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1. Introduction and preliminaries 

1A. As is well-known, one can always extend a MObius transformation of  l~ n 

(=R no{o0}) to a MObius transformation of  the hyperbolic (n+l ) - space  

/-P+l={(Xl . . . . .  Xn+l)ER~+l:x~+l>0}.  For  instance, this can be done as follows. 

Let  z E H  ~+1. Pick a triple x=(u ,  v, w ) E ( R ~ )  a of  distinct points such that z is on the 

hyperbolic line L with endpoints u and v, and such that the hyperbolic ray R with 

endpoints z and w intersects L orthogonally.  Then we write 

z = p ( u ,  v, w)  = p(x). (l .1) 

If  now g is a MObius transformation ofl~ ~, then the extension o f g  t ~ H ~+1 is given by 

g(z) = p(g(u) ,  g(v), g(w))  -- pg(x) .  (1.2) 

If g is a MObius transformation,  then (1.2) is independent of  the choice of  the triple 

satisfying ( l . l ) ,  but this is not true of  non-MObius g. However, and this observation 

started this paper, if g is quasiconformal,  then (1.2) defines a kind of  fuzzy image of  z 

for z E H  n+ l  which satisfies a certain type of  Lipschitz condition. We explain this now 

in more detail. 

First, if two triples x, x'  Ep- l ( z ) ,  then the hyperbolic distance 

d(pg(x ) ,pg (x ' ) )  <. m,  (1.3) 

where m~>0 depends only on n and on the dilatation of g (Theorem 3.4). Thus the 

indeterminacy in the image of  z is uniformly bounded for z E H ~+~. 

(1) I wish to thank the Magnus Ehrnrooth foundation for financial support. 
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Second, there are constants M~>0 and L~>I, depending only on n and on the 

dilatation of g, such that if z , z ' E H  ~+1 and d(z,z')>~M, then for any xEp- l (z )  and 

x' Ep-l(z'),  

d(z, z')/L <~ d(pg(x),pg(x')) <. Ld(z, z'), (1.4) 

cf. Theorem 3.6. 

I B. This paper is an application of these ideas to the following problem. Let G be 

a group of M6bius transformations of 1~" (whose action can be extended to 

/_~+l=/_p§ IJl~") and let f be a homeomorphism of 1~ ~ which is G-compatible; that 

is, there is a homomorphism q0: G---~G' onto another M6bius group G' such that 

qo(g) f(x) = fg(x) 

whenever f(x) is defined (in which case we say also that f induces 9). 

We wish to find an extension F of f to /~,,+1 which is also G-compatible and 

preferably also a homeomorphism. Furthermore, i f f  is quasiconformal, then we wish 

the extension also to be quasiconformal. 

If n > l ,  then we do not know whether such an extension always exists. But the 

next theorem is a step in this direction. 

THEOREM 1. Let G be a group o f  M6bius transformations o f R  ~ and let f be a G- 

compatible homeomorphism of  R~. Then there is a G-compatible and continuous 

extension F o f f  to a map ISl~+l--~ISl n+! such that F(Hn+I)cH n+l. 

Furthermore, i f  K>~ l, then there are M=M(K, n) and L=L(K, n)~>l such that i f  f is 

K-quasiconformal, i f  z, z' EH n+' and if  d(z,z ')~M, then 

d(z, z')/L <~ d(F(z), F(z')) <~ Ld(z, z'). (1.5) 

This will be proved in Section 3. We give here only the definition of F in H ~+'. If 

X=/-P +~ is non-empty and bounded, there is a well-defined hyperbolic disk of minimal 

radius containing X. Let P(X) be the center of this disk. We set for zE/-~ +l 

F(z) = P(pf(p- l(z)). 

Note that the set p-l(z)  is compact and hence the continuous image pf(p-I(z)) of it is 

bounded. Here we used f also to denote the map (u, v, w),-->(f(u), f(v), f(w)). 

Then obviously F(Hn+I)=/-Y '+1 and by Theorem 3.1 we get in this manner a 

continuous and G-compatible map H,~+~_._)/_~+I extending f which satisfies (1.5) by 

Theorems 3.4 and 3.6. 
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A map F:/~+I---~H n+l which satisfies (1.5) is called a pseduo-isometry. This 

notion is due to Mostow [25]; actually, his definition is slightly stronger since he 

requires that the right-hand inequality of (1.5) is valid for all z, z' EH n+~. One knows 

that pseudo-isometrics of/_/~+1 admit continuous extensions to 1~" such that the maps 

of 1~ '~ so obtained are quasiconformal homeomorphisms of l~n; see [3 I] where the proof 

uses the stronger definition of a pseudo-isometry, but the result is valid also for the 

weaker one. This theorem is essentially due to Efremovic and Tihomirova [10]. Thus 

Theorem 1 is also a converse to this result. 

1 C. The main theorem. It is natural to try to deform the pseudo-isometry of 

Theorem 1 to a quasiconformal extension off.  Indeed, if G= {id}, then this can be done 

since in this case one can find a homeomorphic pseudo-isometric extension [41]. Here 

we apply the preceding ideas to show that, if n = l ,  quasisymmetric maps allow a 

quasiconformai G-compatible extension. 

