivatives of the elements of Γ so that

$$
\gamma_{1}^{\prime}\left(\gamma_{2} z\right)^{1 / 2} \gamma_{2}^{\prime}(z)^{1 / 2}=\left(\gamma_{1} \circ \gamma_{2}\right)^{\prime}(z)^{1 / 2}, \quad \text { all } \gamma_{1}, \gamma_{2} \in \Gamma, \text { all } z \in \hat{\mathbf{C}} .
$$

§ 4. On the vanishing of Poincaré series (proof of Theorem 2)

4.1. Let Γ be a finitely generated non-elementary Kleinian group. In § 0.2 and § 1.4, we considered various classes of Eichler integrals. Two Eichler integrals F_{1}, F_{2} (defined on a common set D) are called equivalent or cohomologous if their difference $F_{1}-F_{2}$ is (the restriction to D of) a polynomial in $\Pi_{2 q-2}$. Thus, if F_{1} is equivalent to F_{2} then $\chi_{1}=\operatorname{pd} F_{1}$ differs from $\chi_{2}=\operatorname{pd} F_{2}$ by a coboundary. (Here pd is the period map introduced in § 0.2.) Note further that for $F_{1}, F_{2} \in F_{1-q}(D, \Gamma)$, as defined in § 1.4, F_{1} is equivalent to F_{2} if and only if $F_{1}=F_{2}$; and an arbitrary Eichler integral on D is equivalent to a unique element of $\mathrm{F}_{1-q}(D, \Gamma)$. The following result will motivate the remainder of this section and will be useful in § 5 .

We introduce at this point more notation:

$$
\begin{aligned}
Z^{1}\left(\Gamma, \Pi_{2 q-2}\right) & =\text { the vector space of } \Pi_{2 q-2} \text {-cocycles for } \Gamma, \\
P Z_{\Delta}^{1}\left(\Gamma, \Pi_{2 q-2}\right) & =\text { the vector space of } \Delta \text {-parabolic cocycles, } \\
P Z^{1}\left(\Gamma, \Pi_{2 q-2}\right) & =\text { the vector space of parabolic cocycles. }
\end{aligned}
$$

As usual, Δ is a Γ-invariant union of components of Ω.
Proposition. Let Λ_{0} be the set of q-uniqueness points for Γ (as defined in $\S 0.6$) that are not parabolic fixed points. Then the period map

$$
\mathrm{pd}: \mathbf{F}_{1-q}\left(\Lambda_{0}, \Gamma\right) \cong H^{1}\left(\Gamma, \Pi_{2 q-2}\right)
$$

is an isomorphism.
Proof. The injectivity of the period map is proven as in § 2.1. To establish surjectivity, let $\chi \in Z^{1}\left(\Gamma, \Pi_{2 q-2}\right)$. We shall construct an Eichler integral F on Λ_{0} with $\operatorname{pd} F=\chi$. Once F is obtained, we choose $p \in \Pi_{2 q-2}$ so that

$$
F\left(a_{j}\right)=p\left(a_{j}\right), \quad j=1, \ldots, 2 q-1
$$

Then $F-p \in \mathrm{~F}_{1-q}\left(\Lambda_{0}, \Gamma\right.$), and since $F-p$ is equivalent to $F, \operatorname{pd}(F-p)$ and χ represent the same cohomology class in $H^{1}\left(\Gamma, \Pi_{2 q-2}\right)$. It remains to construct F from the cocycle χ.

Let $b \in \Lambda_{0}$. The stabilizer Γ_{0} of b in Γ is the commutative group generated by Möbius transformations A, B, where B is trivial or loxodromic, and A is trivial or elliptic. (See § 12.) If B is trivial, then the order v of A satisfies (0.1.4). Let $p_{1}=\chi(A)$ and $p_{2}=\chi(B)$. Since A and B commute, $\chi(A \circ B)=\chi(B \circ A)$ and we conclude that

$$
\begin{equation*}
p_{1}(B z) B^{\prime}(z)^{1-q}+p_{2}(z)=p_{2}(A z) A^{\prime}(z)^{1-q}+p_{1}(z), \quad \text { all } z \in \mathbf{C} . \tag{4.1.1}
\end{equation*}
$$

In particular, for the common fixed point b of A and B,

$$
\begin{equation*}
p_{1}(b)\left[B^{\prime}(b)^{1-q}-1\right]=p_{2}(b)\left[A^{\prime}(b)^{1-q}-1\right] \tag{4.1.2}
\end{equation*}
$$

Note that formulae (4.1.1) and (4.1.2) are valid for arbitrary $A, B \in \Gamma$ with common fixed point $b \in \Lambda_{0}$. We will draw several conclusions.

Assume that B is non-trivial. Since $\left|B^{\prime}(b)\right| \neq 1$, we can define F at b by the formula

$$
F(b)=p_{2}(b)\left[B^{\prime}(b)^{1-q}-1\right]^{-1}
$$

Let $\gamma \in \Gamma$ be an arbitrary loxodromic element fixing $b \in \Lambda_{0}$. We claim that

$$
\begin{equation*}
F(b)=\chi(\gamma)(b)\left[\gamma^{\prime}(b)^{1-q}-1\right]^{-1} \tag{4.1.3}
\end{equation*}
$$

Formula (4.1.3) follows from (4.1.2) since γ commutes with B and $\left|\gamma^{\prime}(b)\right| \neq 1$. Next, if γ is elliptic and fixes b, then (4.1.3) holds whenever $\gamma^{\prime}(b)^{1-q} \neq 1$.

We claim that for arbitrary $\gamma \in \Gamma$ with fixed point $b \in \Lambda_{0}$, we have

$$
\begin{equation*}
F(b)\left[\gamma^{\prime}(b)^{1-q}-1\right]=\chi(\gamma)(b) \tag{4.1.4}
\end{equation*}
$$

We have verified the above formula for all γ with $\gamma^{\prime}(b)^{1-q} \neq 1$. To show that formula (4.1.4) continues to hold even when $\gamma^{\prime}(b)^{1-q}=1$, we show that in this case $\chi(\gamma)(b)=0$. This fact follows from (4.1.2) with B loxodromic and $A=\gamma$.

If B is trivial, then $A^{\prime}(b)^{1-q} \neq 1$ by (0.1.4); it follows that if we define

$$
F(b)=p_{1}(b)\left[A^{\prime}(b)^{1-q}-1\right]^{-1}
$$

then (4.1.4) holds for every $\gamma \in \Gamma$ that fixes b, since such a γ must be a power of A. This observation follows as in the case of non-trivial B by examining (4.1.2).

We assert next that

$$
\begin{equation*}
F(\gamma z) \gamma^{\prime}(z)^{1-q}-F(z)=\chi(\gamma)(z), \quad \text { all } \gamma \in \Gamma, \text { all } z \in \Lambda_{0} \tag{4.1.5}
\end{equation*}
$$

Since $z \in \Lambda_{0}$, there is a $g \in \Gamma$ with $g z=z$ and $g^{\prime}(z)^{1-q} \neq 1$ (as was shown by the arguments above). It follows that

$$
\left(\gamma \circ g \circ \gamma^{-1}\right)(\gamma z)=\gamma z
$$

and

$$
\left(\gamma \circ g \circ \gamma^{-1}\right)^{\prime}(\gamma z)=g^{\prime}(z)
$$

The cocycle condition yields

$$
\begin{equation*}
\chi\left(\gamma \circ g \circ \gamma^{-1}\right)=[\chi(\gamma) \cdot g+\chi(g)-\chi(\gamma)] \cdot \gamma^{-1} \tag{4.1.6}
\end{equation*}
$$

Hence we conclude from (4.1.4) that

$$
\begin{equation*}
F(z)\left[g^{\prime}(z)^{1-q}-1\right]=\chi(g)(z) \tag{4.1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
F(\gamma z)\left[g^{\prime}(z)^{1-q}-1\right]=\chi\left(\gamma \circ g \circ \gamma^{-1}\right)(\gamma z) \tag{4.1.8}
\end{equation*}
$$

Formula (4.1.5) follows from (4.1.8), (4.1.6), and (4.1.7) by a routine calculation, using once again the fact that $g z=z$. This completes the proof of Proposition 4.1.

Remarks. (1) In the above arguments we have assumed that $\Lambda_{0} \subset C$. This can always be achieved by conjugation. In the remainder of this paper, we shall whenever convenient assume without further comment that we have replaced the group by a conjugate so that all calculations are at finite points.
(2) Assume that for $j=1, \ldots, 2 q-1, a_{j} \in \Lambda_{0}$ is a fixed point of a loxodromic element $\gamma_{j} \in \Gamma$. Let $\chi=\operatorname{pd} F$ with $F \in \mathbf{F}_{1-q}\left(\Lambda_{0}, \Gamma\right)$. Then

$$
\chi\left(\gamma_{j}\right)\left(a_{j}\right)=F\left(a_{j}\right) \gamma_{j}^{\prime}\left(a_{j}\right)^{1-q}-F\left(a_{j}\right)=0 .
$$

Thus we see that under our assumption

$$
H^{1}\left(\Gamma, \Pi_{2 q-2}\right) \cong\left\{\chi \in Z^{1}\left(\Gamma, \Pi_{2 q-2}\right) ; \chi\left(\gamma_{j}\right)\left(a_{j}\right)=0, \text { for all } j=1, \ldots, 2 q-1\right\}
$$

4.2. Before proceeding to the proof of Theorem 2 , we verify that functions (0.2 .11), (0.2 .12) with $z \in \Lambda_{q} \backslash\left\{a_{1}, \ldots, a_{2 q-1}\right\}$ form a basis of $\mathscr{R}_{q}\left(\Lambda_{q}\right)$. It is obvious that these functions are linearly independent. Let $f \in \mathscr{R}_{q}\left(\Lambda_{q}\right)$ and let b_{1}, \ldots, b_{m} be the
poles of f not in $\left\{a_{1}, \ldots, a_{2 q-1}\right\}$. (Recall the convention about poles at ∞ introduced in the introduction.) The dimension of the subspace of $\mathscr{R}_{q}\left(\Lambda_{q}\right)$ consisting of functions holomorphic except at the points in $\left\{b_{1}, \ldots, b_{m}, a_{1}, \ldots, a_{2 q-1}\right\}$ is precisely m. The space spanned by the linear combinations in (0.2 .13) also has dimension m.
4.3. We are now ready to complete the proof of Theorem 2. Let $f \in \mathscr{R}_{q}\left(\Lambda_{q}\right)$. Then $\Theta_{q} f \in \mathbf{A}_{q}(\Omega, \Gamma) \supset \mathbf{A}_{q}(\Delta, \Gamma)$. Using the duality of the Petersson scalar product, it suffices to show that

$$
\left\langle\Theta_{q} f, \psi\right\rangle_{\Gamma}=0 \quad \text { all } \psi \in \mathbf{A}_{q}(\Delta, \Gamma)
$$

if and only if

$$
\mathscr{K}(f)(F)=0 \quad \text { all } F \in \mathscr{F}_{1-q}(\Delta, \Gamma) .
$$

Now every $F \in \mathscr{F}_{1-q}(\Delta, \Gamma)$ is an F_{ψ} for some $\psi \in \mathbf{A}_{q}(\Delta, \Gamma)$. For f given by (0.2.13), we have by (0.2 .14) and (2.4.3),

$$
\begin{aligned}
\mathscr{K}(f)\left(F_{\psi}\right) & =\sum_{j=1}^{m} \beta_{j} F_{\psi}\left(b_{j}\right) \\
& =\sum_{j=1}^{m} \beta_{j}\left\langle\varphi\left(b_{j}, \cdot\right), \psi\right\rangle_{\Gamma} . \\
& =\left\langle\Theta_{q} f, \psi\right\rangle_{\Gamma} .
\end{aligned}
$$

Remark. The importance of Theorem 2 is that it allows effective computation to determine whether or not a Poincaré series of a rational function vanishes identically on Ω. This topic will be pursued further in $\S \S 5,7,8$, and 10 .
4.4. The operators \mathscr{K} and Θ_{q} allow us to introduce a pairing $\{\cdot, \cdot\}$ on $\mathscr{R}_{q}\left(\Lambda_{q}\right)$ as follows: Let $f_{j} \in \mathscr{R}_{q}\left(\Lambda_{q}\right)$ and let $\psi_{j}=\Theta_{q} f_{j}, j=1,2$. Define

$$
\left\{f_{1}, f_{2}\right\}=\mathscr{H}\left(f_{1}\right)\left(F_{\psi_{2}}\right)=\left\langle\Theta_{q} f_{1}, \psi_{2}\right\rangle_{\Gamma}=\left\langle\psi_{1}, \psi_{2}\right\rangle_{\Gamma}
$$

It follows that the pairing is Hermetian in the sense that

$$
\overline{\left\{f_{1}, f_{2}\right\}}=\left\{f_{2}, f_{1}\right\}
$$

and

$$
\{f, f\}=0 \Leftrightarrow \Theta_{q} f=0 .
$$

The Hilbert space obtained by factoring $\mathscr{R}_{q}\left(\Lambda_{q}\right)$ by the subspace of vectors f of length zero (those $f \in \mathscr{R}_{q}\left(\Lambda_{q}\right)$ with $\{f, f\}=0$) is canonically isomorphic to $\mathbf{A}_{q}(\Omega, \Gamma)$.
4.5. We will find it more useful to consider another pairing between subspaces of $\mathscr{R}_{q}\left(\Lambda_{q}\right)$ and those of $\mathscr{F}_{1-q}(\Omega, \Gamma)$. Let us fix $(2 q-1)$ distinct points $a_{1}, \ldots, a_{2 q-1} \in \Lambda_{q}$. Let b_{1}, \ldots, b_{m} be $m>0$ distinct points in $\Lambda_{q} \backslash\left\{a_{1}, \ldots, a_{2 q-1}\right\}$, and let

$$
S=\left\{a_{1}, \ldots, a_{2 q-1}, b_{1}, \ldots, b_{m}\right\}
$$

Define

$$
\begin{gathered}
\mathbf{A}=\left\{\Theta_{q} f ; f \in \mathscr{R}_{q}(S)\right\}, \\
\mathscr{F}=\left\{F \mid S ; F \in \mathscr{F}_{1-q}(\Omega, \Gamma)\right\} .
\end{gathered}
$$

Let $f \in \mathscr{R}_{q}(S)$ be given by (0.2.13). Introduce the pairing

$$
\begin{equation*}
\mathbf{A} \times \mathscr{F} \rightarrow \mathbf{C}, \tag{4.5.1}
\end{equation*}
$$

by

$$
\begin{equation*}
(\varphi, F)=\sum_{j=1}^{m} \beta_{j} F\left(b_{j}\right), \quad \varphi \in \mathbf{A}, F \in \mathscr{F}, \tag{4.5.2}
\end{equation*}
$$

where $\varphi=\Theta_{q} f$.
THEOREM. The pairing (4.5.1) given by (4.5.2) is well defined and non-singular. In particular,

$$
\operatorname{dim} \mathbf{A}=\operatorname{dim} \mathscr{F}
$$

Proof. Linearity in both variables of the pairing is clear. It is a consequence of Theorem 2 that (4.5.1) depends only on $\varphi \in \mathbf{A}$ and not on the particular $f \in \mathscr{R}_{q}(S)$ with $\Theta_{q} f=\varphi$.

Let $r=\operatorname{dim} \mathscr{F}$. If $r=0$, then we must show that $\mathbf{A}=\{0\}$. If not, there is a j with $1 \leqslant j \leqslant m$ and $\varphi\left(b_{j}, \cdot\right) \neq 0$. Thus for $F=F_{\varphi\left(b_{j},\right)} \in \mathscr{F}_{1-q}(\Omega, \Lambda)$, we have

$$
F\left(b_{j}\right)=\left\langle\varphi\left(b_{j}, \cdot\right), \varphi\left(b_{j}, \cdot\right)\right\rangle_{\Gamma} \neq 0
$$

Thus F is a non-zero element of \mathscr{F}. This contradiction shows that $\mathbf{A}=\{0\}$.
Assume now that $r>0$.
Assume that $F \in \mathscr{F}_{1-q}(\Omega, \Gamma)$ and that $(\varphi, F)=0$, all $\varphi \in \mathbf{A}$. Let $k=1, \ldots, m$, and set $\varphi=\varphi\left(b_{k}, \cdot\right)$. Then

$$
0=(\varphi, F)=F\left(b_{k}\right)
$$

showing that $F=0$ in \mathscr{F}.
Conversely, if for fixed $\varphi \in \mathbf{A},(\varphi, F)=0$ all $F \in \mathscr{F}$, then we must show $\varphi=0$. Now φ can be written as $\Sigma_{k=1}^{m} \beta_{k} \varphi\left(b_{k}, \cdot\right)$. As in the proof of Theorem 1, we find $r=\operatorname{dim} \mathscr{F}$ points b_{1}, \ldots, b_{r} (after relabelling) so that a basis F_{1}, \ldots, F_{r} for \mathscr{F} satisfies

$$
F_{j}\left(b_{k}\right)=\delta_{j k}, \quad 1 \leqslant j, k \leqslant r \leqslant m
$$

The functions $\varphi\left(b_{1}, \cdot\right), \ldots, \varphi\left(b_{r}, \cdot\right)$ are linearly independent. We have shown that the pairing (4.5.2) is well defined. Thus it suffices to establish the independence of these r functions. We compute

$$
\left(\varphi\left(b_{j}, \cdot\right), F_{k}\right)=\delta_{j k}, \quad 1 \leqslant j, k \leqslant r
$$

Thus the independence of $\varphi\left(b_{1}, \cdot\right), \ldots, \varphi\left(b_{r}, \cdot\right)$ follows. If $r=m$, there is nothing more to prove.

Assume $0<r<k \leqslant m$. We claim that $\varphi\left(b_{k}, \cdot\right)$ is a linear combination of $\varphi\left(b_{1}, \cdot\right), \ldots, \varphi\left(b_{r}, \cdot\right)$. If not $\varphi\left(b_{k}, \cdot\right), \varphi\left(b_{1}, \cdot\right), \ldots, \varphi\left(b_{r}, \cdot\right)$ can be made part of basis of $\mathbf{A}_{q}(\Omega, \Gamma)$. By Theorem 2.5 , this means that there is an $F \in \mathscr{F}_{1-q}(\Omega, \Gamma)$ such that $F\left(b_{k}\right)=1$ and $F\left(b_{j}\right)=0, j=1, \ldots, r$. Now F is a linear combination

$$
F=\sum_{k=1}^{r} \alpha_{k} F_{k}
$$

and $F\left(b_{j}\right)=0$ implies $\alpha_{j}=0$, for $j=1, \ldots, r$. Hence $F=0$ on S, and we have obtained a contradiction to $F\left(b_{k}\right)=1$. Thus φ can be written as

$$
\varphi=\sum_{k=1}^{r} \beta_{k} \varphi\left(b_{k}, \cdot\right)
$$

and $0=\left(\varphi, F_{j}\right)=\beta_{j}$, for $j=1, \ldots, r$; showing that $\varphi=0$.
4.6. A sufficient condition for the vanishing of the Poincare series of certain rational functions can be expressed in purely algebraic terms.

