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w O. Introduction 

Let M be a complete noncompact Riemannian manifold without boundary. We denote 

the Laplace operator with respect to the Riemannian metric by A. Consider the 

equation for harmonic functions, 

Af-- O, (0.1) 

defined on M. To ensure a uniqueness property on equation (0.I) it is necessary to 

res t r ic t f to  lie in a suitable function space. Some of the most natural spaces are those 

consisting of L p functions on M, denoted by LP(M), where integration is defined with 

respect to the Riemannian measure. In this setting, uniqueness of (0.1) means that if 

fELP(M) for some O<p~ <oo, t h e n f m u s t  be identically constant. We remark that when 

p =  oo all constant functions satisfy (0.1) and belong to L| On the other hand, for 

O<p<oo, while all constant functions satisfy (0.1), they belong to LP(M) iff M has finite 

volume, unless the constant is zero. 

For the sake of simplicity we say a manifold satisfies property ~p for p E (0, oo] if 

every L p harmonic function on M is constant. We also say that M satisfies property 5ep 

if every nonnegative L p subharmonic function on M is constant. Observing that the 

absolute value of a harmonic function is a nonnegative subharmonic function (in the 

weak sense), M satisfying 5ep implies it also satisfies ~p. 

The first result towards understanding the uniqueness of (0.1) was due to 
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Greene-Wu [7]. In fact, they proved that if M is complete with nonnegative sectional 

curvature, then M satisfies property bop for p E [1, oo). 
In 1975 Yau [14] showed that if M is complete and has nonnegative Ricci curva- 

ture, then M satisfies property ~ .  This result is in a way the best possible, since there 

exist infinitely many bounded harmonic functions on a simply connected manifold with 

sectional curvature identically - 1. In fact, recent work of Sullivan [12], Anderson [1], 

and Anderson-Schoen [2] show and give a thorough understanding of the existence of 

bounded harmonic functions on a simply connected manifold with strongly negative 

curvature. 

In [15] Yau showed that if p E (1, oo) any complete Riemannian manifold satisfies 

property boy- He also proved that by only assuming completeness on M, any nonnega- 

tive L v harmonic function must be constant for p E (0, 1). Up to that point, the case p = 1 

was completely unknown. Also, for p E (0, 1), without assuming nonnegativity of the 

harmonic function, uniqueness is still open. 

It turns out that unless one imposes an addition hypothesis on the geometry of M, 

the property boy (hence ~v) is in general not valid for p E (0, I]. Indeed, in an unpub- 

lished preprint of Chung [5], he gave an example of a complete two-dimensional 

manifold with a nonconstant L 1 harmonic function. Later Sullivan provided examples 

of manifolds with nonconstant L p harmonic functions for p<  1 and sufficiently small. 

Recently Garnett [6] showed that i fM is complete and has bounded geometry, then 

M satisfies property Y(I. She also proved that on such manifolds any L v harmonic 

function which is bounded from below must be constant i fp  E (0, 1). 

The purpose of this article is to establish sharp conditions on the curvature of M to 

ensure the property b~ for the unknown cases p E (0, 1]. In w 1 we proved a Poincar6 

inequality for geodesic balls on a manifold with Ricci curvature bounded from below by 

- ( n - 1 )  k, k~>0. Our proof is completely local but interior. As a corollary, a lower 

bound of the first Dirichlet eigenvalue of a geodesic ball is derived. This can be viewed 

as a local version of the 21 estimate for compact manifolds given in [10]. Combined 

with a Harnack-type inequality of Cheng-Yau [4], we prove a mean value inequality for 

nonnegative subharmonic functions on M. 

In w 2 we apply the mean value inequality of w 1 to prove that if M is complete with 

RicM (x) t> - c(1 + ro(x) 2) [log (1 + ro(x)) 2]- a, c > 0, 

for all x E M, where ro(x)  is the distance function from some fixed point x0 E M, then M 

satisfies property bol- 
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We also prove that if M is complete and 

RicM (x)/> -6(n) r0(x) -2 

for all x E M, where 6(n)>0 is some sufficiently small constant depending only on the 

dimension of M, then M satisfies property 6ep for p E (0, 1). We should point out that our 

argument for the cases p E (0, l) relies on the fact that manifolds with the above Ricci 

curvature restriction must have infinite volume. This fact was first proved by Yau [15] 

for RiCM~>0, by Wu [13] for RiCM(X)>>---cro(x) -~2+~, and finally by Cheeger-Gro- 

mov-Taylor [3] for the above case. 

We also observed that since our proof only utilized the mean value inequality, for 

manifolds satisfying either (i) simply connected with nonpositive sectional curvature, 

or (ii) both Ric~ and volume of unit balls are bounded from below, must satisfy 

property 6ep for all p E (0, o0). In particular, Garnett's theorems follow as a consequence 

of (ii). 

