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Soon after Thurston announced his theory of measured foliations on surfaces, Hubbard 

and Masur recognized that this concept fits in perfectly with quadratic differentials. 

Their main theorem makes this precise: On a fixed compact Riemann surface (without 

boundary) there is a one-to-one correspondence between equivalence classes of meas- 

ured foliations and holomorphic quadratic differentials. The correspondence is in terms 

of the horizontal trajectory structure and vertical measure determined by a quadratic 

differential. 

From the point of view of complex analysis, the achievement of Hubbard and 

Masur completed a line of investigation initiated by Teichm011er in the late 1930's. It 

was further developed in the 1950's primarily by Jenkins and in the 1960's and 70's by 

Strebel. Quadratic differentials appear in association with solutions of extremal map- 

ping problems involving variation of conformal structure. Understanding the geometry 

of these differentials bears substantially on understanding the geometry of the extremal 

mappings themselves. 

In their paper, Hubbard and Masur developed the subject independently of the 

Thurston theory. But their analysis was quite complicated, involving the local variation 
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over TeichmOller space of  differentials with multiple zeros. Later in his thesis, Kerck- 

hoff showed how to derive their main result by using the techniques of the Thurston 

theory. 

Our purpose here is to develop the subject within the context of the "classical" 

theory of quadratic differentials. We believe that this allows for a simpler approach and 

one that clearly exhibits the geometry of differentials. At the same time, it allows us to 

develop the theory in a more general context (for example, for parabolic surfaces of 

infinite topological type). What makes such an approach possible is the discovery by 

Strebel of a direct proof of the Heights theorem. This is the fundamental uniqueness 

theorem of the subject and our paper is built around it. Using it, we explore questions 

of approximation by and convergence of sequences of the geometrically simplest 

differentials (Chapters 5 and 6). The information so obtained is then applied toward the 

understanding of how Teichmiiller mappings are geometrically determined (Chapter 7). 

In a later paper we plan to develop the Thurston theory of pseudo-Anosov diffeomor- 

phisms in the context of quadratic differentials as well. 

Technically the basic problem is how to deal with recurrent trajectories. We use 

the method of strips that was introduced by Strebel in 1970 (and foreshadowed by 

Jenkins in 1960) and that has been successful in a number of different connections in 

getting at their properties. To this we add the technique of Thurston that shows how to 

form a single simple loop in a controlled manner from any number of mutually disjoint 

ones. Thurston's concept of a convergent sequence of simple loops forms one pillar of 

the bridge between the geometric and the analytic. The other is formed by the simple 

Jenkins-Strebel differentials. The bridge itself carries the happy traveller between the 

flexible geometric world of measured foliations and the rigid analytic world of quadratic 

differentials. 

An exposition of some of the results here is contained in [11]. 

This paper was written while the first named author was a guest of the Forschungs- 

institut for Mathematik, E.T.H.,  Ziirich. Part of the theory was developed for lectures 

presented at the University of California at San Diego by him in. 1980. It has been a 

great privilege indeed to have been a member of those institutes. In addition, the work 

was supported in part by the National Science Foundation (U.S.A.). 

1. Basic properties of quadratic differentials 

1.1. We will work with Riemann surfaces R which do not necessarily have finite 

topological type and which may have a border 8R. By definition of aR, each point 
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p EaR has a neighborhood conformaUy equivalent to {z E C: Izl< 1, Im z~>0}. The compo- 

nents of aR consist of open intervals and closed curves. 

An ideal boundary component of R is called a puncture if it has a neighborhood 

conformally equivalent to the once punctured disk. Points removed from a surface 

become punctures and conversely punctures put back in a surface become points. 

Correspondingly, one can also speak of punctures on the border of a surface. 

In the best cases R will be compact and the border if nonempty will be a finite 

union of curves. We will speak of a compact surface R possibly with boundary aR. In 

addition we want to allow the possibility that a surface R comes from such a compact 

surface by the removal of a finite number of points, some of which may be on the 

boundary, Thus the terminology, "R is a compact surface, possibly with boundary aR 

and possibly with a finite number of punctures". 

1.2. Our investigation concerns quadratic differentials go dz 2 on a Riemann surface 

R. These are invariant forms with holomorphic go(z) in the local coordinate neighbor- 

hood governing z, and holomorphic on the border aR too, if 8R~:O. 

We will always assume that at the punctures of R, godz 2 has at most simple poles. 

The norm of go dz 2 is defined as 

Ilgoll=fflgoldxdy �9 

On a compact surface, possibly with border, possibly with a finite number of punc- 

tures, the norm is automatically finite. 

A normalized differential is one which has finite norm and for which 

Ilgoll = 1.  

We will describe a number of known results. For a systematic development of the 

subject see [7] or [20]. 

The differential godz 2 is called real if Imgodz2=0 along aR. If in addition godz2>~O 

(resp., ~<0) on aR, it is called positive (resp., negative). Let/~ denote the double of R 

across aR and J:/~---~/~ the anti-conformal involution fixing OR. A differential ~p dz 2 on/~ 

is called even if ~p(Jz)= ~O(z) and odd if ~p(Jz)= - V?(z), in terms of the local coordinate 

z about some p E/~ and J(z) about J(p). The negative differentials on R are the 

restrictions of the odd ones on/~, and the positive differentials the restrictions of the 

even ones. 

When R has genus g, p~>0 punctures all in the interior, and b~>0 boundary 

components, then the real differentials form a real vector space of dimension 
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6g+3b+2p-6  (assuming this is positive). On a torus g- - l ,  b = p = 0 ,  they form a real 

vector space of  dimension two. If  the tori are realized as lattices in C, the differentials 

are of the form 

cdz  2, c E C .  

1.3. In working with a quadratic differential q0 dz 2 o n  R, we will use the term 

critical point to refer to either (i) a zero of q~, or (ii) a puncture of  R (where tp may or 

may not have a zero or simple pole). On a compact surface R of genus g~> 1 without 

boundary,  a differential q0 dz 2 has exactly 4 g - 4  zeros, counted according to multiplic- 

ity. 

Away from the critical points the expression 

= f zv_~dz ~(z) 

determines a local homeomorphism into the complex plane. The preimages in R of the 

horizontal lines in C (resp. vertical lines), extended as far as possible by analytic 

continuation are called horizontal (resp., vertical) trajectories. 

That is, the horizontal (resp., vertical) trajectories are the integral curves of  the 

line field determined by the expression q0 dzZ>O (resp., q~ dzZ<0). Through each non- 

critical point ~ runs exactly one horizontal and one vertical trajectory. Given one of the 

two horizontal or vertical directions at ~, we speak of the horizontal or vertical 

trajectory ray starting from ~ in that direction. 

We distinguish five possibilities for a trajectory ray: 

(i) It closes up forming a simple loop. 

(ii) It runs into a critical point. It is then called a critical ray. 

(iii) It is recurrent: it continues indefinitely without ever crossing itself but comes 

arbitrarily close to its initial point infinitely often. 

(iv) It approaches the ideal boundary,  i.e. it leaves every compact set. It is then 

called a boundary ray. 

(v) It has limit points on the ideal boundary: it contains a sequence of points 

which approach the ideal boundary.  

From a zero of  q~dz 2 of order n~>l, (n+2) horizontal and (n+2) vertical rays 

emanate. From a simple pole, only one horizontal and one vertical ray appears. 

1.4. Each differential q0 dz 2 gives rise to a singular fiat metric on R, 
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with area 

ds = I 0(z)l ' '2 Idzl ,  

[ItPll = f f  ]cP(z)ldxdy<-~. 

To gain some insight into this metric assume that R is a compact surface, possibly 

with boundary, possibly with a finite number of punctures. Making allowance for 

certain limiting cases the following statement is true: 

Given points ~ ,  ~2 on R and a homotopy class of paths between them, there exists 

a unique tp-geodesic in this class. In particular, we must allow for the possibility that 

the geodesic runs through some of the punctures. If the homotopy class contains a 

simple arc, the tp-geodesic will also be simple, or a limiting case of simple arcs. 

The tp-geodesic is a finite union of qo-straight segments (each the preimage under 

of~a Euclidean line segment in the plane). Each end point of each segment is either one 

of the points ~ ,  r or is a critical point. 

Suppose instead that the free homotopy class of a simple loop is prescribed on R, 

and assume that it is not retractable to a puncture (or a point in R). Allowing again for 

limiting cases, there is a qo-geodesic in the class which is also a simple loop (it may run 

through punctures). Either it is unique, or for some ~, e;~q9 dz 2 has a closed horizontal 

trajectory in that class. The qo-geodesic, when unique, is a union of q~-straight segments 

whose end points are critical points. 

1.5. We continue working with a compact surface R, possibly with boundary, 

possibly with a finite number of punctures. Suppose that q~ dz 2 is a negative differential 

on R. Then a non-closed vertical trajectory of finite tp-length has both end points at 

critical points (recall that, by definition, punctures are critical points). 

Let R~ denote the open set resulting from the removal of all non-closed vertical 

trajectories of finite length (the "critical graph"). The components A of R~ are of two 

kinds: 

(i) A is an annular domain swept out by closed vertical trajectories not retractable 

to a point or puncture of R. 

(ii) A is a spiral domain in which each vertical ray of infinite qo-length from a point 

of A is dense in A (A may be punctured). A is not doubly or triply connected. 

Suppose now that qo dz 2 more generally is real on aR. Then in addition to the 

possibilities listed above, a vertical trajectory of finite length may be a cross-cut. That 

is, both its ends lie on components of aR. 
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If  q0 dz 2 is not negative, then in addition to the two possibilities listed above for 

components A of  Re is the certainty of  a third: 

(iii) A is a cross-cut domain swept out by parallel vertical trajectories whose end 

points lie on aR. These trajectories are not retractable into 0R\{c r i t i ca l  points}. 

A (non-critical) vertical ray starting from a point of  aR can only end at another 

point of OR and therefore determines a cross-cut domain. 

1.6. Decomposition of  a spiral domain into strips. This important technique was 

introduced by Strebel in [15]. We continue to work with a finite surface R as in w167 1.4, 

1.5. Taking in hand a spiral domain A, fix a short horizontal tp-segment a. Regard this as 

two sided a + and a - .  On each of these sides mark the finite set of  points {x+}, {x~-} 

determined as follows: (i) the vertical trajectory ray leaving from x + or xi- hits a 

critical point (necessarily in A- )  before returning to a ,  or (ii) x + or xi- is one of  the 

two end points of  a+ or a_ ,  or (iii) the vertical trajectory ray from x + or x,:- hits an 

end point of  a before otherwise meeting a.  

The points {x +} and {x~-} divide a + and a -  respectively into a number of 

intervals (/~+} and {/7}. The total number of  intervals is even and they are arranged in 

pairs as follows. 

To each interval I there corresponds I '  such that the pair (I, I ')  have the following 

property: A vertical trajectory departing a from an interior point of I first returns to a 

(without leaving A) by hitting an interior point of I ' .  The intervals I, I '  are either on the 

same side of  a ,  or they are on opposite sides. The two intervals (I, I ')  of all pairs are on 

opposite sides if and only if a branch of X/-~dz can be globally defined in A. 

Moreover corresponding to each pair ( I , I ' )  is a " s t r ip"  or q0-rectangle S whose 

interior lies in A. The two segments I,I' from the two horizontal sides of S. Each 

vertical side goes through a critical point of  order n~>-1 subtending in S the angle 

2:d(n+2) at that point (n=0 means a puncture with no singularity), and/or has as one of 

its end points an end point of  a. 

The interior of S is mapped by any choice of ~(z)=Szx/-~dz onto a proper rectan- 

gle in the plane whose sides are parallel to the coordinate axes. Its height b and width a 

are independent of  the choice of  branch O. Its area is 

ffslO'(z)[2dxdy=ffs[q~[dxdy=ab. 

The union of  all the (closed) rectangles S fills the closure A - .  

For  later purposes it is very convenient to introduce a technical refinement in this 

strip decomposition. A strip is of  the first kind if its horizontal sides lie on opposite 
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sides of  a. We leave these alone but observe that the totality of  their horizontal sides 

covers the same length of  a + as of  a - .  Each of  the remaining strips, those of  the 

second kind, has both its horizontal  sides on the same side of  a. The totality of  these 

covers the same length of  a + as of  ct-. Hence  by further subdividing these strips, they 

can be arranged (not uniquely) in distinct pairs (S, S'). The q~-widths of  S and S' are the 

same, but one has its horizontal  sides on a +, the other  has its on a - .  

2. Heights 

2.1. We return to the general situation of  w167 1.1 and 1.2 of  a Riemann surface R, 

possibly with border  OR, and a quadratic differential tp dz 2 on R with at most simple 

poles at the punctures.  For  each simple loop y on R define its q~-height to be the 

number,  

h~(y)=i~f  l lmV~dz[=inf  f . ~,-yj 

Here  the infimum is taken over all simple loops in the free homotopy  class of  ~ and the 

integral is the total variation of  the imaginary part dr, 

dw =du+i dv = O'(z)dz = V--~ dz, 

(locally away from the critical points). We will automatically assume the class is non- 

trivial, that is, not retractable to a point or puncture  of  R. In any case for those cases, 

the height is always zero. 

Heights can just  as easily be defined for cross-cuts. By a cross-cut on R we mean a 

simple closed arc ~ whose  end points lie on the border  aR of  R (so if OR=O there are no 

cross-cuts in this sense). Two cross-cuts ~,~, Y2 are called freely homotopic  (homotopic 

modulo OR) if there is a continuous map of  a closed rectangle into R taking one vertical 

side to )'!, the o ther  to ~2, and the horizontal sides into aR. When ~ is a cross-cut,  hw(~,) 

is defined exact ly as was done when ~, is a simple loop. Again we exclude the trivial 

cases that ~ is retractable to a point or puncture  in aR. 

Remark. In the competi t ion for the infimum one can include not only simple loops 

and arcs but  also those with self-intersections without lowering the infimum. This fact 

follows from L e m m a  2.9 and the remark following it. 

2.2. The height of  a simple loop or cross-cut y composed of horizontal and vertical 

tp-segments such that the two vertical arcs flj, fly+l meeting a horizontal arc o~ i end on 

different sides of  ai (forming a step as shown) 
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a i  

/3j'+ i 

is computed by the simple formula 

h~(y) = r~j bj. 

Here bj i s the tp-length of flj. In particular, the height of a closed vertical trajectory is 

simply its qg-length while the height of a closed horizontal one is zero. 