We say that a homeomorphismfof  1~ is quasisymmetric iff(oo)= oo and if for some 

k~ > 1 and all x, t E R, t>0, 

1/k <~ f (x  +t)- f (x)  << k (1.6) 
f(x)--f(x--t) 

in which case we say also that f is k-quasisymmetric. Note that f may be also 

orientation reversing. 

We find it convenient denote the open and closed upper half-planes of 1~2=(~ by U 

and 0 instead of H 2 and HZ. We then have 

THEOREM 2. Let k ~ I .  Then there is K=K(k)>~I such that i f  G is a group o f  

M6bius transformations o f  fi and if  f is a G-compatible k-quasisymmetric map o f  fl, 

then f can be extended to a G-compatible K-quasiconformal homeomorphism of  CI. 

We prove this theorem in the course of this paper, and the proof is completed in 

Section 5 E. We indicate here only the main lines of the proof. 

Only the case of discrete G is difficult; if G is non-discrete thenf i s  almost always a 

Mfbius transformation. The case in which it need not be is easily reduced to the 

discrete case and the theorem is shown to be true with the same K, of. Section 5 E. 

So assume that G is discrete; i.e., a Fuchsian group. For simplicity we assume that 

G does not contain parabolic elements. We first show that, given k, there is M=M(k) 

such that if 
d(x, g(x)) ~ M (I .7) 

for all x E U and g E G \ { i d } ,  then there is a K(k)-quasiconformal extension o f f ,  cf. 

Theorem 5.2. 
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To construct the extension in this special case, we first find a G-invariant triangula- 

tion ~r of U whose triangles are large, that is, their angles are small, cf. Theorem 4.5. 

The degree largeness depends on k. We then fix for every vertex a of ff  a triple z such 

that p(za)=a, p as in (I. I). We do this in a G-invariant manner. If T is a triangle of j r  

with vertices a~,a2,a3, then there is a non-degenerate hyperbolic triangle T' with 

vertices Pf(Za) (Theorem 3.8). We define the extension in such a way that F(T)= T', 

and, indeed, in this manner one obtains a homeomorphic G-compatible extension 

(Corollary 3.9) which can be made K(k)-quasiconformal. 

If G is finitely generated and does not contain parabolic elements, then G has a 

normal subgroup N of finite index which satisfies (1.7), cf. Lemma 5.4. Thus there is a 

K(k)-quasiconformal, N-compatible extension of f .  Now Lemma 5.5 implies that then 

there is also a G-compatible, K(k)-quasiconformal extension off .  Lemma 5.5 is based 

on the existence and uniqueness of Teichmi~ller's extremal mapping. 

If G is not finitely generated, there is a sequence G, c G 2 c - . . ,  of finitely generated 

subgroups whose union G is. Let Fi be a Grcompatible, K(k)-quasiconformal extension 

of f. Now a normal family argument gives the G-compatible, K(k)-quasiconformal 

extension of f .  

If G contains parabolic elements, then we assume in the first step of the proof that 

(1.7) is true for all x E U  and g E G \ H ~  where H~={id} or Hx is a cyclic group 

generated by a parabolic element of G. Now the triangles of g- may also contain 

hyperbolic triangles with one vertex in 11; this vertex is fixed by some parabolic g E G. 

Otherwise the proof is unchanged. 

Finally, we remark that Theorem 2 was proved for finitely generated Fuchsian G 

by Kra [ 13] (with K depending on G and f) .  I f f  is a G-compatible homeomorphism of 

1~, then one knows that f has a G-compatible homeomorphic extension to O by 

[33, Theorem 3] (cf. also [32, pp. 31-33]) if G is discrete and by Section 5 E if G is not. 

1 D. Estimates for K. Our proof does not give an estimate for K in Theorem 2 

(except the estimate (5.6) for k near 1). It does not appear impossible to give such 

estimates but this would entail further complications in an already complicated proof. 

If k is not very large, Lehto [17] showed that one can use the Ahlfors-Weill method 

to obtain the extension, and then it is easy to estimate K. In fact, we can take 

K - 2k3/2-1 

2_k 3/2 (1.8) 

if k<2 2/3, cf. (2.7). 
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1 E. The case n=2. It seems that our methods can be applied also if n=2 to 

construct a quasiconformal extension of a quasiconformal homeomorphism f of I~ 2 

which is compatible with a discrete MObius group of 1~ 2. This is due to the fact that in 

dimension 2 the complex dilatation allows one to decompose f as fko. . ,  ofl where the 

dilatation off,. is near 1 and each f, is Grcompatible when Gi=f i_  1 Gi_ 1 f/-_l 1 and Go=G. 

In case of near-conformalf, the construction of Theorem 5.2 can be carried out also for 

suitable triangulations of the hyperbolic 3-space whose simplexes need not be very 

large. Thus the idea is the same as in the quasiconformal extension from R z to R 3 in 

Ahlfors [1], only the euclidean geometry is replaced by the non-euclidean, which 

guarantees G-compatibility. 

