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This note is to announce an error in the statement (and proof) of Theorem 4 in [2], 

namely the equality of the Fredholm index of the variable coefficient elliptic system A 

and the constant coefficient elliptic system is false. Thus Theorem 4 should read 

THEOREM 4. I f  (1.7) and 0.8) hold with C~o~=O for all la[<~ti-s, ~31<~s i, and 

i , j=l ..... k then (tt) is Fredholm if and only if(1.9) holds. 

The error in the proof occurs on page 135 where the homotopy AT is discontinuous 

at r=01 To complete the proof it is necessary to construct a Fredholm inverse for 

A| which may be done by patching together a parametrix in Ixl<~3R with a 

Fredholm inverse for A| in Ixl>2R, thereby showing that (4.5) is finite. 

The error was carried over from [1] where the same homotopy was used to assert 

the equality of the indices for scalar operators A and A| (as in theorem 2). Though the 

proof in [1] also fails, the result for scalars can be proved by studying the symbol 

homomorphism as in [4], so Theorem 2 is true. 

For the special case of classically elliptic systems (as in [4]) the symbol homomor- 

phism may also be used to compute index (A)-index (A~), and in particular to obtain a 

counterexample to index (A)=index (A| In fact, in R z consider the 2x2 system 

A = ( I o  O~ 0 + ( i c o s r  ei~ O 
1/ ~x  \ - e - i~  sinr - i co s r /  ay 
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where 0<r=% / x2+y 2 ~<~, O<.O=arctany/x<2:t, and extend A to r>:r  by the constant  

coefficient operator 

0 a a 

Let us fix - 2 / p < 6 < - 1  +2/p' and observe that 

A| W~L ~-=) W~o,o+I (I) 

is an isomorphism. We may realize H = A A :  ~ as an elliptic singular integral operator 

and 

H: W~o,o+l-=> W~o,o+l (2) 

A: W~l,a---> Wg0,6+ I (3) 

have the same Fredholm index. But using the results of [4], [5], and [6] we find that the 

index of  (2) is given by the degree of  the mapping pOOH: S2xSI--~S 3 (where pOOH is 

the 1st column vector of  OH) which is 2. So index (A)4:index (Ao~). 

In the general case of  Douglis-Nirenberg ellipticity a little more can be said than 

Theorem 4, namely in [3] it is shown that the Fredholm index of ( i t )  and that of (tt)oo 

differ by a constant  which is independent of  6 E R. 

Finally, the authors wish to acknowledge M. Murata for pointing out the error in 

the proof of  Theorem 4, and C. Taubes for suggesting the above counterexample. 
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