ThEOREM. Let Γ be a finitely generated non-elementary Kleinian group. Let $f \in \mathscr{R}_{q}\left(\Lambda_{0}\right)$, with Λ_{0} as defined in Proposition 4.1. Define $\mathscr{K} f \in \mathbf{F}_{1-q}\left(\Lambda_{0}, \Gamma\right)^{*}$ by (0.2.14). If $\mathscr{K} f=0$, then $\Theta_{q} f=0$.

Proof. The space $\mathbf{F}_{1-q}\left(\Lambda_{0}, \Gamma\right)$ contains the restrictions to Λ_{0} of functions in
$\mathscr{F}_{1-q}(\Omega, \Gamma)$, and thus $\mathscr{K} f$ vanishes on $\mathscr{F}_{1-q}(\Omega, \Gamma)$ whenever it vanishes on $\mathrm{F}_{1-q}\left(\Lambda_{0}, \Gamma\right)$.

Remark. Proposition 4.1 showed that $F_{1-q}\left(\Lambda_{0}, \Gamma\right)$ is determined algebraically from $H^{1}\left(\Gamma, \Pi_{2 q-2}\right)$. Hence the sufficient condition for the vanishing of a Poincaré series given by the above theorem involves only algebraic data.
4.7. A generalized Beltrami differential μ is an equivalence class of measurable functions on Ω satisfying

$$
\gamma_{1-q, 1}^{*} \mu=\mu, \quad \text { all } \gamma \in \Gamma
$$

and

$$
\lambda^{q-2}|\mu| \in L^{\infty}(\Omega)
$$

where $\lambda(z)|d z|$ is the Poincaré metric on Ω. A potential for μ is a continuous function F on \mathbf{C} such that (0.2 .7) and (0.2 .8) hold, For $\varphi \in \mathbf{A}_{q}(\Omega, \Gamma), \lambda^{2-2 q} \bar{\varphi}$ is called a canonical generalized Beltrami differential. As we saw earlier the restriction of a potential to Λ_{q} is an Eichler integral. The space of Eichler integrals obtained by restricting potentials of (arbitrary) generalized Beltrami differentials is not larger than the space of restrictions of potentials of canonical generalized Beltrami differentials ([14, p. 170]), and if we fix $(2 q-1)$ distinct points $a_{1}, \ldots, a_{2 q-1}$ in Λ_{q}, then each such Eichler integral is equivalent to a function in $\mathscr{F}_{1-q}(\Omega, \Gamma)$.

A generalized Beltrami differential μ induces a linear functional l on $\mathbf{A}_{q}(\Omega, \Gamma)$ by

$$
\varphi \mapsto i \iint_{\Omega / \Gamma} \varphi(z) \mu(z) d z \wedge d \bar{z}
$$

Let μ_{1} and μ_{2} be two generalized Beltrami differentials, with potentials F_{1} and F_{2} (respectively) and induced linear functionals l_{1} and l_{2} (respectively). Then $l_{1}=l_{2}$ if and only if F_{1} is equivalent to F_{2} as Eichler integrals on Λ_{q} (see [14, pp. 170-171]). The above observations will be useful in computing the values of potentials at parabolic fixed points corresponding to punctures. (See § 5.3.)
§ 5. The structure of the cohomology groups $\boldsymbol{P H}^{\mathbf{1}}\left(\Gamma, \Pi_{2 q-2}\right)$ (proof of Theorem 3)
5.1. Let Δ be a Γ-invariant union of components of the non-elementary finitely generated Kleinian group Γ. Let F be a holomorphic Eichler integral defined on Δ. We call F a bounded (holomorphic) Eichler integral provided

$$
\begin{equation*}
\varphi=\frac{d^{2 q-1} F}{d z^{2 q-1}} \in \mathbf{A}_{q}(\Delta, \Gamma) \tag{5.1.1}
\end{equation*}
$$

If F is a bounded Eichler integral, then the projection of φ to Δ / Γ has a pole of order $\leqslant q-1$ at each puncture of Δ / Γ. If instead of (5.1.1), we require that φ have a pole of order $\leqslant q$ at each puncture of Δ / Γ, then F is called a quasi-bounded (holomorphic) Eichler integral.

The space of equivalence classes (modulo $\Pi_{2 q-2}$) of bounded (respectively, quasi-bounded) holomophic Eichler integrals supported on Δ is denoted by $\mathbf{E}_{1-q}^{b}(\Delta, \Gamma)$ (respectively, $\mathbf{E}_{1-q}^{c}(\Delta, \Gamma)$). If we choose ($2 q-1$) distinct points $a_{1}, \ldots, a_{2 q-1}$ in Δ (such points can not usually be used to normalize potentials in $\mathscr{F}_{1-q}(\Delta, \Gamma)$), then the space $\mathbf{E}_{1-q}^{b}(\Delta, \Gamma)$ (respectively, $\mathbf{E}_{1-q}^{c}(\Delta, \Gamma)$) can be identified with the space of bounded (respectively, quasi-bounded) holomorphic Eichler integrals for the group Γ with support on Δ that vanish at $a_{j}, j=1, \ldots, 2 q-1$. The main structure theorem for the Eichler cohomology groups [14, Chapter V] can be formulated as follows. We define for $F_{1} \in \mathbf{E}_{1-q}^{c}(\Delta, \Gamma), F_{2} \in \mathscr{F}_{1-q}(\Delta, \Gamma)$,

$$
\operatorname{pd}\left(F_{1}, F_{2}\right)=\operatorname{pd} F_{1}+\operatorname{pd} F_{2}
$$

(where pd is the period map on Eichler integrals). Then we have \mathbf{C}-linear isomorphisms

$$
\begin{aligned}
& \text { pd: } \mathbf{E}_{1-q}^{b}(\Delta, \Gamma) \oplus \mathscr{F}_{1-q}(\Delta, \Gamma) \cong \\
& \text { pd: } \mathbf{E}_{1-q}^{c}(\Delta, \Gamma) \oplus H_{\Delta}^{1}\left(\Gamma, \Pi_{2 q-2}\right), \\
& \mathscr{F}_{1-q}(\Delta, \Gamma) \cong H^{1}\left(\Gamma, \Pi_{2 q-2}\right)
\end{aligned}
$$

5.2. The spaces $\mathbf{A}_{q}(\Delta, \Gamma)$ and $\mathscr{F}_{1-q}(\Delta, \Gamma)$ are conjugate linear isomorphic. In many cases $\mathbf{E}_{1-q}^{b}(\Omega, \Gamma)=\{0\}$. This condition is equivalent to the surjectivity of the Bers map

$$
\begin{equation*}
\beta^{*}: \mathbf{A}_{q}(\Omega, \Gamma) \rightarrow P H_{\Omega}^{1}\left(\Gamma, \Pi_{2 q-2}\right) \tag{5.2.1}
\end{equation*}
$$

Since $P H^{1}\left(\Gamma, \Pi_{2 q-2}\right) \subset P H_{\Omega}^{1}\left(\Gamma, \Pi_{2 q-2}\right)$, the surjectivity of β^{*} in (5.2.1) implies the surjectivity of β^{*} in (0.3.1). These elementary remarks are extremely important for applications (see for example $\S \S 8$ and 10). There are groups Γ with $\operatorname{dim} \mathbf{E}_{1-q}^{b}(\Omega, \Gamma)>0$, and β^{*} of (0.3.1) surjective. If for such a group Γ, we know which elements are parabolic (this hypothesis is satisfied by geometrically finite function groups by Maskit's [19] decomposition theorems-see also the presentation in § 9 of [16]), then we can construct algebraically the parabolic cocycles for Γ. From the parabolic cocycles, the values at
points in Λ_{q}^{0} of functions in $\mathscr{F}_{1-q}(\Omega, \Gamma)$ can be constructed. We state our next result in the following form.

ThEOREM. (a) Let Γ be a finitely generated non-elementary Kleinian group. Assume that the map β^{*} of (0.3 .1) is surjective. Let $a_{1}, \ldots, a_{2 q-1}$ by ($2 q-1$) distinct points in Λ_{q}^{0}. The space $\mathscr{F}_{1-q}(\Omega, \Gamma)$ is then completely determined from the parabolic cocyles for Γ.
(b) Assume that for $j=1, \ldots, 2 q-1, a_{j} \in \Lambda_{q}^{0}$ is a fixed point of a loxodromic element $\gamma_{j} \in \Gamma$ or an elliptic element γ_{j} of order v that satisfies (0.1.4). Then the cohomology space $P^{1}\left(\Gamma, \Pi_{2 q-2}\right)$ is canonically isomorphic to

$$
Z=\left\{\chi \in P Z^{1}\left(\Gamma, \Pi_{2 q-2}\right) ; \chi\left(\gamma_{j}\right)\left(a_{j}\right)=0 \text { for } j=1, \ldots, 2 q-1\right\} .
$$

(c) The values of functions in $\mathscr{F}_{1-q}(\Omega, \Gamma)$ at points in Λ_{q}^{0} and at parabolic fixed points corresponding to punctures on Ω / Γ can be constructed algebraically from the space of cocycles Z.

Proof. If $\chi \in P^{1}\left(\Gamma, \Pi_{2 q-2}\right)$, then by Proposition 4.1 (see also Theorem 6.10), there is a unique $F \in \mathbf{F}_{1-q}\left(\Lambda_{q}^{0}, \Gamma\right)$ so that $\mathrm{pd} F$ is cohomologous to χ. The construction of F from χ is completely algebraic. Since χ is a parabolic cocycle, F is the restriction to Λ_{q}^{0} of a unique function in $\mathscr{F}_{1-q}(\Omega, \Gamma)$ because of (i) the surjectivity of β^{*}, and (ii) the continuity of functions in $\mathscr{F}_{1-q}(\Omega, \Gamma)$. This establishes part (a) of the theorem. Claim (b) follows from Remark 2 of $\S 4.1$. We have already verified most of (c). It remains to show that if $F \in \mathscr{F}_{1-q}(\Omega, \Gamma)$ and $A \in \Gamma$ is parabolic with fixed point $a \in \Lambda$ corresponding to a puncture on Ω / Γ, then $F(a)$ can be computed from $p=\chi(A)$, where $\chi=\operatorname{pd} F$. We start with

$$
\begin{equation*}
F(A z) A^{\prime}(z)^{1-q}-F(z)=p(z), \quad z \in \Lambda_{q} . \tag{5.2.2}
\end{equation*}
$$

As a matter of fact, since F is a potential, equation (5.2.2) holds for all $z \in \mathbf{C} \cup\{\infty\}$. Assume that $a \in \mathbf{C}$. Since $A^{\prime}(a)=1,(5.2 .2)$ does not immediately determine $F(a)$ from $p(a)$. If F were analytic at a, then we would conclude that

$$
F^{\prime}(A z) A^{\prime}(z)^{2-q}+(1-q) F(A z) A^{\prime}(z)^{-q} A^{\prime \prime}(z)-F^{\prime}(z)=p^{\prime}(z)
$$

for z near a. It would hence follow that

$$
\begin{equation*}
F(a)=\frac{p^{\prime}(a)}{(1-q) A^{\prime \prime}(a)} . \tag{5.2.3}
\end{equation*}
$$

Note that $A^{\prime \prime}(a) \neq 0$. Thus we must verify (5.2.3). This will be done in the next section.
5.3. Let F be a potential for the group Γ that vanishes at $(2 q-1)$ points in Λ_{q}^{0}. We let $C(z)=z+1$ be a parabolic element of Γ generating the stabilizer of the fixed point ∞ corresponding to a puncture on Ω / Γ. We may, without loss of generality, assume that for some $c>0$, the domain $U_{c}=\{z \in \mathbf{C} ; \operatorname{Im} z>c\}$ is precisely invariant under the cyclic group $\langle C\rangle$ in Γ. The potential F satisfies (0.2 .7), and, without loss of generality, we may assume, by the remarks in $\S 4.7$, that F is holomorphic in U_{c} (because every linear functional on $\mathbf{A}_{q}(\Omega, \Gamma)$ can be induced by a Beltrami differential with support in the image under Γ of a small ball in Ω). Write

$$
\begin{equation*}
F(z+1)-F(z)=p(z), \quad z \in U_{c}, \tag{5.3.1}
\end{equation*}
$$

where $\operatorname{deg} p \leqslant 2 q-3$ because $\mathrm{pd} F$ is a parabolic cocycle (see $\S 6.7$ or below). Let $\varphi=d^{2 q-1} F / d z^{2 q-1}$. Then

$$
\varphi(z+1)=\varphi(z), \quad z \in U_{c} .
$$

Hence φ has a Fourier series expansion

$$
\varphi(z)=\sum_{n=-\infty}^{\infty} \alpha_{n} e^{2 \pi i n z}, \quad z \in U_{c} .
$$

It follows that F can be written as

$$
\begin{equation*}
F(z)=\sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} \beta_{n} e^{2 \pi i n z}+v(z), \quad z \in U_{c}, \tag{5.3.2}
\end{equation*}
$$

where v is a polynomial of degree $\leqslant 2 q-1$. But the growth condition (0.2.7) on F implies that $\beta_{n}=0$ for $n<0$ and that v is of degree of most $2 q-2$. Thus

$$
F(z)=\sum_{n=1}^{\infty} \beta_{n} e^{2 \pi i n z}+v(z), \quad z \in U_{c},
$$

with $v \in \Pi_{2 q-2}$. The value

$$
\begin{equation*}
F(\infty)=(-1)^{1-q} a_{2 q-2}=v(\infty), \tag{5.3.3}
\end{equation*}
$$

is computed in accordance with (0.2 .6), where

$$
v(z)=\sum_{j=0}^{2 q-2} a_{j} z^{j}, \quad z \in \mathbf{C} .
$$

From (5.3.2) and (5.3.1), it follows that

$$
v(z+1)-v(z)=p(z)
$$

Writing

$$
\begin{equation*}
p(z)=\sum_{j=0}^{2 q-3} b_{j} z^{j} \tag{5.3.4}
\end{equation*}
$$

we see that

$$
\begin{equation*}
b_{2 q-3}=2(q-1) a_{2 q-2}=(-1)^{1-q}(2 q-2) F(\infty) \tag{5.3.5}
\end{equation*}
$$

We claim that the translation (5.3.5) to the finite point $a \in C$ will yield (5.2.3). With a (and A) given, we choose a Möbius transformation B with $B^{-1} \circ C \circ B=A$. It follows that $B(a)=\infty$, and hence that

$$
B(z)=\frac{b z+c}{z-a}
$$

The function $F \cdot B$ is a potential for $B^{-1} \Gamma B$ with $(\operatorname{pd} F \cdot B)(A)=p \cdot B$, and we must show that (5.2.3) holds; that is,

$$
\begin{equation*}
(F \cdot B)(a)=\frac{(p \cdot B)^{\prime}(a)}{(1-q) A^{\prime \prime}(a)} \tag{5.3.6}
\end{equation*}
$$

We compute

$$
\begin{gathered}
A(z)=\frac{(a b+a+c) z-a^{2}}{z+(a b-a+c)} \\
A^{\prime \prime}(a)=\frac{-2}{a b+c}
\end{gathered}
$$

(note that $a b+c \neq 0$)

$$
\begin{aligned}
&(F \cdot B)(z)= F(B z) B^{\prime}(z)^{1-q}=(-1)^{1-q}(a b+c)^{1-q}(z-a)^{2 q-2} \\
& \times\left\{\sum_{n=1}^{\infty} \beta_{n} e^{2 \pi i n B(z)}+\sum_{j=0}^{2 q-2} a_{j}(b z+c)^{j}(z-a)^{-j}\right\}, \quad z \in B^{-1}\left(U_{c}\right), \\
&(F \circ B)(a)=(-1)^{1-q}(a b+c)^{q-1} a_{2 q-2}, \\
&(p \cdot B)(z)=(-1)^{1-q}(a b+c)^{1-q} \sum_{j=0}^{2 q-3} b_{j}(b z+c)^{j}(z-a)^{2 q-2-j},
\end{aligned}
$$

and

$$
(p \cdot B)^{\prime}(a)=(-1)^{1-q}(a b+c)^{q-2} b_{2 q-3}
$$

Comparison with (5.3.5) yields (5.3.6).
Remarks. (1) If the parabolic transformation corresponding to a puncture is given by

$$
C(z)=z+\alpha
$$

and $p=\operatorname{pd} F$ is given by (5.3.4), then

$$
F(\infty)=(-\alpha)^{1-q} b_{2 q-3}
$$

The above equality generalizes (5.3.5).
(2) Theorem 5.2 is a strengthened version of Theorem 3.
(3) Parabolic fixed points corresponding to punctures on Ω / Γ can also be used as points at which we normalize the functions in $\mathscr{F}_{1-q}(\Omega, \Gamma)$. For example, in part (a) of Theorem 5.2, we may take one of the a_{j} to be a fixed point of a parabolic element γ_{j} corresponding to a puncture on Ω / Γ. The condition $\chi\left(\gamma_{j}\right)\left(a_{j}\right)=0$ in the definition of the space Z is now replaced by $\chi\left(\gamma_{j}\right)^{\prime}\left(a_{j}\right)=0$. In actual computations (see, for example, $\S 8.5$), this observation will yield significant simplifications.
§ 6. The Γ-invariant linear functionals on $\mathscr{R}_{\boldsymbol{q}}\left(\mathbf{\Lambda}_{\boldsymbol{q}}\right)$ and $\mathbf{A}_{\boldsymbol{q}}(\mathbf{\Omega})$ (proof of Theorem 6)
6.1. We begin with the continuous analogue of a discrete problem that we will investigate.

If Ω is the region of discontinuity of a finitely generated non-elementary Kleinian group Γ, we define the Banach space $\mathbf{A}_{q}(\Omega)$ to consist of holomorphic functions φ on Ω that satisfy

$$
\begin{equation*}
\varphi(z)=O\left(|z|^{-2 q}\right), \quad z \rightarrow \infty, \text { if } \infty \in \Omega \tag{6.1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\varphi\|=\iint_{\Omega} \lambda(z)^{2-q}|\varphi(z) d z \wedge d \bar{z}|<\infty \tag{6.1.2}
\end{equation*}
$$

where $\lambda(z)|d z|$ is, as before, the Poincaré metric on Ω. The space $B_{q}(\Omega)$ is the Banach space of holomorphic functions φ on Ω that satisfy (6.1.1) and

$$
\begin{equation*}
\|\varphi\|_{\infty}=\sup \left\{\lambda(z)^{-q}|\varphi(z)| ; z \in \Omega\right\}<\infty \tag{6.1.3}
\end{equation*}
$$

The Petersson scalar product

$$
\langle\varphi, \psi\rangle=i \iint_{\Omega} \lambda(z)^{2-2 q} \varphi(z) \overline{\psi(z)} d z \wedge d \bar{z}
$$

is well defined for $\varphi \in \mathbf{A}_{q}(\Omega), \psi \in \mathbf{B}_{q}(\Omega)$, and establishes, by a theorem of Bers (see, for example, [14, Chapter III]), a conjugate linear topological isomorphism between the topological dual space $\mathbf{A}_{q}(\Omega) *$ of $\mathbf{A}_{q}(\Omega)$ and $\mathbf{B}_{q}(\Omega)$.
6.2. We observe that $\mathbf{A}_{q}(\Omega, \Gamma) \subset \mathbf{B}_{q}(\Omega)$. For $A \in \Gamma$, the operator A_{q}^{*} is a linear invertible isometry of $\mathbf{A}_{q}(\Omega)$ and $\mathbf{B}_{q}(\Omega)$. The operator A_{q}^{*} is trivial on $\mathbf{A}_{q}(\Omega, \Gamma)$. Let $l \in \mathbf{A}_{q}(\Omega)^{*}$. We say that l is Γ-invariant if

$$
\begin{equation*}
l\left(A_{q}^{*} \varphi\right)=l(\varphi), \quad \text { all } A \in \Gamma, \text { all } \varphi \in \mathbf{A}_{q}(\Omega) \tag{6.2.1}
\end{equation*}
$$

Proposition. Let $l \in \mathbf{A}_{q}(\Omega)^{*}$ be given by $l(\varphi)=\langle\varphi, \psi\rangle$, for all $\varphi \in \mathbf{A}_{q}(\Omega)$, and fixed $\psi \in \mathbf{B}_{q}(\Omega)$. Then l is Γ-invariant if and only if $\psi \in \mathbf{A}_{q}(\Omega, \Gamma)$.