It is probable that this method works for all discrete G and certainly for all 

geometrically finite G. In fact, in an earlier version of this paper, we included some 

results for this case. After this version was written, we were informed of chapter 11 of 

Thurston [3 I]. This chapter is as yet incomplete, but in it Thurston intends to prove the 

same theorem using analytic methods; which should allow a smoother proof than the 

above combinatorial approach. 

I F. Quasiconformal maps o f  R. We adopt the following convention regarding 

quasiconformal maps of 1~. L e t f b e  a homeomorphism of 1~ (not necessarily orientation 

preserving). It is quasiconformal if the following is true for some K~  1. If a, b, c, ds  1~ 

are distinct and follow one another in 1~, let M(a, b, c, d) be the modulus of the 

quadrilateral with vertices a, b, c, d and interior U, cf. [18, 1.2.4] where this was defined 

for such a, b, c, d which are on positive order on aU=l~; if they are in negative order, 

we set M(a, b, c, d)=M(d, c, b, a). Then 

M(a, b, c, d)/K <<. M(f(a),  f(b), f(c),  f(d)) <<. KM(a, b, c, d) (1.9) 

for all such quadrilaterals. We say also tha t f i s  K-quasiconformal. The smallest number 

K>~I satisfying (1.9) is the dilatation K(f )  off .  I f f  fixes ~ ,  then f is quasisymmetri~, 

that is (1.6) is true for some k_->l. The smallest number k~ l  satisfying (1.6) is the 

quasisymmetry constant Q(f)  of f .  The advantage of the notion of quasiconformality 

for us is due to the fact that we can now freely composefwith  MObius transformations 

without changing the dilatation. Also, we can define a metric in the universal Teich- 

miiller space (cf. Section 2 B) by means of dilatation since now K(fog)<.K(f)K(g)  and 

K ( f - l ) = K ( f ) ;  these relations are not true if we replace K( ) by Q(). 

We note the following relations between Q(f) and K(f).  If f is the restriction of a 

K-quasiconformal map of/] ' ,  then K(f)<~K. Since every k-quasisymmetric map can be 
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extended to a kE-quasiconformal map of O (Beurling-Ahlfors [8, Theorem I]) we have 

first of the inequalities below, which are valid for all quasisymmetric f ,  

K(f)  ~< Q(f)2 and Q(f) <~ e (x~f)-l)/A (1.10) 

where A=0.2284. The second inequality follows from [8, p. 131]. Note that, together 

with (1.10), the Beurling-Ahlfors extension of a quasisymmetric map implies that every 

K-quasiconformal self-map of 1~ can be extended to a K'(K)-quasiconformal self-map of 

6'. 
The proof of our Theorem 2 makes use of (1.10) whose first inequality is obtained 

by means of the Beurling-Ahlfors extension of a quasisymmetric map. Hence our 

extension is not independent of the Beurling-Ahlfors extension. However, it is also 

possible to prove (1. I0) directly. Thus the dependence is not essential, and we get a 

new extension also for the case G={id}. Actually, we only need to know that if j21~---~I~ 

is k-quasisymmetric and if g and h are M6bius transformations such that gfh(~)= ~, 

then g/h is k'-quasisymmetric for some k'=k'(k). This follows by V~iis/ilfi [43, Section 

3]. 

1 G. Notation and terminology (in addition to the ones given before). A MObius 
group G of 1~" is a group of M6bius transformations of 1~ n. The action of G extends to 

/~+ l  and we do not distinguish between these two groups. Note that these groups 

may contain also orientation reversing elements. A M6bius group has a natural topo- 

logy, and a Fuchsian group is a discrete M6bius group of 1~. If x E Hn+l the stabilizer 
of G at x is Gx = {g E G: g(x) =x}. 

The hyperbolic metric of H ~+l is given by laxl/x § x=(x  . . . . .  Note that 

the formulae of hyperbolic trigonometry are valid for this metric. The diameter of a set 

and the distance between two sets are denoted d(A) and d(A, B). These notations are 

used also for the euclidean metric of R~; if confusion is possible we say which metric 

we mean. The euclidean distance between two points is Ix-y[. The hyperbolic and 

euclidean closed disks with center x and radius r are denoted D(x, r) and B(x, r), 
respectively 

Bn(r)=Bn(O,r), B~=B~(I) and S~={xER~+~:IxI=I }. 

The standard basis of R n is el . . . . .  e~, and a map of 1~ ~ is normalized if it fixes 0, el 

and ~. There is a natural correspondence between homeomorphisms of R ~ and the 

ones of 1~ n fixing ~ ,  and we often do not distinguish between them. We identify R z 

with the complex plane C and (~=R2=C U {~}. The closure clA and boundary bdA of a 
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set A are taken in /~+~;  bd is also sometimes denoted a, and int denotes the interior. 

We denote by id the map A--~A, x~-~x, for any set A. 

2. Some consequences of Theorem 2 

Theorem 2 has some interesting consequences for Teichmtiller space theory. Before 

passing to the proof of Theorem 2, we describe them here. 

