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w 0. Introduction 

The famous Atiyah-Singer index theorem expresses the Fredholm index of any elliptic 

pseudo-differential operator on an arbitrary closed smooth manifold as the period of a 

universal algebraic combination of the Pontrjagin classes of the manifold, and of the 

Chern character of the symbol of  the operator. 

In 1969 M. F. Atiyah [Al]--see also [ A E ] - - b y  taking as axioms some of the basic 

properties of the elliptic pseudo-differential operators of order zero on closed smooth 

manifolds, introduces the notion of abstract elliptic operator, for any compact topologi- 

cal space. 

In 1970 I. M. Singer [Si] exposes a comprehensive program aimed to extend the 

theory of ellipic operators and their index to more general situations. 

D. Sullivan's theorem [SUl] about existence of an orientation class in the K-theory, 

in the world of odd primes, of PL-bundles over PL-manifolds, gives evidence that at 

least the symbol of signature operators on PL-manifolds should exist, see I. M. Singer 

[Si] w 3. One of the problems I. M. Singer formulated in [Si] was that of realizing, 

geometrically, signature operators on PL-manifolds, and at the same time, pointed out 

that such a realization could lead to an analytical proof of Novikov's theorem about the 

topological invariance of the rational Pontrjagin classes. 

In 1975, L. G. Brown, R. G. Douglas, P. A. Fillmore [B.D.F.], and G. G. 

Kasparov [K] show, independently, in different contexts, that the stably-homotopic 

classes of abstract elliptic operators on the compact metric space X form an abelian 

group, which is naturally isomorphic to K0(X), the Spanier-Whitehead dual of K~ 

The same year P. Baum, W. Fulton, R. MacPherson [B.F.M.] prove the Riemann- 

Roch theorem for singular varieties. 

In 1976, D. Sullivan discovers that any topological manifold of dimension 4=4 

admits a unique--up to homeomorphisms close to the identity--Lipschitz structure. 

(1) Partially supported by the N.S.F. Grant No. MCS 8102758. 



118 N. TELEMAN 

In 1977, N. Teleman [TI] obtains preliminary results for a Hodge theory on 

pseudo-manifolds. In 1978-79, N. Teleman [T2] constructs a Hodge theory on PL-  

manifolds, and J. Cheeger [C] produces Hodge theory on a very general class of 

pseudo-manifolds. 

In 1980, D. Sullivan and N. Teleman [S.T.] obtain an analytical proof of Novikov's 

theorem by showing that the index of signature operators on Lipschitz manifolds, 

introduced in [T3], are topological invariants. The proof realizes at the same time a 

constructive procedure for the definition of the rational Pontrjagin classes of topologi- 

cal manifolds. 

In the first section of this paper we extend the Hirzebruch-Atiyah-Singer signa- 

ture theorem on topological manifolds; we show, Theorem 1.1, that the index of the 

signature operators with values in continuous vector bundles over topological mani- 

folds can be expressed in topological terms by the same formula as in the smooth case. 

The proof of the topological signature Theorem 1.1 is based on the proof of the 

cobordism invariance of the index in the topological context. This last proof uses the 

excision Theorem 12.1 from [T3] in contrast with the method used by M. F. Atiyah, I. 

M. Singer in the smooth case, which is based on the study of the Cauchy problem. 

The other sections of the paper are dedicated to the study of the index of the 

abstract elliptic operators on topological manifolds. We show that for any abstract 

elliptic operator on an arbitrary closed, oriented topological manifold, its topological 

index can be defined, in a natural way, and that it equals the Fredholm index of the 

operator, Theorem 6.3. 

The Index Theorem 6.3. extends the Atiyah-Singer non-equivariant index theorem 

[P]. Our proof follows the main steps of the original Atiyah-Singer's proof. 

The original Atiyah-Singer's proof consists of checking first the index theorem on 

the signature operators with values in vector bundles, and to show in a second moment, 

that these signature operators generate, by homotopying and stabilizing their symbols, 

all other elliptic operators, modulo torsion. 

The first question toward an index theorem for abstract elliptic operators is how to 

define the topological index of such operators, given that, first of all, these operators do 

not have a symbol. 

The symbol of an abstract elliptic operator on M might be defined as the class of 

the operator itself modulo compact operators. The equivalence relation used in the 

definition of the K-homology group K0(M) is stronger than the factorization by com- 

pact operators--see G. Kasparov [K]; therefore K0(M) may be thought of as the K- 

theory of stably-homotopic classes of symbols of abstract elliptic operators on M. 
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Having now a good definition for the symbol, a new problem arises: to make the 

signature operators D~: W~(M, ~)-->Wo(M, ~) from [S.T.] represent elements in K0(M). 

+ are operators of This is a serious difficulty because the signature operators D~ 

order 1, while the abstract elliptic operators are operators of order 0; that is, the last 

operators act between Hilbert spaces which are modules over the algebra of continuous 

functions over M, while the signature operators D~ are defined on the spaces W~-I (M, ~), 

which are analogues of the Sobolev spaces of order 1, and they are not modules over 

the algebra of ~ontinuous functions, in the obvious way. In the smooth case, the 

calculus of pseudo-differential operators permits to convert easily on operator of order 

one into an operator of order zero so that its symbol restricted at the cotangent sphere 

bundle remained unchanged. 

We succeed to convert abstractly, instead, an operator of order one into an 

operator of order zero by preserving the K-homology class of its symbol. To do this, we 

create first a new K,-homology, h<,l)(-), for operators of order 1 (where the signature 

operators live) and, afterwards we show that the natural transformation of generalized 

homology functions K,(-)---~K~,I)(-) is an equivalence. 

Kt, l)(-)  is constructed along the lines in [K] by taking Hilbert space representa- 

tions of the Banach algebra CI ( - )  of functions of class C 1 instead of representations of 

the algebra of continuous functions. Unfortunately, c l ( - )  is not a C*-algebra, and this 

forces us to find a new proof for the suspension axiom. 

The reason why we start the construction of our K~.d)(-) from functions of class C 1 

instead of Lipschitz functions--which appear naturally in the entire theory--is that the 

Banach algebra of Lipschitz functions is not finitely generated (as most of the Kaspa- 

roy's considerations require), while C~(-) is finitely generated. Notice that we may 

not, of course, speak of cl-functions on a topological manifold with Lipschitz struc- 

ture; we may bypass this difficulty by taking Cl-functions on a tubular neighborhood of 

a Lipschitz embedding of the manifold in R N. (In other words, we use an embedding of 

the topological manifold M with Lipschitz structure, into R N, in order to select--in a 

fairly natural way--a  finitely generated Banach sub-algebra of the algebra of Lipschitz 

functions on M.) 

Existence of an index theorem for abstract elliptic operators which generalizes the 

non-equivariant Atiyah-Singer index theorem shows, in particular, that the axioms for 

the abstract elliptic operators are the only properties of the elliptic pseudo-differential 

operators on smooth manifolds which are essentially involved in the index theorem. 

This paper was essentially written at the California Institute of Technology, 

Pasadena, California, in 1980. Its results were announced in [Tz]. The publication of 
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this paper was delayed in connection with the previous papers [T3] and [S.T.] upon 

which it depends. 

It is a pleasure to express our warmest thanks to many mathematicians who, in 

different ways and, at different times, contributed to the appearance of this paper: J. 

Eells, E. Martinelli, C. Schochet, I. M. Singer, D. Sullivan and C. Teleman. 

w 1. The index theorem for signature operators on topological manifolds 

It was shown in [T3] that for any Lipschitz vector bundle ~ over an arbitrary closed, 

oriented, even-dimensional Lipschitz manifold M, signature operators D~ can be 

constructed. These operators are natural, that is, they coincide with the Atiyah- 

Singer's signature operators when all objects involved in their construction are smooth. 

The important fact about these operators is that they are Fredholm operators and that 

the Index D~ is a Lipschitz invariant of the pair (M, ~). 

A fundamental result by D. Sullivan [$2] asserts that any topological manifold of 

dimension 4=4 admits a Lipschitz structure, and that this structure is essentially unique. 