Proof. A simple change of variable calculation shows that

$$
\langle\varphi, \psi\rangle=\left\langle A_{q}^{*} \varphi, A_{q}^{*} \psi\right\rangle,
$$

for all $\varphi \in \mathbf{A}_{q}(\Omega), \psi \in \mathbf{B}_{q}(\Omega), A \in \Gamma$. Hence for $\psi \in \mathbf{A}_{q}(\Omega, \Gamma), l$ is Γ-invariant. Conversely assume that l is Γ-invariant. Thus for $\varphi \in \mathbf{A}_{q}(\Omega), A \in \Gamma$,

$$
\begin{aligned}
l\left(A_{q}^{*} \varphi\right) & =\left\langle A_{q}^{*} \varphi, \psi\right\rangle=\left\langle\left(A^{-1}\right)_{q}^{*} \circ A_{q}^{*} \varphi,\left(A^{-1}\right)_{q}^{*} \psi\right\rangle \\
& =\left\langle\varphi,\left(A^{-1}\right)_{q}^{*} \psi\right\rangle,
\end{aligned}
$$

and

$$
l\left(A_{q}^{*} \varphi\right)=l(\varphi)=\langle\varphi, \varphi\rangle .
$$

By the Bers' isomorphism theorem referred to earlier

$$
\left(A^{-1}\right)_{q}^{*} \psi=\psi, \quad \text { all } A \in \Gamma .
$$

Hence $\psi \in \mathbf{A}_{q}(\Omega, \Gamma)$.
6.3. The Poincaré series operator Θ_{q} is defined on $\mathbf{A}_{q}(\Omega)$ and maps it onto $\mathbf{A}_{q}(\Omega, \Gamma)$. The norm of this operator is at most one. (We use the L^{1}-norm on $\mathbf{A}_{q}(\Omega, \Gamma)$ given by (0.1.2).)

It is easy to check that

$$
\begin{equation*}
\Theta_{q} \circ A_{q}^{*}=\Theta_{q}, \quad \text { all } A \in \Gamma \tag{6.3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle\varphi, \psi\rangle=\left\langle\Theta_{q} \varphi, \psi\right\rangle_{\Gamma}, \quad \text { all } \varphi \in \mathbf{A}_{q}(\Omega), \quad \text { all } \psi \in \mathbf{A}_{q}(\Omega, \Gamma) \tag{6.3.2}
\end{equation*}
$$

THEOREM (Metzger [20]). The kernel of

$$
\Theta_{q}: \mathbf{A}_{q}(\Omega) \rightarrow \mathbf{A}_{q}(\Omega, \Gamma)
$$

is the closure Σ in $\mathbf{A}_{q}(\Omega)$ of the linear span of

$$
\left\{\varphi-A_{q}^{*} \varphi ; \varphi \in \mathbf{A}_{q}(\Omega), A \in \Gamma\right\}
$$

Proof. Formula (6.3.1) shows that

$$
\varphi-A_{q}^{*} \varphi \in \operatorname{Ker} \Theta_{q}
$$

for all $\varphi \in \mathbf{A}_{q}(\Omega)$ and all $A \in \Gamma$. By linearity of Θ_{q}, the span of such functions lies in the kernel of Θ_{q}, and by the continuity of Θ_{q} so does the closure of the span; that is $\Sigma \subset \operatorname{Ker} \Theta_{q}$.

Conversely, by Hahn-Banach, it suffices to show that every $l \in \mathbf{A}_{q}(\Omega)^{*}$ that vanishes on Σ also vanishes on $\operatorname{Ker} \Theta_{q}$; that is, if $\psi \in \mathbf{B}_{q}(\Omega)$ and

$$
\begin{equation*}
\left\langle\varphi-A_{q}^{*} \varphi, \psi\right\rangle=0, \quad \text { all } \varphi \in \mathbf{A}_{q}(\Omega), \text { all } A \in \Gamma \tag{6.3.3}
\end{equation*}
$$

then

$$
\begin{equation*}
\langle\varphi, \psi\rangle=0, \quad \text { all } \varphi \in \operatorname{Ker} \Theta_{q} \tag{6.3.4}
\end{equation*}
$$

Equation (6.3.3) shows, by Proportion 6.2, that $\psi \in \mathbf{A}_{q}(\Omega, \Gamma)$. Hence by (6.3.2), we have (6.3.4).

Remark. Metzger's theorem [20] is a formal consequence of properties of the spaces $\mathbf{A}_{q}(\Omega)$ and $\mathbf{B}_{q}(\Omega)$ and the operator Θ_{q}. Another formal description of $\operatorname{Ker} \Theta_{q}$ was given by Ljan [18].
6.4. The space $\mathscr{R}_{q}(\Lambda)$ is a subspace of $\mathbf{A}_{q}(\Omega)$; see, for example, Bers [4]. For $q=2$, $\mathscr{R}_{2}(\Lambda)$ is dense in $\mathbf{A}_{2}(\Omega)$, Ahlfors [1]; see also [14, Chapter IV]. We will for the moment consider $\mathscr{R}_{q}(\Lambda)$ and $\mathscr{R}_{q}\left(\Lambda_{q}\right)$ as vector spaces-without a topology. When we speak of continuous functionals on $\mathscr{R}_{q}(\Lambda)$, we will view $\mathscr{R}_{q}(\Lambda)$ as a subspace of the Banach space $\mathbf{A}_{q}(\Omega)$.

Let Λ_{0} be a non-empty Γ-invariant subset of Λ_{q}. By $\mathscr{R}_{q}\left(\Lambda_{0}\right)^{*}$ we will denote the space of linear functionals (not necessarily continuous) on $\mathscr{R}_{q}\left(\Lambda_{0}\right)$. A linear functional $l \in \mathscr{R}_{q}\left(\Lambda_{0}\right)^{*}$ will be called Γ-invariant if it satisfies (6.2.1) for all $\varphi \in \mathscr{R}_{q}\left(\Lambda_{0}\right)$ and all $A \in \Gamma$.

Proposition. Fix ($2 q-1$)-distinct points in $\Lambda_{0}: a_{1}, a_{2}, \ldots, a_{2 q-1}$. The vector space $\mathscr{R}_{q}\left(\Lambda_{0}\right)^{*}$ is canonically isomorphic to the vector space of functions on Λ_{0} that vanish at $a_{j}, j=1, \ldots, 2 q-1$.

Proof. By conjugation, we may assume $\Lambda_{0} \subset C$. For $b \in \Lambda_{0} \backslash\left\{a_{1}, \ldots, a_{2 q-1}\right\}$ and $l \in \mathscr{R}_{q}\left(\Lambda_{0}\right)^{*}$, set

$$
\begin{equation*}
F(b)=l(f(b, \cdot)) \tag{6.4.1}
\end{equation*}
$$

for f defined by (0.2.11). Conversely, given F, a function on Λ_{0} that vanishes at a_{j}, $j=1, \ldots, 2 q-1$, we use (6.4.1) to define the values of $l \in \mathscr{R}_{q}\left(\Lambda_{0}\right)^{*}$ on the basis for $\mathscr{R}_{q}\left(\Lambda_{0}\right)$, specified by (0.2.11).

6.5.

Theorem. Let F be a function on Λ_{0} that vanishes at $a_{j}, j=1, \ldots, 2 q-1$ and let l be the corresponding linear functional on $\mathscr{R}_{q}\left(\Lambda_{0}\right)$ given by (6.4.1). The lis Γ-invariant if and only if $A_{1-q}^{*} F-F$ is the restriction to Λ_{0} of a polynomial $p(A) \in \Pi_{2 q-2}$, for all $A \in \Gamma$ (that is, if and only if $\left.F \in \mathrm{~F}_{1-q}\left(\Lambda_{0}, \Gamma\right)\right)$.

Proof. We compute using formula (1.3.7), and the notation introduced in §§ 1.3 and 0.2. Fix $A \in \Gamma$. Choose $P \in \Pi_{2 q-2}$ such that (recall the definition (1.3.2) and the convention about the index β for the funciton f_{β})

$$
P\left(b_{k}\right)=-F\left(b_{k}\right), \quad k=1, \ldots, 2 q-1
$$

Then for $a \in \Lambda_{0} \backslash\left\{a_{1}, \ldots, a_{2 q-1}\right\}$,

$$
\begin{aligned}
& l(f(a, \cdot))=F(a) \\
& l\left(A_{q}^{*}(f(a, \cdot))\right)= A^{\prime}(b)^{q-1}\left\{F(b)-\sum_{k}\left(\prod_{j \neq k} \frac{b-b_{j}}{b_{k}-b_{j}}\right) F\left(b_{k}\right)\right\} \\
&= A^{\prime}(b)^{q-1}\{F(b)+P(b)\}
\end{aligned}
$$

Assume that $l \in \mathscr{R}_{q}\left(\Lambda_{0}\right)^{*}$ is Γ-invariant. Then

$$
F(A b) A^{\prime}(b)^{1-q}-F(b)=P(b), \quad \text { all } b \in \Lambda_{0}
$$

Since P depends only on l, A, and α and not the point b, we see that $F \in \mathrm{~F}_{1-q}\left(\Lambda_{0}, \Gamma\right)$.
Conversely, if $F \in \mathrm{~F}_{1-q}\left(\Lambda_{0}, \Gamma\right)$, then for $k=1, \ldots, 2 q-1, A \in \Gamma, p(A)=(\operatorname{pd} F)(A)$, we have

$$
F\left(A b_{k}\right) A^{\prime}\left(b_{k}\right)^{1-q}-F\left(b_{k}\right)=p(A)\left(b_{k}\right)
$$

But $F\left(A b_{k}\right)=F\left(a_{k}\right)=0$; hence $p(A)=P$ and l is Γ-invariant.
Remarks. (1) The proof also shows how to determine the value of $p(A)$.
(2) Given a Γ-invariant linear functional l on $\mathscr{R}_{q}\left(\Lambda_{0}\right)$, then we have constructed an Eichler integral F on Λ_{0} that vanishes at $a_{1}, \ldots, a_{2 q-1}$, and from it the cocycle $\chi=\operatorname{pd} F$. If the points $\hat{a}_{1}, \ldots, \hat{a}_{2 q-1}$ are used to construct an Eichler integral \hat{F} from l, then we obtain a new cocycle $\hat{\chi}=\operatorname{pd} \hat{F}$. Now

$$
\hat{F}(a)=l\left(f_{\hat{a}}(a, \cdot)\right),
$$

and

$$
\frac{-1}{\zeta-a} \prod_{j=1}^{2 q-1} \frac{a-\hat{a}_{j}}{\zeta-\hat{a}_{j}}=\frac{-1}{\zeta-a} \prod_{j=1}^{2 q-1} \frac{a-a_{j}}{\zeta-a_{j}}+\sum_{k=1}^{2 q-1}\left(\prod_{j \neq k} \frac{a-\hat{a}_{j}}{\hat{a}_{k}-\hat{a}_{j}}\right)\left(\frac{1}{\zeta-\hat{a}_{k}}\right)\left(\prod_{j=1}^{2 q-1} \frac{\hat{a}_{k}-a_{j}}{\zeta-a_{j}}\right)
$$

or

$$
f_{a}(a, \cdot)=f_{a}(a, \cdot)-\sum_{k=1}^{2 q-1} P_{k}(a) f_{a}\left(\hat{a}_{k}, \cdot\right)
$$

where P_{k} is the unique polynomial in $\Pi_{2 q-2}$ with $P_{k}\left(a_{j}\right)=\delta_{j k}, j, k=1, \ldots, 2 q-2$. Hence

$$
\hat{F}(a)=F(a)-\sum_{j=1}^{2 q-1} P_{k}(a) F\left(\hat{a}_{k}\right)
$$

Let $p \in \Pi_{2 q-2}$ be defined by

$$
p(a)=\sum_{j=1}^{2 q-1} P_{k}(a) F\left(\hat{a}_{k}\right), \quad a \in \Lambda_{0} .
$$

Thus $p \in \Pi_{2 q-2}$ satisfies, $p\left(a_{k}\right)=F\left(\hat{a}_{k}\right), k=1, \ldots, 2 q-1$. We conclude that

$$
\hat{F}=F-p ;
$$

which shows that the cohomology class determined by l is independent of the basis for $\mathscr{R}_{q}\left(\Lambda_{0}\right)$ used. Also note that even though we assumed that the \hat{a}_{k} 's differed from the a_{j} 's, the formula we derived is valid in general.
6.6. Let us define $\tilde{\mathscr{R}}_{q}\left(\Lambda_{0}\right)$ to be $\mathscr{R}_{q}\left(\Lambda_{0}\right)$ factored by the linear span of

$$
\left\{f-A_{q}^{*} f ; f \in \mathscr{R}_{q}\left(\Lambda_{0}\right), A \in F\right\}
$$

The Γ-invariant linear functionals on $\mathscr{R}_{q}\left(\Lambda_{0}\right)$ are in one to one canonical correspondence with the linear functionals on $\tilde{\mathscr{R}}_{q}\left(\Lambda_{0}\right), \tilde{\mathscr{R}}_{q}\left(\Lambda_{0}\right)^{*}$. Further, the Poincaré series operator Θ_{q} is well defined on $\mathscr{R}_{q}\left(\Lambda_{0}\right)$:

$$
\begin{equation*}
\Theta_{q}: \tilde{R}_{q}\left(\Lambda_{0}\right) \rightarrow \mathbf{A}_{q}(\Omega, \Gamma) \tag{6.6.1}
\end{equation*}
$$

By Theorem 1, Θ_{q} of (6.6.1) is surjective, and hence

$$
\operatorname{dim} \tilde{\mathscr{R}}_{q}\left(\Lambda_{0}\right) \geqslant \operatorname{dim} \mathbf{A}_{q}(\Omega, \Gamma) .
$$

6.7.

LEMMA. Let χ be $a \Pi_{2 q-2}$-cocycle. Let $A \in \Gamma$ be parabolic with fixed point a. Then χ is parabolic with respect to A if and only if $\chi(A)(a)=0$.

Proof. Assume that there is a $v \in \Pi_{2 q-2}$ such that (0.2 .4) holds. Then

$$
\chi(A)(a)=v(A a) A^{\prime}(a)^{1-a}-v(a)
$$

and since $A a=a$ and $A^{\prime}(a)=1$, we conclude that $\chi(A)(a)=0$. Conversely we must show that if $\chi(A)=p \in \Pi_{2 q-2}$ and $p(a)=0$, then there is a $v \in \Pi_{2 q-2}$ so that (0.2.4) holds. Consider the map

$$
\Pi_{2 q-2} \ni v \mapsto v \cdot A-v \in \Pi_{2 q-2}
$$

This map is linear and its image consists of functions vanishing at a, by the first part of our argument. Let v be in the kernel of this operator. If v vanishes at $x \neq a$, then v also vanishes at $A^{n} x$, all $n \in Z$, and such a v must be identically zero. Thus for $v \neq 0$ in the kernel of the above operator, we must have

$$
v(z)=(z-a)^{k}, \quad 0 \leqslant k \leqslant 2 q-2 .
$$

Now the condition

$$
v(A z) A^{\prime}(z)^{1-q}=v(z), \quad z \in \mathbf{C}
$$

along with the formula for A

$$
\frac{1}{A z-a}=\frac{1}{z-a}+K
$$

shows that $k=2 q-2$. It is also easy to see that this v is in the kernel of the operator.
The kernel of the operator thus has dimension one, and the image has dimension $2 q-2$, and must hence consist of all polynomials in $\Pi_{2 q-2}$ that vanish at a.

We have assumed that a is finite. If $a=\infty$, then by conjugation we can reduce this case to the one considered above.

Remark. See [14, Chapter V] for a direct proof of the lemma in case $a=\infty$.
6.8. We need one more fact concerning parabolic cocycles.

LEMMA. Let Γ_{0} be a rank 2 parabolic discrete group of Möbius transformations. Let A and B generate Γ_{0}. Let χ be a cocycle for Γ_{0}. Then χ is parabolic with respect to A if and only if it is parabolic with respect to B.

Proof. It is most convenient to conjugate Γ_{0} so that the common fixed point of A and B is at infinity. Without loss of generality we assume that $A(z)=z+1, B(z)=z+\tau$, $\operatorname{Im} \tau>0$. We now let $p_{1}=\chi(A), p_{2}=\chi(B)$. Assume that χ is parabolic with respect to A. This means that $\operatorname{deg} p_{1} \leqslant 2 q-3$. The commutativity of Γ_{0} implies that $\chi(A \circ B)=\chi(B \circ A)$ or that

$$
p_{1}(z+\tau)-p_{1}(z)=p_{2}(z+1)-p_{2}(z), \quad z \in \mathbf{C}
$$

Now $p_{1}(z+\tau)-p_{1}(z)$ is a polynomial in z of degree $\leqslant 2 q-4$; hence so is $p_{2}(z+1)-p_{2}(z)$. We conclude that p_{2} is at most of degree $2 q-3$; showing that χ is parabolic with respect to B.
6.9. Let Λ_{0} be a non-empty Γ-invariant subset of Λ_{q}. Let $b \in \Lambda_{q} \backslash \Lambda_{0}$ and set

$$
\Lambda_{1}=\Lambda_{0} \cup\{\gamma b ; \gamma \in \Gamma\}=\Lambda_{0} \cup \Gamma b .
$$

Lemma. Let $l \in \mathscr{\mathscr { R }}_{q}\left(\Lambda_{0}\right)^{*}$. Then l extends to an element of $\overline{\mathscr{R}}_{q}\left(\Lambda_{1}\right)^{*}$ whenever b is not a parabolic fixed point of Γ. If b is a parabolic fixed point, the l extends to an element of $\mathscr{R}_{q}\left(\Lambda_{1}\right)^{*}$ if and only if the period of the Eichler integral F on Λ_{0} corresponding to l is parabolic with respect to some parabolic $A \in \Gamma$ that fixes b.