2A. Let G be a Fuchsian group. Following Lehto [17] we define Q(G) to be the set 

of G-compatible, univalent maps of the lower half-plane L={zEC: imz<O};  

A(G0cQ(G) is the subset of maps that can be extended to G-compatible quasiconformal 

maps of the whole plane. We denote A(1)=A((id}). Then A(G)cA(1)N Q(G). 

It is known that if G is finitely generated (and does not contain orientation 

reversing elements), then 

A(G) = A(1) N Q(G), (2. l) 

cf. Kra [13] (stated in a slightly different but equivalent manner.) Bers [5, 6, 7] has 

drawn attention to the question whether (2.1) is in fact valid for all G. It is a 

consequence of Theorem 2 that this is indeed so. 

THEOREM 2.1. Equation (2.1) is valid for every Fuchsian group G. 

Proof. Lehto [17] has shown that (2.1) is a consequence of Theorem 2. Lehto 

assumes that G is of the first kind and does not contain elliptic nor orientation reversing 

elements. However, the proof is valid even without these assumptions. The only place 

where they are used is the footnote on p. 243 to establish that the group G' of M6bius 

transformations of 0 with {giR: g E G'} = {fgf-I :  g E G} acts discontinuously in U 

whenever f is a G-compatible quasisymmetric map. That this is valid for every 

Fuchsian group G can be seen, for example, from Theorem 2. 

2 B. Metrics on the Teichmiiller space. We define the Teichmiiller space T(GO of a 

Fuchsian group G as the set of all normalized, G-compatible and quasisymmetric maps 

of l~. The universal Teichmiiller space T(1) is the Teichmtiller space of G={id}. 

Obviously then T(G)cT(1) for all G. One often adds in the definition of T(G) the 

condition that everyfE T(G) can be extended to a quasiconformal G-compatible map of 

U, but we now know by Theorem 2 that this is a consequence of the other conditions. 

One can identify T(G) with the subset of A(G) consisting of normalized maps, cf. the 

proof of Theorem 1 in [17]. 
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One can define several natural metrics on T(G). The Teichmiiller metric d6 is 

defined for f,  g E T(G) by 

dG(f, g) = inflog K(Fo G-1) (2.2) 

where the infimum is taken over all quasiconformal G-compatible extensions F o f f  and 

G of g to U. By Theorem 2 such extensions exist. K(h) is the maximal dilatation of h. 

This metric depends on G, since there may be many groups G such t ha t f and  g are G- 

compatible. In particular, f and g are always G-compatible for G={id}, and in this case 

we denote 

de, = d(id). 

Then d ~ f , g )  is given by (2.2) where now F and G run over all quasiconformal 

extensions of f and g. Another natural metric d e is given by the dilatation of a 

quasisymmetric map as defined in Section 1 F; thus 

do(f, g) = log K ( f  o g -  l) (2.3) 

which is defined for all f,  gE T(1) viewed as quasiconformal self-maps ofl~. Note that if 

we replace in (2.3) K( fog  -l)  by the quasisymmetry constant Q(fog  -I) we do not get 

a metric, cf. 1 F. 

If N c G  is a subgroup of finite index it follows by Lemma 5.5 that 

dNIT(G) = dc (2.4) 

where we have abbreviated dlAxA as dlA. Bers [6, p. 274] has raised the question 

whether de,IT(G)=d c. A result of Strebei [30] shows that this is not true even when 

T(G) is finite dimensional. The following theorem shows that, however, a Lipschitz 

condition can still be obtained. 

THEOREM 2.2. Let G be a Fuchsian group and let AcT(G).  Then A is bounded in 

one o f  the metrics d~, do or d 0 if  and only if it is bounded in all o f  them. In addition, if 

A is bounded, there is a constant L ~ I ,  which can be determined as soon as one o f  the 

numbers d~(A), du(A) or de(A) is gioen, such that 

do[A <<- dvlA <~ dGIA <~ L do[A. 

Proof. It is obvious by the definitions of the metrics that do<.du<~dc. Theorem 2 

implies that every de-bounded set is also du- and d~-bounded. Thus it suffices to find 

L such that d~[A<~Ldo[A if do(A)<oo. We can assume that G does not contain 
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orientation reversing elements, otherwise we can pass by (2.4) to the subgroup of 

orientation preserving elements. 

We observe first: I f fE  T(G) and Q(f)<22/3, then there is a G-compatible quasicon- 

formal extension F o f f  with 

K(F) -  1 << 3 Q(f)3/2_ 1 
K(F)+ 1 Q(f)3/2 + 1" (2.5) 

This is seen as in Lehto [17, w 4], using the Ahlfors-Weill method. For the convenience 

of the reader, we recapitulate the main points, although Lehto's argument is un- 

changed; we simply use a result of Lehtinen (instead of Beurling-Ahlfors) to improve 

the estimate. 

We start from the fact that there are conformal mappingsfi and f2 of the upper and 

lower half-planes U and L onto the complementary domains of a Jordan curve such that 

on 1~ 

A=AoY, 

see [17, p. 242] and [18, 11.7.5]. Then one sees as in [17, proof of Theorem 1] thatf2 is 

G-compatible; that is, f2 E Q(G). 