Sullivan's theorem makes then possible to construct signature operators not only on 

Lipschitz manifolds, but on an arbitrary closed, topological manifold of even dimension 

*4.  It was shown by Sullivan-Teleman [S.T.] the important result that Index D~- is not 

merely a Lipschitz invariant of the pair (M, l ) - - for  an arbitrary Lipschitz structure on 

M--but ,  it is a topological invariant of  it. 

An immediate consequence of this result is the famous theorem of Novikov on the 

topological invariance of the rational Pontrjagin classes [N]. This corollary provides a 

constructive way for the definition of the rational Pontrjagin classes on topological 

manifolds. 

This section of the paper is intended to prove first an index theorem for signature 

operators on topological manifolds. 

THEOREM 1.1 (the index theorem for topological signature operators). For any 

continuous vector bundle ~ over the closed, oriented topological manifold M, 

dim M~>6, 

IndexD[ = ch~ 0 L(M) [M]; (1.1) 

here ch ~ denotes the Chern character of ~, L(M) denotes the Hirzebruch polynomials 

on the rational Pontrjagin classes of M, and [M] is the fundamental class of  re. 
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Proof o f  Theorem 1.1. The idea of the proof of Theorem 1. I consists of reducing 

the verification of the formula (I. 1) from the case of topological signature operators, to 

the case of smooth signature operators. This reduction is made possibly by the use of 

topological cobordisms. The use of cobordisms in the study of the signature was 

previously done by F. Hirzebruch [H3] and M. F. Atiyah and I. M. Singer, see [P]. 

More precisely, the proof proceeds in this way. (1) The index of topological 

signature operators is invariant at topological cobordisms. (2) Any continuous vector 

bundle over an arbitrary topological manifold is Q-topologically cobordant to a smooth 

vector bundle over some smooth manifold. (3) For smooth signature operators, the 

formula (1.1) is a particular case of the Atiyah-Singer index theorem, see [A.S.]. 

From these three statements, only the first one is new for topological manifolds. 

The remainder of this section is devoted to its proof. At the end of it, we will give the 

precise formulation for the statement (2). 

Let ~-~ W be a continuous vector bundle over the oriented, compact topological 

manifold W of dimension m+ 1. Suppose that the boundary of W consists of two 

disjoint, oriented manifolds M! and -Mo. We set ~F~IMj, j=0,  1. Then (~, W) is called 

an (oriented) topological cobordism between the bundles (~o, Mo) and (~I,M1); the 

bundles themselves will be called topologically cobordant. 

THEOREM 1.2 (topological cobordism invariance of the index). / f  (~o, Mo), 

(~l, MO are topologically cobordant vector bundles, dimM0=dimMl~>5, then: 

IndexD~0 = IndexD~. (1.2) 

The proof of Theorem 1.2 depends upon rather delicate known topological tech- 

niques, along with the excision Theorem 12.1. [T3]. 

One of these techniques is contained in the following: 

THEOREM 1.3 (see R. Kirby and L. C. Siebenmann [K.S.], Essay III, Theorem 

2.1). For any compact topological manifold W of  dimension m+ 1 >>-6, and for any clean 

(m+l)-submanifold WocW, there exists a handlebody decomposition, i.e. a finite 
filtration: 

W0 c W1 c . . .  c Wr = W (1.3) 

by (closed) clean (m+l)-submanifoids such that, if  Hk+l denotes Closure 

(Wk+l \  Wk), then 

(H,+~, H,+1 n W,) (1.3') 
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is homeomorphic to (B p, aBP)• q, p+q=m+ l, where B p is the closed p-dimensional 

unit ball. Hk+ 1 is called a handle. 

If (~, W) is a cobordism between the bundles (~o, Mo), (~l, M0,  we take W0c W to 

be a collar on Mo, and we consider a filtration (1.3) as given by Theorem 1.3. 

Notice that the boundary of Wi is a disjoint union of two closed, oriented m- 

manifolds; one of them is -Mo,  and the complementary of it, which we call Ni. Notice 

also that No=Mo, and N r = M  1 . 

Therefore, if (~, W) is a cobordism as above, we may extract from it a chain of 

vector bundles over closed, oriented topological m-dimensional submanifolds in W: 

(~o, Mo) ---- (r/o, No), (r/l, NI) . . . . .  (r/,, N,) = (~1, MI). (1.4) 

Any two consecutive bundles (r/k, ND, (r/k+l,Nk+l) in this chain have the 

following properties: 

Nk+l results from Nk by a surgery Xk on Nk, (1.5i) 

the bundles r/k, r/k+l coincide over the common part NknNk+l, (1.5ii) 

NkNNk+! is precisely that region of Ark (and Nk+l) 

which is not affected by the surgery Zk. (1.5 iii) 

The regions of  Nk and Nk+l which are affected by the surgery Xk are (see (1.3')): 

Nkf)Hk+l =aBP• q, (in Nk+l) 
(1.6) 

Nk+l nHk+l =BP• q, (in Nk). 

We are going to prove now that the excision Theorem 12.1 [T3] implies: 

IndexD~,=IndexD~k+z, O<-k<~r-1, (1.7) 

which will complete the proof of Theorem 1.2. 

THEOREM 1.4 (N. Teleman [T3], Theorem 12.1). Let Ma, a = l ,  2, be closed, 

oriented Lipschitz Riemannian manifolds, and let ~ ,  Oa be two Lipschitz vector 

bundles over M~. 

Suppose U:#~ is an open common Lipschitz submanifold of Ml and M2, and let 

Vc U be an open subset in U such that l?c U. 
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Suppose that these vector bundles can be identified as in the diagram: 

~1*--  ~ Ml\ l )  
~0j 

over U $ ~ ..... U 

over Mz\ 9 

(1.8) 

in a compatible way over U \  f~. 

Then, (i): 

IndexD~l-IndexD~2 = IndexD~l-IndexD~; (1.9) 

(ii) if, in addition to the hypotheses, the bundles 0i and 02 are trivial bundles, and 

SigMl=SigM2, then 

IndexD~-IndexD~ 2 = 0. (1.1o) 

The desired equality (1.7) follows from (1.10) for the following choices for the 

manifolds and bundles from Theorem 1.4: 

MI~Nk, Mz=-Nk+I 

~l  --- rtk, ~2 - ~1.+ 1, 

(1. lO) 

and 01,02 are taken to be product bundles over Nk, Nk+l; (let T1cTI+~cNkNNk+I 
be two small closed collar neighborhoods of ~H,+l in Nk f3 Nk+0, we finally take: 

U = (Nk fl Nk+ O \ T I ,  
o 

V= (NknNk+O\Tl+~. 
(1.I0') 

For which regards the diagram (1.8), we identify ~i and ~2 over U in the natural 

way given that r/k,r/k+l coincide over NkNNk+l; we do the same with the bundles 

01,  02.  

Notice also that the bundle ~ is trivial over Hk+l O Tt+, because this space is 

contractible. A trivialization of ~ over Hk+~ tJTl+, will provide, by restriction at 

N k \ V  and Nk+I\V the required compatible horizontal identifications from the 
diagram (1.8). 

Clearly, the manifolds Ark, Nk+~ have the same signature because one is obtained 

from the other by surgery. 
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Finally, in order to be entitled to apply the Theorem 1.4 we have to make sure that 

the manifolds Ark, Nk§ have Lipschitz structures with the property that U from (1.10') 

is an open Lipschitz submanifold in both Nk and Nk+l. 
To show this, we take first a Lipschitz structure L#k on NK. We take on 

NkflNk+lCNk+l the Lipschitz structure ~klNkf~Nk+l. We extend this last Lip- 

schitz structure on the whole Nk+l, possibly by modifying it on a small neighbourhood 

of O(NkfqNk+l), see D. Sullivan [$2] and P. Tukia and J. Viiisiilii [T.V.] w 

This completes the proof of Theorem 1.2. 

Remark 1.5. The proof of the topological cobordism invariance Theorem 1.2, given 

here, provides also an alternative proof for the smooth cobordism invariance theorem 

by Atiyah-Singer [P]. 