Proof. Fix $2 q-1$ distinct points $a_{1}, \ldots, a_{2 q-1}$ in Λ_{0}. Let F be the unique Eichler integral supported on Λ_{0} that vanishes at $a_{k}, k=1, \ldots, 2 q-1$ corresponding to the Γ invariant linear functional l on $\mathscr{R}_{q}\left(\Lambda_{0}\right)$. Let $\chi=\operatorname{pd} F$. The linear functional l extends to a Γ-invariant linear functional on $\mathscr{R}_{q}\left(\Lambda_{1}\right)$ if and only if χ is determined by an extension of F to an Eichler integral supported on Λ_{1}.

Assume that the stabilizer Γ_{0} of b in Γ is cyclic of order $n(1 \leqslant n<\infty)$. Let A generate Γ_{0}. There are two possibilities depending on whether or not n divides $1-q$.

If n does not divide $1-q$, then b is a point of q-uniqueness and F extends uniquely to Γb. If n divides $1-q$, then $A^{\prime}(b)^{1-q}=1$ and hence $\chi(A)(b)=0$. The last assertion follows from the fact that $\chi\left(A^{\prime \prime}\right)=0$ and

$$
\left.\chi\left(A^{n}\right)=\chi(A) \cdot\left[A^{n-1}+A^{n-2}+\ldots+1\right] \cdot \cdot^{7}\right)
$$

Hence

$$
n \chi(A)(b)=0 .
$$

Thus we may arbitrarily define $F(b)$ and observe that (4.1.4) holds for all $\gamma \in \Gamma_{0}$. The extension of F to Γb is accomplished by

$$
\begin{equation*}
F(\gamma b) \gamma^{\prime}(b)^{1-q}-F(b)=\chi(\gamma)(b), \quad \gamma \in \Gamma . \tag{6.9.1}
\end{equation*}
$$

If Γ_{0} contains a loxodromic element, then b is again a q-uniqueness point and the extension of F to Γb is provided by Proposition 4.1, as above.

By the Lemma in $\S 12$, it remains to consider the case where Γ_{0} contains a parabolic element. If F extends to Γb then for every parabolic $\gamma \in \Gamma_{0}$, we have

$$
F(\gamma b) \gamma^{\prime}(b)^{1-q}-F(b)=\chi(\gamma)(b)
$$

Since $\gamma b=b$ and $\gamma^{\prime}(b)=1, \chi(\gamma)(b)=0$. By Lemma 6.7, χ is parabolic with respect to every parabolic element fixing b. Conversely, if χ is parabolic with respect to some parabolic element fixing b, it is parabolic with respect to every parabolic element fixing b by Lemma 6.8. The stabilizer Γ_{0} of b in Γ is a group generated by a rank 1 or rank 2 parabolic group Γ_{1} and an elliptic element A (of order $n=2,3,4$, or 6). We use (4.1.4) with $\gamma=A$ to define $F(b)$ if n does not divide $1-q$, and we let $F(b)$ be arbitrary if n divides $1-q$. We need to show that (6.9.1) holds for all $\gamma \in \Gamma_{0}$. Now an arbitrary $\gamma \in \Gamma_{0}$ can be written as

$$
\gamma=A^{k} \circ B, \quad k \in \mathbf{Z}, B \text { parabolic } \in \Gamma_{0}
$$

Hence

$$
\begin{aligned}
\chi(\gamma)(b) & =\chi\left(A^{k}\right)(B b) B^{\prime}(b)^{1-q}+\chi(B)(b) \\
& =\chi\left(A^{h}\right)(b) .
\end{aligned}
$$

[^5]The previous arguments now complete the analysis.
Remarks. (1) The extension of F to Λ_{1} is unique if and only if b is a q-uniqueness point. If b is a non-uniqueness point, then F has a one-parameter family of extensions.
(2) If Λ_{0} is empty and if we are given a cocycle, χ, then the above procedure shows whether or not χ is the period of an Eichler integral F supported on $\Lambda_{1}=\Gamma b$, and how to construct F whenever it exists.
6.10. Let Λ_{1} be a non-empty Γ-invariant subset of Λ. We will establish the following

THEOREM. (a) There is a canonical linear map

$$
\varepsilon: \tilde{\mathscr{R}}_{q}\left(\Lambda_{1}\right)^{*} \rightarrow H^{1}\left(\Gamma, \Pi_{2 q-2}\right) .
$$

(b) Let $P H_{1}^{1}\left(\Gamma, \Pi_{2 q-2}\right)$ be the cohomology classes that are represented by cocycles that are parabolic with respect to all parabolic elements whose fixed points are in Λ_{1}. There exists a linear map

$$
\varepsilon^{*}: P H_{1}^{1}\left(\Gamma, \Pi_{2 q-2}\right) \rightarrow \overline{\mathscr{R}}_{q}\left(\Lambda_{1}\right)^{*}
$$

such that $\varepsilon \circ \varepsilon^{*}$ is the identity. In particular,

$$
\varepsilon\left(\tilde{R}_{q}\left(\Lambda_{1}\right)^{*}\right)=P H_{1}^{1}\left(\Gamma, \Pi_{2 q-2}\right) .
$$

(c) Let N be the number of Γ-equivalence classes of non-uniqueness points in Λ_{1}. Then

$$
\operatorname{dim} \operatorname{Ker} \varepsilon=N
$$

Proof. (a) Choose ($2 q-1$) distinct points in Λ_{1}; call them $a_{1}, \ldots, a_{2 q-1}$. If $l \in \tilde{\mathscr{R}}_{q}\left(\Lambda_{1}\right)^{*}$, then by Theorem $6.5, l$ is represented by a unique Eichler integral F supported on Λ_{1} that vanishes at $a_{j}, j=1, \ldots, 2 q-1$. We set $\varepsilon(l)=\operatorname{pd} F$.
(b) If $b \in \Lambda_{1}$ is fixed by the parabolic element $B \in \Gamma$ and $\chi=\operatorname{pd} F$, then

$$
\chi(B)(b)=F(B b) B^{\prime}(b)^{1-a}-F(b)=0
$$

since $B b=b$, and $B^{\prime}(b)=1$. Thus, by Lemma $6.7, \chi$ is parabolic with respect to B. Conversely, let χ be a cocycle representing a cohomology class of $\boldsymbol{P H} H_{1}^{1}\left(\Gamma, \Pi_{2 q-2}\right)$. Thus $\chi(B)(b)=0$ for every fixed point $b \in \Lambda_{1}$ of a parabolic element $B \in \Gamma$. Proposition 4.1 and Lemma 6.9 show how to define an Eichler integral F supported on Λ_{1} that vanishes at $a_{1}, \ldots, a_{2 q-1}$ and that represents a cocycle cohomologous to χ.

To be specific, assume that there are uniqueness points in Λ_{1}. Then we may assume that $a_{j}, j=1, \ldots, 2 q-1$, is a uniqueness point. By Proposition 4.1 and Lemma 6.9 , we can find an Eichler integral F supported on the set of uniqueness points and vanishing at a_{j}, for $j=1, \ldots, 2 q-1$ such that $\mathrm{pd} F$ is cohomologous to χ. We next choose a maximal set of inequivalent non-uniqueness points in Λ_{1} (independently of χ) and set F to be zero at these points. The period of F extends F (by formula (6.9.1) with χ replaced by $\operatorname{pd} F$) to the Γ-orbit of this maximal set of inequivalent non-uniqueness points.

It remains to consider the case where every point of Λ_{1} is a non-uniqueness point. We choose $b \in \Lambda_{1}$, and let $a_{j} \in \Gamma b$ for $j=1, \ldots, 2 q-1$. Choose a cocycle χ representing a class in $P H_{1}^{1}\left(\Gamma, \Pi_{2 q-2}\right)$. Set $F_{1}(b)=0$ and construct an Eichler integral F_{1} on Γb by (6.9.1). Next let $p \in \Pi_{2 q-2}$ be such that $p\left(a_{j}\right)=F_{1}\left(a_{j}\right), j=1, \ldots, 2 q-1$ and define $F=F_{1}-p$. We now proceed as before to extend F to $\Lambda_{1} \backslash \Gamma b$. However, in this case the Eichler integral F depends on the cocycle χ and not just on its cohomology class $P H_{1}^{1}\left(\Gamma, \Pi_{2 q-2}\right)$; thus we must first choose a splitting map for the projection of cocycles onto cohomology classes.

In each case, the Eichler integral F defines a unique Γ-invariant linear functional $\varepsilon^{*}(\chi)$ on $\mathscr{R}_{q}\left(\Lambda_{1}\right)$. Linearity of ε^{*} is obvious, as is the fact that $\varepsilon \circ \varepsilon^{*}$ is the identity map.
(c) Let $l \in \mathscr{R}_{q}\left(\Lambda_{1}\right)^{*}$ and assume that $\varepsilon(l)=0$. Let F be the Eichler integral vanishing at $a_{j}, j=1, \ldots, 2 q-1$, that represents the linear functional l. Then there exists a $p \in \Pi_{2 q-2}$ such that

$$
F(\gamma z) \gamma^{\prime}(z)^{1-q}-F(z)=p(\gamma z) \gamma^{\prime}(z)^{1-q}-p(z)
$$

all $\gamma \in \Gamma$, all $z \in \Lambda_{1}$. In particular, $(F-p) \cdot \gamma=(F-p)$ for all $\gamma \in \Gamma$. Thus $F-p$ vanishes at the set of uniqueness points. If Λ_{1} contains uniqueness points, then we may assume that the $a_{j}, j=1, \ldots, 2 q-1$ are uniqueness points. It follows that $p=0$, and that F vanishes at the set of uniqueness points. Since the value of F at a set of inequivalent non-uniqueness points is arbitrary, the kernel of ε has the same dimension as the number of equivalence classes of non-uniqueness points in Λ_{1}.

Once again, it remains to consider the case where every point in Λ_{1} is a nonuniqueness point. Again, we may assume that $a_{1}, \ldots, a_{2 q-1}$ are in a single Γ-equivalence class. Every coboundary χ can be represented by an N-dimensional affine space of Eichler integrals supported on Λ_{1}. (These need not vanish at the points a_{j}, $j=1, \ldots, 2 q-1$.) The dimension of the vector space of Eichler integrals representing coboundaries is hence $N+(2 q-1)$. The subspace of these Eichler integrals vanishing at $a_{j}, j=1, \ldots, 2 q-1$ thus has dimension N.
6.11. Since a vector space and its dual have the same dimension, we have the following

THEOREM. Let Λ_{1} be a non-empty Γ-invariant subset of Λ_{q} consisting of nonparabolic uniqueness points and all the parabolic fixed points corresponding to the punctures on Ω / Γ. Then

$$
\operatorname{dim} A_{q}(\Omega, \Gamma) \leqslant \operatorname{dim} P H_{\Omega}^{1}\left(\Gamma, \Pi_{2 q-2}\right) \leqslant \operatorname{dim} \mathscr{R}_{q}\left(\Lambda_{1}\right)
$$

Furthermore,

$$
\operatorname{dim} \tilde{\mathscr{R}}_{q}\left(\Lambda_{1}\right)=\operatorname{dim} P H_{\Omega}^{1}\left(\Gamma, \Pi_{2 q-2}\right)+N
$$

where N is ihe number of Γ-equivalence classes of parabolic fixed points in $\Lambda_{1}(=$ the number of Γ-equivalence classes of parabolic fixed points corresponding to punctures on Ω / Γ).

Proof. In the case under consideration, $P H_{\Omega}^{1}\left(\Gamma, \Pi_{2 q-2}\right)=P H_{1}^{1}\left(\Gamma, \Pi_{2 q-2}\right)$.
Remarks. (1) The number N, above, may be smaller than the number of punctures on Ω / Γ since a parabolic fixed point may correspond to two punctures.
(2) The above theorem can be strengthened as follows to generalize Theorem 6.

COROLLARy. Let Λ_{1} consist of uniqueness points and all the parabolic fixed points. Assume $\beta^{*}: \mathbf{A}_{q}(\Omega, \Gamma) \rightarrow P H^{1}\left(\Gamma, \Pi_{2 q-2}\right)$ is surjective. Then the kernel of $\Theta_{q}: \mathscr{R}_{q}\left(\Lambda_{1}\right) \rightarrow \mathbf{A}_{q}(\Omega, \Gamma)$ has dimension N, where N is the number of Γ-equivalence classes of non-uniqueness points in $\Lambda_{1}(\leqslant$ the number of Γ-equivalence classes of parabolic fixed points).

§ 7. Schottky groups (proof of Theorem 4, first part)

7.1. Let Γ be a Schottky group on $g>1$ free generators A_{1}, \ldots, A_{g}. Let $a_{1}, \ldots, a_{2 q-1}$ be $(2 q-1)$ distinct fixed points of elements of Γ. The space of cocycles for Γ, $Z^{1}\left(\Gamma, \Pi_{2 q-2}\right)$, has dimension $(2 q-1) g$. The map that sends a cocycle χ to

$$
\left(\chi\left(A_{1}\right), \ldots, \chi\left(A_{g}\right)\right) \in\left(\Pi_{2 q-2}\right)^{g}
$$

is an isomorphism. The dimension of the space of coboundaries is $2 q-1$, and hence

$$
\operatorname{dim} H^{1}\left(\Gamma, \Pi_{2 q-2}\right)=(2 q-1)(g-1)=\operatorname{dim} \mathbf{A}_{q}(\Omega, \Gamma)
$$

Thus the hypothesis of the Theorem 3 is satisfied. We obtain a basis for the space of cocycles by assigning arbitrary polynomials to each of the generators, and thus we obtain $(2 q-1) g$ functions $\hat{F}_{1}, \ldots, \hat{F}_{(2 q-1) g}$ defined at first only at the loxodromic fixed points by formulae similar to (4.1.3). Subtracting appropriate polynomials from these functions, we get $d=(2 q-1)(g-1)$ functions F_{1}, \ldots, F_{d} that can be extended by continuity to Λ and form a basis for the space $\mathscr{F}_{1-q}(\Omega, \Gamma)$.

It follows that for $f \in \mathscr{R}_{q}(\Lambda)$, with poles only at (loxodromic) fixed points of elements of Γ, there is a finite algebraic algorithm for determining whether or not $\Theta_{q} f=0$. Theorem 4 is proven for Schottky groups.
7.2. Before proceeding to a more detailed study of Schottky groups we introduce the following general

Definition. A set $S \subset \Lambda_{q}$ will be called a q-stratification of Γ provided:
(a) each point of S is a fixed point of an element of Γ,
(b) Θ_{q} maps $\mathscr{R}_{q}(S)$ isomorphically onto $A_{q}(\Omega, \Gamma)$, and
(c) the set S depends only on a presentation of Γ and at most finitely many (arbitrary) choices.

Remarks. (1) If Γ possesses a q-stratification, then we shall say that Γ is q stratifiable.
(2) Every geometrically fintite non-elementary function group is 2-stratifiable by the results of [16], [17]. We will in some cases reprove this fact and provide 2 stratifications that are more useful for our purposes: the construction of a basis for the cohomology groups $H^{1}\left(\Gamma, \Pi_{2}\right)$ and $P H^{1}\left(\Gamma, \Pi_{2}\right)$ defined in $\S 0.2$.
(3) A q-stratification of Γ always contains $\operatorname{dim} \mathbf{A}_{q}(\Omega, \Gamma)+(2 q-1)$ points. If $S \subset \Lambda_{q}$ contains ($2 q-1$) or more points, then S is a q-stratification for Γ if and only if $e_{S}: \mathscr{F}_{1-q}(\Omega, \Gamma) \rightarrow \mathbf{C}^{|S|-(2 q-1)}$ is an isomorphism, where we normalize the functions in $\mathscr{F}_{1-q}(\Omega, \Gamma)$ to vanish at $(2 q-1)$ points in $S .\left(^{8}\right)$
(4) The stratifications of [16] are 2-stratifications in our sense. It is not known whether 2 -stratifications always are stratifications. Stratifications provide global holomorphic coordinates for deformation spaces of Kleinian groups, while 2-stratifications define global holomorphic functions that yield only local coordinates for the deformation spaces.

[^6]7.3. We return to the hypothesis of $\S 7.1$ and assume that a_{j} is a fixed point of $B_{j} \in \Gamma$ for $j=1, \ldots, 2 q-1$. Then if we consider the set of cocycles
$$
Z=\left\{\chi \in Z^{1}\left(\Gamma, \Pi_{2 q-2}\right) ; \chi\left(B_{j}\right)\left(a_{j}\right)=0 \text { for } j=1, \ldots, 2 q-1\right\}
$$
then $Z \cong H^{1}\left(\Gamma, \Pi_{2 q-2}\right)$. Thus from Z we construct more directly the space $\mathscr{F}_{1-q}(\Omega, \Gamma)$.
7.4. Let us assume for the moment that $q \leqslant g$. In this case, we shall take $a_{2 j-1}$ and $a_{2 j}$ to be the fixed points of A_{j} for $j=1, \ldots, q$. A polynomial $p \in \Pi_{2 q-2}$ is uniquely determined by the vector
$$
\left(p\left(a_{1}\right), \ldots, p\left(a_{2 q-1}\right)\right) \in \mathbf{C}^{2 q-1}
$$

To simplify notation, we let e_{j} be the vector

Thus e_{j} corresponds to the polynomial

$$
p(z)=\prod_{k \neq j} \frac{z-a_{k}}{a_{j}-a_{k}} .
$$

We shall use the above correspondence to describe the values for cocycles that will lead to a basis of $\mathscr{F}_{1-q}(\Omega, \Gamma)$. It suffices to consider only cocycles χ that satisfy

$$
\chi\left(A_{j}\right)\left(a_{k}\right)=0 \quad \text { for } j=1, \ldots, q, \quad \text { and } \quad k=\left\{\begin{array}{l}
2 j-1,2 j, \quad \text { if } j<q \\
2 j-1, \quad \text { if } j=q
\end{array}\right.
$$

We consider the set

$$
\begin{equation*}
\left\{A_{i}\left(a_{j}\right) ; 1 \leqslant i \leqslant g, 1 \leqslant j \leqslant 2 q-1\right\} \backslash\left\{a_{j} ; 1 \leqslant j \leqslant 2 q-1\right\} \tag{7.4.1}
\end{equation*}
$$

it consists of $d=(2 q-1)(g-1)$ distinct points b_{1}, \ldots, b_{d}. By Theorem 1, Θ_{q} maps $\mathscr{R}_{q}(S)$ onto $\mathbf{A}_{q}(\Omega, \Gamma)$, where $S=\left\{a_{1}, \ldots, a_{2 q-1}, b_{1}, \ldots, b_{d}\right\}$. By Theorem 2.5 , there exists a basis F_{1}, \ldots, F_{d} for $\mathscr{F}_{1-q}(\Omega, \Gamma)$ such that $F_{j}\left(b_{k}\right)=\delta_{j k}$. We now compute the cocycle $\chi_{j}=\operatorname{pd} F_{j}$. Assume $b_{j}=A_{i}\left(a_{k}\right)$. Then

$$
\chi_{j}\left(A_{m}\right)=A_{i}^{\prime}\left(a_{k}\right)^{1-q} e_{k} \delta_{i m}
$$

From the knowledge of $\left\{\chi_{j}\left(A_{m}\right) ; 1 \leqslant j \leqslant d, 1 \leqslant m \leqslant g\right\}$, we can compute $\left\{\chi_{j}(\gamma) ; 1 \leqslant j \leqslant d\right\}$ for arbitrary $\gamma \in \Gamma$, and hence the values of $\left\{F_{j} ; 1 \leqslant j \leqslant d\right\}$ at the fixed points of γ.