Finally, in the last section we utilize Sullivan's method to construct two-dimen- 

sional examples of: (1) A manifold with sectional curvature K(x)--cro(x) 2+~ which 

property ~1 (hence ~ )  is not valid. (2) A manifold with infinite volume which 

possesses nonnegative nonconstant L 1 harmonic functions. (3) A manifold with sec- 

tional curvature K(x)--cro(x)  -2, for c>2, which property ~p (hence 5ep) is not valid 

for p E (0, 1). 

We remark that examples (1) and (3) indicate the sharpness of our theorems 

(Theorem 2.4 and 2.5). Moreover, both examples are manifolds with finite volume, 

hence are probabilistically complete. This provides a counter-example to the specula- 

tions that all probabilistically complete manifolds have property ~1. If the Ricci 

curvature of M behaves like Ric~(x)--cro(x)  2, the question whether M satisfies 

property 6el lies on the borderline of the scoop of Theorem 2.4 and example I, hence is 

yet to be answered. However, we feel that the answer should be affirmative. Example 2 

indicates that Yau's assumption that p E (0, l) is essential for the nonexistence of a 

nonnegative nonconstant L p harmonic function. 

Our method in w 1 and w 2, in general, yields estimates on the growth of nonnega- 

tive subharmonic functions with respect to its L p norms and the lower bound of the 

Ricci curvature on any complete Riemannian manifold. 

w 1. Poincar6 and mean value inequalities 

In this section we prove a new version of the Poincar6 inequality on a geodesic ball and 

then apply this inequality together with an estimate of Cheng-Yau [4] on harmonic 
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functions to establish a rather sharp mean value inequality for nonnegative subhar- 

monic functions. Throughout this paper M will denote a connected n-dimensional 

Riemannian manifold. For a point x E M, the open geodesic ball of radius R centered at 

x will be denoted BR(x) or simply Bn if the center point is clear from the context. The 

Laplace operator on M will be denoted by A, i.e., Af  is the trace of the covariant 

Hessian of the function f. 

Throughout this section M will be compact with (possibly empty) boundary and k~>0 

will be a number such that the Ricci curvature of M satisfies 

RJCM >! --(n-- I) k. 

THEOREM 1.1. Let xoEM and R>0.  I f  aM=@ assume that the diameter D o f  M 

satisfies D>~2R. I f  aM*@, assume that the distance from Xo to aM is at least 5R. For 

every function r on BR(Xo) which vanishes on aBn(xo) we have the Poincar~ inequal- 

ity 

foR(x l ldV fn,(x  'v IdV 
where c I =R(1 + X/'-k-R) -l e 2n~ +v-k-re. 

The following corollary is then a standard consequence of the Poincar6 inequality. 

COROLLARY 1.1. Under the hypotheses o f  Theorem 1.1 for  any p ~  1 we have the 

inequality 

fBs,xo) ]dPlP dV <~ (PC t) v  B,,x0 [w,I, dV 

for �9 vanishing on aBR(xo). In particular, the first Dirichlet eigenvalue o f  BR(xo) 

satisfies 

21(BR(x0)) t> (2R)-2 (1 + V"k-R) 2 e-4n~ V-k-R). 

The corollary follows from the theorem by replacing by I ~ '  and using HOlder's 

inequality to get 

fBt~(xo)IdPIP dV <~PCI ~t~(xo)IfTPIP-I IVf~IdV <~PCI( ~ IcYPIP) (P-I)/PIIvc~'ILp(B,)" 
The corollary now follows. 
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Proof of Theorem 1.1. The hypotheses imply that the boundary of B2R(Xo) is not 

empty, so let Xl E aB2R(x0). Let r~(x) denote the distance from x to xl. Comparison 

theorems (see [8]) imply that 

Ar ~ < ~ ( n - l ) V ~ ' c ~  if k > 0  

1 [ ( n _  1)r~-I ifk=O. 
In either case we see that 

Ar I ~< (n -  l)r~ -I + ( n -  1)V'k-. (1.1) 

Technically speaking this inequality holds only at points not on the cut locus of  xl; 

however, it is well known (see [15]) that the inequality effectively holds globally on M. 

For example, one can see that (I.I) holds in the distributional sense, i.e., if ~>0 is a 

smooth function with compact support in M, then 

fMrlA~dV<~ fM[(n-l)r(~+(n-1)V'-k]~dV. 

We will use the inequality in this sense. 

Next observe that the hypotheses on M imply that B3R(x~)naM=(~, and 

BR(xo)cB3R(xl)--BR(Xl). We have for a > 0  to be chosen 

Ae -"~z = ae -at' ( - A r  I +a).  

Thus if we consider only points in Bn(xo) we have 

Ae -~' ~ ae -3~ (a-(n-  l )R - I - ( n -  I) V"k-). 

Setting a=n(R-l+X/-k -) then gives on Bn(xo) 

Ae-~ >~ a(R-l + ~/-~)e-3~. 