In order to complete the proof of the Theorem 1.1, we need to compare the 

bordism groups ~s.roe(_), respectively f~s.o(_), of oriented topological, respective- 

ly, smooth manifolds. 

THEOREM 1.6 (Proposition 10.3, Annex C by L. C. Siebenmann, in [L.C.]). The 
natural homomorphism: 

im| f~S~174 t)sr~ (point)| m EN, (I.11) 

is an isomorphism. 

This theorem implies that the homology functors: 

fl,so(_)| f lsToe(_) |  

are naturally equivalent over the category of CW-complexes. In particular, if BU 
denotes the classifying space for the infinite unitary group, the homomorphism: 

i, |  QS~174 QS, T~174 -~ E N, (1.12) 

is an isomorphism. The groups involved in the isomorphism (1.12) are precisely the 

groups of smooth, respectively topological, cobordisms of complex vector bundles; 

compare [P] Chapter XVIII. 

w 2. Preliminaries for K-homology of opera|ors of order I>0 

[Note added September 8, 1983. In the following sections 2 and 3 we produce a 

K-homology theory for operators of order I>0. In the section 4 we show that the groups 
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K , ( - )  which we construct are modules over K~ We need this theory in order to 

make the (first order) signature operators, introduced in IT3], represent K0-homology 

classes, as it will be shown in the section 5. 

A few months ago, important and elegant contributions in this theory were made 

by S. Baaj, P. Julg [B.J.], and M. Hilsum [HI]. Specifically, S. Baaj and P. Julg 

constructed a theory in which the K-homology classes are represented by self-adjoint 

unbounded operators with additional properties; their theory is very natural for first 

order operators. Moreover, M. Hilsum shows that the signature operators introduced 

in [T3] fit naturally into the Baaj-Julg construction, and gives alternative, elegant 

proofs for two basic results from [T3].] 

We are especially interested in the complex K-homology. For this reason we don't  

refer to the real or real K-homologies, even though their constructions would require 

only minor formal modifications, see [K]. 

In which follows, H denotes a separable complex Hilbert space, while L(H) the 

C*-algebra of continuous linear operators on H. Let K(H)cL(H) denote the ideal of 

compact operators on H, A(H)=L(H)/K(H) the Calkin algebra, and I-I: L(H)---,A(H) the 

canonical projection. 

If S, TEL(H), we write S ~ T  iff S - T E K ( H ) .  

We denote by Lv(H)cL(H)  the group of unitary operators on H. 

Cp, q denotes the Clifford algebra of the quadratic form on RP+q: 

__X~I__. 2 2 2 . �9 . - - X p + X p + l + . . . + X p +  q, 

el . . . . .  el,, resp. el . . . . .  eq, are the first p, resp. last q, unit vectors in R p+q. 

An involution * will be defined on Cp, q acting on the generators in this way 

-~ ei= --ei, ~ t j= ej. 

Let k be a fixed non-negative integer. 

We will construct a K-homology functor on the category qgk described as follows. 

The objects ~fk are compact subspaces X c R  N, N arbitrary, having the property 

that the interior of X is sense in X. 

If X c R  N~ and YcR N~ are two objects in ~k, then Hom~k(X, II) iff f: X---, Y is a 

mapping of class C k. We say that f i s  of class C k i f f f h a s  an extension f.'J(---~R Nz of 

class C k defined on a neighborhood J(DX. 

For any XE ~g~, we define: 
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Ck(X) = {flf: X-+C, f o f  class Ck}. 

We introduce on ck(x) the norm l} 

Ilslt  E axO [ = sup a~fix) 
lal<~k XEX 

{ck(x), I[ ][k} is a unital, commutative, Banach algebra with involution, the involu- 

tion being the complex conjugation:f~--~f. 

Ck(X) is finitely generated because the polynomials are dense in ck(x). (This is the 

main reason why we selected this subalgebras of the algebra of Lipschitz functions, in 

order to construct an appropriate K-homology functor along the lines in [K].) 

Unfortunately, Ck(X) is not a C*-algebra if k~>l and X is not discrete. 

For any XE O~g k, the cone C(X), the cone C(X), the suspension Z(X) and the cone 

Ci of any inclusion i: A ~ X  are objects in ~k. Specifically, these objects are realized as 

follows. We define, for X=R N, 

C+-(X) = {tx+_(1--t)eN+IIxEX, O<~t~ I) c R  N+I, 

with eN+l = (0 . . . . .  O, 1)ER N+l. 

Then C(X)=C+(X), and Z(X)=C-(X)UC+(X). We define CicR N+1 so: 

Ci= {(x,t)ERN• xEX,  tE[-I,O]}UC+A. 

We introduce also, for any O~a~b~l ,  

C(+a, b](X) = {tx+(1-t)  eN+dXEX, a < t <<- b} ~ C+(X). 

If a group G acts on X, and A ~ X  is kept fixed, we extend naturally this action onto 

C---(X), Y~(x), and Ci in the obvious way. 

In which follows, G denotes an arbitrary compact topological group. We suppose 

that any action of G on an object X in C k is admissible, i,e. any transformation in X is of 

class C k. 
For the following definition and other definitions given here very briefly, we refer 

to [K]. 

Definition 1.1. For any XE ~c~k, with G acting on X, we define ~(pk.]G(X) to be the 

class of all quadruples (Z, ~0, ~0, F), where: 

(i) X: G---~LU(H) is a continuous homomorphism. 
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(ii) q~: Ck(X)--,L(H) is a homomorphism of Banach algebras which is: unital, 

equivariant, and quasi-involutive (not necessarily involutive as Kasparov [K] requires). 

We say that q~ is equivariant iff for any g E G and fE  C~(X) 

cp(gf) = z(g) ocp( f )ox (g - l ) ,  

where g, f E  Ck(X) is the function 

gf(x) =flgx), for any x~X. 

We say that q0 is quasi-involutive iff for any fE ck(x) 

~ ( y )  - ( ~ ( f ) ) * .  

Notice, however, that FIoq~: Ck(X)--.A(H) is involutive. This will suffice in order 

to construct products # in K-homology. 

(iii) ~p: Cp, q+l---~L(I-1) is an involutive homomorphism which commutes with qo 

(i.e. 7~ is "local") and with Z, 

(iv) F fi L(H) is a Fredholm operator which satisfies the properties: 

(1) F * ~ - F  
(2) F 2 - -  1 (1) 

(3) F commutes with ;~ (F is equivariant) 

(4) F anticommutes with ~2(ei), l<~i<-p, and with ~p(e/), l<~j<~q+ 1, and 

(5) for any f 6  Ck(X), 

q0(f) F - -  Fq0(f), 

i.e. F is semi-local. 
(k),~ Any element (Z, q~, ~0,F)6 ~p,q (X)will be called an abstract equivariant elliptic 

(pseudo-differential) operator of order <~k on X. 

The notions of equivalence, homotopy, and degenerated elements in Ik) ~,~ (X) are 

defined as in [K], w 1. 

Let -(k) 6 - (k), ~ ,q  (X), resp. ~,,q (X), denote the equivalent classes of elements in 
(k),G (k) G ~,q (X), resp. ~p,q (X). 

-(k),G ~,q (X) and ~k,)~G(X), are abelian semigroups under the sum operation defined by 

the direct sum of quadruples. 

We define: 

(I) This requirement may be omitted, see [K] Proposition 2, w 1, and we shall ignore it in the sequel. 



128 N. TELEMAN 

-(k), G 

-(k), G " 
' ~ p , q  ( X )  

If (X, A) is a pair in qgk, and G transform A in itself, then the restriction homomor- 

phism Ck(X)--.Ck(A) is an epimorphism and hence we may define K~pk,)~G(X,A) as in [K], 

w 1, Definition 6. The Definition 7 [K] will be used in order to define/(~)q6(X, ~). 

It turns out that K~k)~G(X,A) is an abelian group. 