Now, Lehtinen [16] implies that if Q(f)~<l.9 then f has a Q(f)3/2-quasiconformal 

extension ~0 to U. Then f l o w  defines a Q(f)3/2-quasiconformal extension off2 to C. 

Hence the Schwarzian S off2 in L satisfies 

s = s u p  4y21a(z)l ~ 6(Q(f) 3/2- l)/(Q(f)3:~+ 1) < 2, (2.6) 
z=x+iyEL 

cf. Kiihnau [14, Satz 3*]. 

In view of (2.6), one can apply the Ahlfors-Weill method [2] to construct a 

quasiconformal extension w off2. Since f2 is G-compatible, the Schwarzian off2 is a 

holomorphic quadratic differential for G. Hence the complex dilatation of w is a 

Beltrami differential of G and so w is G-compatible. Then F=f( - tow defines a G- 

compatible quasiconformal extension of f to U. Its dilatation is that of w which equals 

s/2 and (2.5) follows. 

Hence, if Q(f)<22/3, there is by (2.5) a quasiconformal G-compatible extension F 

o f f  with dilatation 

K(F) <~ 2Q(f)3/2-1 _ 1 + 2(Q(f) 3/2-1) 
2 - Q ( f )  3/2 1-(Q(f)3/2-1) " (2.7) 
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Thus if Q(f)3/2~ 1.009, then 

log K(F) ~< 3.01 (Q(f)3/2-1) ~< 4.56 log Q(f). 

By (1.10), logQ(f)<~(K(f)-l)/O.2284<~e~176176 if log 

view of (2.8), we get now by passing to the metrics 

de(h, g) <~ 20dQ(h, g) 

(2.8) 

K(f)~<0.001. In 

(2.9) 

for all h, g E T(G) such that dQ(h, g)~<0.001. 

Let now h, gEA be arbitrary. If dQ(h,g)<.O.O01, then d6(h,g)<.2OdQ(h,g) by 

(2.9). If dQ(h, g)~>0.001, then d6(h, g)<.d6(A)<~(d6(A)/O.O01) dQ(h, g). Thus 

dclA <<.L dQIA when L=max  (20, d~(A )/O. O01). 
Now dQ(A)<~d~A)<.d~(A)<.M(dQ(A)) where M is an increasing function whose 

existence follows by Theorem 2. This implies that we can form an estimate for L from 

above as soon as one of the numbers dQ(A), dr(A) or d6(A) is known, and the theorem 

is proved. 

Remarks. Actually, we could get this theorem also by estimating the maximal 

dilatation of the extension o f f  constructed in Theorem 5.2 when Q(f) is near 1 (see 

(5.6)), but the advantage of the above method is that we now have the explicit estimates 

(2.7)-(2.9). 

If one knows tha t fhas  a K-quasiconformal extension to 0 with K<2, then one can 

use this extension for the map ~p above and get t h a t f h a s  a G-compatible quasiconfor- 

mal extension F with 

2 K -  1 
K(F) ~< 2------K-' (2.10) 

cf. (2.7). This implies that if we consider in (2.9) the metric dv instead of d O, we get 

that 

d6(h, g) <~ Ck dr(h, g) (2.11) 

if h, gE T(G) and d~h, g)~<k<log2 where ck---~3 as k---~0. 

2C. Nielsen's theorem. Theorem 2 gives also a new proof of the following 

theorem which we call Nielsen's theorem since Nielsen [26] proved it in case that G is 

the cover translation group of a compact surface. For a different proof and references 

to other proofs see Marden [21]. 
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THEOREM 2.3. Let G and G' be finitely generated Fuchsian groups of 0 which are 

of the first kind. Suppose that q~:G---~G' is an isomorphism such that q9 carries 

bUectively parabolic elements of G onto parabolic elements of  G'. Then there is a 

quasiconformal homeomorphism F of 0 inducing qg. 

Proof. By Theorem 2, we must only show that there is a quasiconformal homeo- 

m o r p h i s m f o f  1~ inducing tp. The existence of such a n f i s  well-known from Mostow's 

rigidity theorem. One first constructs a pseudo-isometry h: U---~ U inducing q0. Then h is 

extended to O, and f=hlfl is quasiconformal and induces q0. See for instance [37, 

Theorem 3.3]. If U/G is compact, then an especially simple proof of the existence o f f  

can be given, see Margulis [22]. 

The noteworthy feature of this proof, in contrast to other known proofs, is that no 

special surface topology is involved. In fact, the construction of the pseudo-isometry 

h: U---~U is quite general and the proof in [37] is valid in all dimensions. Neither does 

Theorem 2 involve specific surface topology as a perusal of our proof in this paper 

shows. Note that the proof of the existence and uniqueness of Teichmtiller's extremal 

mapping in [4] does not make use of a specific knowledge of the topology of U/G, once 

it is known that there is a quasiconformal map inducing q0 (which in the present case is 

constructed using Theorem 5.2). Only some knowledge of the action of G near 

parabolic cusps is needed. 

The moral is that there is a non-surface-topological proof of Nielsen's theorem. 