Example. For the convenience of the reader, we present the most useful example: $q=2$ and $g \geqslant 2$. Here, we can let a_{1}, a_{2} be the fixed points of A_{1}, and a_{3} one of the fixed points of A_{2}. We set

$$
\begin{aligned}
b_{j} & =A_{j+1}\left(a_{1}\right), \quad j=1, \ldots, g-1, \\
& =A_{j-g+2}\left(a_{2}\right), \quad j=g, \ldots, 2 q-2, \\
& =A_{1}\left(a_{3}\right), \quad j=2 g-1, \\
& =A_{j-2 g+3}\left(a_{3}\right), \quad j=2 g, \ldots, 3 g-3 .
\end{aligned}
$$

For $m=1, \ldots, g$, we have

$$
\begin{aligned}
\chi_{j}\left(A_{m}\right) & =A_{j+1}^{\prime}\left(a_{1}\right)^{1-q} e_{1} \delta_{j+1, m}, \quad j=1, \ldots, g-1, \\
& =A_{j-g+2}^{\prime}\left(a_{2}\right)^{1-q} e_{2} \delta_{j-g+2, m}, \quad j=g, \ldots, 2 g-2, \\
& =A_{1}^{\prime}\left(a_{3}\right)^{1-q} e_{3} \delta_{1, m}, \quad j=2 g-1, \\
& =A_{j-2 g+3}^{\prime}\left(a_{3}\right)^{1-q} e_{3} \delta_{j-2 g+3, m}, \quad j=2 g, \ldots, 3 g-3 .
\end{aligned}
$$

7.5. The key aspect of the computations of the previous section is finding $2 q-1$ distinct points $a_{1}, \ldots, a_{2 q-1}$ in Λ with the property that the set

$$
\begin{equation*}
S=\left\{A_{j}\left(a_{k}\right) ; j=0, \ldots, g, k=1, \ldots, 2 q-1\right\} \tag{7.5.1}
\end{equation*}
$$

consists of $(2 q-1) g$ points (where A_{0} is the identity).
Lemma. For any $2 q-1$ distinct points $a_{1}, \ldots, a_{2 q-1}$ in Λ, the set S of (7.5.1) consists of at least $(2 q-1) g$ points.

Proof. The Poincaré series map Θ_{q} maps $\mathscr{R}_{q}(S)$ onto $\mathbf{A}_{q}(\Omega, \Gamma)$ by Theorem 1. Hence we have

$$
\operatorname{dim} \mathscr{R}_{q}(S) \geqslant \mathbf{A}_{q}(\Omega, \Gamma)=(2 q-1)(g-1) .
$$

It follows that S has at least $(2 q-1) g$ points.
Thus we must show how to construct the set S with at most $(2 q-1) g$ points. We fix the group Γ with generators A_{1}, \ldots, A_{g} (and thus g is fixed) and use induction on q. We have seen in $\S 7.4$ how to select S for $q=2$. Assume by induction that we have selected the set S for a fixed $q \geqslant 2$. Assume that we are using the points $a_{1}, \ldots, a_{2 q-1}$. The set S of (7.5.1) hence consists, by induction, of ($2 q-1$) g points. Let us fix a $j, 1 \leqslant j \leqslant g$, and
look at the points $\left\{A_{j}^{-1}(a) ; a \in S\right\}$. This set consists of $(2 q-1) g$ points, and since $g \geqslant 2$, we can choose points $a_{2 q}, a_{2 q+1}$ in this set so that $\left\{a_{1}, \ldots, a_{2 q+1}\right\}$ consists of distinct points. The set

$$
\left\{A_{j}\left(a_{k}\right) ; j=0, \ldots, g, k=1, \ldots, 2 q+1\right\}
$$

consists of at most $(2 q+1) g$ points.
We summarize our results in the next
THEOREM. Every Schottky group is q-stratifiable, for all $q \geqslant 2$.

§ 8. Fuchsian and quasi-Fuchsian groups (proof of Theorem 4, conclusion)

8.1. Let Γ be a finitely generated quasi-Fuchsian group of the first kind. We can find canonical generators $A_{1}, B_{1}, \ldots, A_{g}, B_{g}, E_{1}, \ldots, E_{n}$ for Γ. The A_{j}, B_{j} are loxodromic; the E_{k} are parabolic (set $v_{k}=\infty$) or elliptic (set $v_{k}=$ the order of E_{k}). The signature of Γ is $\left(g, n ; v_{1}, \ldots, v_{n}\right)$ and its type is (g, n). We write $C=[A, B]=A \circ B \circ A^{-1} \circ B^{-1}$. The defining relations for Γ are:

$$
\begin{gather*}
\prod_{j=1}^{g} C_{j} \circ \prod_{k=1}^{n} E_{k}=I, \tag{8.1.1}\\
E_{k}^{v_{k}}=I, \quad \text { all } k=1, \ldots, n \text { with } v_{k}<\infty . \tag{8.1.2}
\end{gather*}
$$

Every elliptic or parabolic element in Γ is conjugate to a power of E_{k}, for some $k=1, \ldots, n$.

For the group Γ, we have

$$
\operatorname{dim} \mathbf{A}_{q}(\Omega, \Gamma)=2\left\{(2 q-1)(g-1)+\sum_{k=1}^{n}\left[q-q / v_{k}\right]\right\}
$$

and

$$
\begin{aligned}
\operatorname{dim} P H_{\Omega}^{1}\left(\Gamma, \Pi_{2 q-2}\right) & =\operatorname{dim} P H_{\Delta}^{1}\left(\Gamma, \Pi_{2 q-2}\right) \\
& =\operatorname{dim} P H^{1}\left(\Gamma, \Pi_{2 q-2}\right)=\operatorname{dim} \mathbf{A}_{q}(\Omega, \Gamma)
\end{aligned}
$$

here Δ is one of the two invariant components of Γ. (For details, see [14, Chapter VII].)
8.2. If χ is a cocycle and $E \in \Gamma$ is elliptic of order ν, then

$$
\chi\left(E^{\nu}\right)=0
$$

It follows that (see Ahlfors [2], Eichler [7], or Weil [26] and § 8.4) $\chi(E)$ is an element of

$$
\left(\Pi_{2 q-2}\right)_{E}=\left\{v \in \Pi_{2 q-2} ; v=p \cdot E-p \text { for some } p \in \Pi_{2 q-2}\right\}
$$

An easy computation shows that

$$
\begin{equation*}
\operatorname{dim}\left(\Pi_{2 q-2}\right)_{E}=2[q-q / v] \tag{8.2.1}
\end{equation*}
$$

Note that if χ is parabolic with respect to the parabolic element E, then we also have that $\chi(E) \in\left(\Pi_{2 q-2}\right)_{E}$.

We see that the space of parabolic cocycles χ can be identified with elements

$$
\left(\chi\left(A_{1}\right), \chi\left(B_{1}\right), \ldots, \chi\left(A_{g}\right), \chi\left(B_{g}\right), \chi\left(E_{1}\right), \ldots, \chi\left(E_{n}\right)\right)
$$

in

$$
V=\left(\Pi_{2 q-2}\right)^{2 g} \times\left(\Pi_{2 q-2}\right)_{E_{1}} \times \ldots \times\left(\Pi_{2 q-2}\right)_{E_{n}}
$$

subject to the relation forced on χ by (8.1.1). That is, if we define a map

$$
h: V \rightarrow \Pi_{2 q-2}
$$

by

$$
\begin{aligned}
& h\left(p_{1}, p_{2}, \ldots, p_{2 g-1}, p_{2 g}, p_{2 g+1}, \ldots, p_{2 g+n}\right) \\
& =p_{1} \cdot\left(B_{1}-1\right) \cdot A_{1}^{-1} \cdot B_{1}^{-1} \cdot\left(C_{2} \circ \ldots \circ C_{g}\right) \cdot\left(E_{1} \circ \ldots \circ E_{n}\right) \\
& \quad+p_{2} \cdot\left(A_{1}^{-1}-1\right) \cdot B_{1}^{-1} \cdot\left(C_{2} \circ \ldots \circ C_{g}\right) \cdot\left(E_{1} \circ \ldots \circ E_{n}\right) \\
& \quad \vdots \\
& \quad+p_{2 g-1} \cdot\left(B_{g}-1\right) \cdot A_{g}^{-1} \cdot B_{g}^{-1} \cdot\left(E_{1} \circ \ldots \circ E_{n}\right) \\
& \quad+p_{2 g} \cdot\left(A_{g}^{-1}-1\right) \cdot B_{g}^{-1} \cdot\left(E_{1} \circ \ldots \circ E_{n}\right) \\
& \quad+p_{2 g+1} \cdot\left(E_{2} \circ \ldots \circ E_{n}\right)+\ldots+p_{2 g+n}
\end{aligned}
$$

then

$$
h\left(p_{1}, \ldots, p_{2 g+n}\right)=0
$$

if and only if there is a parabolic cocycle χ with

$$
\begin{aligned}
& \chi\left(A_{1}\right)=p_{1}, \quad \chi\left(B_{1}\right)=p_{2}, \quad \cdots, \quad \chi\left(B_{g}\right)=p_{2 g} \\
& \chi\left(E_{1}\right)=p_{2 g+1}, \quad \cdots, \quad \chi\left(E_{n}\right)=p_{2 g+n} .
\end{aligned}
$$

Since

$$
\operatorname{dim} V=2 g(2 q-1)+2 \sum_{k=1}^{n}\left[q-q / v_{k}\right],
$$

it follows that the linear map h is surjective.
We have reduced the problem of constructing the values at fixed points in Λ_{q} of a basis for $\mathscr{F}_{1-q}(\Omega, \Gamma)$ to a problem in linear algebra (evaluating the kernel of a linear map). This completes the proof of Theorem 4 for quasi-Fuchsian groups.
8.3. If E is parabolic, then the space $\left(\Pi_{2 q-2}\right)_{E}$ consists of those polynomials $p \in \Pi_{2 q-2}$ that vanish at the fixed point a of E. The kernel of the operator $(E-1): \Pi_{2 q-2} \rightarrow \Pi_{2 q-2}$ consists of polynomials p that vanish to order $2 q-2$ at a. Assume that $a \in \mathbf{C}$, then the polynomials

$$
p_{j}(z)=(z-a)^{j}, \quad j=0, \ldots, 2 q-2
$$

form a basis for $\mathrm{I}_{2 q-2}$. It is easy to see that (as a consequence of 1.3.3)

$$
\left(p_{j} \cdot E\right)(z)=(E z-a)^{j} E^{\prime}(z)^{1-q}=(z-a)^{j} E^{\prime}(z)^{1-q+j / 2}=\frac{(E z-a)^{2-2 q+j}}{(z-a)^{2-2 q}},
$$

and thus

$$
p_{2 q-2} \in \operatorname{Ker}(E-1) .
$$

An easy calculation shows that

$$
\operatorname{ord}_{a} p_{j} \cdot(E-1)=j+1, \quad \text { for } j=0, \ldots, 2 q-3 .
$$

Hence we conclude that

$$
\operatorname{Image}(E-1)=\left\{p \in \Pi_{2 q-2} ; p(a) \neq 0\right\}
$$

We have previously used this observation (see $\S 6.7$ and [14, p. 173]).
8.4. We now carry over the above analysis to the case of loxodromic or elliptic E with fixed points at finite points a and b. Thus E can be written as

$$
\frac{E(z)-a}{E(z)-b}=K \frac{z-a}{z-b}, \quad K \neq 0,1 .
$$

If follows that

$$
E^{\prime}(a)=K, \quad E^{\prime}(b)=K^{-1} .
$$

The functions

$$
p_{j}(z)=(z-a)^{j}(z-b)^{2 q-2-j}, \quad j=0, \ldots, 2 q-2,
$$

form a basis for $\Pi_{2 q-2}$. A calculation using (1.3.3) shows that

$$
p_{j} \cdot E=K^{1-q+j} p_{j}
$$

Hence the p_{j} are eigenfunctions for the action of E on $\Pi_{2 q-2}$. If E is loxodromic (or elliptic of infinite order), then $\operatorname{Ker}(E-1)$ is one-dimensional and is spanned by p_{q-1}. The image of ($E-1$) is spanned by the functions $p_{0}, \ldots, p_{q-2}, p_{q}, \ldots, p_{2 q-2}$. If E is elliptic of order v, and $K=e^{2 \pi i v}$, then the kernel of $(E-1)$ is spanned by the functions p_{j} with $j \equiv q-1(\bmod v)$ and has dimension $2[(q-1) / v]+1$; the image of $(E-1)$ is spanned by the functions p_{j} with $j \not \equiv q-1(\bmod v)$ and has dimension

$$
(2 q-1)-2[(q-1) / v]-1=-2[(1-q)(1-1 / v)]=2[q(1-1 / v)]
$$

8.5.

Example. The group $\Gamma=P S L(2, \mathbf{Z})$ is of considerable interest to number theorists. Its signature is $(0,3 ; 2,3, \infty)$ and it is generated by $A(z)=-z^{-1}, B(z)=-(z-1)^{-1}$. Note that $C(z)=A \circ B(z)=z-1$. The defining relations for Γ are

$$
A^{2}=I=B^{3},
$$

$A \circ B$ is parabolic;

and the fixed points of A are at $\pm i$, and those of B at ω and $\bar{\omega}$, where $\omega=\frac{1}{2}+\frac{1}{2} i \sqrt{3}=e^{\pi i / 3}$. The first $q \geqslant 2$ for which $P H^{1}\left(\Gamma, \Pi_{2 q-2}\right)$ (or, equivalently, $\mathbf{A}_{q}(\Omega, \Gamma)$) is non-trivial is $q=6$.

Assume that $q=6$. Then

$$
\operatorname{dim} P H^{1}\left(\Omega, \Pi_{10}\right)=2
$$

We must find 2 linearly independent parabolic cocycles that are periods of potentials. One notes that

$$
\operatorname{dim} H^{1}\left(\Gamma, \Pi_{10}\right)=3 .
$$

The 14 -dimensional space $Z^{1}\left(\Gamma, \Pi_{10}\right)$ of cocycles is obtained by assigning to A a polynomial in the linear span of

$$
\left\{(z-i)^{j}(z+i)^{10-j} ; j=0,2,4,6,8,10\right\}
$$

and to B a polynomial in the linear span of

$$
\left\{(z-\omega)^{j}(z-\bar{\omega})^{10-j} ; j=0,1,3,4,6,7,9,10\right\}
$$

We notice that all the elliptic fixed points are 6 -uniqueness points. We shall hence be able to choose some elliptic fixed points to be among the 11 points at which the Eichler integrals in $\mathbf{F}_{-5}\left(\Lambda_{6}^{0}, \Gamma\right)$ are required to vanish. Every cocycle for Γ is cohomologous to one that assigns the zero polynomial to B. For $p \in \Pi_{10}, p \in \operatorname{Ker}(B-1)$ if and only if

$$
p(z)=\sum_{j=2,5,8} \beta_{j}(z-\omega)^{j}(z-\bar{\omega})^{10-j}
$$

Note that the values at $\pm i$ of such polynomials are arbitrary, and conclude that every Eichler integral on Λ_{6}^{0} is equivalent to an F with $(\operatorname{pd} F)(B)=0$ and $F(\pm i)=0$. It follows that $(\mathrm{pd} F)(A)(\pm i)=0$. Letting $\chi=\mathrm{pd} F$, we see that we may assume that

$$
\chi(A)(z)=\sum_{j=2,4,6,8} \alpha_{j}(z-i)^{j}(z+i)^{10-j}
$$

Since $\chi(A)(\pm i)=0$ and $\chi(B)=0$, it follows that

$$
\chi\left(B^{k} \circ A \circ B^{-k}\right)\left(B^{k}(\pm i)\right)=0, \quad k=1,2
$$

because $B^{k}(\pm i)$ are the fixed points of $B^{k} \circ A \circ B^{-k}$ and

$$
\chi\left(B^{k} \circ A \circ B^{-k}\right)=\chi(A) \cdot B^{-k}
$$

Thus all the χ constructed as above are represented by Eichler integrals that vanish at the eight points:

$$
\pm i, \omega, \bar{\omega}, B(\pm i)=-\frac{1}{2} \pm \frac{i}{2}, \quad B^{2}(\pm i)=1 \pm i
$$

Since $C=A \circ B$, it follows that

$$
\begin{equation*}
\chi(C)=\chi(A) \cdot B \tag{8.5.1}
\end{equation*}
$$

We are interested only in parabolic cocycles; hence we require that

$$
\operatorname{deg} \chi(C) \leqslant 9
$$

From (8.5.1) we see that

$$
\chi(C)(z)=\sum_{j=2,4,6,8} \alpha_{j}[-i z+(-1+i)]^{j}[i z+(-1-i)]^{10-j}
$$

and thus χ is a parabolic cocycle if and only if

$$
\begin{equation*}
\alpha_{2}+\alpha_{4}+\alpha_{6}+\alpha_{8}=0 . \tag{8.5.2}
\end{equation*}
$$

We must select 3 more points at which to normalize potentials. We choose

$$
\begin{aligned}
& \infty=\text { fixed point of } C, \\
& 0=\text { fixed point of } B \circ A=B \circ C \circ B^{-1}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \\
& 1=\text { fixed point of } B^{2} \circ C \circ B^{-2}=B^{2} \circ A \circ B^{-1}=\left(\begin{array}{rr}
2 & -1 \\
1 & 0
\end{array}\right) .
\end{aligned}
$$

The condition that F vanish at ∞ is equivalent to $\operatorname{deg} \chi(C) \leqslant 8$. This condition is equivalent to the additional equation

$$
(10-6 i) \alpha_{2}+(10-2 i) a_{4}+(10+2 i) a_{6}+(10+6 i) a_{8}=0,
$$

which, in view of (8.5.2), is equivalent to

$$
\begin{equation*}
-3 \alpha_{2}-\alpha_{4}+\alpha_{6}+3 \alpha_{8}=0 \tag{8.5.3}
\end{equation*}
$$

Since $\chi(B \circ A)=\chi(A)$, the condition that F vanish at 0 is equivalent to $\chi(A)^{\prime}(0)=0$, or to

$$
6 i \alpha_{2}+2 i \alpha_{4}-2 i \alpha_{6}-6 i \alpha_{8}=0 .
$$

This last equation is equivalent to equation (8.5.3) and hence may be ignored. Finally,

$$
\chi\left(B^{2} \circ A \circ B^{-1}\right)=\chi(A) \cdot B^{-1}=\sum_{j=2,4,6,8} \alpha_{j}[(1-i) z-1]^{j}[(1+i) z-1]^{10-j} .
$$

The condition that F vanishes at 1 is equivalent to $\chi\left(B^{2} \circ A \circ B^{-1}\right)^{\prime}(1)=0$, or to

$$
(-8+6 i) \alpha_{2}+(-6+2 i) \alpha_{4}+(-4-2 i) \alpha_{6}+(-2-6 i) \alpha_{8}=0,
$$

which in view of (8.5.3) can be replaced by

$$
\begin{equation*}
4 a_{2}+3 \alpha_{4}+2 \alpha_{6}+a_{8}=0 . \tag{8.5.4}
\end{equation*}
$$