Let �9 be any function on BR(Xo) vanishing on aBR(xo). We multiply by [~[ and 

integrate by parts 

a(R-l+N/~)e-3~f [*[dV~af  e-~'  IV(I)[ dV. 
J BR(X O) J BR(x O) 

Since rl ~>R on BR(xo) we therefore have 

~R ]~p]dV<<-R(I+V'-kR)-'e2"('+~") f IV*IdV 
(xo) J Bx(x o) 

which finishes the proof of Theorem 1.1. 
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We will now proceed to the mean value inequality. An important part of  the proof 

is the  following estimate of  Cheng and Yau [4]. 

LEMMA I. 1. Suppose M is a compact manifold with (possibly empty) boundary, 

and suppose Xo E M, R > 0  are such that BR(Xo)n aM=~.  I f  h is a positive harmonic 

function on Bn(xo), then the following estimate holds 

max (R-ro(X)) IV logh[ (x) ~< c2(1 + X/--k-R) 

where c2 depends only on n. Here ro(x) denotes distance from Xo to x. 

THEOREM 1.2. Let  M, Xo, R be as in Theorem 1.1. Suppose v>~O is a subharmonic 

function defined on Bn(xo). There is a constant ca depending only on n such that for  

any r E (0, 1/2) we have 

sup V2 <~ r-c30 + x/TR) ~B v2 dV 
B~l-~jR(xo) R(xo) 

where ~s f dV denotes the average value o f f  on the set S. 

Proof. The result for any R > 0  can be gotten from the case R =  1 by rescaling the 

metric, so for the sake of  notational simplicity we assume R =  1. Let  h be the harmonic 

function on Bl_2_~(x 0) which agrees with v on the boundary. Then h is positive in 

Bl_2_~(x o) (unless v is identically zero, in which case the theorem is trivial). Since v is 

subharmonic we have v<~h in Bl_z%. By Lemma 1.1 we have on Bl-~(xo) 

IV logh I ~< cz(1 + V'-k--) (1 -r0) -1 . 

For  any xEB~_~(Xo) we can integrate along a minimizing geodesic from Xo to x, hence 

concluding 

I" h(x) ' <.c2(l+X/--k-) fol-~(1-s)- 'ds  1/r. ,og h- 0) I =c2(l+VT)log 

Thus for any two points x ,y  EB~_~(Xo) we have 

h(x) h(x) h(xo) < r-2c2~+v'~). 

h(y) - h(xo) h(y) 

In particular we have 
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sup V2~ sup h2~'K -4c2(l+V-k-) inf h 2. 
Bl_,(xo) B~_~(Xo) Bt_#o) 

Thus we clearly have 

sup v2 ~< r4c2"+:r h 2 (1.2) 
Bl- r  JB(l_r ) 

where f s f d e n o t e s  the average value of f on S. The remainder of the proof consists in 

estimating the average value of h 2 by the average of v 2. We first note 

fB h2dV<-2( (h-v)2dV+2 f v2dV (1.3) 
l - r  'JBl_2-1 r dBl 

by the triangle inequality. Since (h-v) vanishes on aBl_2_,r(X 0) we can apply Corollary 

1.1 to show 

fB (h-v)2dV <~4e4n~ f ,Vh-Vv,2dV 
(I-2- It) B(1-2- Ir) 

~. 8e4n(1 +x/-k-) ( (IVhl2+llOol2)dV 
dB(l_2-1r) 

where we have used the triangle inequality. Since the Dirichlet integral of h is least 

among all functions which coincide with h on the boundary, we have 

f~ (h-v)2dV<~16e4n(l+'c~) f [Vvl2dV. (1.4) 
BI_2- I r dB I 2-It 

We now use the fact that v is subharmonic to estimate the Dirichlet integral of v in 

terms of the L2 norm of v. We have for any �9 with compact support in B~(xo) 

o, e~ZvAodV >~ O. 

Integrating by parts we then get 

--- fR 1 IV 012 (~2 dV <~ 2_ fn, *v V 01 dV 

~2(~ (~2l~Tvl2dv)l/2(f B 1~7(~12u2dV) 1/2. 
\JBI I 



286 P. LI AND R. SCHOEN 

Thus we have 

fB ]vv,2t~2 dV <~ 4 f~ o2[Vr 2 dV. 

Choosing ~ to be a function of  ro which is one on Bl_E_tr(x0), zero on aBl(xo), and 

satisfying ]Vcb[~<2r -1 we get 

'Vv'2 dV <~16r-2 ( v2 dV" 
J B  I ! 2-I t  

Combining this inequality with (1.2), (1.3), and (1.4) 

2 <  -c4(  i + X/T) _4n( I + x/k-) f oEdV (1.5) sup v ~ c 4 r ~ Vol (Bv2(Xo))-I 
B(~ -r) J B  I 

where we have used the fact that r~<l/2. To finish the proof we estimate the volume of  

B1 in terms of  the volume of  BI/2. Recall the bound for Ar E 

ArE ~< 2+ 2 (n -  1) rV'k- coth ( r V ~ )  

~< 2 (n+2(n-  1) r V T ) .  