Iff." (X,A)-->(Y,B) is an equivariant morphism of pairs in the category qgk, then f 

induces a homomorphism of abelian groups: 

f ,: K~)~G(X,A )--> I(pk,)~( Y,B). 

w 3. K-homology of the algebra of functions of class C k 

The following theorem states that / (k) ,q(_,  _)  is a generalized homology functor. 

THEOREM 3.1. Let k,p, q be arbitrary non-negative integers. Then: 
(1) K~pk�89 - ,  - )  is a covariant functor from the category of  pairs in q~k, with 

G-action to the category of  abelian groups. 

(2) For any pair (X, A) in c~k there exists a natural isomorphism: 

K(~G(X,A )--~ K(pk)+'IGq+ I(X,A ). 

(3) For any X E ~ k ,  there exists a natural isomorphism: 

i �9 K~ k)' ~(lq_._) K~. k), 6tX, ~). �9 . p , q  . L j  p , q  x 

(4) There exists a natural transformation of  functors 

�9 k), G k), G a.K(~p,q (X,A )---) KOp_,,q(A). 

axiom.) For any pair (X,A) in cCk, the two-sided long exact (5) (Exactness 

sequence 

i ,  " 0 
...-.-> K(~),G(A)-..> K(~),G(x)_~ K()),C(X,A)___> K(2_),IG(A)-.-)... 

is exact, where 
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f K(~C(X,A), for n>~O 
I~2"~(X'A ) = [  K~o!"_~(X,A ), for n~<0; 

and i: A ~-+X is the inclusion. 
(6) (Homotopy axiom.) I f  H: (X,A)• 1]-+(Y,B) is a homotopy in c~k, then for 

any nlEZ, 

(H0) , = (HI),: K~nk)' G(X,  A )--> K~f)'C(Y, B), 

where Ht ( - )=H(- ,  t): (X, A)-->(Y, B), 0~<t~<l. 

(7) (Suspension axiom.) For any X E ~cEk there exists a natural isomorphism 

X,:/~.k)' c(Y-A3-~,/~.k)' G(X),,_~ 

where/~f)'~(X) denote the reduced groups. 

Proof. For the proof to the statements (1)-(6) we refer to [K]. However, some 

comments are in order. 

(a) Notice that the relative homotopy axiom can be deduced from the absolute 

homotopy axiom, exactness axiom and the five-lemma. 

(b) Among the statements (1)-(7), only (3) and (6) require quite delicate analysis 

techniques. Among them, integrals of the form 

f(o F(t) d(1H| 
,2:r] 

are involved. Here, F denotes a continuous function: 

F: [0, 2~r] ~ L(H| 2:r])), 

p: C~ 2~t])---->L(L2([O, 2z~])) is the natural C*-representation given by multiplication of 

L2-functions on [0, 2er] by continuous functions, while d(l~| denotes the spectral 

measure given by the inoolutioe, unital homomorphism: 

1/-/| C~ 2~r])-+ L(H| 2zr])); 

this is the reason why we may apply the same proof as in [K], even if q9 from (ii) 

Definition 1.1 is quasi-involutive instead of being involutive. 

(c) And now, a short complement to the proof of Theorem 1, w 5 [K]. The 

operators M, N used there may be taken to be of the form: 

9-848282 Acta Mathematica 153. Imprim6 le 8 aofit 1984 
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where (M' ,N') ,  resp. (M", N") satisfy the requirements for (M,N) in the spaces 

H| 2:r/3]), resp. H| instead of H| 2:r]). This is possible 

because T~(b) is a pseudo-differential operator whose symbol is identically - 1  on 

[:r/3, 2:r]; therefore Tl(b) may be modified, slightly, so that Tl(b) preserves its symbol 

and becomes local (multiplication by -1 )  on [:r/2, 2:r]. 

Then M, N will, clearly, commute with projections on H| and 
H | L 2([ 2~r/3 , 2~]). 

(d) The proof of (7) will follow from the Lemma 3.1 and 3.2. 

LEMMA 3.1 (weak excision axiom). Let YE~f,~ k and X=~.(Y), A=C+(Y), 

v=cfi/2, r). 
Then, the homomorphism 

i.: I~)~C(X~ U,A \ U)--.~ I~pk,)q~(X,A ) 

induced by the inclusion 

i: (X'N U, A \ U)~-> (X,A), 

is an isomorphism. 

Proof. We shall adopt the following convention in order to avoid introducing too 

many symbols. If (Z, q~, ~P, F) E ~k,)~C(X, A), and f." (X, A)--->(Y, B) is a morphism in ~k, 

then 

where f .  q0= q~ of*, f*: Ck(D--->Ck(K), and 

= [ x,A  ,r31 ( r ,  n). 

We shall construct a homomorphism 

j: l~pk,�89 6 (X,A )---> K~)~6 (Y.( Y) \ U, C+ ( Y) \ U) 

which will be the inverse for i.. 
Let 2: [0, 1 ] x [0, 1 ]---> [0, 1 ] be a function of class C k§ l with the following properties: 

(a))~(s, t)=s for V(s, t) E [0, ~] x [0, 1] 
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(b) 2(s, 0)=s for Vs E [0, 1] 

(c) X(s, t )=l  for Vs>~l-} t ,  and t>�89 

(d) for any fixed t ~ [0, 1], 2(s, t) is a non-decreasing monotone function in s. 
Then 2 t ( - ) = 2 ( - ,  t) is a Ck+khomotopy of the identity mapping of [0, 1]. 
We use the homotopy )].t in order to construct a homotopy ht of class C k on Z(Y) 

which smashes neighborhoods of the vertex of C+(I0 progressively. This homotopy is: 

h,IC-(Y) = Idc_(r ) 

ht(s eN+ 1 + ( 1 -- S)X) = ~.,(S)" eN+ 1 + (1 --3.,(S))X 

for any x E Y. 

Let a: Z(Y)---~[O, 1] be  a Ck-function: 

a(x) = {10 f~  (Y) 
for x E U = Ct]n, ,~(Y). 

If 

we define 

by the formula 

(Z, 9, q', Fs) E g~(pk)~ ~(Z(Y), C+(Y)), 

fiX, qo, ~p, F~) E g(pk,)~6(X ( Y ) \  U, C+(Y) \  LO 

J(Z, ~, W, F~) = (Z,~0), W, F~), 

where the representation J(9): Ck(Z(Y)\  U)--->L(H) is 

(J(9)) (.10 = cp(hT(a.D) 

for any f~. C k ( E ( Y ) \  U). 

Here, a .f is  thought of as a function on Z(Y). Of coursej(q0) is a homomorphism of 
Banach algebras because h~(a. f )  depends only on 

(Gl~f) [ ( C--( l Z) U C[qo, 1/3](lZ)) =f[ ( C-(Y) U C['~, ,/sl( r))" 

For any (Z, q0, ~p, Fs) E ~k,~o(X ( Y ) \  U, C+(Y)\  U), we have 

j o  i.(z, qg, e/, Fs) = (z,J(i.(q~)), ~0, Fs). 

For a n y f E  Ck(Z(Y)\U), we get 

(j(i(q0))) (f) = (i.(q0)) (hT(a "f)) 

= cP((h~((a "f ) ) l (Z(D\  U)). 
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The inclusion: 

l" ( ~ ( V ) \  C~l/3 ' l] (V),  C+(Y)\C~1/3, l] (]7)) ~ ( X ( Y ) \ C ~ I / 2  ' l] (V),  C+( V)\C~l/2 ' 1] (Y)) 

is a Ck-homotopy equivalence, and therefore I induces an isomorphism l,  between the 
k) G corresponding groups/(~,q ( - ,  - ) .  

In order to show t h a t j o i , =  1, it would be enough to show that 

( jo  i.) o l .  = l , .  

Because al(X(Y)\C~/3, ~}) -= I, and hi is the identity mapping on x(  y ) \ c ~ / 3  ' 1](Y), it 
follows that for any quadruple 

we have 

j o  i ,  o I,(X', q~', ~P', F;) = !,(%', 9 ' ,  ~p', Fs); 

therefore,  

i ,  o j  = (h l ) ,  = l 

because hl is Ck-homotopic to the identity. This completes the proof of  Lemma 3. I. 