The three equations (8.5.2), (8.5.3), and (8.5.4) have a 2 -dimensional solution space with a basis given by

$$
\left(\alpha_{2}, \alpha_{4}, \alpha_{6}, \alpha_{8}\right)=(2,-3,0,1) \quad \text { and } \quad(1,-2,1,0) .
$$

Thus the periods $\hat{\chi}_{1}, \hat{\chi}_{2}$ of two linearly independent functions in $\mathscr{F}_{-5}(\Omega, \Gamma)$ satisfy

$$
\begin{gathered}
\hat{\chi}_{1}(A)(z)=2(z-i)^{2}(z+i)^{8}-3(z-i)^{4}(z+i)^{6}+(z-i)^{8}(z+i)^{2} \\
\hat{\chi}_{2}(A)(z)=(z-i)^{2}(z+i)^{8}-2(z-i)^{4}(z+i)^{6}+(z-i)^{6}(z+i)^{4} \\
\hat{\chi}_{1}(B)=0=\hat{\chi}_{2}(B) .
\end{gathered}
$$

It is more convenient to choose

$$
\begin{aligned}
& \chi_{1}=\hat{\chi}_{1}-\hat{\chi}_{2} \\
& \chi_{2}=\hat{\chi}_{1}-3 \hat{\chi}_{2}
\end{aligned}
$$

For these cocycles

$$
\begin{gathered}
\chi_{1}(A)(z)=(z-i)^{2}(z+i)^{8}-(z-i)^{4}(z+i)^{6}-(z-i)^{6}(z+i)^{4}+(z-i)^{8}(z+i)^{2} \\
\chi_{2}(A)(z)=-(z-i)^{2}(z+i)^{8}+3(z-i)^{4}(z+i)^{6}-3(z-i)^{6}(z+i)^{4}+(z-i)^{8}(z+i)^{2} \\
\chi_{1}(B)=0=\chi_{2}(B) .
\end{gathered}
$$

We now let

$$
\left\{a_{1}, \ldots, a_{11}\right\}=\left\{0,1, \infty, \pm i, \frac{1}{2} \pm \frac{\sqrt{3}}{2} i,-\frac{1}{2} \pm \frac{1}{2} i, 1 \pm i\right\}
$$

Among the points in $\left\{A\left(a_{j}\right), B\left(a_{j}\right) ; j=1, \ldots, 11\right\}$, we must be able to find two: b_{1}, b_{2}, such that $\mathscr{F}_{-5}(\Omega, \Gamma) \mid S$ has dimension 2 , where $S=\left\{a_{1}, \ldots, a_{11}, b_{1}, b_{2}\right\}$. Let $F_{j} \in \mathscr{F}_{-5}(\Omega, \Gamma)$ with pd $F_{j}=\chi_{j}, j=1,2$. Symmetry of the cocycles under study together with the injectivity of the period map yield

$$
\begin{array}{ll}
\overline{F_{1}(z)}=F_{1}(\bar{z}), & z \in \Lambda_{6} \\
\overline{F_{2}(z)}=-F_{2}(\bar{z}), & z \in \Lambda_{6} \tag{8.5.6}
\end{array}
$$

The set $\left\{a_{j}, A\left(a_{j}\right), B\left(a_{j}\right) ; j=1, \ldots, 11\right\}$ contains in addition to $\left\{a_{1}, \ldots, a_{11}\right\}$ only three points: $-1,-\frac{1}{2} \pm \frac{1}{2} \sqrt{3} i$. These are the fixed points of $A \circ B^{2} \circ A \circ B^{-1} \circ A^{-1}$ and $A \circ B \circ A^{-1}$, respectively. Let $b=-\frac{1}{2}+\frac{1}{2} \sqrt{3} i=e^{2 \pi i / 3}$. To show that b, \bar{b} may be used as b_{1} b_{1} and b_{2}, we note that in view of (8.5.5) and (8.5.6),

$$
\operatorname{det}\left|\begin{array}{ll}
F_{1}(b) & F_{2}(b) \\
F_{1}(\bar{b}) & F_{2}(\bar{b})
\end{array}\right|=-2 \operatorname{Re} F_{1}(b) \overline{F_{2}(b)}
$$

We must compute for $j=1,2$,

$$
F_{j}(b)=\chi_{j}(\gamma)(b)\left[\gamma^{\prime}(b)^{-5}-1\right]^{-1},
$$

where $\gamma=A \circ B \circ A^{-1}=A \circ B \circ A$. The cocycle condition shows that

$$
\chi_{j}(\gamma)=\chi_{j}(A) \cdot(B \circ A+1) .
$$

We note that

$$
B \circ A=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),
$$

and that it suffices to show that $\operatorname{Re}\left[\left(\chi_{1}(\gamma)(b)\right)\left(\chi_{2}(\gamma)(b)\right)\right] \neq 0$. This follows by direct computation. (${ }^{9}$) As a matter of fact

$$
\begin{gathered}
\chi_{1}(\gamma)(b)=48(-1+i), \\
\chi_{2}(\gamma)(b)=32(\sqrt{3}-3 i) .
\end{gathered}
$$

It follows that the Poincaré series of the two rational functions

$$
\frac{1}{\zeta+\frac{1}{2}-\frac{1}{2} \sqrt{3} i} f(\zeta), \frac{1}{\zeta+\frac{1}{2}+\frac{1}{2} \sqrt{3} i} f(\zeta)
$$

where

$$
f(\zeta)=\frac{1}{\zeta(\zeta-1)\left(\zeta^{2}+1\right)\left(\zeta^{2}-\zeta+1\right)\left(\zeta^{2}+\zeta+\frac{1}{2}\right)\left(\zeta^{2}-2 \zeta+2\right)}
$$

form a basis for $\mathrm{A}_{6}(\Omega, \Gamma)$. Similarly, the vanishing problem (for $q=6$) for this group is handled via the two cocycles χ_{1} and χ_{2} that we constructed above. The calculations are tedious, but the point to be emphasized is that as long as $f \in \mathscr{R}_{6}\left(\Lambda_{6}\right)$ has poles only at fixed points, then we can determine (in a finite amount of time) whether or not $\Theta_{6} f=0$, by calculations over fields such as $\mathbf{Q}[i, \sqrt{3}]$.

Remark. The basis $\left\{\varphi_{1}, \varphi_{2}\right\}$ for $\mathbf{A}_{6}(\Omega, \Gamma)$ produced above satisfies $\varphi_{1}(\bar{z})=\overline{\varphi_{2}(z)}$, all $z \in \Omega$. Set $\psi_{1}=\varphi_{1}+\varphi_{2}$ and $\psi_{2}=\varphi_{1}-\varphi_{2}$. Then $\left\{\psi_{1}, \psi_{2}\right\}$ is also a basis for $\mathbf{A}_{6}(\Omega, \Gamma)$ with

$$
\begin{gathered}
\psi_{1}(\bar{z})=\overline{\psi_{1}(z)}, \quad z \in \Omega, \\
\psi_{2}(\bar{z})=-\overline{\psi_{2}(z)}, \quad z \in \Omega .
\end{gathered}
$$

${ }^{(9)}$ Using a micro-computer, of course, to save time.

Letting U be the upper half plane, we see that both ψ_{1} and ψ_{2} span the one-dimensional space $\mathbf{A}_{6}(U, \Gamma)$. The classical discriminant from elliptic function theory

$$
\Delta(z)=(2 \pi)^{12} \sum_{k=1}^{\infty} \tau(k) e^{2 \pi i k z}, \quad z \in U,
$$

where $\tau(k) \in \mathbf{Z}$ is the value at the positive integer k of the Ramanujan tau function, also spans $\mathbf{A}_{6}(U, \Gamma)$. It follows that there are constants $c_{j} \neq 0$ such that

$$
\begin{equation*}
\Delta(z)=c_{j} \psi_{j}(z), \quad \text { all } z \in U, j=1,2 \tag{8.5.7}
\end{equation*}
$$

Since it is known that $\tau(1)=1$, the evaluation of c_{j} involves computing the Fourier series expansion of the cusp form ψ_{j}. It is not clear whether the formula for Δ as a Poincaré series of a specific rational function (given by (8.5.7), for example) will help in studying the number theoretic properties of Δ and τ.
8.6. Let us assume that Γ is of type $(g, 0), g \geqslant 2$, and let $2 \leqslant q \leqslant 2 g-1$. Let $a_{1}, a_{2}, \ldots, a_{2 q-1}$ be selected from among the fixed points of the generators

$$
A_{1}, \ldots, A_{g}, B_{1}, \ldots, B_{g-1} .
$$

The set ($A_{0}=I$, as usual)

$$
S_{0}=\left\{A_{j}\left(a_{k}\right) ; j=0, \ldots, g, k=1, \ldots, 2 q-1\right\} \cup\left\{B_{j}\left(a_{k}\right) ; j=1, \ldots, g-1, k=1, \ldots, 2 q-1\right\}
$$

consists of $(2 q-1)(2 g-1)$ distinct points. If F is a potential for Γ that vanishes at each point of S_{0}, then the cocycle χ determined by F satisfies

$$
\begin{aligned}
& \chi\left(A_{j}\right)=0, \quad j=1, \ldots, g, \\
& \chi\left(B_{j}\right)=0, \quad j=1, \ldots, g-1 .
\end{aligned}
$$

From these two equations, we see that the defining relation (8.1.1) for Γ implies that $p=\chi\left(\boldsymbol{B}_{g}\right)$ satisfies

$$
p \cdot\left(A_{g}-1\right)=0 .
$$

It follows from the discussion of $\S 8.4$, that

$$
p(z)=c(z-\alpha)^{q-1}(z-\beta)^{q-1},
$$

where $c \in \mathbf{C}$, and α, β are the fixed points of A_{g}. Thus if we define

$$
S=S_{0} \cup\left\{B_{g}\left(a_{1}\right)\right\},
$$

and require that F vanish at all the points of S, we see that $p\left(a_{1}\right)=0$, and since $\alpha \neq a_{1} \neq \beta$, we conclude that $p=0$.

THEOREM. For a finitely generated quasi-Fuchsian group Γ of type $(g, 0), g \geqslant 2$, we can always choose a set $S \subset \Lambda$ consisting of $(2 q-1)(2 g-1)+1$ points so that the restriction map from Λ to S on $\mathscr{F}_{1-q}(\Omega, \Gamma)$ is an isomorphism. In particular,

$$
\Theta_{q}: \mathscr{R}_{q}(S) \rightarrow \mathbf{A}_{q}(\Omega, \Gamma)
$$

is surjective with one dimensional kernel. The set S can be determined from the canonical generators of Γ and finitely many choices.

Proof. For $q \leqslant 2 g-1$, in particular $q=2$, the theorem has been established above. Induction on q allows us to construct the set S_{0} for $q+1$ from the one for q as in $\S 7.5$.
8.7. We would, of course, like to specify a set S, as above, with precisely $(2 q-1)(2 g-1)$ points. We need the following

Lemma. Let A be a loxodromic transformation with fixed points α_{1}, α_{2}. Let B be a transformation with fixed point β_{1}. Assume that α_{1} and α_{2} are distinct from β_{1} and the other fixed point of B (if any). Let

$$
\begin{aligned}
& V_{1}=\left\{p \in \Pi_{2 q-2} ; p\left(\alpha_{1}\right)=0=p\left(\alpha_{2}\right), \text { and if } q>2, p\left(A^{k} \beta_{1}\right)=0 \text { for } k=0, \ldots, 2 q-5\right\}, \\
& V_{2}=\left\{p \in \Pi_{2 q-2} ; p\left(\beta_{1}\right)=0\right\} .
\end{aligned}
$$

Consider the linear operator

$$
L: V_{1} \times V_{2} \rightarrow \Pi_{2 q-2}
$$

defined by

$$
\begin{equation*}
L\left(p_{1}, p_{2}\right)=p_{1} \cdot(B-1)+p_{2} \cdot(1-A) . \tag{8.7.1}
\end{equation*}
$$

Then either (a) L is an isomorphism, or (b) L has a one-dimensional kernel. Case (a) always holds for $q=2$, and is equivalent to the condition that $L(p, 0)$ have a non-zero projection onto the kernel of $(1-A)$, where p is a non-zero element in V_{1}.

Proof. Note that $\operatorname{dim}\left(V_{1} \times V_{2}\right)=\operatorname{dim} \Pi_{2 q-2}=2 q-1$. Further, L is injective on $\{0\} \times V_{2}$ since the kernel of $(1-A)$ is spanned by the function $p_{q-1}(z)=$ $\left(z-\alpha_{1}\right)^{q-1}\left(z-\alpha_{2}\right)^{q-1}$ that does not vanish at β_{1}. It follows that $L\left(\{0\} \times V_{2}\right)$ is spanned
by the functions $p_{j}(z)=\left(z-\alpha_{1}\right)^{j}\left(z-\alpha_{2}\right)^{2 q-2-j}, j=0, \ldots, 2 q-2, j \neq q-1$. It remains to verify that for $q=2, L$ is an isomorphism. In this case, we normalize so that $\alpha_{1}=0$, $\alpha_{2}=\infty, \beta_{1}=1$. Thus the space V_{1} consists of multiples of $p(z)=z$. Write $B(z)=$ $(a z+b)(c z+d)^{-1}, a d-b c=1$. We compute

$$
(B z) B^{\prime}(z)^{-1}-z=a c z^{2}+(a d+b c-1) z+b d
$$

The kernel of $(1-A)$ is spanned by p, and hence L fails to be an isomorphism only if $a d+b c=1$. This implies that $b c=0$, and hence B fixes either 0 or ∞. This contradiction finishes the proof of the lemma.
8.8. As a consequence of the last lemma, we can strengthen Theorem 8.6. Select as before $2 q-1$ distinct points $a_{1}, \ldots, a_{2 q-1}$ so that

$$
S_{0}=\left\{A_{j}\left(a_{k}\right), B_{j}\left(a_{k}\right) ; j=0, \ldots, g-1, k=1, \ldots, 2 q-1\right\}
$$

consists of $(2 q-1)(2 g-2)$ points. Let α_{1}, α_{2} be the fixed points of A_{g} and let β_{1} be a fixed point of B_{g}. Let

$$
S=S_{0} \cup\left\{\alpha_{1}, \alpha_{2}, A_{g}^{k} \beta_{1} ; k=0, \ldots, 2 q-4\right\}
$$

Then S consists of $(2 q-1)(2 g-1)$ points, and if F is an Eichler integral vanishing on S, then $\chi=\operatorname{pd} F$ satisfies

$$
\begin{gathered}
\chi\left(A_{j}\right)=0=\chi\left(B_{j}\right), \quad j=1, \ldots, g-1, \\
\chi\left(A_{g}\right)\left(a_{k}\right)=0, \quad k=1,2 \\
\chi\left(A_{g}\right)\left(A_{g}^{k} \beta_{1}\right)=0, \quad k=0, \ldots, 2 q-5, \text { if } q>2, \\
\chi\left(B_{g}\right)\left(\beta_{1}\right)=0
\end{gathered}
$$

The defining relation for Γ shows that

$$
\chi\left(C_{1} \circ \ldots \circ C_{g-1}\right)=0
$$

Hence

$$
\begin{equation*}
0=\chi\left(C_{g}\right)=\chi\left(A_{g}\right) \cdot\left(B_{g}-1\right) \cdot\left(A_{g}^{-1} \circ B_{g}^{-1}\right)+\chi\left(B_{g}\right) \cdot\left(A_{g}^{-1}-1\right) \cdot B_{g}^{-1} \tag{8.8.1}
\end{equation*}
$$

Letting $p_{1}=\chi\left(A_{g}\right)$ and $p_{2}=\chi\left(B_{g}\right)$, we see that the map that restricts functions in $\mathscr{F}_{1-q}(\Omega, \Gamma)$ to S has a zero or one-dimensional kernel, and that $\mathscr{F}_{-1}(\Omega, \Gamma) \mid S$ is isomorphic to $\mathscr{F}_{-1}(\Omega, \Gamma)$.

Example. We consider $g=2=q$. The 9 points in S are:
a_{1}, a_{2}, the fixed points of A_{1},
a_{3} a fixed point of B_{1},

$$
\begin{gathered}
b_{1}=A_{1}\left(a_{3}\right), \quad b_{2}=B_{1}\left(a_{1}\right), \quad b_{3}=B_{1}\left(a_{2}\right), \\
b_{4}, b_{5}, \text { the fixed points of } A_{2} \\
b_{6}, \text { a fixed point of } B_{2} .
\end{gathered}
$$

It follows that the 6 functions defined on S by

$$
\begin{gathered}
F_{j}\left(b_{k}\right)=\delta_{j k}, \quad 1 \leqslant j, k \leqslant 6, \\
F_{j}\left(a_{k}\right)=0, \quad j=1, \ldots, 6, k=1,2,3,
\end{gathered}
$$

extend to a basis for $\mathscr{F}_{-1}(\Omega, \Gamma)$. The corresponding periods $\chi_{1}, \ldots, \chi_{6}$ can now be computed, and from these, the values of the functions F_{1}, \ldots, F_{6} at an arbitrary fixed point. For example:

$$
\begin{gathered}
\chi_{1}\left(A_{1}\right)\left(a_{1}\right)=0=\chi_{1}\left(A_{1}\right)\left(a_{2}\right), \quad \chi_{1}\left(A_{1}\right)\left(a_{3}\right)=A_{1}^{\prime}\left(a_{3}\right)^{-1}, \\
\chi_{1}\left(B_{1}\right)=0, \\
\chi_{1}\left(A_{2}\right)\left(b_{4}\right)=0=\chi_{1}\left(A_{2}\right)\left(b_{5}\right), \\
\chi_{1}\left(B_{2}\right)\left(b_{6}\right)=0 .
\end{gathered}
$$

The known values of $\chi_{1}\left(A_{1}\right)$ and $\chi_{1}\left(B_{1}\right)$ allow us to compute $\chi_{1}\left(C_{1}\right)$ and hence $\chi_{1}\left(C_{2}\right)=-\chi_{1}\left(C_{1}\right) \cdot C_{2}$. Finally, we compute $p=\chi_{1}\left(C_{2}\right) \cdot\left(B_{2} \circ A_{2}\right)$, and by formulae (8.8.1) and (8.7.1) conclude that

$$
\left(\chi_{1}\left(A_{2}\right), \chi_{1}\left(B_{2}\right)\right)=L^{-1} p
$$

Similarly (the other extreme case):

$$
\begin{gathered}
\chi_{6}\left(A_{1}\right)=0=\chi_{6}\left(B_{1}\right), \\
\chi_{6}\left(A_{2}\right)\left(b_{4}\right)=0=\chi_{6}\left(A_{2}\right)\left(b_{5}\right), \\
\chi_{6}\left(B_{2}\right)\left(b_{6}\right)=B_{2}^{\prime}\left(b_{6}\right)^{-1}-1=\alpha \neq 0 .
\end{gathered}
$$

As above, we see that $\chi_{6}\left(C_{2}\right)=0$; we conclude that $p_{1}=\chi_{6}\left(A_{2}\right)$ and $p_{2}=\chi_{6}\left(B_{2}\right)$ satisfy

$$
\begin{gather*}
p_{1}\left(b_{4}\right)=0=p_{1}\left(b_{5}\right) \tag{8.8.2}\\
p_{2}\left(b_{6}\right)=\alpha \tag{8.8.3}
\end{gather*}
$$

and

$$
\begin{equation*}
p_{1} \cdot\left(B_{2}-1\right)+p_{2} \cdot\left(1-A_{2}\right)=0 \tag{8.8.4}
\end{equation*}
$$

We know by Lemma 8.7 that

$$
p_{1} \cdot\left(B_{2}-1\right)+\left(p_{2}-\alpha\right) \cdot\left(1-A_{2}\right)=-\alpha \cdot\left(1-A_{2}\right)
$$

has a unique solution that satisfies $(8.8 .2)$ and $\left(p_{2}-\alpha\right)\left(b_{6}\right)=0$. Hence $\left(p_{1}, p_{2}\right)$ solves (8.8.4) and satisfies both (8.8.2) and (8.8.3).
8.9. If F is an Eichler integral defined at a fixed point $b \in \Omega$ of an elliptic element γ of order v, then $F\left(z_{0}\right)$ can be recovered from the period χ of F by formula (4.1.4) as long as b is a q-uniqueness point or equivalently $1-q \neq 0(\bmod v)$; in particular, whenever $q=2$.