Integrating over Bt(xo) and applying Stokes'  theorem, we get 

t d Vol (Bt(xo)) <~ (n +2(n - l) tVr'k -) Vol (B,(x0)). dt 

Integrating over t from [1/2, 1] we then have 

Vol (Bl(X0)) ~< e 2n(I + v'-k-) Vol (B i/2(x0) ). (1.6) 

Combined with (1.5), we have completed the proof of  Theorem 1.2. 

w 2. L p harmonic  and subharmonic  functions 

In this section we apply the mean value inequality to study growth properties of 

harmonic functions on complete Riemannian manifolds. Our first result shows that the 

L p mean value inequality for any p E (0, 2] is a formal consequence of  that given in 

Theorem 1.2. 
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THEOREM 2.1. Let M, xo, R be as in Theorem 1.1. Let v>-O be a subharmonic 

function on Bn(xo). For any p 6 (0, 2] there is a constant c5 depending only on n and p 

such that 

sup vPdV 
B~]_ ,)s(Xo) s(~o ) 

for any ~ 6 (0, 1/2). 

Proof. By Theorem 1.2 we have for any 6E(0 ,  1/2], 0611/2, I - d ]  

sup v 2 ~< 6 -c~(! +vTx) ~ v 2 dV. 
BSR JB(o+~)R 

Since 0+~->1/2, this inequality implies 

o 2 ~< d-c3(1 +v'Tx) Vol (BE_~R)-i f /)2 dV. sup 
BOR ,] B(o+b)R 

On the other hand we have 

~(o+~)Rv2dV<<- sup v2-p f vpdV 
B(a+b)R .JB(o+6)R 

f 2-p/2 fB ~<. sup /)2 d'dV. 
\Bto+~)R ,q 

If we set 

M( O) = sup/)2 
BOX 

K = VoI(B2_,R)-~ f ~ d V ,  
JB R 

we have shown for any 6 6 ( 0 ,  1121, 061112, l - d ]  

M(O) ~ K6-c~~ + ,,'-ER) M( O+6)j_p~. 

Choosing 0o = 1 - ~ and 0i = Oi- ~ + 2-i~ for i= 1,2, 3 . . . .  

M(Oi_l) <<. K 12ic3(l+V~R)M(Oi) ~ 

where 2 =  1-p /2 ,  K I =Kr -~3(l+v't-m. Iterating we get 

j i - I  i " i - I  �9 ~[Ar( g:] ~ 7~i= I'~" ~ c3(l+~r IL , f (~  ~tJ 
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for any j ~  1. Letting j tend to infinity we get 

where Ca depends only on n and p. This implies 

sup vP~ ~ -2-~pc6(l+~-m VoI(B2_tR) -I ( vPdV. 
B(l-t)R ./B/~ 

The theorem now follows from (1.6) which shows 

Vol (B R) ~< e "0 +v-k-m Vol (B 2 _ IR). 

A theorem of Yau [15] shows that on any complete Riemannian manifold a 

harmonic function which lies in L p for some p E (1, ~) is necessarily constant. On the 

other hand, Greene--Wu [7] have shown that an L ~ harmonic function vanishes on a 

complete manifold of nonnegative sectional curvature. It turns out that the triviality of 

U'  harmonic functions for p E (0, 1] only holds under special geometric assumptions on 

M, which will be demonstrated by the counter-examples in w 3. 

Definition. For p E (0, ~], we say that a manifold satisfies property Ygp if every L p 
harmonic function on M is constant. We say that M satisfies property bop if every 

nonnegative L p subharmonic function on M is constant. 

Since the absolute value of a harmonic function is subharmonic, we see that the 

validity of property b~ implies property Y(, for any manifold M. Yau's theorem implies 

that every complete manifold satisfies property bop for p E (1, ~). 

THEOREM 2.2. The following two assertions hold. 
(a) A complete simply connected manifold of nonpositive sectional curvature 

satisfies bop for p E (0, ~). 
(b) A complete manifold of  nonnegative Ricci curvature satisfies bop for p E (0, ~) 

and also satisfies ~(p for p E (0, ~]. 

Proof. To prove (a) we observe that if M is complete and simply connected with 

nonpositive sectional curvature, then the mean value inequality 

supu2<~C7 R - n  ( vZdV 
B 2-1R .JB R 

holds for nonnegative subharmonic functions. This result is well known and its proof 
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can be found in [8]. By varying the center  of  the ball and the radius this implies 

s u p  vE~c7z'-nR-n~ v2dV 
B(I-r)R J B  R 

for any r E (0, 1/2). As in Theorem 2.1 we then get the mean value inequality for any 

p f i (0 ,2 ]  

sup: <-csR-" ( vP dV 
B2-1R ,,IB R 

for a constant c8 depending only on n and p. If v lies in L p, we can then let R go to 

infinity to show that v is identically zero. 