When the surface is compact, possibly with boundary, possibly with a finite 

number of punctures, and the differential is real, more can be said. There are always 

simple loops or arcs in the free homotopy class over which the integral achieves its 

infimum (allowing, as usual, for limiting cases). One such curve or arc is the q~- 

geodesic. The height is zero if and only if the free homotopy class contains (possibly as 

a limiting case) an element made up entirely of qg-horizontal segments. 

2.3. On a finitely punctured compact surface, suppose real differentials q~n---~q0 

converge locally uniformly (uniformly on compact subsets), hence uniformly. It is clear 

from what was said above in w 2.2 that for each simple loop or cross-cut y, lim h~n(~) 

=h~o(~). On the other hand for a general surface, matters are not so simple. 

The rest of the chapter will be occupied by the proof of the following important 

general fact. 

PROPOSITION 2.3. Suppose R is an arbitrary Riemann surface possibly with 

border OR and {tpn} is a sequence o f  real quadratic differentials that converges locally 

uniformly to q~. Then for every simple loop or cross-cut Y, 

lim h~ (y) = h~(y). 

2.4. Proof. Assume first that y is a non-trivial simple loop. We will make use of the 

annular covering surface A(y) of R corresponding to y (see [20]) which is conformally 

equivalent to a standard annulus. It is characterized by the following property; 

Jr: A(y)--~R denotes the projection. Namely for each simple loop a in the free homotopy 

class [y], exactly one component a* of {~r-l(a)} in A(y) is a loop and for that 

er-~: a - .a*  is a homeomorphism. The other components are open simple arcs, each 
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covering a infinitey often. Conversely, if aT is a simple loop separating the contours of 

aA(3'), then ~(a~')E [3'] but it is not necessarily a simple loop. 

A differential q9 dz 2 o n  R can also be lifted to a differential q0* dz 2 o n  A(3') .  In 

particular it will satisfy 

L ,  I lmX/"~  dzl = f~ IImX/~ dzl. 

This holds even if a=zt(a*) is not simple. Thus for the heights, 

h~0,(y) = h~(y) 

where for the left, the infimum is taken over all simple loops in A(3') separating the 

boundary contours. 

2.5. LEMMA 2.5. Suppose ocA(3') is a simple loop separating aA and is the union 

o f  q~*-straight segments. There is an integer M with the following property. Suppose 

AocA(3') is a simply connected region whose boundary OAo is the union o f  an arc o f  o 

and a q~*-horizontal segment a. Then Ao contains at most M critical points o f  q~*. 

Proof. ~Ao is a q0*-polygon with certain vertices {~} (including critical points on 

aAo) and interior angles {v~j} at those. According to Teichmtdler's lemma (see [20]) 

[ nj+2 \ 
E ~ I - ~ T ) = 2 + E n i ,  

where nj>~0 is the order of ~j and {ni} with ni~ 1 denotes the orders of the critical points 

of tp* lying in Ao. All the quantities on the left are determined by o except for the two 

angles at the end points of a. There is an upper bound for all possible values the left 

side can have. Therefore Eni has an upper bound M>0 as well. 

2.6. COROLLARY 2.6. With o as in Lemma 2.5 there is a number M1 with the 

following property. There exist at most M1 mutually disjoint arcs {ol} of  o such that to 

each oi corresponds a cp*-horizontal segment ai, with the same end points as oi but 

otherwise disjoint from a, such that ai U ai bounds a simply connected region in AO'). 

Proof. Suppose A0 is a simply connected region such that aAo is the union of a qg- 

straight segment ao and a horizontal segment a. If aAo has no critical points then there 

are exactly two vertices and the interior angles are 0 and ~t-O. By Teichm011er's 

lemma, 
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2+Eni = (1-t~/z0+(1-(zt-~)/z0 = 1 

which is impossible (that is, a is the unique geodesic in its homotopy class). Such 

regions A0 do not exist. The proof of Corollary 2.6 follows from this fact. 

2.7. LEMMA 2.7. With the hypothesis on o and the horizontal cross-cut a as in 

Lemma 2.5, let d denote the q~*-length of  o. Then the q~*-length of  a does not exceed d. 

Proof. The horizontal qp*-segment a is the unique (p*-geodesic between its end 

points (in its homotopy class). 

2.8. Suppose o is as in Lemma 2.5, and a is a qg*-horizontal segment meeting a 

only at its end points. The end points of a divide o into two (connected) arcs exactly 

one of which, say ao, has the property that o0 U a bounds a simply connected region in 

A(7). It will be convenient to say that oo is the arc of o determined by the horizontal 

cut a. 

We will also use the terminology band of  horizontal cuts o f  height b to refer to the 

following situation. That (i) there is an open vertical segment fl of height b, and a family 

a t of horizontal segments (without critical points) such that (ii) each a t intersects fl 

once and {at) is indexed by the height parameter t on r ,  0< t<b ,  and (iii) the end points 

of at lie on o but otherwise at does not meet o. 

LEMMA 2.8. With o as in Lemma 2.5 suppose that Oo is the arc of  o determined by 

a horizontal cut ao. Set h=So ~ [ImX/(p* dzl. Then in the simply connected region 

AocA(y) bounded by ooUao there exists a band of  horizontal cuts {at} of  height 

h/2(3M)2 S. The arc at of  o determined by at satisfies So, [ ImV~ q0* dzl>h/2(3M) 2 S for 

each t. Here S is the number of  straight segments of  o. 

Proof. From the at most M critical points (according to multiplicity) in Ao draw the 

critical horizontal rays until they meet o. These critical rays divide Ao into at most 3M 

simply connected regions {Bi}. For some i, say i= I, 

ab IlmX/ q0* dzl~h/3M. 

There are at most 3M arcs of o contained in aBl. Therefore at least one of them, say ol, 

has qp*-height not less than h/(3M) 2 S. There is a band of horizontal cuts {at} of height 

h/(3M)2S leaving ol and lying in B1. (Actually the vertical interval fl used in the 

definition may have to be replaced by some steps composed of horizontal and vertical 
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segments.) But instead of taking the whole band take only half of it, cut off at the I/4 

and 3/4 level. Then we can be sure that the arc at of o determined by at has tp*-height 

greater than h/2(3M) 2 S. 

2.9. The e-height condition. A simple loop ocA(y) separating the contours will be 

said to satisfy the e-height condition if it has the following properties: (i) o is a union of 

a finite number S of tp*-horizontal and vertical segments without critical points, and (ii) 

for any finite collection {o;} of mutually disjoint subarcs of a which are determined 

respectively by horizontal cuts {ai}, it is true that 

~ .  fo , Im~ ~p* dzl<e. 

LEMMA 2.9. Suppose  a satisfies the e-height condition for some e>0. Let r be any 
simple loop in A(~). separating its boundary contours. Then 

f [ImV~q~* dzl> fo,Im~/ 9* dzl-2e. 

Proof. For simplicity assume first r is disjoint from o, say it lies to the left of o. 

Consider the horizontal rays {ap} leaving from the left side of interior points {p} of 

vertical segments of o. If ap returns to a before meeting r it determines an arc op of o 

such that op and a segment of ap bound a simply connected region Ap in A(y). Take the 

union UAp of all such regions. In view of Corollary 2.6 this union has a finite number of 

components. Each is simply connected and bounded by an arc o; of o and a horizontal 

segment ai which may touch r without crossing it and/or pass through a critical point. 

Let o' =o \  Uoi. 
Recall the following elementary fact. If K is a simply connected relatively compact 

region and OK is the union of (i) two horizontal segments which may pass through 

critical points, (ii) a vertical segment fl, and (iii) some other arc ~, then 

fy IlmV ~ ~P* dzl~ f~ IXm~/ q0* dzl. 

It follows easily from this fact that 

~ l lmV '  q0* dz[~fo, llm~/ qg* dzl~follmV~dzl-e. 

In the more general case we can proceed as follows. Among the components of 
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A(y)\(rUcr) there are exactly two, B and B', that are not relatively compact in A(y); 

say B is adjacent to the contour of aA(y) on the left of a and B' to the contour on the 

right. The relative boundary components b of B and b' of B' can be decomposed as 

b = Ua ;uT j ,  b '  = tJa" ur~ 

where {cri, a'} are mutually disjoint arcs of o and {rj, rj} of r (ignoring end points). 

Since a and b, as well as r and b', are "essentially" mutually disjoint (can be 

pulled apart by an arbitrarily small deformation) the argument above proves, 

~ llmX/q0* dzl >fo IImV" q~* dzl-e 

fb lImx/ ~* dzl>~lImV~* dzl-~. 

Adding these two inequalities, using the decomposition of b and b' as well as the fact 

that {cri, o'} are mutually disjoint on o and {r i, rj} on r, we end up with 

f t" f 
| IImV ~v* dzl I> / IIm ~/q~* dz[ > | IIm V" q0* dz[- 2t. 
Jr Ju rjur; Jo 

Remark. Lemma 2.9 holds even when r is not a simple loop by essentially the same 

proof. 

2.10. LEMMA 2.10. Given e>0 there exists a simple loop ocA(7) satisfying the e- 

height condition and for which 

ollmV' ~p* dzl<~h~(y)+e. 

Furthermore a may be chosen so that :r(o)cR is also a simple loop. 

Proof. The loop a is selected from a minimizing sequence for hr Critical points 

can be avoided by arbitrarily short detours. 

2.11. Completion of  the proof of  the proposition. We may assume that r for 

otherwise Proposition 2.3 is obvious. Given t>0  choose a as in Lemma 2.10 but with t 

there replaced by e/2(3M) z M1S where M is given by Lemma 2.5 and M1 by Corollary 
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2.6. Lift the q0n to tp* in A(7). Then q0*--.q0*, uniformly on compact subsets of A(7). 

Let U be a relatively compact annular neighborhood of cr whose closure contains 

no critical points of of*. For some N, q~* for n>~N has no critical points there either. 

When N is sufficiently large, we can construct for each n>~N a simple loop one U with 

the following properties: (i) on is the union of S q0*-horizontal and vertical segments, 

and (ii) these segments can be indexed with those of cr so that as n---~, each segment 

converges to the corresponding segment of o. (In fact n(On)'-R will be a simple loop 

too.) 

It is important to observe that the constants M, M~ hold uniformly for all on, n>~N, 

as well as for a. We may also assume that an for n>~N satisfies Lemma 2.7 with d there 

replaced by (d+e). 

We claim that for all large n, an has the e-height property with respect to q0*. For 

suppose to the contrary that an infinite subsequence {Ok} does not. By Corollary 2. I0 

there is a q0~-horizontal cut of Ok which determines an arc rk of Ok whose q~-height is 

>~e/M~. 
According to Lemma 2.8, there is a q~-band of horizontal Ok cuts of q0~-height 

e/2(3M) z M1 S. Further, each cut akt in this band bounds a simply connected region in 

A(7) with some arc akt of Ok whose q~-height exceeds e/2(3M)ZM1 S. 

We may orient the band and so locate the two arcs/3k,/3~, of Ok such that the band 

consists of the trajectory segments leaving the points of/3k from the right and arriving 

from the left at the points of/3~,. Passing to a subsequence if necessary we can assume 

that the arcs {ilk}, {/3~,} converge to arcs/3,/3' of o. Since/~k,/3~, have equal q0~-height 

of e/2(3M) z Ml S so/3,/3' have q0*-height also of e/2(3M) z MI S. 

Suppose by taking a suitable subsequence we can get one cut akt of the k-band to 

converge to a q0*-horizontal cut at of o. Then a, determines an arc o, of o whose q~*- 

height is not less than e/2(3M)ZM! S. But this is in contradiction to the choice of a to 

satisfy the e/2(3M) z M~ S-height condition. 

The k-band has an upper (horizontal) edge and a lower edge. We designate the 

lower edge to be the one that, with an arc of Ok, bounds a simply connectedregion 

containing the rest of the band. In fact the k-band can be regarded as a q~-rectangle. 

The modulus of this, namely the ratio of its q0~-height to its q0~-width, is uniformly 

bounded above zero and less than infinity as k - . ~  by Lemma 2.7. Therefore if the 

lower edge has limit points on the inner contour, say, of A(y), the upper edge cannot. 

Actually (after passing to a subsequence if necessary) all the interior cuts ak, of the 

band converge to q0*-horizontal cuts at of a. But we had just concluded that this is 

impossible. 
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Consequently the situation does not arise in the first place: for all large n, on 

satisfies the e-height condition. Now apply Lemma 2.9 to tp*. It implies 

h~(y) I> f ]ImX/tp* dzl - - 2 e .  

~ o  n 

Therefore in view of our choice of an, 

lim infh, (~) I> h ,0 ' ) -2e .  

The opposite inequality, 

lim suphr (7) ~< h~0(7), 

is clear. Since e is arbitrary the proof of the proposition is complete when 7 is a simple 

loop. 

2.12. The case that 7 is a cross-cut (end points on OR) is handled in a very similar 

manner. We first find a replacement for the annular covering surface. The double ~ of 7 

in the double/~ of R is a simple loop invariant under the anticonformal involution J of/~ 

that fixes OR. The lift j of J to the annular covering surface A(~) is an anticonformal 

involution that fixes exactly two open arcs. These arcs separate A(~) into two "rectan- 

gles" exactly one of which A(7)' contains a cross-cut which projects one-to-one onto 7. 

We specify the two fixed arcs under J to be the two vertical sides of A(7)'. Let A(7) 

denote the result of removing from A(7)' all those points not lying over R. The 

"rectangle" A(7) has the same vertical sides as A(7)' and there is exactly one lift of 7 

that runs between them, in fact that even touches them. If r is a cross-cut of A(7) 

between the vertical sides, the projection of z to R is freely homotopic to ~,. Converse- 

ly, each arc freely homotopic to ~, is the projection of exactly one such r. 

The lifted differential tp* to A(7) is real on the vertical sides. That is, the vertical 

sides are the union of q0*-horizontal and vertical segments. 

Using A(7) with its vertical sides distinguished we can follow the proof above step- 

by-step. In particular, the corresponding e-condition is easily formulated. The desired 

conclusion follows. 

2.13. Remark. The analogous statement holds for lengths L~(7) (see w 4.3) as well: 

if {q0n} converges locally uniformly to tp then limL~ (7)=L,(~,) for all simple loops and 

cross-cuts 7. 



HEIGHTS THEOREM FOR QUADRATIC DIFFERENTIALS 167 

3. A minimum norm property 

3.1. Heights can be defined for more general objects yet which are still modeled on 

quadratic differentials. Let R be a general Riemann surface, possibly with border aR. 

Denote by 0 a system of real C ~ function elements defined locally on R, outside a 

discrete set of points E (without accumulation points in R). Assume that on overlapping 

domains the elements are related as 

02 = +01 +constant. 