LEMMA 3.2 (weak Mayer-Vietoris  exact  sequence). For any YE 0 ~  k, let be 

X =  X(Y) 

B = C - ( D  tJ C[~, 2/3j(I0 c X ( D  

C - -  C~/3, u(Y) c X(I0 
_ _  + A = B fl C - C[v3, 213]( Y). 

therefore j o i ,  = 1. 

Now, let us take (Z,q0,~p,Fx) E~k.~c(Y~(I0,C+(Y)). We get 

i, oj(x, 9, e/, Fs) = (X, i.(J(9)), ~O, Fs). 

For  any function f E  Ck(X(I0), we have: 

(i,(J(9))) ( f )  = (J(9))[fl(~( Y)\Cfi/2, 11(I'9)1 

= ~ { h T t a .  O"l(x(Y)\cf i /2 ,  ~](I0))]} 

= ~0(hT(f));  
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Then the natural Mayer-Vietoris sequence 

(k) ~ (k) j.+t. , K~k) ' 6(X) a;,3q. , K~k), 6(A )___~ ... ...---> K~k)" C(A) r , K ,  " (B)O)K, "~(C) 

is exact. (The homomorphisms i,, j , ,  k, ,  l,, 0", e,, q ,  will be explained in the proof.) 

Proof. (Compare with Proof  of  Theorem 6.7 from [B.D.F.].)  The homomorphisms 

i , ,  k , ,  j , ,  l , ,  0 ' ,  q , ,  are the natural homomorphisms from the following commutat ive 

diagram: 

( I )  0~+1 K ( k ) , G ( A )  i, r �9 .. , , K~ *)" C(C) , K(n k)" G(C, A) a; ,/(~_)'ff(A) i. ) . . .  

1 l', + 1' 
(II) ... ~"+', K~ k)'G(B) J*, K~ k)'c(X) q*,K~ k)'c(X,B) e ; / (~) , ,6(B ) J . . . .  

with the lines (I) and (II) exact;  e ,  is the excision isomorphism from Lemma 3.1. 

It is easy to check that the composit ion of  any two consecutive homomorphisms in 

the Mayer-Vietor is  sequence is the zero homomorphism. 

(1) Exactness  at K~ff)'G(X). Let  be aEK~ff)'6(X), , -1 a , e ,  q , ( a )=0 .  From the 

exactness of  (I), we get there exists cEK~k)'C(C) such that r(c)=enlq,(a). Now, 

q,  l,(c)=en r(c)=e, e~ l q,(a)--q,(a). Therefore q,( l , (c) -a)=0.  

From exactness  of  (II), we deduce there exists b EK~k)'~(B) such that 

j , (b )=l , (c ) -a ,  or a=j,(b)+l,(c).  

I~.k)'afA ~ Let  a EK~_)'~(A) such that ( k , , - i , )  (a)--0, or k , (a )=0 ,  (2) Exactness  at ,-1 ~ ,. 

i , (a )=0.  From exactness  of  (I), we get there exists x E/~ff)' ~(C,A) such that a~,(x)=a. 

Then O=k,(a)=k, a'(x)=0~ e,(x). 

From exactness  of  (II), we know there exists y E K~ff )' C(X) such that q,(y)=e,(x). 

Then a" e~ -1 q , (y )=a~  en! e~(x)=a'(x)=a. 

(3) Exactness  at K~ff )' C ( B ) ~ / ~ ) '  G(C). Suppose that b E/~ff)' 6(B), 

c E K tk)' G(C), and j,(b)+l,(c)=O. Then O=q,(j ,(b)+l,(c))=q, l,(c)=e, r(c); as e,, is an 

isomorphism, we deduce  r(c)=0. From exactness of  (I) we get there exists 

al Eh4k)' 6(A) such that i,(al)=c. Then 

0 =j,(b)+l,(i ,(aO) =j , (b )§  k,(aO =j,(b+k,(aO).  

From exactness  of  (II), we get that there exists xEK~)+'~(X,B) such that 

a" "x ,+l( )=b+k,  al. As e,,+l is an isomorphism, we know there exists yEI~k)+'~(C,A) 
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such that en+l(y)=x. We take a=c3"+l(y)--al. An easy computation enables us to 

conclude that k.(a)=b, and -i.(a)=c. 
Now we are in a position to prove the suspension axiom (7). 

We rewrite the weak Mayer-Vietoris sequence proved before substituting the 

absolute K<~ )' c (_)  groups by the reduced groups: 

/~ ) '  ~ = Ktk), o(X)/K~), G(point). 

Of course, /~k), O(B)=/~k), G(C)=O, 'r E Z, because B and C have the Ck-homotopy 

type of a point. Therefore the suspension homomorphism 

a~ e~ -1 q.:/~f) '~ I0--->/~/')' a(A'l~-i ~ ,----/~k),ot,_l ,',W 

is an isomorphism because A has the Ck-homotopic type of Y. Theorem 3.1 is 

completely proven. 

There exists a natural transformation of functors (K~p,q(-,-) denoting the Kas- 

parov functor): 

( - , - )  G _)7/~p, q ( _ ,  k) G Op,a(-, 

defined as follows. For any quadruple (Z, cp, ~p,Fs)E c~p,q(X,A), we define 

(Z, cp', ~, Fs) = ~ q(X, A) (Z, cp, ~, F s) E (~]G(X, A) 

where q~'=q~oik: Ck(X)--->L(H), and ik: Ck(X)~C~ is the inclusion of the algebra of 

functions of class C k into the algebra of continuous functions. 

Of course, q~p, q(X,A) defined at the quadruple-level, factorizes to K~,q( - , - )  and 

is an homomorphism. 

Now we show that 6 q~p,q(-, - )  is an isomorphism on a large enough class of spaces, 

when the. group G is trivial. Even if the following proof requires G to be trivial, we 

expect that the following theorem be true for any compact group G. 

When G= { 1 } is the trivial group, we will omit to indicate the group. 

THEOREM 3.2. Suppose that X E ~f~k 0~k~0o,  is triangulable, and G={1) is the 

trivial group. Then, for any p, q=0, 1 ... . .  

is an isomorphism. 
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Remark. The proof of this theorem is not immediate, as the reader could expect, 

because the category c~k does not have enough quotient spaces X/A. Fortunately, if 

i: A ~ X  is inclusion, Ci E ~C~k and Ci has the homotopic type of XIA. 

Proof. We need three lemmas. 

LEMMA 3.3. c~p, q (point) is an isomorphism. 

P t o o f o f L e m m a  3.3. Of course C ~ (point)=C k (point)=C. On the other hand, the 

only difference between our quadruples, and Kasparov's quadruples is that the repre- 

sentation cp: Ck--,L(H) has to be quasi-involutive, while in the Kasparov's case it has to 

be involutive. But, in both cases it has to be unital, and it is immediate to see that any 

quasi-involutive homomorphism q0: C--~L(H) is automatically involutive. 

LEMMA 3.4. For any pair (X, A) in ~k, A:6~, there is an isomorphism 

l(,k,)~(x, a ) = l~pk,)~( Ci), 

where i: A ~-~X is the inclusion. 

Proof  o f  Lemma 3.4. We denote 

B + = Ctu3, ll(A) c Ci, 

C = X• [ -  1,0] U C~, ~3I(A) c Ci, 

, i~=BNC= + C[1/3, 2/3](A), 

O = + C(2/3, 1](A) �9 

It may be proven exactly as in the proof of the weak excision axiom (Lemma 3. I) 

that the excisive-inclusion: 

induces an isomorphism 

for any n E Z. 

We will write 

(C, fi,) = ( C i \  U, B \  U) ~ (Ci, B) 

en: K~f )' C( C, A )---, K~f )" C( Ci, B) , 

again the commutative diagram used in the proof of the weak 

Mayer-Vietoris exact sequence, with A, B, C, X replaced by ill, B, C, Ci: 
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(I) ... ~§ 

(II) 

, i~k), o(A ) ~ / ~ k ) ,  G(C ) ", K~ k)' G(C, A) 

l, l,. + 
,/~k), G(B ) _.~K~k), G(ci) e. K(nk), G(ci, B) , ( B ) - - - ,  . . .  