To establish assertion (b) we apply Theorem 2.1 with k=0 to get 

sup o p ~< c 9 Vol(BR) -l ~ t edV 
B 2 - l R .] B R 

where c9 depends only on n and p. A theorem of  Yau [15] shows that for any complete 

manifold of  nonnegative Ricci curvature and any x C M, 

V o l  (BR(X)) >t c l o R  

where Clo is a positive constant  depending on x and M. Therefore  we can let R---~oQ to 

show that M satisfies 6ep for p E (0, oe). The fact that M satisfies ~ o  is a theorem of  Yau 

[14]. This completes  the proof  of  Theorem 2.2. 

THEOREM 2.3. I f  M is a complete manifold whose Ricci curvature is bounded 

below by a negative constant and such that the volume o f  every unit geodesic ball in M 

has a positive lower bound, then M satisfies b~p for every p E (0, oo). 

Proof. Since M automatically satisfies 6ep f o r p  E (1, ~),  we suppose p E(0, 1] and 

suppose v is a nonnegative L p subharmonic function on M. For  any point x EM, 

Theorem 2.1 implies 

OP(X)~ < c l l  Vol(Bl(X))-I / vPdV 
J B l ( x )  

where c1~ is independent  of  x. Since we are assuming a positive lower bound on 

Vol (Bl(X)) independent  of  x, we see that there is a constant  c12 so that 

sup v ~< C12. 
M 
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But this implies 

fMV2 dV <~ c~P fmV" dV < ~ 

and oGL E. Therefore v is identically zero and Theorem 2.3 follows. 

The case p = l  is a borderline case,  and it turns out  that very weak hypotheses  

guarantee property 5r although examples (see w 3) show that not every complete 

manifold enjoys property b~ 

THEOREM 2.4. Suppose M is a complete manifold and xoEM. Let ro(x) denote 
distance to Xo, and assume 

RiCM (x) ~> -- c l 3(1 + r0(x) 2) [log (1 + ro(x)2)]- a 

for all xEM and some ct>0. Then M satisfies property 5Pl. 

Proof. Let  v be a nonnegative L 1 subharrnonic function on M. We first construct  a 

sequence R; tending to infinity such that 

!im (logR i) ( v dV = 0. (2.1) 
i-.*oo j BzRi_BR i 

To construct  such a sequence we define Le by 

L e = 22i, i = 1,2, 3 . . . .  

and observe that [Ze, Li+l] is a disjoint union of  2 i intervals with length Li and 

endpoints ai, j given by 

a i , j = 2 i L i ,  j = 0 , 1 ,  . . . .  2 i. 

Thus there is a jo  with l~<jo~21 such that if we set Ri=joLi we have 

fnz~,_n~ v dV . 2-e ( v dV. 
�9 . JBLi+ [ --BL i 

Next  observe that Ri<~Li+l and hence logRe~<2 e+l log2. Thus we have 

( logRi )~  vdV<~21og2f vdV. 
2Ri--BRi J BLi+ 1 --BLi 
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Inequality (2.1) now follows from the fact that v is integrable on M. 

Let  M+ denote the set of  x E M where v(x)>~e, and let f§  denote the positive part of  

a function f.  Using the fact that v is subharmonic we have 

fM ~2 Av dV ~ 0 (log log O)+ 

where ~ has compact  support.  Integrating by parts 

fM c~2 (log logv)~- l (log v)-' u-' lVvl2 dV <<. 2 f r (log logo)~ lv ~pl lV vl dV. 
+ JM+ 

Applying the Schwarz inequality we get 

fM *2(1oglogv) a- '  (log v) -t v-IIVvl 2 dV~< 4 ~  (log logo) a+l (logo) vIV*I 2dV. 
+ JM+ 

For any i= 1,2 . . . .  choose  �9 to be  a function of  ro which is one on BRi(x o) and zero 

outside BERi(Xo). This gives 

fn R (l~176176 o-llvol2 dV <~e(i)Ri-2(l~ sup(l~176 (l~ 
i fl M+ B2R i 

(2.2) 

where we have used (2.1) and we denote by t(i) a term which tends to zero as i goes to 

infinity. Applying Theorem 2. I in conjunction with the lower bound on the Ricci 

curvature of  M inside B4R ? we get 

c(l + R~(IogRi) -a) 
s u p v ~ e  
B2R~ 

for some constant  c. Using this in (2.2) we get 

fB (log log v) ~-1 (log v) -l v-llvvl2dV<~ e(i). 
RiDM+ 

Letting i go to infinity then shows that either v is constant or M+ is empty,  in which 

case v<~e on M. Thus v would be in L 2 and hence constant.  In any case we have 

finished the proof  of  Theorem 2.4. 
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COROLLARY 2.1. Suppose M is a complete manifold and Xo E M. Let  ro(x) denote 

distance to Xo, and assume 

Ric m (x) ~> -cl3(1 +ro(X) z) [log (1 +r0(x)2)] -a 

for  all x E M and some a>0.  Then the heat semi-group e at is the unique strongly 

continuous contractive semi-group on LI(M) with A as its infinitesimal generator. 