This should be compared with Mostow's rigidity theorem [24, 25] which says that if 

qg: G--~,G' is an isomorphism between discrete groups of isometrics of hyperbolic 

n-space, n~>3, whose orbit spaces have finite volume, then q0 is a conjugation by a 

MObius transformation. The first step in the proof of this theorem is the same as in the 

proof of Theorem 2.3: to show that there is a quasiconformal m a p f o f  1~ ~-1 inducing 

tp. At this stage there is no essential difference between the cases n=2 and n>2. Then 

the regularity of quasiconformal maps (if n>2) allows one to show that this quasicon- 

formal map is in fact a MObius transformation. Here the proof breaks down if n = 2 since 

quasisymmetric maps may be very irregular. In fact, f m u s t  be then very irregular if it is 

not a MObius transformation ([15, 25, 38]): it is a completely singular map which cannot 

have a non-vanishing, finite derivative at a point x unless x is fixed by a parabolic 

element of G. 

Remarks. (1) By Marden [21], it suffices to assume in Theorem 2.3 that tp(g) is 

parabolic whenever g is. We can recover this result easily as follows. By passing to a 
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subgroup of  finite index, we can assume that G is torsionless. Le t  P~ . . . . .  e r c G  be the 

conjugacy classes of  maximal parabolic subgroups of  G, that is, there is a parabolic 

giEPi such that Pi={hgkih-I:hEG and k E Z ,  k*0} and that gi is not a power of  an 

element of  G. Define similarly P~ ..... P'~cG'. Since gk and hgh - l  are parabolic if and 

only if g is, the assumption that q~(g) is parabolic whenever  g is, implies that q~(Pi)=Pj 

for  some j .  We can assume that cp(Pi)=P~ if i<<.r. We must show that r=s. If  r<s, we 

obtain a contradict ion as follows. Le t  N ~ G  and N ' c G '  be the normal subgroups 

generated by P1U . . .  UPr and P~ U ... UP', respectively. Then G/N is the fundamental  

group of  a compact  surface. If  r<s, G'/N' is the fundamental  group of  a compact  

surface with at least one puncture.  This readily gives a contradiction. 

(2) Suppose that q0: G--->G' is an isomorphism between finitely generated Fuchsian 

groups and that f is a homeomorphism of  1~ which induces ~. If now f is locally 

quasisymmetric at all points which are not limit points of  G, then f is quasisymmetric  

(cf. Remark 2 in Section 4 B of  [37]), and hence one can apply Theorem 2 in this case to 

obtain a quasiconformal G-compatible extension o f f .  

3. The triple space 

It is a fundamental observat ion of  this paper that it is possible to assign to a triple 

(x,y, z) of  distinct points of  1~ n a point w E H  n+l by projecting z orthogonally onto the 

hyperbolic line joining x and y. We now examine this situation in more detail, especially 

how it is affected by homeomorphisms of  1~ n. 

3 A. The triple space. Given n ~  > 1, we define the triple space T ~ by 

T ~ = {(xt, X2, X3) ~ (l~n) 3: Xi distinct}. (3.1) 

We define a projection p: T~--~H ~+~ as follows. I f x  E/-) ~+~ and y E 1~ ~ are distinct, let 

L(x, y) = the hyperbolic  line or ray with endpoints x and y. (3.2) 

(Note that y~L(x , y )  and xEL(x ,y )  only if xEH~+l . )  Now we set for  (x , y , z )ET  ~, 

p(x, y, z) = the orthogonal projection of  z onto L(x, y); (3.3) 

that is, L(x, y) and L(p(x, y, z), z) intersect orthogonally at p(x, y, z). We often find it 

convenient to extend p to a map T~U Rn~/t~+~ by setting for x E 1~ ~ 

p(x) = x. (3.4) 
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There are two facts about  T n which make it useful for us. The first is that the fiber 

p - l ( w )  

is compact  for  all w E H n+~ since it is homeomorphic  to the space of  2-frames of  R n+l 

Thus,  in a sense, T n is not very different from H "+1. The second is that if f is a 

homeomorphism of  R", then f induces a homeomorphism of  T n, which we denote  also 

by f ,  by the formula 

f (x ,  y, z) = (f(x),  f (y) ,  f (z)  ) (3.5) 

and furthermore,  i f f  is a M6bius transformation,  then it preserves fibers as a map of  

T n. That  is, 

p(f(u))  =f(p(u))  (3.6) 

for  all u E T ~ and for all Mfbius  transformations f of  1~ ~. 

Consequently,  if f is a homeomorphism of  1~ ~ which we try to extend to H ~+~, we 

can employ the strategy o f  first e x t e n d i n g f t o  T n and then trying to project  f b a c k  to 

/-~+~. We now give an example of  this strategy of  which Theorem 5.2 will be a more 

refined version. 

Suppose that the h o m e o m o r p h i s m f o f  1~ ~ is G-compatible for some M6bius group 

G. That is, there is an isomorphism q0 of  G onto another  M6bius group G' such that 

f(g(x)) = q~(g) (f(x)) (3.7) 

for  all x E 1~". It also remains true if we interprete the maps in it as maps o f  T". This fact 

allows us to extend f t o  a G-compatible map H"+~---~/~"+~ (which is not in general a 

homeomorphism) in the following manner.  