For example, 0=Im (Sx/-~dz) for a quadratic differential tp. Outside E, 

Idol=lox dx+ o r dyl is invariantly defined. We assume that it has finite Dirichlet integral, 

fR -2 + -2 Ildvll 2= (vx oy)dxdy,<=. 

For such a system 0 and any simple loop or cross-cut y define the 0-height as 

ho(7) = inf~  IdOl. 

As before (w 2.1), the infimum is taken over the free homotopy class. 

3.2. A surface R is called parabolic if it has no Green's function. This means that 

the ideal boundary is small: if R c C  the complement is a set of capacity zero. For our 

purposes this means that for a differential 9 of finite norm, the set of its horizontal 

trajectories that tend to the ideal boundary in both directions covers a set of tp-area 

zero. 

The remainder of this chapter will be occupied by the proof of the following basic 

result. 

THEOREM 3.2. Assume that R is a parabolic Riemann surface or surface with 

border aR whose double across aR is parabolic. Let cp dz 2 be a real quadratic differen- 

tial o f  finite norm on R and O a system o f  function elements as specified in w 

Suppose that for all simple loops and cross-cuts y on R the heights satisfy 

ho(y) >- h~(y). 

Then 

lid0112 >t II ll 
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with equality if and only if (dO)2=(Im gr~dZ) 2. If q)dz z is negative, then only simple 
loops y need be considered for the conclusion to hold. 

3.3. We will first prove the theorem under the assumption that R is a compact 

surface, possibly with boundary OR, possibly with a finite number of punctures. As in 

w 1.5 let R~ denote the open set resulting from the removal of all critical vertical 

trajectories of finite length. The proof proceeds by analyzing each component A of R~ 

separately. 

Case 1. A is an annular domain. Fix a horizontal cross-cut a of A joining its two 

boundary components. Cut A along a and map the result onto a rectangle in the 

w=u+iv plane, say {0<u<a,  0<v<b}, by a choice of w=~(z)=fzx/~-dz. 
For the closed vertical trajectories fl in A, hr In the rectangle they become 

the vertical cross-cuts ft,, 0<u<a .  By hypothesis, 

b=h~(fl,)<<.ho(fl,)<- I ldOl= fob ~ dr, 

where we have represented dO in the w-coordinate system. Integration in du yields, 

LaLb O0(U, v) 
ab <~ Ov du dr. 

Then we apply the Schwarz inequality to obtain, 

(ab)2<~ab .10 la JO fb \OV/(OO)2dudv<'~'abfoafob[(O0~2+(--~-oo)2] 

or more simply, 

ffal ldxdy=ab< ffa[(aOh +(aO 2qaxaY'L\ax, \ a y ]  _1 (1) 

The at most finite number of exceptional points in A cause no trouble. 

Case 2. A is a cross-cut domain. This is exactly the same as Case 1 except there is 

no need for a preliminary horizontal cut in order to obtain a rectangle. 

Case 3. A is a spiral domain. Given a small e>0 fix a non-critical horizontal 

segment a of qg-length < e in A which does not meet the exceptional set E. Construct a 

strip decomposition of A based on a as described in w 1.6. Consider each strip S 
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separately if its horizontal  sides lie on opposite sides of  a (first kind); otherwise 

consider S together  with its par tner  S' (second kind). 

As above, a finite number  of  points of  E may lie in A but because of  our  hypothesis  

of  finite Dirichlet integral these do not affect the area integrals. 

Case 3 (a). S is of  the first kind. The vertical segments between the horizontal sides 

of  S all have the same q0-1ength, say b. For  each such vertical segment there is one way 

to add a segment of  a between its end points there so as to form a simple loop fl*. 

I 

I Ict  
l 

I 
I 

The added segment of  a of  course has q0-1ength< e and h~(fl*)=b. Using the 

w=u+iv=~(z) coordinates in S where �9 is chosen to map S onto { 0 < u < a ,  0 < o < b } ,  in 

view of  our  hypothesis  on heights, 

b<<-ho(fl*)~ ~,ldOl<. fob 0-~o do+Me. 

Here M is an upper  bound for ]aO/au I on a. Integrating in the u-direction, 

Case 3 (b). S and S' are a pair of  strips of  the same width of  the second kind. Le t  a 

denote the common width. Parametr ize the vertical lines ft, in S and fl~, in S' so that 

they sweep out S O S' as u increases from 0 to a. 

T I S I S 

le t  

12-848283 Acta Mathematica 153. Imprim~ le 14 D6cembre 1984 
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Let b denote the common tp-length of the flu and b' of the flu. To fl, Ofl',, two (not 

necessarily disjoint) segments of a can be added so as to obtain essentially a simple 

loop fl* (it will be a simple loop if one of the horizontal segments is pushed a little off 

a). Again in w=u+iv=@(z) coordinates, 

b+b'<~ho(fl*)<- f f B -~v dV+2Me. 
a p,,+p; 

Integrating in the u-direction we obtain 

Sum the expressions from Case 3 (a) and 3 (b) over all strips using the notation 

IIq~llA= f Sa du dv, 

The integral is not independent of the choice of local coordinates so it must be 

interpreted in terms of fixed local patches of the D-coordinates. Let e---~O and then 

apply the Schwarz inequality to the result. We obtain 

0 0  2 00  2 Ikofl a <ll llaff a ~OOZdudv<~llq~llt//A[(-~u)+(-~v)]dudv' 
and finally, 

i1 11A f f [ ( aO' "l  u"v 
JLLkOul  \Ovl j 

Therefore the same inequality (1), (2) holds irrespective of whether A is a ring 

or cross-cut domain or a spiral domain. Suppose for some A equality holds. Then 

O0(u, v)/Ou=O in A \ A  nE so that O=O(v) in terms of the natural parameter v in A. But 

there is still equality in the application of Schwarz inequality and this forces IdO/dvl= 
constant on A \ A  fiE. The equality b=fp.ldO[ in Case 1 or 2, or the analogous thing in 

Case 3, implies that IdO/dvl=l in A \ A  fiE. Therefore 0=_+v+constant in A \ A  fie and 

dO= +dr= +_ ImV'~-dz with either one sign or the other holding locally. 

Finally to obtain Theorem 3.2, sum up the inequalities (1) and (2) over all 

components A of the decomposition R~o of R. 

3.4. It remains to deal with the general case. Start by finding the annular domains 
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and cross-cut domains, if any, in R. In particular each non-critical point on the border 

aR about which q0dz2>0 lies in (or rather, on the edge of) a cross-cut domain. The 

boundary of the annular domains, and the relative boundary in IntR of the cross-cut 

domains, is a countable union of possibly critical vertical trajectories of finite length. 

For each of these domains Case 1 or 2 from above applies and we arrive at (1). 

Let then R0 denote the complement of the closure of the union of the annular and 

cross-cut domains. The relative boundary aRo of R0 in R, which may include all or part 

of aR, is a union of possibly critical vertical trajectories: q~dz2<~O on aRo. The double 

of Ro across aRo is parabolic, or more precisely, each component of the double is 

parabolic. 

We will apply the technique introduced in [19] to obtain a strip decomposition 

of Ro. 

Let a be a qg-horizontal segment and a +, a -  its two sides. On a § O a -  mark those 

points {x} from which the vertical ray (i) hits a critical point of q0, (ii) has limit points on 

the ideal boundary of Ro, or (iii) hits an end point of a before otherwise meeting a. The 

set {x} is closed on a+U a -  because the vertical ray from any point r not in it again 

meets a and there is a maximal neighborhood of ~ from which the ray-segments sweep 

out a rectangle whose horizontal sides are components of a + U a - \ { x } .  Because the 

double of Ro is parabolic, {x} has linear measure zero (cf. [19, w 1]). It need not be 

countable. 

The complement F(ct) of {x} on a + U a -  is a finite or countably infinite union of 

intervals. These are arranged in pairs, each pair comprising the two horizontal sides of 

an open q0-rectangle. Its vertical sides tend to critical points, end points of a, and/or 

ideal boundary components of Ro. 

Each rectangle in the strip decomposition can be classified of the first kind or 

second kind according to whether its horizontal sides are on opposite sides of a or on 

the same side. The lengths of a + and a -  occupied by sides of the first kind are the 

same. Therefore, since {x} has measure zero, the lengths of a + and a -  occupied by 

sides of the second kind are the same too. As was done for compact surfaces in w 1.6, 

here too, after subdividing if necessary, the rectangles of the second kind can be 

arranged in pairs (S, S'), where S with sides on ct § corresponds to S- with horizontal 

sides of the same length but on a - .  

Suppose a~ is another horizontal segment, disjoint from a. If cq does not intersect 

the closure of the union of the vertical strips for a, then the strips for a~ do not 

intersect those for a. If on the other hand a~ lies in one of the strips for a, then the 

strips for a~ are contained in the closure of the union of those for a. 
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Now Ro can be covered up to a set of  q0-area zero by a countable number of q~- 

rectangles whose horizontal sides are of  q0-1ength less than some prescribed e but we do 

this in the following way. Given 6>0  choose compact sets C and C' with C c  Int C' such 

that (i) C'  contains no points of E or critical points of % and (ii) II llc >llq ll-6. Given 

e>0 we can find a finite collection of  q0-rectangles contained in C' yet which cover C 

and each has q0-width less than e. From within these choose horizontal segments {a;}, 

each of  length <e,  for which the associated strip decompositions cover C without 

overlap up to a set of tp-area zero. Let  {Ao. } denote the strips (tp-rectangles) based on 

ai. 

Let  ai denote the length of  a/. Then L=Ea~<~. Also since all a~cC', there is a 

constant M <  ~ such that 

O._~__~ < M  

on each ai, in terms of  the natural gg-coordinate w=u+iv on it. 

For  each ai, exactly as in Case 3 of  w 3.3 even though there may now be infinitely 

many rectangles {Ao. } based on ai, 

Here Ai=UAu. Summing over i, since tJAi covers C up to a set of  tp-area zero, 

II llc  s o  duao+tM,. 
JJRI So 

Again the integral must be interpreted in terms of  a fixed covering by ~-rectangles. 

First let e-->0. Then let 6--->0 so that C-->Ro. We get 

o 

The proof is completed with Schwarz's  inequality as in w 3.3. 

4. The Heights theorem and other corollaries 

4.1. The most important consequence of Theorem 3.2 is the Heights theorem. For 

compact surfaces it was first proved by Hubbard and Masur [4] using quite different 

techniques. 
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HEIGHTS THEOREM. Assume R is a parabolic Riemann surface or a surface with 

border aR whose double across aR is parabolic. Suppose cp and ~0 are real quadratic 

differentials o f  finite norm satisfying h~(7)=hw(7) for all simple loops and cross-cuts 7. 

Then q~--~O. I f  both ~ and ~ are negatioe, then only simple loops 7 need be considered. 

Proof. Recall that q0 is real if Im (q0 dz2)=0 along aR and negative if more restric- 

tively q0 dz2<.O along aR. If aR=O, by definition there are no cross-cuts so only the 

statement involving simple loops is operative. Let 01 denote the function elements de- 

termined by Im (SX/-~dz) and 0 z by Im (Sv'-~dz). The singular set E is the union of the 

critical points of tp and ~p. Theorem 3.2 applied to 01 and ~0 shows that II ll=lld0111  ll 011 
and applied to 02 and q0 shows that I1 11=11d02112 11 011. Hence IId0111=llwll and 
I m ~ = + I m q J + c o n s t a n t ,  locally for the integrated functions. Hence locally, 

O= +W+constant,  and then q0 dz2=(~'(z) dz)2=(W'(z) dz)2=~0 dz 2. 

4.2. COROLLARY 4.2. Suppose R is a parabolic surface or surface with border 

whose double across aR is parabolic. I f  q~ dz2~O is a differential o f  finite norm then 

there is a simple loop or cross cut 7 on R with h~(y)=4=O. 

4.3. There is a theorem analogous to the Heights theorem with lengths in place of 

heights. Given tp dz 2 define the tp-length of the free homotopy class of the simple loop 

or cross-cut 7 as 

L~(7) = in f~  1~01"2 Idzl 

when ~ runs over all (locally rectifiable) simple loops or cross-cuts in the free homotopy 

class of 7. 

THEOREM 4.3. Assume R is a parabolic Riemann surface or a surface with border 

aR whose double across aR is parabolic. Suppose q~ and v/ are real quadratic 

differentials o f  finite norm satisfying L~(7)=Lv,(7)for all simple loops and cross-cuts 

Y. Then ~-ei~q~ for  some constant angle t~ with t~=0 or ~r if  aR4=O. I f  both q~ and ~ are 

negatioe only simple loops need be considered and v~=0 (/f ~R~O). 

Proof. As 1 ll/21dzl=ldwl>-Idol, where w=u+io and w=C~(z)=Szv'-~dz, 

f ldol<-fl (z)l"2ldz,. 
Therefore h~(7)<<.Lr Our hypothesis thus implies that hr for all Y. Now 
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refer back to the proof of Theorem 3.2 and carry out the same calculations but with 

IWl Idzl in place of Idol. We obtain 

By Schwarz's inequality 

J JR J JR 

Consequently I[9[I-.<[[~p[[ and by symmetry there is equality. But equality forces 

[~(w)l-constant and this constant must be one. Therefore ~l,(w)=-e i~ for some 0. In the 

original z-coordinates this equation becomes ~/(z)=ei~ 

4.4. Example. Let R be a domain in the plane bounded by b~>2 smooth curves. A 

harmonic measure in R is a real harmonic function which is constant on each boundary 

contour. The harmonic measures form a real vector space of dimension (b - I ) .  

To each harmonic measure u associate the quadratic differential 

~odz 2 = (du+idv) 2 

where dv is the conjugate differential to du; q~ dz 2 is negative. For these differentials our 

definitions become, 

h~(y) = i n f f  Idv[, 

L,(y) = inf / [gradu[ [dzl, 

where [graduI=(u2+u2) '/2. The Heights theorem, Theorem 4.3, and homology can be 

compared as follows: 

COROLLARY 4.4. For two harmonic measures u~, u2 in the plane domain R, the 

following are equivalent 

(i) u2 =+_ul+constant 

(ii) h,2(y)=h,,(y), all simple loops ), 

(iii) L,2(y)=L,t(y), all simple loops 

(iv) fydv2=f~,dv,, or = - f r d v l ,  all simple loops y. 
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4.5. We record one more application of the proof of Theorem 3.2. This is to a 

useful uniqueness theorem; for example it implies the uniqueness of Teichmiiller maps 

between compact surfaces. It shows that subregions bounded by trajectories of quad- 

ratic differentials are essentially rigid. For the case of compact surfaces, see Ioffe [5]. 