Because B has the Ck-homotopy type of point /~n k)' C(B)=0, and therefore q,  is an 

isomorphism. Notice also that (C, A) is Ck-homotopy equivalent to (X, A). The succes- 

sion of isomorphisms 

K(n k)' ~ A) = K(n k)" ~ A) "> KCn k)" G(Ci, B) q~', I~(n k)' O(Ci) 

will bring us to the proof of Lemma 3.4. 

LEMMA 3.5. Let {Xi} l<-i<~k be a finite family of  objects in q~k with base point 

xoEXi, l<~i~k, and with no other intersections. 
Then2 

k 

v...  vXk)= + 
i ~ l  

k 

(X I v. . .  vX k) = U X i is the wedge). 
i = |  

Proof. See proof of Theorem 1.7 from P. Hilton [H1]. We pass to the proof of 

Theorem 3.2. 

We take a regular covering Uo, UI . . . .  , UN of X ~ R  N, where U0 U Ut U ... U Ui is a 

neighborhood of the i-scheleton of the triangulation of X. 

R 
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It is not difficult to show (by using, for example, the principle of the proof of 

Lemma 3.5) that for a finite disjoint union U of spaces Xi, 

l f)(l iXi) and 

This property, along with Lemma 3.3, proves that ~p. q(Uo) is an isomorphism. 

Let ik: U0 U U1 U... U Uk- 1 ~ U0 U U1 U... U Uk denote the inclusion. 

If we are able to prove that all ~p. q(Cik), O<~k<.N, are isomorphisms, then an 

induction argument on k----(by using the exact sequences of the pair 

(UoU ... U Uk, UoU... U Uk-O, 

for both functors Kp. q(-)  and K~,%(-), along with the five lemma)---would conduct us 

to the conclusion that Op, q(X) is an isomorphism. 

In order to prove that *p. q(Cik) is an isomorphism, we construct a space NkcR N, 

in qgk, having the properties: 

(1) N~=VaN~, whereas a is any k-simplex of the triangulation of X, 

(2) each ~ is Ck-homotopy equivalent to the sphere SkcR k+l. 

We shall prove that Cik is Ck-homotopy equivalent to N k. 

Indeed, Cik is C~ equivalent to Va S~, and therefore C~ 

equivalent to N k. That is, there exist two continuous functions 

f'. Cik--> N k, g: NL--> Cik 

property that fog.~lNk,  gof~lcik, where the homotopies H',  H" are con- with the 

tinuous. 

The Whitney approximation theorem permits us to suppose tha t fand  g are of class 

C k (we may rep lace fand  g by two other functions of class C k which are C~ 

to them). At this point, we may approximate the homotopies H', H" by Ck-homotopies 

so as at the beginning and the end of these homotopies, they remain, respectively, 

equal to f o g  and INk, resp. g o f a n d  lci;  Therefore, Cik has the Ck-homotopy type of 

N k . 

Therefore, ~p, q(N e) is an isomorphism in view of the Lemma 3.5, Lemma 3.3, 

and the suspension axiom. 

10-848282 Acta Mathematica 153. Imprim~ le 8 aoQt 1984 
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w 4. Products 

From now on we restrict ourselves to the non-equivariant case, G={1}, and G will be 

omitted from the notation. 

4.1. In this section we intend to construct a natural bilinear homomorphism: 

• r ~  (4.1) 

Pairings of this form are, of course, known in the Brown-Douglas-Fillmore theory 

and in the Kasparov theory, but, due to the specific way in which our signature 

operators (with values in vector bundles) occur, it is necessary to describe them in a 

different manner. 

Let X be an object in ~k. Let (1, q~, ~ ,F )E  ~k,~C(X), F: H---~H, and let ~ be a com- 

plex vector bundle of class C k over X. We will define (1,q~,~,F)~r 

(1, F? 

Let i: ~ N  be a Ck-embedding of ~ into the product bundle N: X•  N being 

endowed with the obvious Hermitian structure; let ~- be the orthogonal complement 

to 8 in N. 

In general, if ~/-->X is a Ck-vector bundle, we denote by Ck(r/) the space of C k- 

sections in ~/, and by ck(x) the complex valued functions of class C k on X. Notice that 

Ck(~) is a Ck(X)-module. 

We have 

Ck(N) = Ck(~)~ck(~•  (4.2) 

let p ~ , p ~ ,  denote the projections: 

p~: Ck(N)---> ck(~), P~: Ck(N)----> ck(~'L). 

Let si, l<~i<~N, denote the constant section in 

N: si(x) = Oc, (0 . . . . .  1 . . . . .  0)), x EX.  
(i) 

Notice that the quadruple (1, tp, ~p,F) being given tp: Ck(X)---~L(H) defines a c k ( x )  - 

module structure on H. We define then: 

H~ -- H |  ck(xo ck(~); 



here | cktx) 

occur,  the basic ring Ck(X) will be omitted from the tensor  product  symbol.  

F rom (4.2) we get 

But  

THE INDEX THEOREM FOR TOPOLOGICAL MANIFOLDS 139 

denotes  the algebraic tensor  product  over Ck(X). If  no confusion could 

H N = H |  ck(x) Ck(N) = H0).. .  ~ H ,  
N 

which allows us to introduce a Hilbert  s tructure on H N (direct sum). We endow H e, He~, 

which are subspaces of  H N, with the induced norms. Of course,  1H| 1H| are 

complementary  project ions,  with ranges H e, H#~. 

PROPOSITION 4.1. H e and H~ are closed subspaces HN; hence they are Hilbert 

spaces. 

Proof. Let  Xl . . . . .  x,,, ... be any sequence 

element  x,, may be represented uniquely: 

N 

x, = E ha~| ' 
a = l  

Because {xn} converges in/-/N, the limits 

exist in H for any l<~a<.N. 

Let  be 

Because X n ~ n~, we have: 

h a = lim h~ 
n---~ 0r 

p~(s~) = E A~ s#, A~ E Ck(X). 
a,fl  

x n = ( l |  E h~| E qg(A~)h~| 
ct ct,~ 

As q0(A~) is a bounded opera tor  on H,  we have 

in H a which converges in HN. Any 

h~EH. 

= (4.4) 



140 N. TELEMAN 

lira x, = E cp(A~) (lim h:)| = E ha| = (l| E h~| , 
n " ~  r a , f l  n "- '~ r a , f l  a 

which belongs to He. 

Remark. If the representation q9 were involutive, then H e, H ~  would be orthogonal 

one to another. 

Now, we pass to define (1, q0e, q,e, Fg). 

HN is a ck(X)-module by the homomorphism: 

qVN: Ck(X)'--* L(HN) 
N N 

a 

5 = 1  a = l  

(4.7) 

for any f E  Ct'(X). 

The subspace H~CHN is stable at ~PN, and we denote by opt the induced represen- 

tation by q0N on H~. q0# is quasi-involutive. 

We define 

F~ = (1 | (F |  1~): Hg---> H~; 

because F is not, in general, a Ck-homomorphism, F~ has to be precised better. If 

x E H~, we write x, uniquely, 

x = E h~| h a EH, (4.8) 
a 

and we define: 

F~(x) = (l| E (Fha)| = E F(h~)| s~. (4.9) 

Wc check that the operator Fr satisfies the requirements (IV) from Definition 2.1. 

Let x=~aha| y=E~| be any two elements in H~. We have: 

(F~x,Y)=(Ee,#F(ha)| lca| I 

= E (cp(Aaa)F(ha)' ka)t~ 
a,fl 

= E (F(cp(A#~)h~)+K~(h")" :)" 
a,fi 
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(where I~=cp(A{)oF-Fog(A{) are compact operators) 

= X (9(A~) ha + K~(ha)' ( -F+K)  (ka))n 
a,fl 

(where K=F*+F is a compact operator) 

= X (q~(A~)ha, -F(ka))n 

(where - means that we ignore terms which stay in the range of compact operators) 

- (h a, 
a,fl 

(because pr is a Hermitian projection, there is Aa-A a, and we have further:) 

=(x , -~(A 'F( lca) |  

=(x 
# / 

o r  

U - - F t .  