Proof. To show that e at is a strongly continuous contractive semi-group with A as 

infinitesimal generator, following an argument of Strichartz in [11], it suffices to prove 

that there does not exist nontrivial L ~ function satisfying 

A f = 2 f  

on M, for 2>0. To see this, we observe that both eAt fand  e~/fare L~-solutions to the 

heat equation. Due to the assumption on the Ricci curvature, the volume growth of M 

must satisfy 

Vol (BR(xo)) <- e cR2 

for some postitive constant C. This condition fulfills the hypothesis of uniqueness 

theorem for L~-solutions in [9]. Hence 

eAt f =  eat f. 

However e at is contractive in L~(M), where eX/fcleady grows exponentially in t. This 

gives a contradiction unless f=0 .  

To prove uniqueness of e at, Strichartz's argument reduced to proving the non- 

existence of nontrivial L~-solutions to the equation 

A f = 2 f  for 2 >0 .  

If we let o--If I, then v is a nonnegative subharmonic function. By Theorem 2.4, v, 

hence f,  must be identically constant. However this is impossible unless f---0 because 

2>0, and the corollary follows. 

When 0 < p < l ,  Theorem 2.4 does not hold. In fact, examples (see w 3, example 3) 

show that M may not have property ~p for 0 < p <  1 even if its curvature behaves like 

- a [ ( 1 - a ) r ]  -2 for 1 /2<a<l .  However, it turns out that this is the critical case for a 

manifold to satisfy property 5ep, hence ~p, as the following theorem indicates. 

THEOREM 2.5. Suppose M is complete o f  dimension n. There exists a constant  
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6(n)>0 depending only on n, such that, for some point Xo E M, the Ricci curvature 

satisfies 

RicM (X)/> - 6 ( n )  ro 2 (X) 

whenever the distance from Xo to x, ro(x), is sufficiently large. Then M satisfies 
property 3~p for any p E (0, ~). 

Proof. In view of Theorems 2.2 and 2.4, we only need to consider those cases 

when p E (0, I). We observe that since the arguments leading to Theorem 2.1 are local, 

the following local L p mean value inequality holds 

sup vP ~< 2r176 + s ~ )  Vol (BR(X))- l I vPdV (2.3) 
BR/2(x) J BR(X ) 

(by setting r= 1/2) for nonnegative subharmonic functions on BsR(x). Here the term 

- ( n - 1 )  k(x, 5R) denotes the lower bound of the Ricci curvature on BsR(x). 
Our goal is to utilize (2.3) to show that v must vanish at infinity if yELP(M), v~O, 

and subharmonic on M. In particular, this implies v ELP(M)nL| hence v E L2(M), 

and must be constant. In fact, by a theorem of Cheeger-Gromov-Taylor [3], under 

such hypothesis on the Ricci curvature, M must be of infinite volume and v must be 

identically zero. 

Let x E M and consider a minimal geodesic y joining Xo to x with ~,(O)=xo and 

~,(T)=x where T=ro(x). Define a set of values {tiE[O,T]}/k=o by to--0, 

t l = l + f l  . . . . .  t i=lW2f l+2f l2d- . . .+2f l i - l - l - f l i=2 Z~=O fl i-- l-- f l i ,  where f l>l  to be chosen 

later, and tk=2 2J'=o i f -  1--ilk is the largest such value with tk<~T. Clearly {~(ti)} form 

a set of points {xi) with the property that r(xi;xi+l)=fli+ff +l, ro(xi)=ti and 

r(Xk, x)<flk+fl k+ I. The set of geodesic balls BR,(xi) with Ri=fl i cover ~([0, 2 Ef=o i f -  1]) 

and have disjoint interiors. We now claim that for a fixed fl>2/(2 l/n- 1)>l, 

8" f Vol (BRk(Xk)) ~ Cl4 ( ( f l+~_ f ln  Vol (Bl(x0)). (2.4) 

In fact, this follows from the argument in [3] which proved M has infinite volume. 