We will not explore its consequences here. 

THEOREM 4.5. Assume that R is a parabolic Riemann surface or a surface with 

border aR whose double across aR is parabolic. Let qD dz 2 be a real quadratic differen- 

tial o f  finite norm on R. Suppose RocR  is an open set, not necessarily connected, 

resulting from the remooal o f  at most countably many oertical trajectories or trajectory 

segments from R. l f  f: Ro---~R is a C 1 homeomorphism homotopic in R to the identity 

then in terms o f  the q~-coordinates w=u+iv=S z V ' ~  dz, 

Equality occurs between the ends if  and only i f  a f lav-  + l. 

Proof. A simple loop or cross-cut y is mapped b y f o n t o  a freely homotopic one (/'is 

not required to keep aR pointwise fixed). 

We work with the individual components of R0 and sum the results in the end. In 

each component S express f i n  the local tp-coordinates: tb=flw) and 

dfo = dfl + i dO = f ,  dw +f~ dw. 

Refer back to the proof of Theorem 3.2. In place of dO there use the present expression 

dO = Im (fw dw+f~ dw). 

Along a q0-vertical segment this becomes, 

IdOl = IIm (fw i dv-fc~ i dv)l = I Re ( f w - f  w)l do. 

As in the proof of Theorem 3.2 we obtain, 

II l'< ff.olRer dudo. 
From this Schwarz's inequality gives 

IlcPll2<'ll llffRolRe(f -f.)12dudv" 



176 A. MARDEN AND K. STREBEL 

Furthermore if equality holds, then 

[Re (fw-f~)[ = [ImSfl~v[ = 1. 

If there is equality in addition on the right terms in Theorem 4.5, then ]fw-f~]=l. The 

two together imply that aflav---+_ 1. 

Remark. If instead horizontal slits are used, 

II ll< ffRoIReO w+f.)12dudv<<-ff oVw+f,l dudv 
with equality at the ends if and only if Of/au-+_ I. 

5. Convergence of simple differentials 

5.1. Let R be an arbitrary Riemann surface, with or without border aR, and y c R  a 

simple loop not rectractible to a point or puncture (we call these non-trivial loops). 

There exists a quadratic differential ~p[y] dz 2 of finite norm, uniquely determined up to a 

positive scalar multiple by the following properties: 

(i) the non-closed trajectories cover a set of  area zero, 

(ii) each closed trajectory is freely homotopic to Y. 

That is ~0[ 7] dz 2 has an annular domain A which is dense in R. The boundary of A is a 

union of horizontal trajectories of finite total length. In particular 0.4 contains aR and 

q~[y] dz 2 is a positive differential. 

Quadratic differentials of finite norm which satisfy property (i) are called Jenkins- 

Strebel differentials. The simplest of  these are the differentials {~[Y]} and for that 

reason are called simple Jenkins-Strebel differentials, or simple differentials for short. 

These were discovered as the solution of extremal problems by Jenkins [6], Strebel 

[14], Jenkins-Suita [9] and Strebel [16]. We will always normalize them so that 

II [y]ll=l. 
When it is preferable to work with vertical trajectories, the corresponding simple 

differentials are {-~[y]  dz2}. 

5.2. In this section we record two properties of the normalized simple differential 

q~[y]. The first compares it to other normalized differentials ~p on R. The second 

concerns its dependence upon R. We stick to the notation h~(y) for height introduced 
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in w 2. I and L~(y) for length in w 4.3. Because we have not introduced a "horizontal" 

analogue of height, we will work with -q0[~] instead. 

LEMMA 5.2. I. (i) hv,(7)<h_~E~](y) for all ~:~-qoD,]. 

(ii) Lv,(~)<L~oEy](~, ) for all Vd4:eia q~[~,]. 

LEMMA 5.2.2. I f  R is properly contained in a larger surface R* and the simple loop 
~,cRcR* is associated with the normalized simple differentials q~D'] on R and qo[},]* on 
R*, then 

L~oty]*(7) = h-r < h-~otyl(Y) = LCtyI(Y), 

Proof of Lemma 5.2.1. Let A denote the maximal annular domain swept out by the 

closed horizontal trajectories of q0[ 7] and fix a vertical cross-cut/3 of A. When A is cut 

by/3 it becomes a q0-rectangle Ao: w=d~(z)=~zV'-~dz=u+iv maps Ao onto a rectangle 

in the w-plane. Denote its width by a (=q0-1ength of closed trajectories=(-tp)-height of 

closed trajectories) and denote its height by b (=q0-1ength of/3). Then ab=ll~0[~,]ll--1. 
Index the horizontal cross-cuts of Ao by ao, O<~v<<-b. Each of these has tp-length 

equal to a and closes up in R. Using the w-coordinates in Ao, since IImV-~-dwl= 

IIm V~-  I du along ao, 

hv,(Y)<- f%l lmV~ldu  

ah~O')~ f fAolImVT-VTldudv 

(resp., L~o(y) ~< f~ Iwl|/Zdu), 
a v 

( r e s p . .  bL~(~)~ f f  A ,~J, l /2dud~.)) .  
0 

Apply Schwarz's inequality, using ffAodU du= 1, to get, 

; ' % ~ ' ) ~ f f A  [ImV~lZdudo<<'f( I~~ 
0 JJAo 

(resp., bZtw(~,)2~ f f aolWl du do= 1). 
Inequality (i) and (ii) result from the relations 

1/b = a = h_~[r]O,) = L~tyl(~). 

If there is equality in (i) then [ImV'~-[= 1 and also [~0[ I/2= 1. Therefore Re X/'~=0, 

V~--= +i  and ~0=- 1. Equality in (ii) is analyzed similarly. 
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Proof  o f  Lemma 5.2.2. Recall that the modulus of the annulus {l<[zl<k} is 

(log k)/2 ~r and this can also be interpreted as the reciprocal of the extremal length of the 

class of curves separating the contours. Similarly on the surface R, the extremal length 

of the class of curves in the free homotopy class of ~ is a/b where a is the width and b 

the height of the cp[3/]-rectangle Ao described above. 

Move on to R*. We assume that R * \ R  contains an open set. On R* the free 

homotopy class is larger so its extremal length is smaller. In fact it is strictly smaller 

(because otherwise the extremal metrics would coincide). That is, 

a a* 

b b* 

where a*, b* denote the corresponding quantities for q013/]* on R*. Since however the 

differentials are normalized on their respective domains, ab= l=a*b*. Consequently, 

h_,trl(3/) = a > a* = h_,trl.(3/). 

We remark that the assertions made regarding extremal length are established by 

the same type of length/area arguments already used. 

5.3. The geometric intersection number i(e,3/) between two simple loops on a 

Riemann surface R is defined as follows: 

i(a, 3/) = infcard (0 fl)7: O~cr, )7~y) 

where 0 runs through all simple loops freely homotopic to o and )7 through those freely 

homotopic to y. In computing the infimum we need only consider loops O, )7 that 

intersect a finite number of times, and cross when they meet. 

In particular i(tr, 3/)=0 if there are representatives of the two classes which are 

disjoint. 

Suppose now a is a cross-cut of R. By our earlier definition (w 2. I) this means that 

R has a border OR and tr is a simple closed arc whose ends lie on OR. The above 

definition holds just as well if o is a cross-cut and 3/a simple loop (see w 2.1 for the 

definition of free homotopy class of a cross-cut). 

A useful way to view the intersection number is in terms of the Poincar6 metric on 

R (analogous assertions can be made for those few surfaces which don't carry one). 

There is a unique Poincar6 geodesic in each free homotopy class of a simple loop. If o 

and 3/are simple loops, and Oo, 3/0 denote the corresponding Poincar6 geodesics, then 

exactly 
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fro, y) = card Oo n 7o. 

When o is instead a cross-cut there are also analogues to the geodesic Oo so that 

the above formula continues to hold. We will indicate how to find one such o0. Let 

:t: H--->R denote the natural projection from the universal covering surface, say the unit 

disk. Consider a component o* of {~-~(Into)}. It has well defined end points on the 

unit circle all .  Let o~ be the non-Euclidean line with the same end points. The projec- 

tion Oo=:t(o'~) has the same end points as o on aR and is a simple arc homotopic to it. 

For the simple Poincar6 geodesic 70, card (o0 n 7o) does not depend on the choice of o, 

hence o0, in its free homotopy class. 

5.4. Suppose R is a subsurface of R* so that the relative boundary aR of R in 

IntR* is a finite union of simple loops. Suppose further that each of these bounds a 

component of R * \ R  which is not simply or doubly connected. The following two 

results are required to go back and forth from R to R*. 

LEMMA 5.4.1. Assume 7 is a simple loop in R and o is a simple loop or cross-cut in 

R* which is not freely homotopic in R* to one in R. Position o in its free homotopy 

class so that it crosses each component C of OR exactly fro, C) times. With this done 

denote the components o f  o n R  by {oi}; these are all cross-cuts o f  R. Then 

i(a, 7) = r~i(oi, 7) 

where each intersection number i(oi, 7) is computed in R. 

Proof. In the Poincar6 metric on R* we may assume that 7 and each component of 

aR is a geodesic, and that o is as well, using the modification above if it is a cross-cut. 

Then i(o, 7)=E card (oi n 7). By looking in the universal covering surface of R*, we see 

that card (o/n 7)=i(ol, 7) follows directly from the convexity of R in R*. 

LEMMA 5.4.2. Assume o is a cross-cut o f  R. 

(i) Suppose both end points o f  a lie on the same component C o f  OR. Let al be a 

cross-cut in R * \ R  joining the end points o f  a and which is not retractable in R * \ R  

into C. Let o' denote the simple loop resulting from joining o and ol. Then for any 

simple loop 7 in R, i(a, y)=i(a',  7) (with i(o', 7) computed in R*). 

(ii) Suppose the end points o f  a lie on different components Cl, C2 o f  OR. Choose 

a simple loop ai in the component o f  R * \ R  bounded by Ci, with origin at the end 

point o f  a, and not retractable in R * \ R  into Ci. Then form an (essentially) simple loop 

o' by going along a toward Cl, around ol in a suitable direction, back along o to C2, 
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and then around 02 (in symbols, oola-Joz). Then for any simple loop y in R, 

i(o', ~,)=2i(tr, y). 

Proof. Again this is most easily analyzed in the universal covering surface by using 

the hyperbolic metric. We omit the details. 

Remark. Without changing the conclusions above, we may allow more general 

types of embeddings R c R * .  For example, (i) a component of aR may be a (non-trivial) 

cross-cut of R*, and/or (ii) the relative boundary of a component of R * \ R  may consist 

of more than one component of aR. In the example of (i), if a cross-cut cr of R has both 

end points on such components, o can simply be extended in R * \ R  to a cross-cut 

of R*. 

5.5. The following fact ties the geometric intersection number to quadratic differ- 

entials. 

LEMMA 5.5. For the annular domain A associated with the normalized tp[y] dz 2, 

let a=Lr denote the qg[y]-length o f  the closed horizontal trajectories in A and b 

denote the q~[y]-length o f  the vertical cross-cuts o f  A. Then for any simple loop or 

cross-cut o o f  R, 

h~tr](o) = bi(o, y) = i(o, y) 
a 

Proof. Let a be a closed horizontal trajectory of q0[),]. Then deform o in its free 

homotopy class so that card aN a=i(tr, y). Next look at the components of onA. Those 

which do not cross a, i.e. whose end points both lie on the same component of 8A, can 

be pushed into aA. The other components can be deformed to vertical cross-cuts. We 

end up with a loop o' freely homotopic to o which is a union of i(a, y) vertical cross-cuts 

of A, and horizontal segments lying in aA. For this 0', 

f~, [Im ~X/-~dz[ = bi(~r, y). 

Although o' may not be a simple loop it can be made into one by arbitrarily small 

deformations. The integral expression on the left is indeed h,tr](o) because for any 

simple loop Oo freely homotopic to tr, ooNA must contain at least i(a,)9 components 

whose end points lie on the opposite components of A. Finally, recall that normaliza- 

tion implies ab=llcp[y]ll= 1. 
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5.6. The key to a geometric understanding of general quadratic differentials in 

terms of simple ones is the following concept. It is due to Thurston and forms the basis 

of his theory. Actually here we are modifying it slightly to include cross-cuts (closed 

simple arcs whose end points lie on the border of a surface). See [3]. 

Definition 5.6. A sequence of simple loops {y~} on a surface R, possibly with 

border OR, is said to converge if there is a sequence {tn} of  positive numbers such that 

l imi(~ 7n) 
tn 

exists for all simple loops and cross-cuts o and if for at least one such tr, the limit is not 

z e r o .  

Note that the sequence {tn) is uniquely determined, up to a positive factor, 

asymptotically by {),~}. Namely if {s~} is another sequence that can be used in the 

definition then for some C4:0, 

lim s,/t~ = C. 

For set C(o)=limi(o,y~)/t~ and C'(a)=limi(a,7n)/sn. Then C(oO:~O for some ch and 

C'(a2)*0 for some a2. Therefore lim s~/t~=C(a2)/C'(o2)=C(aO/C'(aO. 

5.7. At this point it is well to make some remarks concerning the convergence of a 

sequence of normalized real differentials {q0,} to a differential q0 on a Riemann surface 

R, possibly with border aR. 

Suppose first that R is a compact  surface, possibly with boundary aR, possibly 

with a finite number of punctures.  Then the following are equivalent: 

(i) {q0~} converges locally uniformly (i.e. uniformly on compact subsets) to q0, 

(ii) {cpn} converges uniformly on R to tp (at puncture z=0 parameterize by V~z-), 

(iii) {~/gn} converges in norm to q0, i.e. lim I1 0.- 011--0. 

In addition, because all [Itpnll= 1 so also I1 011--1. 

On a general surface R matters are much more complicated. We will usually assume 

that q~n converges locally uniformly to q~. But in general we cannot claim in addition that 

(a) IlcpH = I, or equivalently, (b) {q0n} converges to q~ in norm, or even that (c) qg~0. In 

fact if I1~11<1 the normalized sequence {(~.-~0)/11~0.-~11} converges locally uniformly 

to the zero differential. 
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However in all cases it is true that a sequence of normalized differentials has a 

subsequence that converges locally uniformly to a differential on the surface with 

norm ~< I. 

5.8. LEMMA 5.8. Suppose R is a parabolic surface or a surface with border aR 

whose double across aR is parabolic. I f  for  a sequence {y,} o f  simple loops on R the 

normalized simple differentials {cp[y,]} converge locally uniformly to a differential ~0, 

then for  every simple loop or cross-cut o, 

lim i(o, y . )  = h~(o). 
a n 

Here a, denotes the q~[y,]-Iength o f  its closed trajectories. In particular, i f  ~p~O, the 

sequence {y,} also converges. 