If  X , - H  ~+~ is non-empty and bounded in the hyperbolic metric, let 

P(X) = the center  of  the smallest closed hyperbolic disk containing X. (3.8) 

Then a simple calculation shows that P(X) exists and is well-defined (p. 75 of  [36], 

where n = l  but the proof  is valid for  n > l  as well). Now p f (p -~ (x ) )cH n§ is compact  

and hence 

f (x)  = P(p f (p-  I(x)) (3.9) 

defines an extension of  f to H~+l. It is an immediate consequence  of  (3.7) that the 

extended f if also G-compatible.  In an obvious sense the sets f p - l ( x )  and f p - i ( y )  are 

near  each other  i f x  and y are near  each other.  This implies the continuity of  f i n  H ~+1 
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(see (8) of [36] whose proof is again valid regardless of dimension). We will see that the 

extension is continuous also in 1~ n and hence we have 

THEOREM 3.1. Let f be a homeomorphism o f  It ~ which is compatible with a 

M6bius group G. Then the extension o f f  to 1s1 ~+! defined by (3.9) is continuous and G- 

compatible. 

Proof. We must only establish the continuity at 1~". Let x E 1~" and let W be a 

closed neighbourhood off(x)  such that aWNH ~+l is a hyperbolic n-plane. The next 

lemma implies that there is a neighbourhood V of x such that f (VN Rn)cW and that 

p fp - l ( y ) cW for all y E VNH ~+l. Now the center f(y) of the smallest hyperbolic disk 

containing pfp-l(y) must lie in W since otherwise one could find a smaller hyperbolic 

disk D-~pfp-t(y) whose center is the orthogonal projection off(y) onto aW, as a simple 

geometric argument shows. (See the argument on p. 75 of [36]. Note that we obtain also 

that f(y)E W by a limit process from (A) of [36] when r---~oo in (A).) 

LEMMA 3.2. Let xER ~ and let r>0. Let Y=(yl,Y2,Y3)E T n. Then 

(a) i f  at least two o f  the points Yi are in B~(x, r), then p(y)E B "+ I(x, (~'2-+ 1)r), 

(b) i f  at most one o f  the points Yi is in Bn(x, r), then p(y)~Bn+l(x, r/(V~-+ 1)). 

This is true also for x=oo if  we set Bk(oo,r)=Rk~Bk(1/r). 

Proof. If yl,y2EB~(x,r), then p(y)s Suppose then that 

yi, Y3fiB~(x, r), i<<,2. Let z be the orthogonal projection ofp(y) onto L(yi, Y3). Then the 

hyperbolic triangle with vertices Yi, P(y) and z has a zero angle at Yi, an angle of :t/4 at 

p(y) and a right angle at z. Then hyperbolic trigonometry implies ([3, 7.9]) 

cosh d(p(y), z) = cosh d(p(y), L(y i, Ys)) = 1/sin :t/4 = V'-)- (3.10) 

Since L(y i, ys)cB~+l(x, r) and ar cosh X/-2-=log (V~-+ 1)=d(aB"+l(x, (X/-2-+ 1) r) n/.p+l, 

B~+l(x, r)), case (a) follows. 

In case (b), if Y t, Y2 ~ Bn(x, r), then L(yl, Y2) n B"(x, r)= ~ and hence p(y) ~ B"(x, r). 
Suppose then that Yi, ys~B~+l(x,r). Now as above (3.10) implies that 
p(y ) ~ B"+ l(x, r/( Vr-2-+ I)). 

Finally, the argument for x= oo is the same. 

3 B. Hyperbolic triangulations and maps o f  R'.  We now define what one means 

by a hyperbolic triangulation of H n+l. We first give the definition of a hyperbolic k- 

simplex. 
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If  v0 . . . . .  VkEI:l ~+l, we denote by Co(vo . . . . .  Vk) the smallest subset A of /_~+l  

such that viEA and that A NH "+t is hyperbolically convex. A (hyperbolic) k-simplex 

of/-P+~ is a set T which is of the form T=Co (Vo . . . . .  vD N/-P+~ such that the points vi 

are not contained in c l H  for any hyperbolic m-subplane of /_p+l ,  m<k. If  T is an 

(n+l)-simplex,  then an easy induction argument shows that int T * ~  and that 0T is a 

union of  n-simplexes. A face (or m-face) or T is a simplex T' which is of  the form 

T '=Co(uo  . . . . .  Urn) n n  n + l  where U i are distinct and {Uo . . . . .  Um}~{Vo .... .  ore}. Ver- 

tices of T are the points vi and it is easy to see that the set T defines uniquely the set of 

vertices of  T. 

A (hyperbolic) triangulation of H "+l is a collection J" of  (n+l)-simplexes of 

/-~§ such that 

(i) ~ is a locally finite cover o f  H ~+l, and 

(ii) i f  T, S E ~, then Tfl S is either empty or a common face. 

A vertex of f f  is a vertex of  some simplex of  ft. 