To show that every finitely generated quasi-Fuchsian group of the first kind is 2 stratifiable, we consider various cases (compare with § 5 of [16]).

Case I. Γ has signature (0,$3 ; v_{1}, v_{2}, v_{3}$). As remarked earlier, there is nothing to prove here since $A_{2}(\Omega, \Gamma)=\{0\}$.

Case II. Γ has signature $\left(0, n ; v_{1}, \ldots, v_{n}\right), n>3$.
Let a_{j} be a fixed point of E_{j} for $j=1, \ldots, n-1$. For $j=1, \ldots, n-2$, let b_{j} be the other fixed point of E_{j} if E_{j} is elliptic; while $b_{j}=E_{j}\left(a_{1}\right)$ if $j \neq 1$ and E_{j} is parabolic and $b_{1}=E_{1}\left(a_{2}\right)$ if E_{1} is parabolic. The set

$$
S=\left\{a_{1}, \ldots, a_{n-1}, b_{1}, \ldots, b_{n-2}\right\}
$$

consists of $2 n-3$ distinct points. We consider $\mathscr{F}_{-1}(\Omega, \Gamma)$ to be normalized at a_{1}, a_{2}, a_{3}. Let $F \in \mathscr{F}_{-1}(\Omega, \Gamma)$ and assume that F vanishes on S. Let

$$
p_{j}=(\operatorname{pd} F)\left(E_{j}\right)=F \cdot E_{j}-F, \quad j=1, \ldots, n .
$$

Then for $j=1, \ldots, n-2, p_{j}$ vanishes at the two elliptic fixed points of E_{j} if E_{j} is elliptic. Such a p_{j} must be zero by $\S 8.4$. For $j=1, \ldots, n-2$, and E_{j} parabolic, p_{j} vanishes at the fixed point of E_{j} to order two (by the parabolicity of $\operatorname{pd} F$ and by (5.2.3)) and at one other point (a_{1} if $j>1$, and a_{2} if $j=1$). Again p_{j} must be identically zero. Finally p_{n-1} vanishes at a_{n-1} (to order two if E_{n-1} is parabolic). The cocycle condition reads

$$
\begin{equation*}
p_{n-1} \cdot E_{n}=-p_{n} \tag{8.9.1}
\end{equation*}
$$

We consider cases. If both E_{n-1} and E_{n} are parabolic, then p_{n-1} vanishes also at the fixed point of E_{n} by (8.9.1). Hence $p_{n-1}=0=p_{n}$. If E_{n-1} is elliptic and E_{n} is parabolic, then we normalize E_{n-1} to have fixed points at $0, \infty$ (with $a_{n-1}=\infty$) and E_{n} to have fixed point at 1. It follows that

$$
p_{n-1}(z)=a, \quad p_{n}(z)=b(z-1)+c(z-1)^{2}
$$

and hence that

$$
-a E_{n}^{\prime}(z)^{-1}=b(z-1)+c(z-1)^{2}
$$

Setting $z=1$, we see that $a=0$. We conclude that $b=0=c$, also.
Case III. Γ has signature ($g, 0$), $g \geqslant 2$. This case was treated in $\S 8.8$.
Case IV. Γ has signature $\left(g, n ; \nu_{1}, \ldots, v_{n}\right), n>0$ and $g \geqslant 1$. Let a_{1}, a_{2} be the fixed points of A_{g}, and let a_{3} be a fixed point of B_{g}. Let x_{k}, y_{k} be the fixed points of E_{k} if E_{k} is elliptic, and let x_{k} be the fixed point of E_{k} and $y_{k}=E_{k}\left(a_{1}\right)$ if E_{k} is parabolic, $k=1, \ldots, n$. Consider

$$
\begin{aligned}
S= & \left\{a_{j} ; j=1,2,3\right\} \cup\left\{A_{k}\left(a_{j}\right), B_{k}\left(a_{j}\right) ; j=1,2,3, k=1, \ldots, g-1(\text { provided } g>1)\right\} \\
& \cup\left\{x_{k}, y_{k} ; k=1, \ldots, n\right\} .
\end{aligned}
$$

The set S consists of $6 g-3+2 n=\operatorname{dim} \mathrm{A}_{2}(\Omega, \Gamma)+3$ points. We claim that the restriction of functions in $\mathscr{F}_{-1}(\Omega, \Gamma)$ to S is an isomorphism. The argument combines Case II and Case III ideas, and may be left to the reader.

We have obtained the following
Theorem (Kra-Maskit [16]). Every finitely generated quasi-Fuchsian group of the first kind is 2 -stratifiable.

Remark. In [16], the stronger result, that every geometrically finite function group is stratifiable, was established. We have reproven a weaker result for quasi-Fuchsian groups, not only because the algorithm (to obtain a 2 -stratification) is simpler, but also because in proving the above theorem, we have established an algorithm for constructing the values of Eichler integrals that form a basis for $\mathscr{\mathscr { F }}_{-1}(\Omega, \Gamma)$ at fixed points of elements of Γ, that is easier to use than the general method of $\S 8.2$. The methods of [16] could be simplified to yield 2 -stratifications and hence algorithms for the vanishing problem for $q=2$, for all geometrically finite function groups.
8.10. We consider next torsion free quasi-Fuchsian groups Γ of type $(0, n)$ with $n>2$. A q-stratification for Γ must have $(n-1)(2 q-1)-n$ points. For $q=2$, we define S to consist of:

$$
\begin{gathered}
a_{1}, a_{2} \text { the fixed points of } E_{1}^{-1} \circ E_{2}, \\
b_{1}=E_{1}\left(a_{1}\right)=E_{2}\left(a_{1}\right), \quad c_{1}=E_{1}\left(a_{2}\right)=E_{2}\left(a_{2}\right), \\
b_{3}=E_{3}\left(a_{1}\right), \quad c_{3}=E_{3}\left(a_{2}\right), \\
\vdots \\
b_{n-2}=E_{n-2}\left(a_{1}\right), \quad c_{n-2}=E_{n-2}\left(a_{2}\right), \\
b_{n-1}=E_{n-1}\left(a_{1}\right)
\end{gathered}
$$

In the above formulation we have assumed that $n \geqslant 4$. If $n=3, b_{1}$ is the last term to be defined. We claim that for all $q \geqslant 2$, we can construct a set S consisting of loxodromic fixed points with the following properties:
(a) $|S|=(n-1)(2 q-1)-n$,
(b) there exist points $a_{1}, \ldots, a_{2 q-2} \in S$ so that $S \supset\left\{E_{j}\left(a_{k}\right) ; j=1, \ldots, n-1\right.$, $k=1, \ldots, 2 q-2,(j, k) \neq(n-1,2 q-2)\}$.

For $q=2$, we have constructed such a set S_{2}, above. Assume S_{q} exists for some $q \geqslant 2$. The set $E_{1}^{-1}\left(S_{q}\right)$ has $(n-1)(2 q-1)-n \geqslant 2 q$ points, provided $n>3$ or $q>2$. In this case we select two points $a_{2 q-1}, a_{2 q}$ in $E_{1}^{-1}\left(S_{q}\right) \backslash\left\{a_{1}, \ldots, a_{2 q-2}\right\}$. If $n=3$ and $q=2$, we let $a_{3}=E_{1}^{-1}\left(a_{1}\right), a_{4}=E_{1}^{-1}\left(a_{2}\right)$. We define

$$
\begin{aligned}
S_{q+1}= & S_{q} \cup\left\{a_{2 q-1}, a_{2 q}\right\} \cup\left\{E_{n-1}\left(a_{2 q-2}\right)\right\} \cup\left\{E_{j}\left(a_{2 q-1}\right) ; j=1, \ldots, n-1\right\} \\
& \cup\left\{E_{j}\left(a_{2 q}\right) ; j=1, \ldots, n-2\right\}
\end{aligned}
$$

We note that S_{q+1} contains at most

$$
(n-1)(2 q-1)-n+2+1+(n-2)+(n-3)=(n-1)(2 q+1)-n
$$

points. We show next that property (b) implies that S is a q-stratification for Γ; hence $\left|S_{q+1}\right|=(n-1)(2 q+1)-n$.

Let $F \in \mathscr{F}_{1-q}(\Omega, \Gamma)$ and let

$$
p_{j}=(\operatorname{pd} F)\left(E_{j}\right), \quad j=1, \ldots, n .
$$

For $j=1, \ldots, n-2, p_{j}$ vanishes at $a_{k}, k=1, \ldots, 2 q-2$, and the fixed point of E_{j} (recall that all the a_{k} are loxodromic fixed points). Hence $p_{j}=0, j=1, \ldots, n-2$. Similarly p_{n-1} vanishes at the fixed point of E_{n-1} and at $a_{1}, \ldots, a_{2 q-3}$; while p_{n} vanishes at the fixed point of E_{n}. The cocycle condition ($p_{n-1} \cdot E_{n}+p_{n}=0$) shows, as in 88.9 , that $p_{n-1}=0=p_{n}$.

We have established the
THEOREM. Let Γ be a quasi-Fuchsian torsion free group of type $(0, n), n \geqslant 3$. Then Γ is q-stratifiable for all $q \geqslant 2$.

§ 9. Beltrami coefficients supported on the invariant component (proof of Theorem 5)

9.1. Let Γ be a finitely generated Fuchsian group of the first kind operating on the unit disk Δ. To prove Theorem 5 , we must characterize $\mathscr{F}_{1-q}(\Delta, \Gamma)$ in $\mathscr{F}_{1-q}(\Omega, \Gamma)$. We assume that $2 d=\operatorname{dim} \mathscr{F}_{1-q}(\Omega, \Gamma)>0$, and note that $\operatorname{dim} \mathscr{F}_{1-q}(\Delta, \Gamma)=d$. Let $F \in \mathscr{F}_{1-q}(\Omega, \Gamma)$, then $F \in \mathscr{F}_{1-q}(\Delta, \Gamma)$ if and only if $F \mid \Delta^{*}$ is holomorphic, where $\Delta^{*}=\{z \in \mathbf{C} \cup\{\infty\} ;|z|>1\}$. Here we identify F with its extension to \mathbf{C} as a potential of a generalized canonical Beltrami differential. Consider the Möbius transformation $A(z)=z^{-1}$, and the group $\Gamma^{*}=A^{-1} \Gamma A$. The group Γ^{*} is also a finitely generated Fuchsian group of the first kind operating on the unit disk. For $F \in \mathscr{F}_{1-q}(\Omega, \Gamma)$, $F^{*}=A_{q}^{*} F$ is a potential for Γ^{*}. Furthermore, $F \in \mathscr{F}_{1-q}(\Delta, \Gamma)$ if and only if F^{*} is holomorphic on Δ. Thus $F \in \mathscr{F}_{1-q}(\Delta, \Gamma)$ if and only if

$$
\begin{equation*}
\int_{|z|=1} z^{k} F^{*}(z) d z=0, \quad k=0,1, \ldots \tag{9.1.1}
\end{equation*}
$$

(See, for example, [25, p. 361].) Simple change of argument calculations lead to the equivalence of (9.1.1) with

$$
\begin{equation*}
\int_{0}^{2 \pi} e^{i(1-k-2 q) \theta} F\left(e^{i \theta}\right) d \theta=0, \quad k=0,1, \ldots \tag{9.1.2}
\end{equation*}
$$

It remains to show that for $F \in \mathscr{F}_{1-q}(\Omega, \Gamma)$ condition (9.1.2) need be satisfied only for a finite set of k to guarantee that $F \in \mathscr{F}_{1-q}(\Delta, \Gamma)$. This is a consequence of the finite dimensionality of $\mathscr{F}_{1-q}(\Omega, \Gamma)$. Given $F \in \mathscr{F}_{1-q}(\Omega, \Gamma) \backslash \mathscr{F}_{1-q}(\Delta, \Gamma)$, there is a $k \geqslant 0$ such that the integral $I_{k}(F)$ in (9.1.2) does not vanish for $k=\tilde{k}$.

Thus for $F \in \mathscr{F}_{1-q}(\Omega, \Gamma) \backslash \mathscr{F}_{1-q}(\Delta, \Gamma)$ we define

$$
\mu(F)=\min \left\{k \in \mathbf{Z} ; k \geqslant 0, I_{k}(F) \neq 0\right\}
$$

The space $\mathscr{F}_{1-q}(\Omega, \Gamma)$ is a direct sum

$$
\mathscr{F}_{1-q}(\Omega, \Gamma)=\mathscr{F}_{1-q}(\Delta, \Gamma) \oplus \mathscr{F}_{1-q}\left(\Delta^{*}, \Gamma\right) .
$$

Every $F \in \mathscr{F}_{1-q}\left(\Delta^{*}, \Gamma\right)$ is holomorphic on Δ. If we let for such an F,

$$
F(z)=\sum_{j=0}^{\infty} \alpha_{j} z^{j}
$$

be the Taylor series expansion of F at the origin, then for $k=0,1, \ldots$,

$$
I_{k}(F)=2 \pi \alpha_{2 q+k-1} .
$$

We conclude that

$$
\mu(F)=\operatorname{ord}_{0} \varphi,
$$

where

$$
\varphi=\frac{d^{2 q-1} F}{d z^{2 q-1}} .
$$

The operator $d^{2 q-1} / d z^{2 q-1}$ maps $\mathscr{F}_{1-q}\left(\Delta^{*}, \Gamma\right)$ isomorphically onto $\mathbf{A}_{q}(\Delta, \Gamma)$; see [14, pp. 210-219]. Thus the non-negative integers

$$
\left\{\mu(F) ; F \in \mathscr{F}_{1-q}(\Omega, \Gamma) \backslash \mathscr{F}_{1-q}(\Delta, \Gamma)\right\}
$$

are restricted to the finite set of possible orders of zeros at the origin of elements in the vector space $\mathbf{A}_{q}(\Delta, \Gamma)$.
9.2. We can hence obtain estimates on the number $m(\Gamma, q)$ appearing in Theorem 5.

Corollary. Assume that Γ has signature ($g, n ; \nu_{1}, \ldots, v_{n}$). Let $v=1$ if $n=0$ or $v_{j}=\infty$ for $j=1, \ldots, n$; let v be the maximum of the finite v_{j} otherwise. Then

$$
m(\Gamma, q) \leqslant q v\left\{(2 q-2)+\sum_{j=1}^{n}\left(1-1 / v_{j}\right)\right\},
$$

and

$$
m(\Gamma, q)=(2 q-1)(g-1)+\sum_{j=1}^{n}\left[q-q / v_{j}\right]-1
$$

if 0 is not a Weierstrass point for $\mathbf{A}_{q}(\Delta, \Gamma)$.

Proof. The first estimate is the highest possible order of zeros of elements of $\mathbf{A}_{q}(\Delta, \Gamma)$; see $\left[14\right.$, p. 114]. The hypothesis that 0 is not a Weierstrass point for $\mathbf{A}_{q}(\Delta, \Gamma)$ means precisely that the possible orders of vanishing at the origin for functions in $\mathbf{A}_{q}(\Delta, \Gamma)$ are

$$
0,1, \ldots, d-1
$$

(recall that $\operatorname{dim} \mathbf{A}_{q}(\Delta, \Gamma)=d$).
Remarks. (1) We can always choose a Möbius transformation A that fixes Δ so that zero is not a Weierstrass point for $\mathbf{A}_{q}\left(\Delta, A \Gamma A^{-1}\right)$.
(2) In the second of the above formulae for $m(\Gamma, q)$, we have assumed, of course, that $d>0$.
§ 10. Kleinian groups with two components (neither invariant)
10.1. Let G be a non-elementary finitely generated Kleinian group with Ω consisting of two components, neither of them invariant. It was shown in [17], that there is a (unique) finitely generated quasi-Fuchsian group Γ of the first kind so that G is a $Z_{2^{-}}$ extension of Γ. Further

$$
G=\Gamma \cup \Gamma A,
$$

where $A \in G \backslash \Gamma, A^{2} \in \Gamma$, and A is either elliptic of order 2 or loxodromic. It follows that every parabolic element in G is in Γ, and comes from a puncture on $\Omega / G \cong \Delta / \Gamma$, where Δ is one of the components of Ω. Since

$$
\begin{equation*}
\mathbf{E}_{1-q}^{b}(\Omega, G) \subseteq \mathbf{E}_{1-q}^{b}(\Omega, \Gamma), \tag{10.1.1}
\end{equation*}
$$

it follows that $\mathbf{E}_{1-q}^{b}(\Omega, G)=\{0\}$, and hence

$$
P H^{1}\left(G, \Pi_{2 q-2}\right) \cong \mathscr{F}_{1-q}(\Omega, G) .
$$

It follows also that

$$
\operatorname{dim} P H^{1}\left(G, \Pi_{2 q-2}\right)=\operatorname{dim} \mathbf{A}_{q}(\Omega, G)=\operatorname{dim} \mathbf{A}_{q}(\Delta, \Gamma)=(2 q-1)+\sum_{k=1}^{n}\left[q-q / v_{k}\right]
$$

where $\left(g, n ; v_{1}, \ldots, v_{n}\right)$ is the signature of Γ.
10.2. To show that the vanishing problem for G has an algebraic solution, we will show how to construct via linear algebra $P Z^{1}\left(G, \Pi_{2 q-2}\right)$ from $P Z^{1}\left(\Gamma, \Pi_{2 q-2}\right)$. We saw
in $\S 8.2$ that the space $P Z^{1}\left(\Gamma, \Pi_{2 q-2}\right)$ is determined from a presentation of Γ by algebraic operations. We have an obvious restriction map

$$
P Z^{1}\left(G, \Pi_{2 q-2}\right) \rightarrow P Z^{1}\left(\Gamma, \Pi_{2 q-2}\right) .
$$

We must find necessary and sufficient conditions for a cocycle $\chi \in P Z^{1}\left(\Gamma, \Pi_{2 q-2}\right)$ to extend to a cocycle for G.