Proof. The principal statement is the union of Proposition 2.3 and Lemma 5.5. 

Then see Corollary 4.2. Note that ~ is also a positive differential. 

5.9. The main result of the chapter is this. 

THEOREM 5.9. Suppose R is a parabolic Riemann surface or surface with border 

OR whose double across aR is parabolic. Assume that {y,} is a sequence o f  simple 

loops all contained in a relatively compact surface Ro o f  R and let {q0[y,]} be the 

corresponding normalized simple differentials on R. Then {y,} is a convergent se- 

quence on R if  and only i f  (q~[y,]/llq~[y,]H e )  converges locally uniformly to a differen- 

tial on R. In the latter case the limit differential has finite norm and is not identically 

zero. 

Proof. First assume that {y,) converges with associated sequence {t,}. Consider 

the situation in Ro. There let {cp[y,]o} denote the normalized simple differentials. In 

view of Lemma 5.4.2, {y,,} also converges with respect to Ro with the same {t,} (we 

may assume Ro satisfies the hypothesis). Take any subsequence {Ym} of {y,} for 

which {q0[y,,,]o} converges on Ro. Let (a,,,)o denote the q~[Ym]o-length of its closed 

horizontal trajectories. By Lemma 5.8 and w 5.6, there exists 

Co = iim tm/(am)o ~ O. 

NOW move on to R itself. By Lemma 5.2.2, (am)o>am. Hence from Lemma 5.5, 

i( o, 7m) i( o, y,.) 

h~[Ym](~ = am (am)o 
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Therefore if a is suitably chosen, 

lim infh~,~ ~(a) I> C O lim fro, Y m ! .  O. 
~l.r ml t m 

From this we conclude that no convergent subsequence of {~9[~m] ) converges (locally 

uniformly) to the zero differential. Going back a step to the choice of {Ym} we can also 

conclude that no subsequence of  the original {r converges to the zero differential. 

Consider two convergent subsequences of {q~[~,~]}: {q0[yp]} that converges to ~pt 

and {q0[~,q]} that converges to ~02. Set 

Cl = lim tp/ap, Cz = lim t q / f lq  

as we may by Lemma 5.8 and w 5.6. For any a in R, 

h~ol(a) = C I lim i(e, yp), h~2(a) = C2 lim/(O, yq). 
tp tq 

Consequently for any o, 

h~l (a)/C I = h~2 (a)/C v 

This calls for the Heights theorem (w 4. I)! Because ~p~ and ~P2 are real, in fact positive, 

differentials 

~ I / C  1 ~- ~ 2 / C 2  . 

If ~Pl and ~02 were known to have unit norm, as would be the case if R were a 

finitely punctured compact bordered surface, then we could conclude that C~=Cz, 

~1=~p2, and {~p[~,]} converges. But in general we do not know this and to deal with it 

we in effect change the normalization. 

Set 

Then locally uniformly, limtP0[~p]=~; and limq00[~,q]=~. But II OlllRo/c,=ll 2ll o/C2 
so that now for all a, h~[(a)=hw~(cr). Thus ~O~=~p~ and we can conclude that {tpo[)'n]} 

itself converges. 

Conversely suppose {~o[~'n]} converges locally uniformly on R to a differential ~p. 

Because {y,,} lies in Ro it has a convergent subsequence {)%} on Ro by Lemma 5.8 and 
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then on R by Lemma 5.4.1. The argument just completed shows that {Cpo[Ym]} 

converges on R to a non-zero differential of finite norm. That can only be ~p. Now we 

can apply Lemma 5.8 to the full sequence {y,}. 

We remark that in place of Ro we could have just as well used any relatively 

compact subset of R to "renormalize". 

5.10. Examples. Without the assumption that the free homotopy classes of {y~} 

contain representatives in a fixed compact part of R, the corresponding sequence of 

normalized differentials {tp[yn]) may indeed tend to the zero differential, uniformly on 

compact subsets, while {y~} converges. For an example take the doubly infinite ladder 

so constructed that it is a parabolic surface R. Take the loops Yl, Y2 ... .  as indicated. 

Then {Yn} converges with associated sequence {t,,} where all t~= 1. The sequence 

{(p{[y~]} tends to zero. For suppose there were a subsequence {~0[ym] ) with non-zero 

limit ~p. Let a be a horizontal trajectory of y through a point p E R. The trajectory am of 

q0[ym] through p--we may assume it is a closed trajectory--tends to a uniformly on 

compact subsets. Given any compact set K, for large m, a,, meets the complement of 

K. Therefore a does as well. So given a vertical segment fl for ~0, the horizontal rays 

from fl all meet the complement of any prescribed compact set in R. But such rays must 

have linear measure zero on ft. This is impossible. 

Another example of this phenomenon is the following. Remove from the real axis 

an infinite sequence {x,), -oo<k<oo, with xk<X,+1 for all k. Let y~ be a simple loop, 

symmetric in R that separates {xk}, O<~k<~n, from all other points. The modulus of the 

free homotopy class of Yn is given by means of the conformal mapping onto an annulus 

of the sphere with two slits, one along R from Xo to x~, the other from x_l to xn+l 

along R and over ob to be disjoint from the first. By suitably spacing the {x,) we can get 

the modulus to approach zero. The corresponding normalized simple differentials can 

likewise only converge to zero, while for each simple loop o, lim i(o, yn) exists. 
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6. Approximation by simple differentials 

6.1. Let  {~j}, l<~j~r, be a system of  simple loops on a surface R, none retractable to an 

ideal boundary component  (or a point) of  R. In this section we will describe a method,  

due to Thurston,  of  joining them together in a controlled manner  to form a single simple 

loop. 

In addition to the loops {~'j} we start with the following: 

(i) a simple loop r with i(r, ),j)4:0 and equal to the actual number of crossings of r 

and 7j, l <-J <-r, 
(ii) the least common multiple M of  the numbers {i(r, ),j)}, 

(iii) mutually disjoint thin annular neighborhoods {Si} about the {7~/}. 

In each Sj replace the single loop 7j by M mutually disjoint strands, each parallel 

to 7j. 

We will describe the procedure  by focusing on one of the (Si}, say on Sp. 

Represent  Sp as a proper  annulus with the strands as M concentric circles and the 

components  of  r N Sp as fir, ~,p)*0 radial cross-cuts.  Start with a point ~ E r n aSp, say 

lies on the outer  contour.  Move along r N Sp from ~ until hitting the first strand. Turn 

left along that strand and continue along that until again hitting r N Sp. At that point turn 

right along r N S,  until the next  point of  intersection with a strand. Then turn left along 

that strand. And so on. 

) M = fir, ~p) = 3 

After making M right turns from a strand onto r N St,, we end up at a point ~' on the 

inner contour.  That  final point ~' and the initial ~ are the end points of  the same radial 

c ross -cu t - -a  component  rip of  r N Sp. 

13-848283 Acta Mathematica 153. Imprim6 le 14 I)6cembre 1984 
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In following this process we have traced out a simple arc. This arc is homotopic to 

what results to rip if the outer contour is held fixed while the inner is rotated clockwise 

exactly M/fir, Yp) times. Or equivalently if the inner is fixed and the outer rotated 

counterclockwise M/i(r, yp). This is called a Dehn twist of order M/i(r, ~,p). In particular 

it is in the positive direction and this direction is determined solely by the orientation of 

R (and then Sp), not by choice of inner and outer contour of Sp. 

To continue with the construction, we have entered Sp at ~ and left it at ~', the 

other end of the component rip of v 13 Sp. Following along r we next enter some Sq. 

Possibly Sq=Sp but unless rnSp is connected we will then enter Sp along a different 

component of r 13 Sp. Repeat the process in Sq. And so continue. 

In the end we come back to the initial point ~. In the process, every segment of r 

and of each of the strands is covered exactly once. Adjusting slightly at the comers we 

end up with a simple loop F0. Fo 13 Sp consists of fir, ),p) parallel spiral cross-cuts, each 

twisting M/i(r, ),p) times around in the positive direction. 

If ro is a segment of r in Fo, then following along Fo near to, we turn right on ro 

from some strand, and then turn left along another. Deform Fo slightly to F which is 

now transverse to (crosses) r. Because of the observation just made, the number of 

crossings of F and r is exactly i(F, r). This is seen in the universal covering surface of R, 

by following the construction there. 

{Fo 

6.2. The following fact is important. 

LEMMA 6.2. Let  a be a simple loop or cross-cut on R and F as constructed f rom 

{yj} and r as above. Then 

M E  i(a, 7j)-i(a,  r) ~< fro, F) ~<ME i(a, yj)+i(a, r). 

Proof. (After A. Fathi [3, p. 68].) Position a in its free homotopy class so that it 

crosses each yj exactly i(a, ~j) times and r exactly i(a, r) times. Then the right inequality 

is clear. 

Now position a so that it crosses F exactly i(a, F) times and r exactly i(a, r) times. 

We know that o must cross at least MEi(a, 7j) times the Mr distinct loops of the system 
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obtained by replacing each ?j by M strands. Think of  forming the point set F 0 r f rom 

as follows. Le t  little arcs grow out from d coalescing to form ~ U r. Then along r pull 

apart the 

L I 
I I 

1 I ' 
! I 
! ! 
I I 

corners slightly to form F0 O r (this is the critical part: because r is included there is no 

essential change in the local structure). Finally deform Fo to F to form FUr.  We 

conclude that o cannot  cross F U r fewer than MEi(o, ?j) times. That  is, 

i(o, F) + i(o, r) >~ M X i(o, ?j). 

Note  that we have allowed the possibility that a number  of  the {Tj} are parallel to 

each other.  

6.3. LEMMA 6.3. Let  {),j} be a finite collection o f  mutually disjoint non-trivial 

simple loops on a surface R, none retractable to an ideal boundary component o f  R. 

There exists a simple loop r with i(r,?j)*O for all j. 

Proof  (cf. L e m m a  5.4.2). We will prove by induction a more general statement.  

Namely if R has a border  aR and one or two of  the components  of  aR are prescribed,  

then r can either be chosen as a simple loop as stated, or as a cross-cut with end points 

on the designated component(s)  of  aR. 

The assertion is clear if there is only one loop 7. Assume it is true for ( k -  1) loops 

on any R. Suppose then we have {Tj}, 1 <<.j<<.k on R with 7k not parallel to any 7j with 

j<k.  Denote  the two sides of  7k by y~-, 7k- and cut R along 7k. 

Case 1. The resulting surface R '  is connected.  Then ?~-, 7[  are two components  

of  OR'. There  are two cases. (i) Apply the induction hypothesis  to find a cross-cut  ro of  

R'  whose ends are on the opposite  sides Of Tk and such that i(ro, Tj.)~0, l~j<<-k-l. On 

R, Zo closes up to form a simple loop r with i(r, )'k)= 1 while fir, 7j) is the same as i(ro, 7j) 

computed in R',  j<k.  Or (ii) find a cross-cut  r0 of  R '  from a point of  7[  to one of  the 

designated components  of  OR with i(r0, ),j)*0, j<k.  Because ro does not divide R'  there 

is a disjoint cross-cut  r~ from 7k- to the other  designated component  of  OR. On R, 

r=r0  O r6 comes together  to form a cross-cut  of  R with fir, 7k) = 1 and i(r, )'j)>Ii(To, ?j) for  

j<k.  
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Case 2. R'  has two components R~ with y~- in aR] and R~ with y~- in aR~. To (i) 

get a simple loop r on R join a suitable cross-cut of Ri with both ends on y~- with one of 

R~ with both ends on y~-. If (ii) the designated components of aR lie in different 

components R], R~ a suitable cross-cut r of R is found similarly. If (iii) the designated 

components of c~R lie in say RI, then two disjoint cross-cuts of R] must be joined with 

one of R~. 

As with w 5.2, these constructions are best carried out in the universal covering 

surface with non-Euclidean geometry. 

6.4. We start with the simplest situation that illustrates the method. 

LEMMA 6.4. Suppose R is a compact Riemann surface, possibly with boundary 

aR, possibly with a finite number o f  punctures. Assume that cp dz 2 has a spiral domain 

which is dense in R. Then q~ dz z can be approximated by simple differentials. 

Proof. Fix a short vertical segment fl of q~ in its spiral domain (which may be all R). 

Let {Sk} be the horizontal strip decomposition based on fl (see w 1.6 where instead 

vertical strips are described). Denote the corresponding intervals on fl+ Ufl- as (flj}. 

These are arranged in pairs, the two intervals of a pair forming the vertical sides of 

some q~-rectangle Sk. 

Since by assumption q~ has no closed trajectories the q~-lengths of the {flj} are not 

all rational multiples of the q~-length fill of ft. Given a large integer N we now deform R 

to a new surface RN as follows. Take the vertical segment fl but change the position of 

the end points of the (flj.} slightly, each by an amount less than 1/N, to get new intervals 

{fiNs} such that (a) all their ~-lengths are rational multiples of 1/31, and (b) they remain 

paired as before, two intervals of a pair having the same length. Exactly as R is con- 

structed from the q0-rectangles {S,} based on the {ill} so construct RN from rectangles 

{Suk} with the same widths but based on the {flNi). Just as q0 dz 2 o n  R results by 

pasting together the Euclidean elements dw 2 on the rectangles {Sk} in the w=qb(z)= 

fzX/-~dz plane, so a differential ~udZ 2 o n  g N is formed by pasting together the 

elements dw 2 on the {Suk}. 

By construction there is a piecewise affine map fu: R----~RN in terms of the O- 

coordinates on R and ~u-coordinates on RN. It sends each flj- to fins and Sk to SNk. In 

general f u  has different values on the two borders fl+, fl- offl  so that it is not actually 

a homeomorphism of R. However to each simple loop y in R N transverse to fl 

corresponds a well-determined "preimage ~ (y)"in R which is (essentially) a simple 
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loop obtained by inserting short segments of fl to adjust for the discontinuities. As 

N-->~, fN converges uniformly to the identity because each SNk--->Sk in the D-plane. 

Take QN to be any integer such that the length of each flNj is an integral multiple 

of Ifll/QN. As N--->~, QN-~ o0. 

Divide each horizontal strip SN, into ht(SND QN/Ifl[ congruent horizontal sub- 

strips SNk d (where ht(SNk) denotes the ~ h e i g h t ,  i.e., the qg-length of the modified 

fl~vg forming a vertical side). Let OLNk d denote the middle horizontal cross-cut of SNkd. 