However, for the sake of completeness, we will outline the proof of (2.4) again. For 

each l<.i<~k, a comparison theorem argument (see [3]) shows that 

Wol (eRi(xi))~ T i Wol (BRiq.2Ri_I (Xi)--BRi(Xi)) 

T i Wol (BRi_l(Xi_l)) 
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where 

L= 

fo Ri~r k(xi'eiq'2ei-l) sinh n-z t dt 

~/~ir~il I~2R]I'II '+~'-') sinhn-ttdt 

Iterating this inequality, we conclude that 

k 

Vol (BRk (X,) ) ~ I-I  Ti Vol (B~(xo)). 
i=l 

(2.5) 

However, since ro(xi)=2 i E)=o i f -  1 __pi and Ri=fl i, the assumption on RicM yields 

/ i -2 \ - i  
k(xi, Ri~l-2Ri_,) "~I/2(F/)/j.~0 ~ -  1 ) 

= 61/2(n) f l -  1 
2fli-I __fl__ 1 

for sufficiently large i. Since fl>2/(2Vn-l)>l is fixed, the term 

(Ri"]-2Ri_i)~v ~ k(xi, Ri"~2Ri_,) ~61/2(/"/)2~i_-'~1:~ 1 -  # (~i'Jt'2j~i-I) 

can be made arbitrarily small by the smallness assumption on 6(n). Hence Ti has the 
following approximation 

e ;  

L n n (Ri+ 2ei_ 1) - R  l 
pn 

- 

by simply approximating sinh t with t. Combining with (2.5) gives (2.4). 
In the case if r(xk, x)~<Rfll0 inequality (2.3) yields 

~(x)~< sup o u 
BRkllo (Xk) 

~gcs(l+(Rkls)~'~')Vn|(R (y "~1-1 f 
. . . . .  w'R~5~kI~ JM vp dV. 

However, the same argument that proved (1.6) gives 
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Vol (BR~,(x,) ) >I e -c''a +R, ~ Vol (BRk(x,)). 

Combined with the fact that R k ~ k )  is bounded from above and (2.4), we have 

proved 

re(x) ~< cl60 k Vol(Bl(x0)) -I ~ ' d V  (2.6) 
gu 

where 

for our choice of fl>2/(2 l/'~- 1). 

0 =  +2) -fln < I 

When r(xk, x)>RfflO, w e  observe that since r(x,,x)<Rk+R,+~, applying the same 

argument as above, we get 

Vol (BR,/2o(X)) >I e-qTO +R,+,~,,~)) V k~,R,+,t~k,~)) Vol (Bs:zo(Xk)) 

I> cl8 Vol (BR~0(x,)). 

Now, applying (2.3) to BR~2o(X) and the above volume estimate, we deduce that (2.6) is 

still valid. 

In any case, i fx~o0 ,  then k--, oo. Hence by the fact that the yELP(M) and 0<1, the 

right-hand side of (2.6) vanishes, thus proving our assertion and Theorem 2.5 follows. 

w 3. Counter-examples 

In this section we will give three examples of manifolds which possess non-constant 

LP-harmonic functions. 

The first example is a manifold with finite volume. In particular, it is probabilisti- 

cally complete (i.e., the life-time of most brownian motion is infinite). Moreover its 

sectional curvature decays like 

- c r  2+e, c > 0 ,  

at infinity, and it possesses non-constant LLharmonic functions. 

Example 2 is a manifold with two ends. Its curvature at one end behaves like 

- c r  2+e, c > 0 ,  
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where at the other end it is bounded. The first end is a cusp while the latter has infinite 

volume. This manifold possesses at least one non-constant positive L~-harmonic 

function. 

The third example is a class of manifolds with finite volumes, and curvature decay 

like 

--or -2,  c > O ,  

at infinity. For each value of 0 < p < l ,  there are manifolds in this class which possess 

non-constant LP-harmonic functions. 

Example  1. Let M be a compact surface with arbitrary genus. Assume the metric 

on M around some point 0 E M is fiat. Hence locally around 0 we can write the metric in 

polar coordinates as 

ds 2 = dt  2 + t 2 dO z. (3.1) 

Consider the Green's function on M with the pole at G(O,x)=f(x) .  By definition f is 

harmonic on M - 0  with respect to the given metric ds 2. Let 

ds2=p2dsg,  p > 0  (3.2) 

be a conformally changed metric on M. Since we are in dimension 2, the Laplacian A 

differs from the original Laplacian A0 by a factor of 1/• 2, hence Af-=0 on M - 0 .  We will 

now choose Q so that M - 0  is a complete manifold andfE  L~(M-O)  with respect to ds 2. 

Choose O to be arbitrary outside a neighborhood of 0, and 

•(0, t) = Q(t) = t-1 (_ log ~)- 1 (log ( - log t))-a (3.3) 

with 1 /2<a<l ,  where (0, t) are the flat polar coordinates system center at 0 with 

0<t~<l/2. 