In order to prove that the operator F~  is a Fredholm operator, we consider also 

the operator F~,  analogously defined: 

where II~[I--p v, and X a ha| EH#.. 

We have, clearly: 

F~| +(1 | (F| IN) (1 | |  (F| 1 N) (1 | = F|  1N = F~F~... ~F, 
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which is a Fredholm operator; notice that the last two operators of the first line in this 

formula are compact operators and, then both F~ and F ~  are Fredholm operators. 

Indeed, we have for any x=E~ha| in Hr~: 

L a,/~ 

= E B~F(A~h~)| 
ct , fl , 7 

~-- E F(B}a~h~)| =0" 

In a similar way one could prove that for any f E  ck(x), 

q)r .Fe ~ Fr rpr 

We define 

'//0,~: G ,  q+l --'~ L(H~) 
~pr (h| = ~p(e) (h)| (4.10) 

for any e E C p ,  q + l ,  hEH, and sECk(8). 
Then k) (1, ~ ,  ~ ,  F~) ~ ~, ~(X). 

Remark. If 0: ~--,~' is a CCisomorphism of vector bundles, then I|162 

is an algebraic isomorphism. One may show that l G0  is a homeomorphism. 

We intend to show now that the operator FS, modulo compact operators, does not 

depend on the embedding ~ N .  To this aim, let us choose a finite covering ~ 

of X by contractible open subsets Ua, and let {Qo}o be a subordinated partition of 

unity. We denote by s~ . . . . .  s a, n=Rank~,  a Ck-frame in ~ over Uo. 

We decompose F~ in a sum of operators Fe, a with support in U~: 

because q)~ is unital, we have: 

F~, o = F~. q~(~o); 

F~ =EF~,~-  
a 
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If s: Ua---,~ is any Ck-section, and h E H, then we define: 

F~,a(h | s) = F~(h | (Qa s)). 

i: ~ N  denoting the inclusion, we have 

N 

"0 a a i s k = E S k s  a, l<-k~n, 
c t : l  

where a k S k EC (Ua). 

We have then: 

\ k,a k,a,fl 

~-- E F(hk)| 
k,a~fl 

= ~ F(hk)|176 
k 

which shows that (1H| -1F~, a, modulo compact operators, does not depend on the 

inclusion i. 

These considerations enable us to conclude that the correspondence 

gives a well defined pairing 

(1, ~, ~0, F) x ~ ~, (1, f~, ~0~, f~) 

N: K(pk,)q (X) x K0 (X) --->/~pk,~q (X) (4,11) 

The following propositions will be needed in section w 5. 

PROPOSITION 4.2. I f  dpp, q(--) denotes the isomorphism from Theorem 2.2, then 

the following diagram: 
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is commutative. 

n ,/:,O)q (x) 

ttpp q(X)• [ [ t~p,q(X) 

n 

(4.12) 

Proof. If ~ is a vector bundle of class C k, then H| is canonically 

isomorphic to H|176 

PROPOSITION 4.3. Let A ~ X  be an inclusion in the category ~k. Then, for any 
~EK~ and DEKt~�89 we have 

j,(Dnj*~) = ( j ,D)n~ in K~pk�89 (4.13) 

Proof. Let (1, q~, ~p,F) E ~Ak.)q represent the element D, F: H-->H, and let ~ be a vector 

bundle. We may think of ~ as a sub-bundle of the product bundle N over X. 

Let 

T(~): H| c,~(x ) Ck(~)--+ H| Ck(A ) Ck(~lA) 

be the homomorphism given by the restriction homomorphism of the basic 

ring: ck(x)~Ck(A), and by the restriction homomorphism Ck(~)--,Ck(~IA). We will 

show that T(~) is a isomorphism, and afterwards, (4.13) will follow easily. 

In order to check that T(~) is an isomorphism, it is enough to show that T(~)~T(~') 

is an isomorphism. But both the domain of definition, and the range of this last 

homomorphism, are canonically isomorphic to H~. . .~ )H  (N times); we use these 

canonical isomorphisms as identifying isomorphisms. With these identifications, 

T(O@T(~') is the identity mapping. 

PROPOSITION 4.4. For any DEK~pk)q(X), and ~, ~EK~ we have: 

(D n ~) n ~ = D n (~" ~), (4.14) 

where �9 denotes the multiplication in K~ 

Proof. Immediate from the definitions. 

Since now on, we will be interested only in K~ and K~0~ If X has a 

finite regular covering, as in the proof of Lemma 2.5, then all these three groups are 

finitely generated. We introduce: 
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/~Q(--) = K~174  

(_)= 
0,Q 

P R O P O S I T I O N  4.5 .  

dimQ/:O(-) = dimQ/~0~ ( - )  = dimQ/~01,~ ( - ). 

Proof. This result is implicitly contained in [B.D.F.] and [K]. 

145 

(4.15) 

w 5. Signature operators versus K-homology 

In this section we show that the signature operators D~- constructed in [T3]: 

D~: W~(M, ~)---> Wo(M, ~) (5.1) 

represent well defined elements in Ko(M); however, some technical difficulties arise. 

The aim of the sections w167 was exactly that of preparing the instruments needed in 

surpassing these incoming difficulties. 

The Hilbert spaces W~(M, ~) are not C(M)-modules under the usual multiplication 

operation. Instead, W~(M, ~), and of course W~(M, ~), are modules over the algebra 

A~(M) of Lipschitz functions on M. Unfortunately, &~ is not a finitely generated 

Banach algebra, as G. Kasparov's theory [K] requires. We can select though, in a fairly 

natural way, a finitely generated Banach subalgebra of &~(M) as follows. 

We embed M m as a Lipschitz sub-manifold in R N. Then (f , f=FlM, FE Cl(RN)} is 

a finitely generated Banach subalgebra of A~ However, because it is not easy to 

keep control on the first order partial derivatives of such restrictioned functions to a 

rather irregular sub-manifold as M is, it is more practical, instead, to consider the 

Banach algebra of all complex valued functions of class C ~ defined on a tubular 

neighborhood U of M, provided that we would be able to relate K.(U) to K.(M). 

A first step toward this objective is the following: 

PROPOSITION 5.1. (i) (J. Luukkainen, P. Tukia [L.T.], Corollary 4.12.) For any 

Lipschitz manifold M m, there exists a closed locally Lipschitz flat embedding 
j: M 'n ~-->R TM, and 

(ii) a tubular neighborhood U o f  j (M ' )  in R 3m such that 

j: M"~ ~--~ U 
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is a homotopy equivalence; 
(iii) U is triangulable. 

Proof. Let j be a flat Lipschitz embedding as in (i). Then j(M) has a normal disc 

bundle :r: U---~j(M) in R 3m, see C. P. Rourke-B.  J. Sanderson [R.S.] Corollary 5.5; this 

proves (ii). 
From the local triviality of this normal bundle, and from the fact that M m is a 

manifold, we conclude that U is a topological sub-manifold of dimension N in R N. 

From Proposition 2.1 w 2 and the Classification theorem w 0, both in Essay IV, [K.S.] by 

R. Kirby, L. Siebenmann, we deduce that U is triangulable. 

By virtue of the Theorem 3. I (6) and Theorem 3.2, we have the following sequence 

of isomorphisms: 

p 

Kn(M) j''" , Kn(U) ~,,~t0 K~I~(U), n E Z; (5.2) 

we will make the signature operators represent elements in/(ol)(u). 

With U chosen as above, W~(M, ~) and Vcff(M, ~) are Cl(U)-modules in a natural 

way. Let ~p~, resp. q0o, denote the homomorphisms: 

cPi:CI(U)---~L(W~(M,~)), i = 0 ,  I, 

which define these C~(U)-module structures. 