Altogether there are QN of the horizontal segments {t~Nkd). They join end-to-end to 

form a number (which depends on N) of mutually disjoint simple loops {6Nm}. 

Correspondingly the rectangles {SNkd} join together end-to-end to form annuli 

{ANm}. 
Next, take a simple loop a on R and consider the corresponding loopfN(o)=ON on 

RN. It can be positioned in its free homotopy class so that it crosses each aN", exactly 

i(aN, aNm) times. In fact we can assume that the intersection of oN with each AN", is 

a union of horizontal segments on OANm, possibly running through punctures, and 

i(ON, aN,,0 vertical segments between the components of OAN",. In this form the tp~ 

height is easily computed to be 

hq~N( ON) = (Ifl/QN) E,~ i(tIN, aN",) 

since the height of each ANn is Ill~aN. 
On the other hand on RN, h~oN(a N) can also be computed by integration on ON 

realized as a finite union of ~0N-straight segments between critical points. Therefore 

lim h q~N ( O N) =h~0(a). 

We can find a simple loop r on R such that for an infinite sequence of {N}, 

/(rN, aN,,,)*0 for all corresponding {m}, where rN=fN(r). For example if f is chosen 

so that there is a horizontal segment a connecting one end point o f f  to the other with- 

out otherwise meeting 8, then r can be taken as a Off. 

Apply the twisting procedure of w 6.1 to obtain from rN and the {aN,,} a single 

simple loop FN on RN. Do this for each N. 

From Lemma 6.2, dropping the index from r and tI, 

M N E", i(a, aNm)--i(6 , r) <~. i(o, FN) ~ MN •m frO, dNm)+i(o, r ) .  

Comparing this with the formula above for hN(tYN)=h,N(OU), 
i(tr, F N) i(r r) ~l hN(tl) - fie, r) ~l ~< ~ hN(O) + 

QNMN (QNMN/IBI) QN MN 
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In the limit when N---,~ this becomes, (reintroducing the index) 

h~(o) = lim i(ON' FN) = lim fro, F~v) 
N--.| (QNMN/[t~ l) N---~ (QNMN/It~I) 

where F~v=~1(FN) is a simple loop on R. 

By Theorem 5.9, the normalized simple differentials {qg[F~v]} on R converge. They 

converge to a differential with the same heights as cq7 for some constant c>0. We may 

assume q~ is normalized too. Then by the Heights theorem, in fact lim qO[FN]=q0, which 

we had set out to prove. 

6.5. COROLLARY 6.5. Suppose R is a compact surface without boundary, possi- 

bly with a finite number o f  punctures. Any quadratic differential cpdz ~ on R can be 

approximated by simple ones. 

Proof. We can choose 0 so that there is no q~-straight segment of slope 0 (i.e. 

arg q~ dz2=20) going from one critical point to another. For such a segment would be the 

unique geodesic between its end points, in its homotopy class. There are finitely many 

critical points, and between any two of them countably many homotopy classes. In 

each homotopy class there is a unique q~-geodesic composed of a finite number of of- 

straight segments between critical points. The slopes {0} of the countably many 

segments that appear form a countable set. As long as 0 is not in it, no such segment of 

slope 0 will exist. 

Even more, we can find a sequence On---~0 of such angles. Each differential 
-2iOn " 2 { e -  2iO. e q~ ctz will then have a spiral domain dense in R. Moreover the sequence 

qvdz 2} converges to q~dz 2. By Lemma 6.4 each e-2i~ z can be approximated by 

simple differentials, and therefore q~ dz 2 can as well. 

6.6. LEMMA 6.6. Suppose R is a parabolic surface or a surface with border aR 

whose double across aR is parabolic. Assume that q9 dz 2 is a positive differential on R 

with closed horizontal trajectories which sweep out a finite number o f  annular do- 

mains. Assume none o f  these is retractable to an ideal boundary component o f  R. Then 

q9 can be approximated by simple differentials. 

Proof. Denote the annular domains by {Aj} and fix a vertical cross-cut flj of q~- 

length [flj[ in each of them. Also fix a closed horizontal trajectory Yi in each. By Lemma 

6.3 there is a simple loop r with i(r, ~,):#0 for allj. 

Let o be a simple loop or cross-cut on R. If all {Aj) are relatively compact we can 
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position ti in its free homotopy class so that oNAj consists of exactly fro, D) cross-cuts, 

for each j, and the remainder of a consists of horizontal segments. Then 

hw(o) = EI~Jl fro, yj). 

The same formula holds in the general case and can be proven, for example, by 

exhausting the {Aj). 
For each large integer N, determine the positive integer PNj and number qgj, 

O~qNj<l, such that 

NlflJl = PNj+ qNj. 

Replace each yj. by PNj parallel simple loops {Dk}" With r and the mutually disjoint 

system {Dk} in j and k, construct a simple loop FN as in w 6.1. Because 

Eki(o, yj,) = PNji(o, yj), 

Lemma 6.2 gives the inequality 

fro, F N) i(o, r) - ME quj i(o, Yi) E[flj[i(o, yj) i(cr'v)+MEqNji(~ <~ <~ E~jli(cr, yj)4 
M N  M N  M N  ' 

in which M also depends on N. When N---~oo this becomes, 

fro, F N) 
h~(o) = lim---M- ~ 

It follows from Theorem 5.9 that for any relatively compact subregion K of R, the 

sequence (~[rN]/ll~[rN]ll~c} converges locally uniformly to a differential of finite 

norm. By the Heights theorem this can only be ~/ll~ll/~. Thus q0 is the limit of a 

(suitably normalized) sequence of simple differentials as asserted. 

Remarks.  (1) I fR  is a compact surface, possibly with boundary OR, possibly with a 

finite number of punctures, then the sequence of normalized differentials {q~[FN]} itself 

converges to q~, if also I1 011 = 1. 

(2) The condition that no annular domain is parallel to the ideal boundary is also 

necessary. For suppose one component C of aR is a simple loop and ~ d z  z is a 

differential in R satisfying q0 dz2>0 along C. Assume that some sequence of simple 

differentials {~p[FN]} converges locally uniformly to q~, in particular uniformly on C. 

For each large N, q~[Fu] must have at least one critical point on C (unless q~ is already a 

simple differential). But then q0 must as well, a contradiction. 
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6.7. We now put together the techniques of Lemmas 6.4 and 6.6 to the following 

end. 

COROLLARY 6.7. Suppose R is a compact surface, possibly with boundary aR, 

possibly with a finite number o f  punctures. Assume that ~ dz 2 is a positive differential 

with no closed trajectories parallel to a component o f  OR. Then ~dz  2 can be approxi- 

mated by simple differentials. 

Proof. The complement R~ of the critical graph of q0 (critical trajectories of finite 

length) is a finite union of annular domains {Ai} and spiral domains {Bj}. For each large 

integer N, we can build a model domain BjN for each Bj as in w 6.4. But then we attach 

them to the {Ai} and to each other to form a surface RN, exactly as the {Ai} and {Bj} 

are attached to each other to form R. Just as before there is a differential (PN on RN 

(arising from dw2=cp dz z on the flat pieces) and a piecewise affine map fN: R--,RN in 

terms of the ~-coordinates on R and q)~coordinates on RN. As N-~ ~,  f g  converges 

uniformly to the identity. 

On RN we take the following collection of mutually disjoint simple loops: (i) the 

loops {aNm} in each BjN as constructed in w 6.4, and (ii) a closed trajectory yj- in each 

Aj. By Lemma 6.6 there exists a sequence of simple loops {FNQ} on RN such that 

hN(ON) = lim i(~ FNQ) -- lira i(o, F~cQ) 
Q-~ tQ Q-~| t o 

for some sequence {tQ} depending on N, and for any simple loop or cross-cut a on R. 

Here hN(oN) denotes the qgN-height of oN=fN(o) and F~eO=ffNI(FNQ). 

Again as in w 6.4, limhN(ON)=h,(o). Therefore we can choose a diagonal se- 

quence N--.oo, Q=Q(N)--~w, such that for the sequence of simple loops {F~o } on R 

and any o, 

h~o(o) = lim i(o'F'NQ) 
N-~  tQ 

Consequently the sequence {(p[F~vQ]} of normalized simple differentials on R con- 

verges (Theorem 5.9), and if q~ is normalized, it converges to q~. 

Remark. A different proof of Corollary 6.7 is contained in Theorem 6.8 below. It 

was first proved by Masur [12] (for no boundary and no punctures). 

6.8. We do not know whether every differential of finite norm on a parabolic 

surface of infinite topological type can be approximated by simple ones. However the 
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following result is useful at least in some of those cases (w167 6.9, 6.10). The proof uses an 

area method, rather than a height-intersection number method, to reduce it to a point 

where Lemma 6.6 can be brought in. 

By a spiral domain on R for a differential q9 we mean a domain (i) whose closure in 

R is a compact surface, possibly with boundary, possibly with a finite number of 

punctures, and (ii) which has the properties with respect to the horizontal trajectories 

of q~ as described in w 1.5. 

THEOREM 6.8. Suppose R is a parabolic Riemann surface or a surface with border 

aR whose double across aR is parabolic. Let q9 dz 2 be a positive differential o f  finite 

norm on R such that it has no closed horizontal trajectory parallel to a component o f  

OR. Assume that up to a set o f  qg-area zero, R is the union of  annular domains and 

spiral domains for  the horizontal trajectories o f  q~ dz 2. Then q~ dz z is the locally uniform 

limit o f  simple differentials. 

Proof. We will show following [18] that cp is the limit (in fact even in norm) of 

Jenkins-Strebel differentials {CpN} each with a finite number (depending on N) of free 

homotopy classes of closed trajectories. For this part the assumption that no closed 

trajectory be parallel to a component of aR is not required. Theorem 6.8 follows at once 

from this fact coupled with Lemma 6.6. 

Fix a vertical cross-cut in each annular domain. Given e>0, choose a non-critical 

vertical segment of length less than e in each spiral domain. Denote the possibly 

countably infinite set of vertical segments by {/3~}. Given an integer r>0, let R r denote 

the union of the annular and spiral domains corresponding to/3j for l<~j<.r; Rr does not 

depend on e. 

We now focus our attention on one of the vertical segments flj, l<.j<~r; denote that 

one simply by/3 and assume that it corresponds to a spiral domain A. Following the 

procedure and notation of w 6.4, take the horizontal strip decomposition {Sk} based on 

/5. Given a large integer N, build the model surface AN formed by rectangles {SNk}. 

Measuring Euclidean area in the q~-plane we can arrange matters so that 

I(area Llk SNk)-- (area LIk Sk)l < C/QN (1) 

for some constant C independent of N. 

Also consider the mutually disjoint simple loops {(~Nm} o n  A N and their "pre- 

images" aNm=f-l((~Nm) in A. These are composed of horizontal and vertical (which 

lie in /3) q~-segments in such a way that successive horizontal segments meet the 
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intervening vertical segment on opposite sides. Therefore [15, p. 364] the qg-length 

L~(aNm) of the free homotopy class satisfies, 

Ep CNm p ap <. Lq~(aNm) <~ ~p Cutup ap+ QNm g'. (2) 

Here CNrnp is the number of components of (ZNm n SNp , ap is the length of Sup=q~ - 
length of Sp, and 

QNm = 2p CNm p "~ 2 QNm = QN 

(we had divided the {SNk} into a total of QN sub-rectangles each of height It~I/QN)- 
We have worked with only one of the original {/3j}, l~j<~r, and one which 

corresponds to a spiral domain. The same construction with the same integer QN (if 

that is suitably chosen) can be carried out for each of the spiral domains among the j ,  

l<~j<~r. We may even assume that for each of those, the heights I/ jl<  are the same. 

Let n o w  {OtNm } denote the complete collection of (essentially) simple loops from' 

all the spiral domains and also one closed horizontal trajectory from each annular 

domain in Rr. Consider the following extremal problem: among all differentials ~0 of 

finite norm on R which satisfy 

L~p(aNra) >I Zp CNm pap (3) 

for all simple loops in our collection {aura} find the one of smallest norm II~pll. (Here if 

CtNm is just a closed trajectory, we interpret the right side as being am, its q0-1ength.) 

According to [9], there is a unique solution ~pudz 2. In particular, it satisfies 

II ,ull IMI. (4) 

Restrict the indices {N} to a subsequence for which {~0N} converges locally 

uniformly to a differential ~p~o. We need an inequality in the opposite direction. 

Return again to a spiral domain A of Rr. In the rectangles {SNka} of height 

so=l l/Om arising by subdivision of the {SN,), parameterize the horizontal lines as 

dNka(S), 0<S<So. Choose the orientation for s so that when the Sjvkd are joined end- 

to-end to form annuli, for each s the {aUkd(S)} simultaneously join end-to-end to form 

simple loops parallel to the corresponding (aN,,,}. Project each Suka isometrically 

into Sk (they have the same length), filling up Sk as much as possible but there may also 

have to be some overlap. That will be governed by (1). 

Denote the projection of 6uka(S) into Sk by aNkd(S), Integrating in R in the 

w=u+iv=~(z) coordinates associated with q0, 
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( 
E k X d __J~Nk~S) du <~ EmL~(aNm), 

XmL~pN(OtNm) ~ Ek E d faNk#s) le/ Nll/Z du + MeQN 

The first inequality is just  (2). The second follows from the definition of minimum 

length Lap(OtNm); h e r e  M is the maximum of [~Pml 1/2 on fl with respect to the ~ -  

coordinates. Therefore from (2) and (3), 

d r ) d (XNkd(S) 

We claim that on integrating this in s, O<.s<~lfll/QN, there results an inequality, 

IIq~lla <" f fAl'l'Nl"~dudo+(M+ 1)ell31+Cl/QN (6) 

for some constant  Ct. By (1) the integral of the left side of (5) differs from the 9-area 

]]q011A of A by less than C/QN. On the other hand by (4) 

(f f l Nl"2dudv)2 ll ll f f dudo, 
for integration over any subregion of A. Therefore if there is overlap, the error caused 

by that in integrating the right side of (5) is bounded by cIIq ll/aN. This establishes (6). 