To check completeness of this metric it suffices to evaluate the line integral 

f0 
112 

9 dt. (3.4) 

Infinite value of the above integral will ensure completeness. By a change of variable 

u=log (- log t), this integral becomes 
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~1/2 ~loglog / 
O(t) dt u-a du 

JT ~ Jloglog2 
1 / 1 \ l - a  

~loglog~-) , for a <  1, (3.5) 
1 - a  

as T---~0. This proves completeness of ds 2. 
The Green's function flx)=G(O, x) satisfies the estimate 

Ifl0, t)] ~< - log  t. (3.6) 

To verify that fELl(M--O), we need to evaluate the surface integral 

f?f? ~tp 2 dO dt<~ ( l~\logt/tp2(t)dt 

f = 27t u-2adu 
glog2 

= 2.zr [ I --2Ctlloglog2" (3.7) 

By the assumption that a >  1/2, this value is finite and hence fE L*(M-O). 
We will now compute the curvature of ds 2 near 0. Standard computation shows 

that 

K =  -A~176 1V~ A~ -- (0')2 0" 0 '  
- ( 3 . 8 )  

02 ~4 03 04 03 tO3" 

Differentiating Q with respect to t, 

Q ' = [ c t t - l ( l o g ~ ) - l ( l o g l o g ! ) - l + t - l ( l o g ! ) - l - t - 1 ] Q  

and 

~ Io(log§ l(,oglo~§ '+(,og!t I 1]2t 20 
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Substituting into (3.8) yields 

K = _ t _ 2 0 _ 2 [ a ( l o g l ) - 2 ( l o g l o g l ) - 2  / 1 \ - 2 /  l \ - ,  / 1 \ -2]  +ot,o T) ] L k l /  \ l /  

= - (log log l )2~  [a  (log l o g l ) - 2 + a  (log l o g l ) - |  + , ]. 

However, according to (3.5), the geodesic distance of ds 2 behaves like 

1 / 1 \ l - a  
r - - l _ a ~ l o g l o g t )  �9 

Hence 

K ~ - (1 - ct) 2a/(I - a) r2a/(l - a) [ 1 + 

The leading term as r~oo is clearly 

which can be written as 

a r-n/O-a)+ Ct r-2/(i-a)] 
l - - a  (1 --Ct) 2 J" 

- ( l -a )  2~ ~) r z~162 

2r ~2+~ 
K - - - k 4 + e  / 

by setting a=(2+e)/(4+e) for any e>0. 

(3.9) 

on  D 2--  uni t  d i sk  in R 2, 

0<t~<I/2, and 

1 -a  

ds  2 = Q2 d$20 

where ds 2 is the Euclidean metric. Pick 0 as in (3.3) for 

l 
- - < a ~ <  1 (3.10) 
2 

for 3/4~<t<1. The Green's function G(0,x) in R 2 with pole at the origin is given by a 

constant multiple of - log  t=f(t). Hence f is a positive harmonic function on D 2 with 
metric ds 2. Clearly the computation shows ds ~ is complete and f is L l near the origin. 
Moreover, the curvature behaves as in (3.9) near 0. We only need to verify complete- 

Example 2. To construct a manifold which possesses a non-constant positive L l- 

harmonic function we proceed as in Example 1. However, we modify the metric on the 

unit disk in R 2. Choose the new metric to be 
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ness by showing 

and f E  L l, by checking 

f3 1 o dt = oo 
/4 

f3 1 tO2 (-logt)dt  < oo. 
/4 

Obviously, both conditions are satisfied by our choice of Q in (3.10). In particular, for 

example, the latter condition can be checked as follows: 

f3' tO2 (- l~ <~ 
l_ / 7 - - - |  / I \-2a l 

/4 ./3/4(I--0Z \ l~ l _ t ]  
l o g t d t  

~41og ( l - t )  -~ log-i- ~ -  dt 
/4 

4 f | 
= 4log-=- | u-2adu < ~. 

3 Jlog4 

Example 3. We choose 

( O = t  -1 log , a ~  <1 (3.11) 

in our construction of Example 1. The harmonic function will also be the same, namely, 

f(x)=G(O,x). To verify d$2n-o2d$ 2 is a complete metric is trivial. The condition for 

which f E  LP(M-O) is given by 

The left-hand integral is f01'2t 
As evaluated as before this is finite when 2 a - p > l .  Hence to obtain non-constant L p- 

harmonic functions on M - 0  for any given 0 < p < l ,  we simply choose a>(l+p)/2. 

We will now compute the curvature K near 0 according to formulas (3.8) and 

(3.11). Differentiating 0, we get 

0 _-t ] 
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and 

Therefore,  

K = - ctt-2p - 2 (log t)-2 

= _ a  ( l o g + )  -2('-a). 

However, the geodesic distance behaves like 

/" I/2 

flog U du 
l/t 

= dlog2 

1 \ l -~  log t )  -(log2) '-a 

1--a 

Hence  

K ~  - a [ (1  - a )  r] -2. 

Note that when a =  1, this is the constant  negative curvature metric. However,  when 

a < l ,  the curvature decays to 0 quadratically at infinity. 
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