We associate with D~- the operator: 

De:H~---~H~, where H~=W~(M,~)~Wo(M,~), 

o (o 

see N. Teleman [T3], w 11. The generator el of the Clifford algebra Co, 1 is acting on H e 

in this way: 

~ (e | )  = (~ 0_1); 

we define a lso  qg~:CI(U)--~L(He) to be q0e=q01~q0o. Then /)~=(1,q0~,~p~,D~)E~ol~(U). 

This statement is proven in [T3]. 

It remains, though, to prove the following: 
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LEMMA 5.2. The homomorphism 

~%: cl(u)----> L(Hr 

is quasi-involutive. 

Proof. The action of CI(U) on W-~(M, ~) is, clearly, involutive; we need, then, to 

show that for any Lipschitz function f on M, the multiplication by f." 

,uf: W~(M, ~s)--> W~(M, ~) (5.3) 

has the property: 

where Ky is a compact operator. 

I~ =l~/+Kf, (5.4) 

In order to prove (5.4), we need to report to the definition of  H~ in w 4. Supposing 

that the bundle ~ is realized as a Lipschitz sub-bundle of the product N, and that the 

projection of the constant section sa: M---~N, l<.a<~N, on ~ is: 

P~OSa=~A~sa, 
# 

where A~ are Lipschitz functions, then any element x in W~(M, ~) may be written (not 

uniquely): 

x=EA~ha| 
a,y 

For any other element y E W~(M, 1), 

with h a E W~(M, 1). 

Y=EA~: |  

and f a Lipschitz function on M, we have 

(/tY(x),Y)l= E ( fA ~ ha ,A~ ka), 
a,fl, y 

= E [(fA~ha'A~k~)o+(d(fA~h~)'d(A~k~))o+ 
a,fl, y 

+(~(fA~ h~),a(A~))o] 
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= ~x,pf(Y))1+ ~ [(dfAA~ha,d(A~))o (5.5) 
a,~,y 

- (a• h '~, df  A At# ka)o + (df_lA ~ h a, ~ (a~ ka))o 

- (  6(A~ ha), df  l A ~  /Ca)o]. 

If we take in (5.5) x=(p~-I~/)(Y) and, if we use the Cauchy-Schwartz inequality, we get, 

for C=ess  supMIdf l, and c,---ItuT- :ll 

It(~fl-t~l) yll~ ~ < 2CC," IlYll0" tlyll,. (5.6) 

Let {Yi}ieN, be any bounded sequence in W~(M, ~). Because/zT-#y is a bounded 

operator in W-~I (M, ~), and as the inclusion W~(M, ~),-->Wff(M, ~) is compact,  see N. 

Teleman [Ts], it follows t ha t  there exists a subsequence of {y~}~, which we may 

suppose to be the sequence itself, with the property that the sequence {(U.~--~r~y~}~eN 
converges in W-~(M, ~). From (5.6), we get then: 

0~< lim Ilt~?-~?ty,-y?tl~ 
i,j---~ 

~< 4C lira II(u?-F,? (Yi-Yj)I]osup IlYi]ln = O, 
i,j--* oo i E N 

which shows that { ~ - / x / )  (yi)}ieN converges in W~(M,~); this proves (5.4). 

To summarize,/ge represents a well defined class in/r Taking into account 

(5.2), we define: 

Dr =j ; loo ~o(U) -t [/)~] EK0(M). 

The element D~ might depend on the embedding j, but the image of D~ in 

Ko(M)| is independent of J,  as follows from the discussion in section w 6. 

We denote 

D M  = D I ,  D M  E g o ( M ) ,  

and by virtue of Propositions 4.2, 4.3 and 4.4, we have: 

D~ = DM f~ ~, for any ~ E K~ 

D~ fl ~ = D~. ~, for any ~, ~ E K~ 
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w 6. The index theorem for topological manifolds 

PROPOSITION 6.1 (rational Thom isomorphism). For any compact, oriented topo- 

logical manifold M m, m>~6, m--O (rood 2), aM=f~, the Thom homomorphism: 

T: Ko, 

T:~--~DMn~, (6.1) 

where DM is the signature operator defined in w 5, is an isomorphism. 

Proof. By virtue of Proposition 4.5, it is enough to show that the Thom homomor- 

phism (6.1) "is a monomorphism. Then, let ~ be any element in/~o(M), and suppose that 

T(O=0. From (5.9) and (5.10), we have, a fortiori, for any CE/~Q(M): 

0 = T(~) fl ~ = (DM [1 ~) fl ~ = DM I'1 (~" ~) = Dg. r (6.2) 

From the Theorem 1.1 we get then: 

0 = Index Dg. r = ch (~. ~) U L(TM) [M] 

= ch~U ch ~UL(TM) [M]. (6.3) 

From (6.3) along with the Poincar6 duality, and the fact that ch is epimorphic, we 

deduce the ch ~ tJ L(TM)=0. As L(TM)= _+ I + higher terms, it is invertible in H*(M, Q), 

(see e.g.R. PalMs [P], Chapter XV, w 4) we get that ch ~=0, and finally, that ~=0, which 

proves that T is a monomorphism. 

COROLLARY 6.2. There exists one and only one homomorphism: 

Ch: Ko(M)--~ He~ Q) 

such that, for any ~ E K~ 

(6.4) 

Ch(Du n ~) = ch ~. 

Proof. Ko(M) is a finitely generated group. From the rational Thorn isomorphism 

(6.1), we get that DMnK~ is a sub-group of finite index in Ko(M), and that Ch is 

well defined on this sub-group. 

Let S be any pseudo-differential operator of  order zero on the circle S 1, whose 

index is + I. Then S represents an element in Ko(S~). 

For any D E ~o(M), the external product 
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D#S  E K0(M• S 1) 

is defined, see [K], w 4, Theorem 2. 

Now, we are in a position to define the homomorphism Ch on odd-dimensional 

manifolds by the formula: 

Ch (D) = Ch (D#S) N [S~]. (6.5) 

If dimM~<5, and D is an abstract elliptic operator over M, we define: 

Ch (D) = Ch (D#S# . . . #S )  N IS ~ x. . .  • ~] (6.6) 

5 factors 5 factors 

Definition. For any abstract elliptic operator D = ( I , t p , ~ , F ) E  ~0, l(M) over the 

topological manifold M, we define its analytical index: 

a-Ind (D) = dimc Ker § F - d i m c  Ker -  F (6.7) 

where Ker-+F denote the + l-eigenspaces of the involution if(e0 on KerF.  

The topological index of  D is, by definition: 

t-Ind (D) = Ch (D U L(TM) [M]. (6.8) 

THEOREM 6.3. (Index theorem for topological manifolds.) For any compact, 

oriented boundary free topological manifold M, o f  any dimension, and for any abstract 
elliptic operator D on M, 

a-Ind (D) = t-Ind (D). (6.9) 

(Notice that D is an arbitrary elliptic operator over the C*-algebra o f  continuous 

functions on M.) 

Proof. We consider first the case when M is even-dimensional. Then, the topologi- 

cal signature Theorem 1.1 asserts that the homomorphisms a-Ind and t-Ind coincide on 

the finite index sub-group DuN K~ of K0(M); therefore, they coincide on Ko(M). 

The proof of the index theorem for manifolds of odd-dimension and of dimension 

lower than 6, follows now easily by multiplication with circles. 
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w 7. Appendix 

The following graph explains how the one-parameter family of functions ~'t(--) would 

look like: 

Jk  

lID 

R 

- i ; t o  

. 7  J 
! 1o I ,  

We intend also to explain, here, why the homotopy h t" 

hi((1 - s )  x + s " eN+ 1) = (1 --At(S)) X + At(S)" eN+ 1 

is of class C k, if 2 ( - )  is of class Ck+ 1, and its partial derivatives are continuous 

functions on t. The function ht, expressed in cartesian coordinates, is: 

f ( . 1 - ' ~ t ( s )  .y,At(s)j 0~<s <1  
| \  l - s  / '  

for any y E R N. 

The only trouble occurs with the function (l-,~t(s))/(1-s) in s= 1. 

In order to show that this function is of class C k in s = I, use the Taylor expansion 

of this function around s=  1 and compute, by increasing induction, its derivatives in 

s= l .  
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