In (6) let N-- -~ .  By assumption A is the interior of a finitely punctured bordered 

surface so that ~Piv---~P~o uniformly on A. Therefore 

f falW~176 1)~31" II~011a 

Now ~0oo=~0o~[e;r] depends on both e and r. First take a sequence e--->0 so that 

{~ooo} converges locally uniformly on R to some Vs~ooo[r]. Then take a sequence r-->oo 

so that { ~ o [ r ] }  converges locally uniformly too, to some ~p, on R. It satisfies 

Ilw,la ffalV,.l"2audo. (7) 

Inequality (7) holds for each spiral domain in R since Rr---~R (to a set of q~-area 

zero) as r---~.  But it also holds for the annular domains. For i fA is one with cross-cut 
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fl, we can parameterize the closed trajectories in A as a(s), 0<s<l l. By (3), 

a~<~ lgNl'/2du, 
(s) 

where a is the q~-length of the (a(s)}. Letting N ~ ,  then e---~0 and r---~ this becomes 

for each s, 

fo lg,l'/2du. 
(s) 

To get (7) integrate in s. 

Summing (7) over all spiral and annular domains in R and then applying the 

Schwarz inequality, we find that 11 011 <119,11. On the other hand as a consequence of (4), 

llg,ll-.<ll ll and there is equality. In particular there is equality in the application of 

Schwarz's inequality to 9 , .  That forces [9,[=1 where 9 ,  is the representation of the 

differential in terms of the tp-coordinates. Hence for some constant 0, 0~<0~<:r/2, 
9 ,---= e2iv~. 

Before dealing with this, we point out that 9 .  is the limit in norm of (necessarily 

positive) Jenkins-Strebel differentials on R, namely a "diagonal" sequence taken from 

the collection {gN[e; r]}. Each 9N was obtained as the solution of an extremal problem 

for a certain system of loops {aNm}. It has the additional property that an annular 

domain lies in the free homotopy class of each aN,,,, and these domains cover R to a 

set of area zero. Because 

II~p,[I <~ lim inf 119Nil ~< lira sup 119NIl <~ tl ll -- 119,11, 

lim 119NIl = 119,11 which implies lim 119N-9,11 = 0. 
If then 8R*r because both q0 and 9 ,  are positive, v~=0. But t~=0 in general. For 

otherwise for large N the 9~ leng th  of its closed trajectories would be smaller than 

their tp-length, by a factor independent of N. This would imply that the 9 ~ a r e a  119NIl 
of R is uniformly bounded less than the q0-area I1~011, a contradiction. For the details we 

refer to [18]. This completes the argument for Theorem 6.8. 

6.9. COROLLARY 6.9. Let R be the complement with respect to C o f  a countably 

infinite set o f  points {zk} without limit points. Every quadratic differential o f  finite 

norm in R can be approximated by simple differentials uniformly on compact sets. 

Proof. The surface R is parabolic. If tp dz 2 has finite norm on R, it follows from a 

result of Bers [2] and Reich [13] that cpdz 2 can be approximated in norm b y  the 
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restrictions to R of rational differentials q)ndZ 2 o n  C O {o0}. Furthermore the poles of 

Cfin dz2 all lie in the set {zn} plus ~ (and are necessarily simple ones). Let Sn denote the 

finite set of poles of qgn. On the sphere punctured at the points of S,, tpn is the limit (in 

norm) of simple differentials by Theorem 6.8. Each simple differential used in the 

approximation of q0n, when restricted to R, in general is no longer simple. Rather it has 

a finite or countably infinite number of annular domains which cover R to a set of area 

zero. But as a consequence of Theorem 6.8, such differentials can be locally uniformly 

on R approximated by simple ones. Therefore 9 dz 2 itself can be so approximated. 

6.10. In this section we will restrict our attention to those quadratic differentials 

which are squares of first order holomorphic ones. We will establish the following 

result. 

COROLLARY 6.10. Assume that R is a parabolic Riemann surface and 

qgdz2=(ctdz) 2 is a quadratic differential of  finite norm which is the square of  a first 

order differential. Then q~ dz  2 can be approximated by simple differentials, uniformly 

on compact subsets. 

Proof. The first step is to recall from [1] the facts concerning reproducing differen- 

tials on the parabolic surface R. Given a 1-cycle c on R there is a uniquely determined 

real harmonic differential a(c) E F h (= the Hilbert space of real harmonic differentials 

with finite Dirichlet integral) with the properties, 

f ~  = ( ~ , ~ ( c ) * ) = - f f R ~ ^ ~ ( ~ ) ,  (I) 

le a(c) = c x d  (algebraic intersection number), (2) 

for any m E F h and l-cycle d. 

Furthermore if Cl, c 2 are 1-cycles and ml, m2 are integers, 

o(ml  c1+m2c2) = m I a(Cl)q-m20(c2). (3) 

In view of (1), the closure in F h of the linear subspace spanned by the set of 

conjugates {a(c)*} of the reproducing differentials is just l" h itself because no non-zero 

element is orthogonal to all of them. Since F h ~ l"~, 1-" h is the closure of the linear span 

of the reproducing differentials {a(c)} themselves. In fact, 
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LEMMA 6.10.1. Given coEF h there is a sequence {cn} of 1-cycles and {qn} of  
positive integers such that 

o(co) 
co = lim , convergence in norm. 

qn 

Proof. A differential E~= l xio(ci) is the limit in norm of a sequence { Ek=, xin cT(ci) ) 

where for each i, {x/,} is a sequence of  rationals converging to x/. Find a common 

denominator and use (3). 

To each c~(c) we associate the analytic differential a(c)=c~(c)+iv(c)* and the 

quadratic differential 

lp(C) dz  2 - -  - a ( c )  2 = ( i a ( c ) )  2. 

The norm of ~p satisfies II (c)ll=(a(c), a(c)) where ((y(c), o(c)) is the Dirichlet integral of  

o(c). The horizontal trajectories of  ~p(c) are the curves along which o(c) vanishes (level 

c u r v e s ) .  

LEMMA 6.10.2. Up to a set of  ~p(c)-area zero, R is the union of annular domains of 
~2( c ). 

Proof of  Lemma 6.2. Let  fl be a vertical segment of  ~p(c) of  ~p(c)-length <1 and denote 

the two sides of  fl as fl+ and fl-  as usual. As in w 3.4 find the set of  points {y} on 

fl+ Off- with the property that the horizontal ray leaving y (i) hits a critical point of  

~p(c), (ii) has limit points on the ideal boundary of  R,  or (iii) hits an end point off l  before 

otherwise meeting ft. The set {y} is closed and because R is parabolic, the trajectories 

through {y) cover a subset  of  R of  ~p(c)-area zero [19]. 

Choose ~E/3 + 0 f l - \ { y }  and consider the horizontal ray from ~. This ray must 

eventually return to ft. We claim that it returns exactly at ~, on the opposite side of  fl 

from whence it started, and therefore the trajectory through ~ is closed. For  suppose 

instead it returns first at ~ .  Consider the simple loop 7 formed by the horizontal 

segment from ~ to ~1 and the vertical segment on fl from ~] back to ~. For this, 

O * l f  Im ~X/-~-~dz = f o(c)J='cxT'. 

Thus the integral on the left is a non-zero integer by (2) while at the same time its value 

cannot exceed the length off l  which is less than one. This contradiction establishes the 

fact that the trajectory through each point of  f l+Ofl- \ (y}  is closed. The lemma 

follows at once from this property.  
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Completion of the proof of Corollary 6.10. Given cpdz2=(adz) 2 w e  can approxi- 

mate ia dz in the Dirichlet norm by some sequence {a(cn)/qn} by Lemma 6. I0.1. Hence 

in norm, cpdz 2 is approximated by {'a(cn)2dz2/q2}. But -a(c'~)2dz2=~O(c,)dz 2 ful- 

fills the conditions of Theorem 6.8 because of Lemma 6.10.2. Therefore it in turn can 

be approximated by simple differentials, uniformly on compact subsets. The job is 

completed by taking a diagonal sequence. 

7. Geometric determination of Teichmiiller mappings 

7.1. A Teichmialler map f'.R--~S between two Riemann surfaces (possibly R=--S) is a 

quasiconformal homeomorphism that satisfies a Beltrami equation on R of the form, 

f ~ = k ~ f  z, 0 < k < l ,  

where q~ dz z is a (holomorphic) quadratic differential on R. Automatically, there is also 

a quadratic differential ~0 dz z on S, uniquely determined up to a positive constant factor, 

such that the inverse map f-~: S---~R satisfies, 

(f-I)~ = _k_~[ (f-t)z. 

The differentials q~, ~0 are said to be associated withf. The maximal dilatation o f f  is the 

constant 

l +k  K =  1 < K < o o .  
1 - k '  

Geometrically Teichm011er maps have the following structure. First, g ivenfand its 

associated q~ on R, then ~0 (more precisely the positive constant factor implicit in ~p) is 

uniquely determined by the relation 

ffRolq~ldxdy=ff~no)l@dxdy 

for every relatively compact subsurface of R. Introduce the qT-local coordinates 

w=.fz~/-~dz in R and the W-coordinates r in S. Thenf i s  area preserving in 

these coordinates, it maps the critical points of q0 to those of ~p, and away from these it 

has the form, 

~_ w+kW 
x/Tz  " 
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That is, in the q0- and ~-coordinates,  R and S become locally flat a n d f i s  an affine map 

between these flat p!eces. 

In particular on a torus represented as a lattice in the plane, every quadratic 

differential has the form 

dz 2 = a e -  2i~ dz 2, a > O, 

and the Teichmialler maps are exactly the non-singular, orientation preserving, affine 

maps. 

I f R  has a border aR, and q~ dz 2 is real (or positive) on aR then ~/, dz z is automatical- 

ly real (or positive) o n f l a R ) = a S .  

As a consequence of this geometry,  if 7 is a simple loop on R, or a cross-cut 

between aR where q0 dz2~O on OR, then 

hr ) = hr (1) 

If  R is a compact surface, possibly with boundary OR, possibly with a finite 

number of punctures,  and fo: R---~S is a homeomorphism, according to the celebrated 

theorem of  Teichmiiller there is a unique Teichmi~ller map f in the homotopy class lfo] 

of fo. Its associated differential q0 on R will have finite norm and be real on the 

boundary OR of R, if OR*O.  For  surfaces R of infinite topological type the situation is 

much less clear. However it is known that if lfo] contains a Teichmiiller map of finite 

norm (that is, q~ has finite norm on R and hence also ~p on S), it is the only such map 

there. 

7.2. In the following two results, the simple differentials will as usual be normal- 

ized (unit norms). On the other hand the differentials associated with the TeichmOller 

maps will not even be assumed to have finite norms. For  a discussion of convergence, 

we refer to w 5.7; the height hr is defined in w 2.1 and length L~(7) in w 4.3 for a simple 

loop or (when there is a border) cross-cut 7. 

LEMMA 7.2.1. Assume  f'. R---~S is a Teichmiiller map o f  maximal  dilatation K and 

associated differential q~ dz 2 on R. Given a simple loop 7 on R, 

I 
V,~.L~[~](y) ~< L~y)](3'(7)) ~< V'K-L~t~](7), 

and for  all simple loops and cross-cuts a, 

X/-K-h~ty](a ) I> h~tay)]ffla)) ~> h~tyl(a). 
v / ~  
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Equality occurs on the right (in the second inequality, for  an a with i(v, a)*O) if  and 

only i f  qo~cqo[V]. Equality occurs on the left (in the second inequality, for  an a with 

i(v, a)+O) i f  and only i f  q~=--cq~[v]. Here c is a positive constant. 

LEMMA 7.2.2. Let  f: R--*S be a Teichmiiller map o f  maximal  dilatation K and 

associated differentials q~ on R and ~p on S. Suppose that {~,,} is a sequence o f  simple 

loops on R with the three properties: 

L~[r(y,)]O~n)) = V ~  (resp. ,  1 ) 
(i) Lim L~[r.l(?n) - ~ ,  

or that f o r  some a with i(7,,, a):~O for  all n, 

Limh~tf0,,)] (f(a)) _ 1 (resp., V ~ ) .  
h~[y,l(a) 

(ii) The sequence {~o[Vn]} on R (resp., {cp[f(v,,)]} on S) converges locally uniformly 

to a differential qg= (resp., to ~ ) ,  and 

(iii) the sequence o f  image differentials {qo[f(vn)]} on S (resp., {q~[?,,]} on R) 

converges in norm to a differential ~ (resp., in norm to q~= on R). 

Then there is a constant c, 0<c~<l, such that qo===-cq9 (resp., Vd~=----c~p). In 

particular cp and ~o have finite norms. 

COROLLARY 7.2.3. In addition to the hypotheses o f  L e m m a  7.2.2 assume 

(iv) R is a parabolic surface or surface with border OR whose double across OR is 

parabolic, and 

(v) ~ dz 2 is real. 

Normalize  q~ and v / t o  have unit norms. Then q~=-q9 and V/o~-~p (resp., go~--qo 

and ~O==--~p). 

In the statements of Lemma 7.2.2 and Corollary 7.2.3 the parenthetical statements 

are to be read as a unit and to substitute for the adjacent statement. 

P r o o f  o f  L e m m a  7.2.1. (1) The q0[y]-length of its closed trajectories is exactly 

L~oly](y)=a. Similarly set a'=Lq,~)l(f(7)).  We will use fp[y]-local coordinates w = u + i v  

in R and q0[f(?)]-local coordinates ~ = ~ + i r / i n  S. From the relations, 

Of _ S f  dw 8 f  = Of ( d_~zz ) 
Oz 8w dz ' OZ Ot~ 

(1) The statement also follows from the moduli inequality of w 7.4, using (9) and (10). 

14-848283 Acta Mathematica 153. Imprim6 le 14 I~cembre 1984 
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it follows that, 

( f  ~f~)w=~(z) = k (q~ 

If a denotes a closed trajectory of 9[7], 

a'=L~otar)](f(7))<~ [ Id~l= f lf~+fddu �9 
Jj?a) 

By integrating in dv, thinking of a=-ao sweeping out the annular domain of area one for 

(p[y], we obtain, 

a' fR 
--<~ lf~+f~ldudv. (1) a 

The expression 

J~x] (w)  = l f J - l f d  z 

is the Jacobian of the map r relative to the ~p[f(y)]-coordinates r in S and q0[y]- 

coordinates w in R. The form Jy[7](w)dudv on R is however independent of the 

coordinates on R, but it still depends on y. The following ratios are computed to be, 

I "l-k ~/7/tP[7] 2 
lfw+fa,12 = 1 19hP[7] (2) 
J~e] (w) l - 

(If~l+Lf~l) 2 
=K. (3) J~y] (w) 

Applying the Schwarz inequality to (1) and making use of (3) we obtain, 

( a'12<~l~'w+fcolZdudv<.ffR(~c~l+[fcol)Zdudv=K, a~ ggs  

since .fJ'RJ/[y](w)du dr= S f.s d~drl= 1. Note that if there is equality at the ends, then 

lfw+&l = lfwl+D~l, 

Inserting (2) we obtain 

ff ll+  (4) 
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In the case of equality when a' /a=X/-K,  

~P@b'] 2 
I I + k ~ l  =(l+k) 2. (5) 

Squaring and comparing sides in (5) we find for the meromorphic function tp/tp[y] that 

Re qo/qo[y] = (6) 

Therefore q0/q0[y] is a positive constant c. In particular q0 has finite norm and c=[[q0[[. 