For $\gamma \in \Gamma$, we let $\gamma^{A}=A \circ \gamma \circ A^{-1}$ and observe that $\gamma^{A} \in \Gamma$ (since Γ is a normal subgroup of G). Let $\chi \in P Z^{1}\left(\Gamma, \Pi_{2 q-2}\right)$, and let $p \in \Pi_{2 q-2}$. If A is elliptic (of order 2) we assume that $p \in\left(\Pi_{2 q-2}\right)_{A}$ (recall the definition of this subspace in § 8.2). We would like to set $p=\chi(A)$. A necessary and sufficient condition for the existence of a cocycle $\tilde{\chi} \in P Z^{1}\left(G, \Pi_{2 q-2}\right)$ with $\tilde{\chi}(A)=p$ and $\tilde{\chi}(\gamma)=\chi(\gamma)$ for all $\gamma \in \Gamma$, is that the equation

$$
\begin{equation*}
\chi\left(\gamma^{A}\right)=p \cdot\left(\gamma \circ A^{-1}\right)+\chi(\gamma) \cdot A^{-1}-p \cdot A^{-1} \tag{10.2.1}
\end{equation*}
$$

be satisfied for all $\gamma \in \Gamma$. Equation (10.2.1) can be rewritten as

$$
\begin{equation*}
\chi\left(\gamma^{A}\right) \cdot A-\chi(\gamma)-p \cdot(\gamma-1)=0, \quad \gamma \in \Gamma . \tag{10.2.2}
\end{equation*}
$$

Routine calculations show that equation (10.2.2) is satisfied for $\gamma_{1} \circ \gamma_{2}$ and γ_{1}^{-1} whenever it is satisfied by γ_{1} and $\gamma_{2} \in \Gamma$. Hence in order for (10.2.1) to hold for all $\gamma \in \Gamma$, it is necessary and sufficient that (10.2.2) be satisfied for generators of Γ. Let $V=\Pi_{2 q-2}$ if A is loxodromic, and let $V=\left(\Pi_{2 q-2}\right)_{A}$ if A is elliptic. Let $\gamma_{1}, \ldots, \gamma_{N}$ be any set of generators for Γ. Define

$$
h: P Z^{1}\left(\Gamma, \Pi_{2 q-2}\right) \times V \rightarrow \Pi_{2 q-2}^{N}
$$

by

$$
h(\chi, p)=\left(p_{1}, \ldots, p_{N}\right)
$$

where

$$
p_{j}=\chi\left(\gamma_{j}^{A}\right) \cdot A-\chi\left(\gamma_{j}\right)-p \cdot\left(\gamma_{j}-1\right), \quad j=1, \ldots, N .
$$

Then h is a C-linear map, and

$$
(\chi, p) \in \operatorname{Ker} h
$$

if and only if there exists a $\tilde{\chi} \in P Z^{1}\left(G, \Pi_{2 q-2}\right)$ with

$$
\tilde{\chi} \mid \Gamma=\chi \quad \text { and } \quad \tilde{\chi}(A)=p .
$$

We have obtained the following
THEOREM. Let G be a non-elementary finitely generated Kleinian group with two components, neither invariant. Let $f \in \mathscr{R}_{q}\left(\Lambda_{q}\right)$ have poles only at q-uniqueness points and parabolic fixed points. There exists an algebraic algorithm for determining whether or not $\Theta_{q} f=0$.

Remarks. (1) If A is elliptic, then the fixed points of A may or may not be q uniqueness points.
(2) The results of [17] imply the existence of 2-stratifications for G.

§ 11. Vector bundles over deformation spaces of Kleinian groups

11.1. Let Γ be a finitely generated non-elementary Kleinian group. We normalize Γ so that $0,1, \infty \in \Lambda$. Let $M(\Gamma)$ be the space of Beltrami coefficients for Γ; that is, the space of generalized Beltrami differentials for $q=2$ of L^{∞}-norm less than one. For $\mu \in M(\Gamma)$, let w^{μ} be the unique normalized (fixing $\left.0,1, \infty\right) \mu$-conformal automorphism of $\mathbf{C} \cup\{\infty\}$. The deformation space of $\Gamma, T(\Gamma)$, may be defined (see, for example, [16]) as the set of restrictions to Λ of $\left\{w^{\mu} ; \mu \in M(\Gamma)\right\}$. It is known to be a domain of holomorphy in \mathbf{C}^{d}, $d=\operatorname{dim} \mathbf{A}_{2}(\Omega, \Gamma),[16]$.

Lemma. For $z \in \Lambda_{q}$,

$$
\begin{equation*}
\mu \mapsto w^{\mu}(z) \tag{11.1.1}
\end{equation*}
$$

is a holomorphic mapping from $T(\Gamma)$ into \mathbf{C}, except possibly if $z \in \Omega$ is stabilized by a group of order 2 with the second fixed point in the same component as z.

Proof. See [16] or [17]. In [17], a point z for which (11.1.1) is a well defined function on $T(\Gamma)$ was called sturdy.

In addition to the trivial fiber space $T(\Gamma) \times C$ over $T(\Gamma)$, we will need the Bers fiber space

$$
F(\Gamma)=\left\{([\mu], z) ;[\mu] \in T(\Gamma), z \in w^{\mu}(\Omega)\right\}
$$

where $[\mu]$ is the equivalence class in $T(\Gamma)$ of $\mu \in M(\Gamma)$. The group Γ operates on $F(\Gamma)$ in a fiber preserving way by

$$
\gamma([\mu], z)=\left([\mu], \gamma^{\mu} z\right), \quad z \in w^{\mu}(\Omega), \gamma \in \Gamma, \mu \in M(\Gamma)
$$

where

$$
\gamma^{\mu}=w^{\mu} \circ \gamma \circ\left(w^{\mu}\right)^{-1}
$$

as a group of complex analytic homeomorphisms.
The natural projection of $F(\Gamma)$ onto $T(\Gamma)$ will be denoted by π; that is,

$$
\pi([\mu], z)=[\mu], \quad \mu \in M(\Gamma), z \in w^{\mu}(\Omega)
$$

11.2. Let f be a meromorphic function on $F(\Gamma)$ with the property that for each $\mu \in M(\Gamma), f \mid \pi^{-1}([\mu]) \in \mathscr{R}_{q}\left(w^{\mu}\left(\Lambda_{q}\right)\right)$. It follows that the Poincaré series

$$
\left(\Theta_{q} f\right)([\mu], z)=\sum_{\gamma \in \Gamma} f\left([\mu], \gamma^{\mu} z\right)\left(\gamma^{\mu}\right)^{\prime}(z)^{q}
$$

converges uniformly and absolutely on compact subsets of $F(\Gamma)$ and defines a holomorphic function-an automorphic form of weight ($-2 q$) for the action of Γ on $F(\Gamma)$; that is, $\Theta_{q} f$ satisfies

$$
\left(\Theta_{q} f\right)\left([\mu], \gamma^{\mu} z\right)\left(\gamma^{\mu}\right)^{\prime}(z)^{q}=\left(\Theta_{q} f\right)([\mu], z), \quad \text { all } \mu \in M(\Gamma), \text { all } z \in w^{\mu}(\Omega), \text { all } \gamma \in \Gamma .
$$

Let us choose $a_{1}, \ldots, a_{2 q-1}$ to be distinct sturdy points for Γ (located in Λ_{q}), and assume that $a_{1}=0, a_{2}=1, a_{3}=\infty$ (by replacing Γ by a conjugate group, if necessary). Let $\gamma_{0}=I, \gamma_{1}, \ldots, \gamma_{N}$ be generators for Γ, and consider
$\mathscr{R}_{q}(S, T(\Gamma))=\left\{f\right.$ meromorphic on $F(\Gamma) ; f \mid \pi^{-1}([\mu]) \in \mathscr{R}_{q}\left(w^{\mu}(S)\right)$, all $\left.\mu \in M(\Gamma)\right\}$,
where S is defined by (0.1.8). We note that if $b \in S \backslash\left\{a_{1}, \ldots, a_{2 q-1}\right\}$, then
$g([\mu], z)$

$$
=\left(\frac{-1}{2 \pi}\right)\left(\frac{1}{z-w^{\mu}(b)}\right)\left(\frac{w^{\mu}(b)}{z}\right)\left(\frac{w^{\mu}(b)-1}{z-1}\right) \prod_{j=4}^{2 q-1} \frac{w^{\mu}(b)-w^{\mu}\left(a_{j}\right)}{z-w^{\mu}\left(a_{j}\right)}, \mu \in M(\Gamma), z \in w^{\mu}(\Omega)
$$

defines a function in $\mathscr{R}_{q}(S, T(\Gamma))$. Note that the product in the above formula is to be ignored if $q=2$. As b varies in $S \backslash\left\{a_{1}, \ldots, a_{2 q-1}\right\}$, we obtain functions which on each fiber form a basis for the restrictions of $\mathscr{R}_{q}(S, T(\Gamma))$ to that fiber. Hence $\mathscr{R}_{q}(S, T(\Gamma))$ is a trivial rank s fiber bundle over $T(\Gamma)$, where

$$
\begin{equation*}
s=|S|-(2 q-1) \tag{11.2.1}
\end{equation*}
$$

Let $\mathbf{A}_{q}(T(\Gamma)$) be the rank d vector bundle of cusp forms of weight ($-2 q$) over $T(\Gamma)$;
that is, the fiber over $[\mu], \mu \in M(\Gamma)$, consists of $\mathbf{A}_{q}\left(w^{\mu}(\Omega), w^{\mu} \Gamma\left(w^{\mu}\right)^{-1}\right)$, and $d=\operatorname{dim} \mathrm{A}_{q}(\Omega, \Gamma)$.

Theorem. The Poincaré series map

$$
\begin{equation*}
\Theta_{q}: \mathscr{R}_{q}(S, T(\Gamma)) \rightarrow \mathbf{A}_{q}(T(\Gamma)) \tag{11.2.2}
\end{equation*}
$$

is a surjective bundle map. The kernel of Θ_{q} has constant dimension $s-d$ (over all the fibers). The bundle map Θ_{q} splits. Hence there is a rank of d subbundle of $\mathscr{R}_{q}(S, T(\Gamma))$ with the property that Θ_{q} is an isomorphism between this bundle and $\mathbf{A}_{q}(T(\Gamma))$.

Proof. The first part of the theorem is a direct consequence of Theorem 1 and the remarks in this paragraph. The existence of a splitting map follows from the general theory of vector bundles (or equivalently, locally free sheaves) over Stein manifolds, see, for example [9, p. 256].

Remarks. (1) It would be interesting to exhibit directly the splitting map-without relying on deep results from several complex variable theory.
(2) Many times, we can choose S so that (11.2.2) is an isomorphism.
(3) It is not known whether $\mathbf{A}_{q}(T(\Gamma)$) is always a trivial bundle over $T(\Gamma)$. If $T(\Gamma)$ is contractable, then every vector bundle over $T(\Gamma)$ is topologically trivial, and because $T(\Gamma)$ is Stein, analytically trivial by a general theorem of Grauert [8] (see also the exposition in [6]).

11.3.

Theorem. If S is a q-stratification for Γ, then Θ_{q} of (11.2.2) is a bundle isomorphism. Such q-stratifications exist whenever:
(a) Γ is a geometrically finite non-elementary function group and $q=2$,
(b) Γ is a finitely generated Kleinian group with two components, neither invariant, and $q=2$,
(c) Γ is a Schottky group (and q is arbitrary), or
(d) Γ is a torsion free quasi-Fuchsian group of type $(0, n) n \geqslant 3$ (and q is arbitrary).

Proof. Parts (a) and (b) follow from the results of [17]. (In § 8 we have also constructed 2 -stratifications for finitely generated quasi-Fuchsian groups of the first kind.) Part (c) follows from § 7.5 and part (d) from § 8.10.

Corollary. The vector bundle $\mathbf{A}_{q}(T(\Gamma)$) over $T(\Gamma)$ is analytically trivial whenever
(a) each component of Ω is simply connected, or
(b) $q=2$, or
(c) Γ is a Schottky group.

Proof. If each component of Ω is simply connected, then $T(\Gamma)$ is contractible (see, for example, [16]) and the result follows by Grauert's theorem [8], as remarked above. Recall [16] that $T(\Gamma)$ is a domain in number space, and $\mathbf{A}_{2}(T(\Gamma)$) is isomorphic to the cotangent bundle of $T(\Gamma)$. The cotangent bundle of a domain in \mathbf{C}^{d} is always analytically trivial. The result for Schottky groups follows from the theorem.

§ 12. Appendix: Stabilizers of limit points

We have used several times the following well known result about the limit set Λ of a Kleinian group Γ. A proof is supplied for the convenience of the reader.

Lemma. Let $x \in \Lambda$. Then the stabilizer Γ_{0} of x in Γ is always an elementary group. There are three possibilities:
(i) Γ_{0} is a finite cyclic group of order $n, 1 \leqslant n<\infty$,
(ii) Γ_{0} is a finite cyclic extension of a rank 1 or rank 2 parabolic group, or
(iii) Γ_{0} is an abelian finite cyclic extension of a purely loxodromic cyclic group.

Proof. Assume first that every element of Γ_{0} is elliptic and fixes $x=\infty$. Thus the elements of Γ_{0} are of the form

$$
z \mapsto a z+b
$$

If A and $B \in \Gamma_{0}$ have only ∞ as a common fixed point, then $A^{-1} \circ B \circ A \circ B^{-1}$ is parabolic and fixes ∞. Thus every element of Γ_{0} also fixes another point which may be assumed to be $z=0$. Hence Γ_{0} is a discrete subgroup of the group of rotations. We must be in case (i).

If Γ_{0} contains a parabolic element A, then Γ_{0} cannot contain a loxodromic element B. For if $A(z)=z+1$ and $B(z)=\lambda z,|\lambda| \neq 1$ (without loss of generality), then Γ_{0} contains the element

$$
B^{-n} \circ A \circ B^{n}: z \mapsto z+\lambda^{-n}, \quad n=1,2, \ldots
$$

and Γ_{0} cannot be discrete.
Assume hence that Γ_{0} contains a parabolic element that fixes $x=\infty$. Then Γ_{0} contains only parabolic and elliptic elements and Γ_{0} acts discontinuously on C. Such a group gives us case (ii). Similarly, if Γ_{0} contains a loxodromic element, then we have case (iii).

References

[1] Ahlfors, L. V., Finitely generated Kleinian groups. Amer. J. Math., 86 (1964), 413-429 and 87 (1965), 759.
[2] - The structure of a finitely generated Kleinian group. Acta Math., 122 (1969), 1-17.
[3] Bers, L., Inequalities for finitely generated Kleinian groups. J. Analyse Math., 18 (1967), 23-41.
[4] - Poincaré series for Kleinian groups. Comm. Pure Appl. Math., 26 (1973), 667-672 and 27 (1974), 583.
[5] - Automorphic forms for Schottky groups. Adv. in Math., 16 (1975), 332-361.
[6] Cartan, H., Espaces fibrés analytiques, in Symposium Internacional de Topologia Algebraica. Univ. Nacional de México, 1958, 97-121.
[7] Eichler, M., Eine Verallgemeinerung der Abelschen Integrale. Math. Z., 67 (1957), 267-278.
[8] Grauert, H., Analytische Faserungen über holomorphvollständigen Räumen. Math. Ann., 135 (1958), 266-273.
[9] Gunning, R. C. \& Rossi, H., Analytic functions of several complex variables. PrenticeHall, Englewood Cliffs, New Jersey, 1965.
[10] Hejhal, D. A., Quelques remarques à propos des séries de Poincaré sur les groupes de Schottky. C. R. Acad. Sci. Paris Sér. I Math., 280 (1975), 341-344.
[11] - Monodromy groups and Poincaré series. Bull. Amer. Math. Soc., 84 (1978), 339-376.
[12] Kra, I., On cohomology of Kleinian groups. Ann. of Math., 89 (1969), 533-556.
[13] - On cohomology of Kleinian groups: II. Ann. of Math., 90 (1969), 575-589.
[14] - Automorphic forms and Kleinian groups. Benjamin, Reading, Massachusetts, 1972.
[15] - On the vanishing of Poincaré series of rational functions. Bull. Amer. Math. Soc., 8 (1983), 63-66.
[16] Kra, I. \& Maskit, B., The deformation space of a Kleinian group. Amer. J. Math., 103 (1981), 1065-1 102.
[17] - Bases for quadratic differentials. Comment. Math. Helv., 57 (1982), 603-626.
[18] LJAN, G. M., The kernel of the Poincare θ-operator. Dokl. Akad. Nauk SSSR, 230 (1976), 269-270. English translation: Soviet Math. Dokl., 17 (1976), 1283-1285.
[19] Maskit, B., Decomposition of certain Kleinian groups. Acta Math., 130 (1973), 243-263.
[20] Metzger, T. A., The kernel of the Poincaré series operator. Proc. Amer. Math. Soc., 76 (1979), 289-292.
[21] Nakada, M., Cohomology of finitely generated Kleinian groups with an invariant component. J. Math. Soc. Japan, 28 (1976), 699-711.
[22] - Quasi-conformal stability of finitely generated function groups. Tôhoku Math. J., 30 (1978), 45-58.
[23] Petersson, H., Die linearen Relationen zwischen den ganzen Poincaréschen Reihen von reeller Dimension zur Modulgruppe. Abh. Math. Sem. Univ. Hamburg, 12 (1938), 415-472.
[24] Poincaré, H., Memoire sur les fonctions fuchsiennes. Acta Math., 1 (1882), 193-294.
[25] Rudin, W., Real and complex analysis. McGraw-Hill, New York and Sidney, 1966.
[26] Weil, A., Remarks on cohomology of groups. Ann. of Math., 80 (1964), 149-157.
[27] Wolpert, S., The Fenchel-Nielsen deformation. Ann. of Math., 115 (1982), 501-528.
Received January 5, 1983
Received in revised form September 5, 1983

[^0]: (${ }^{1}$) Research partially supported by NSF grant MCS 8102621.

[^1]: 4-848282 Acta Mathematica 153. Imprimé le 8 aoat 1984

[^2]: $\left.{ }^{(}\right)$The action of Γ on $\Pi_{2 q-2}$ and on Eichler integrals (defined below) will be denoted by a dot ($)$. This should not be confused with composition of mappings denoted by the usual symbol (0).

[^3]: $\left(^{2}\right)$ In [14], the term Eichler integral was reserved for holomorphic and meromorphic functions F that satisfy (0.2 .5). It seems appropriate to consider more general functions under the same title.
 $\left.{ }^{(3}\right)$ In [14], generalized Beltrami differentials were called generalized Beltrami coefficients. It is traditional for $\boldsymbol{q}=2$ to call a Beltrami differential, a Beltrami coefficient, if and only if its norm is less than one.

[^4]: $\left.{ }^{(}{ }^{6}\right)$ The symbol $[x]$, defined for $x \in \mathbf{R}$, stands for the greatest integer $\leqslant x$. It should be noted that $q-1=\lim _{\mu \rightarrow \infty}[q-q / \mu]$. Hence, we define $[q-q / \infty]=q-1$.

[^5]: ${ }^{(7)}$ Not only does Γ act on $\Pi_{2 q-2}$, but Γ generates an algebra of operators on $\Pi_{2 q-2}$. Addition is operator sum.

[^6]: $\left({ }^{8}\right)$ The evaluation map e_{S} was defined in $\S 2.3$. We denote by $|S|$ the cardinality of the set S.