When q0-q0[7], f consists of a stretch of magnitude V ~  along the trajectories of 

qo[y] and a compression of 1/X/K along its vertical trajectories. The inverse map f-1 

does the opposite and stretches by a factor ~ the vertical trajectories of q0[f(y)]. That 

is, when ~0--~p[y], the associated differential ~pdz z of f on S is 

- ~lf(r)]. 

Consequently when a' /a=I/X/-K,  by considering f - l  in place o f f ,  we conclude 

that q0----cq0[y] where c=[[q0[[. 

For the height inequality in Lemma 7.2.1 recall from w 5.5 that 

h~v[~](a) = bi(~, a) 

where b is the tp[y]-height of its annular domain. Correspondingly in S, 

h~7)](f(a)) = b ' i(f( y ) , f (  a ) ) = b ' i( y , a) 

where b' is the tp[f(y)]-height. Because the differentials are normalized, 

bL~o[~jO,) = b'L~r)](f(y)) = I. 

Consequently, 

L~0~y)10'(Y)) h~0tar)l(f(a)) = L~tyl0,) h~trl(a), 

and the remainder of the lemma follows from the first part. 

(7) 

P r o o f  o f  L e m m a  7.2.2. By (7) the two conditions in (i) are equivalent. Also by (7), 

tp| is not the zero differential, since ~p~, having unit norm as the limit in norm of 

normalized differentials, cannot be zero. 

Before going to the limit in (4), we must clarify the dependence of Jy[~] (w) on ~,. 

Instead of using q0[f(~,)]-coordinates on S use the tp[f(a)]-coordinates for some fixed a. 
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Jilt] (w) = q~b~a)lq~b'(r)] ifw))if(w)) Js(w)' w eR 

where Jl(w) is the Jacobian relative to the q~[fla)]-coordinates on S. Set 

J?(w) = q,=ifw)) [ Js(w)" 
q~[f(a)] ifw)) 

Note the behavior of the Jacobians o f f  with respect to the various coordinates on S: 

Let U be a small open set on R then 

Js[~,]dudv, 3"]dudv on U transforms to Iq)~)]ldxdy, ]lp=ldxdy onf(U).  

Here z=x+iy is the "generic" coordinate system on S. 

To deal with (4) we rewrite it as, 

\ a ] .]JR] I~0/~tr]l I ~ t w )  Js(w)dudv<~(l+k) 2. 

We want to replace Y by ~'n and take the limit. If we can do this under the integral we 

will end up with 

fL ,8, 
This in turn will imply that 

Re qo/q~= = Iqo/~o~l 

and that qo~=cqo. It will follow that q9 has finite norm and c=ll~ll/ll~ll. Concerning 

I1~=11 we only know that [[q~| 

To justify the limit set 

gD] (w) = [ 

I 

2 
r 

so that [g[~] (w)l~(1 +k) 2. Also write g*(w) for the result of replacing q)[~] by rp~. Now 

g[Ynl Jy[y,,l - g* J~ = g[Yn]( Jt[}'n] - J'] ) + (g[}'nl--g*) jr]. 

Working on each term on the right separately, 
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f fng[y.](Jf[Y,]-J )dudv = f f (g[y,lof-')(i [f(Y,)ll-lw l)dxdy 
(1 +k) fl 0 

and for the other, the dominated convergence theorem implies, 

limffRlg[Y,]--g*iJldudo=O. 
Together, these facts justify (8). 

Finally, to prove the parenthetical facts, work on S as the domain o f f  -t. 

Proof o f  Corollary 7.2.3. Because f is quasiconformal, S has the same type 

(parabolic, etc.) as R. The new ingredient that can be used here is the Heights theorem. 

From (7) and Proposition 2.3, 

1 C %~ (a) hga), 

and this holds for any a, even cross-cuts. As noted in w (1), 

hq,(a) = V~-Kh~(f(a)). 

Consequently by the Heights theorem, ~==c~p. But both ~= and ~ have unit norm, so 

c = l .  

The parenthetical statements are proved by working on S. 

Remark. Note that the corollary implies that if aR*r q~ dz 2 is not only real on aR 

but in fact is positive (q~ dz2~>0). 

7.3. It is worth restating Lemma 7.2.2 for the case when there is no trouble with 

convergence. 

LEMMA 7.3. Suppose R is a compact surface possibly with boundary aR and with 

at most a finite number o f  punctures. Assume f: R-->S is a Teichmiiller map o f  maximal 

dilatation K and associated quadratic differentials q9 on R and ~2 on S, where q~ and ~2 

are real i f  aR~=O, and they have unit norms. Suppose {y,} is a sequence o f  simple loops 

on R such that either 

lim L~[f(Y")l(flT")) = V'-K ( r e s p . , - ~ K )  L~[r,,](y,) 
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or that for  some a with i(yn, a)4:O for  all n, 

h~,(y~)]ff(a)) 1 (resp., V ~ ) .  lim 
h~t~l(a) V~-  

Then with convergence in norm, 

q0 = lira q017,,], ~p = lim q0[f(yn)] (resp., --q0 = lim ~p[yn], --~p = lim q0[f(yn)]). 

7.4. The modulus of a domain conformally equivalent to an annulus 

(z E C: l<[zl<r} is defined to be (log r)/2:r. This quantity is the reciprocal of the extremal 

length of the family of curves separating the boundary contours. 

The modulus M(y) of the free homotopy class determined by the simple loop y is 

likewise defined to be the reciprocal of the extremal length of the family of curves 

forming the free homotopy class. It is a fact that this number is exactly the modulus of 

the ring domain determined by q0[y] dz 2. With the usual normalization II 0[y]ll=l then, 

1 M ( y ) - - -  

Iff'. R-- .S is a K-quasiconformal mapping then 

K-  ~M(y)R ~< M(f(y))s ~< KM(y)R 

for all simple loops y. It is the purpose of the following theorem to examine 

~ )  M([(Y))s 
sup resp., i 

r M(Y)R 

THEOREM 7.4. Suppose R is a parabolic Riemann surface or a surface with border 

aR whose double across aR is parabolic. Let f'.R---~S be a Teichmiiller map with 

maximal dilatation K and associated differentials q~ dz 2 on R and ~ dz 2 on S, with q~ 
real on aR. 

(a) Assume that (i) qo and ~0 have finite, unit, norms, and for  a sequence {Yn} o f  

simple loops, (ii) {tpD',,]} converges to q~ (resp., to -q~) uniformly on compact subsets, 

(iii) {~P[f(~n)]} converges to a differential ~p| on S, also uniformly on compact sets. 

Then W-~'JII~'~II (resp., -W--V'| and 

M(f(Yn))s= l (resp., ~ )  
lim M(Yn)R Kll ' ll 2 
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(b) Assume for a sequence o f  simple loops {7,,} on R that 

M(f(~))s 1 (resp., K), 
(i) lim M(~',)R =--~ 

(ii) {q017,,] } converges to a differential q~| on R (resp., {q~[J~Yn)]} to ~ on S), 

uniformly on compact subsets, and 

(iii) {q0[f(yn)]} converges in norm to a differential ~p| on S (resp., {r in norm 

to qgoo on R). Then q9 and ~ have finite norms and if  normalized, 

r and ~ - ~ p  ( r e s p . , q g | 1 6 2  

Proof. Continuing the analysis of w 7.3 note the relations, 

M(f(Y))s (L*t r I (F)  .)~ 
M(F) R = \ L ~ ) )  (9) 

L~tyI(7) h~tyl(a). (10) 
h~tay)](f(a)) - L~t~r)]0~7)) 

The latter is just (7) and a is any simple loop, or possibly cross-cut. 

First we prove (a). Take a subsequence {7,,} so that 

lim g(J~m))S =1_ 
g(~m) R L 

for some L<.K. Then by (10) and Proposition 2.3 for all a, 

But from w (I), 

h~| = ~ L  h,(a). 

hvO~a)) =~KK h,(a). 
Since ~p and ~p~ have finite norm, the Heights theorem implies that ~/,| V-L-~p.  

Therefore 
L = K ( I I ~ I I / I I ~ I I )  2 = KII~p| 2 

and is independent of the subsequence {~/m} of {~'n} chosen for the proof. 
For the parenthetical case, proceeding as above we find 

h~O~a)) =~LL h_~(a). 
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From w (1) applied t o f  --~, 

h_~(f(a)) = V~-h_~(a). 

Consequently lp=-- -V" L K  ~p where now L=IIw~II 2 g - ' .  

Part (b) is just Corollary 7.2.3. 

7.5. In the nicest case Theorem 7.4 reduces to the following assertion. Results in 

this direction were earlier found by Kerckhoff [10]. 

COROLLARY 7.5. Suppose R is a compact surface possibly with boundary OR, 

possibly with a finite number o f  punctures. Assume f: R-->S is a Teichmiiller map with 

maximal dilatation K and associated positive, normalized quadratic differentials q~ on 

R and Ip on S where no closed horizontal trajectory o f  q9 is parallel to a component o f  
OR. Then: 

(a) inf.M(l~Y))s _ 1 
y M(y) R K" 

I f  (Yn} is any minimizing sequence then lira r and lim r 

M(t~y) ) s 
(b) sup - K .  

M(Y)R 

I f  {Yn} is any maximizing sequence then lim q~[Tn]=-q: and lim r =-~p. 

Given a Teichmiiller map f:R--->S, one commonly knows that the associated 

differentials q0 on R and ~0 on S are real. From Corollary 6.7 and w 6.6, Remark (2), one 

knows that q0 can be approximated by simple differentials if and only if (when aR=l=•)q0 

is positive and furthermore has no closed horizontal trajectories parallel to a compo- 

nent of OR. If, for example, r dz2>0 along a component of aR, then as a consequence 

of Corollary 7.5, both sup M(~y))/M(y)<K and infM(fly))/M(y)> 1/K. 

7.6. On an arbitrary Riemann surface R denote the set of quadratic differentials 

with finite norm by Q(R). There are two natural topologies that may be consideredl The 

norm topology and the in general weaker topology of uniform convergence on compact 

subsets. Fix a relatively compact subsurface Ro of R and denote by I[" [Iv the norm over 

that. We will focus on the following set: ~o(R)= {r E Q(R): q0 is the locally uniform limit 

of the sequence {~[Tn]/Hqg[y,]Ho} for some sequence {),,} of simple loops}. 

The differentials in ~o(R) have finite norm on R and unit norm on Ro. The set 
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60(R) is closed in the topology of uniform convergence on compact sets. It is also 

essentially independent of R0. In the case of a compact surface R, possibly with 

boundary OR, possibly with a finite number of punctures, ~o(R) is essentially the unit 

sphere in Q(R). 

THEOREM 7.6. Suppose  R is a parabolic Riemann surface or a surface with border 

OR whose double across OR is parabolic. Let  f:R---~S be a Teichmiiller map with 

associated differentials 97 on R, ~p on S with 97 real on OR and qT, e / so  normalized that 

119711o=11~11o=1. Then in the topology o f  uniform convergence on compact  subsets,  f 

determines a homeomorphisrn 

f#: ~0(R)~0(S). 

I f  97 E ~o(R) then also ~ E Eo(S) and f , ,  (97) = v/. I f  - 97 E ~o(R) then also - V~ E ~o(S) 

and f# (-97)=-W. 

Proof. First consider the situation that {97[~n]) converges to 97~o uniformly on 

compact subsets. By passing to a subsequence if necessary we can assume {97[f(y~)]} 

converges too, to a differential ~0oo on S, uniformly on compact subsets. Necessarily 

970o E Q(R), ~ E Q(S) since their norms do not exceed one. 

For some simple loop or suitable cross-cut a on R consider the formulas 

h~N(a) = i(a, y~) M(y~)~ 2 

hq~[(r.)](f( a) ) = i( a, y.) M(f(y.))~/2 

where 

M(Vn)R/K <~ M(f(yn) )s <<- KM(y~)R, 

with K the maximal dilatation of f .  In view of Proposition 2.3, these show that 

K - t h e ( a )  <<, hw| <~ Kh,| 

In particular 97~*0 if and only if ~ * 0 .  

Suppose 9oo.0. The formulas also show that 

~ l im(M(f(Y~))s~ 'n h,p ( f (a))=ch~ (a), c =  \ ~ / , 

where the positive number c exists. Suppose also 1im9716~]=97oo but 

(1) 

that 
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limcp[](6,)]=~p'. In view of the Heights theorem, ~/=d~/oo for a positive constant d. 

A similar conclusion holds if lim 9[fl6,,)]=~0oo but lim q0[6~,]=q0". 

Pass now to the differently normalized differentials, ~[~,]o=~0[~,]/11~[~,]11o, 
~,)]o=~b~,)]/ll~,)]llo. We have shown above that q0[y,]o converges in fro(R) if and 

only if 9[flY,)]o converges in ~o(S) (convergence uniform on compact subsets). Of 

course in this normalization, the limit differential is never the zero differential. 

We are ready to define f#. Start with 

f#: q0tyl0---~p[f(y)]0. 

The analysis above shows that f** not only has a well defined extension to ~o(R) but in 

fact is a homeomorphism of ~o(R) onto ~o(S). This in the topology of uniform 

convergence on compact subsets. 

Suppose for the differential ~p associated with f ,  that 9 =  lim q0[y,]o. We know that 

{9[flY,)]o} also converges. Then according to Theorem 7.4, lim ~p[f(y,)]o=~0. The same 

theorem shows that if - 9  = lim 9[Y,]o then lim q0[f(~,,)]o = - ~ .  

7.7. Again the classical case is nicest. 

COROLLARY 7.7. Suppose R is a compact Riemann surface with b>~O boundary 

components and p>~O punctures in the interior. Let g: R--~S be a homeomorphism to 

another Riemann surface that preserves punctures. Denote by Qo(R) (resp., Qo(S)) the 

unit sphere in the real vector space o f  real quadratic differentials Q(R) (resp., Q(S)) o f  

dimension 6g+ 2p+ 3b-6.  There exists a homeomorphism 

f#: Oo(R) ~ ao(S) 

which depends only on the homotopy class modulo aR [g] of  g. It has the property that 

f#(~p)=~, f # ( - 9 ) = - ~ p  for the quadratic differentials q9 on R, ,p on S associated with 

the Teichmiiller map in [g]. 
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