Le t  f be a homeomorphism of  1~" and f f  be a triangulation of H "§ If  

F: /a  m+ ~ o H  "+ ~ is a map, we say that F is compatible with f and ~- if it is true that 

(a) for every vertex v o f  ~, there is zvE T"UR" such that p(zo)=v and that if  TE f f  

has vertices Vo, .... v'+~, then 

F( T) c Co (pf(zoo) ... . .  Pf(zo~+,)), 

(b) i f  TE ~r, then F and f define together a continuous map cl T---,/-~ +1. 

We show that F and f define in fact a continuous map of/-~+~ and give a natural 

condition when it is a homeomorphism. 

THEOREM 3.3. Let f be a homeomorphism of  R" and f f  a triangulation off-1 ~+l. 

Suppose that F:/-/~+l---,/-/~+1 is compatible with f and 5 r. Then F and f define a 

continuous map 1--1 "+ l---,l~+ i. 

Furthermore, suppose that ~ T  is an embedding for every TE f f  which is always, 

independently o f  T, orientation preserving or reversing. Then F and f define a homeo- 

morphism of  l ~  + l. 

Proof. Since ~-is locally finite in H "+~, (b) implies that F is continuous at points 

of/-P+~. Hence it suffices to consider the continuity at 1~'. 

Let  x E 1~'. In view of L e m m a  3.2 and the compatibility of F with f a n d  f f  (since f is 

in any case continuous at x), the continuity follows if we can prove: 
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Let  W be a neighbourhood o f  x in I71 ~+1. Then there are a smaller neighbourhood 

V o f x  and simplexes Ti . . . . .  Tm o f f f s u c h  that i f T E f f ,  T*f f i ,  and T n V * f ~ ,  then 

T c W .  

ff this is not true we can find a sequence $1, $2 .... of distinct simplexes of 5r such 

that there are points ai, b~ E S~ for which 

lima i = X and limb i = y ar x. 
i---~ oo i---, ~ 

Let u E L(x, y). Then every neighbourhood of u intersects with an infinite number of 

Sg's which contradicts the local finiteness of ft. 

This proves the first paragraph of the theorem. We now denote also by F the map 

defined by F and f. 

The second paragraph of the theorem follows from the properties of the degree of 

the map F, cf. [9, 27]. We follow here the exposition of Dold [9]. 

The map F is a map of the pair (/_]tn+l, l~n) onto itself and hence it induces a 

homomorphism F ,  of the homology group Hn+I(H n+~, 1~ n) onto itself. There is an 

integer degF  such that F, (u )=(degF)  u for u E Hn+l(/4 ~§ 1~). This integer is the 

degree of F. Since FII~" is a homeomorphism of R", we have 

d e g F =  +I ,  

cf. [9, IV.4.2]. 

We conclude the proof by showing that for every x E H  ~+1, F-~x consists of 

exactly [degF]=l point. Since F - l x c H  n+t is compact, if-is locally finite, and FIT is 

an embedding for every TE if, in any case F - I x  is finite, 

F - ' x  = {xl  . . . . .  xq} 

for some q~>0. In particular, this means that the local degree of F (regarded as a map of 

H "+~) over x, denoted degxF, can be defined as in [9, IV.5.1]. By [9, IV.5.6], 

degx F = deg F = + 1. 

Pick now disjoint open balls B i c H  "+l with center xi. Let Fi=FIBi. Again, degxF,. 

is defined for all i and [9, IV.5.8] implies that 

__+ I = degx F = ~ deg x F i. 
i = l  
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Suppose now that F - l x c O { i n t  T: TE ~7}. Then we can choose the balls B; so small 

that each Fi is an embedding, which is then by assumption always orientation preserv- 

ing or reversing independently of  i. Hence then either degxFi=l  or d e g x F ; = - I  for all 

i. Then the above sum formula gives that in this particular case indeed q= 1 and F- Ix  is 

a point. 

We get the general case now as follows. Choose a ball B with center x such that 

BNF(aBi)=f~ for all i. Then [9, IV.5.12] implies that 

degx Fi = degy Fi 

for all y E B and all i. 

Pick now an in t ege r jE [1 ,q ]  and TE~ r such that xjET. In view of  (a), there is 

zEBjNintT such that, setting y=F(z), y E B  and F-~ycU( in tT :TE f f } .  As we ob- 

served above, then F - l y  = a point ={z}. It follows ([9, IV.5.4 and IV.5.8]) that 

0 i f i ~ j ,  
d e a f  i-- deg x F  i-- _ I if i = j .  

This is a contradiction if q >  1 since the integer j E [1, q] can be chosen arbitrarily. Also 

the case q < l  is impossible since then degxF=0 by [9, IV.5.4]. This is a contradiction 

since d e g x F = d e g F =  + 1 as we observed above. Hence q=  1 and the theorem is proved. 

Remark. Suppose that f :  l~n---,l~ n is a continuous map and F:H~+I---,/t  n+l is a 

map such that F satisfies (a) and (b) with respect to f a n d  a triangulation ~-of / /~+1 

when we extend the definition o f p  for non-distinct x, y, z E 11 ~ by p(x, y, z)=w if at least 

two of  the points x, y, z equal w. Then one sees as above that F and f define a 

continuous map H"+ i_._,/.]r~ + 1. 

3 C. Quasiconformal maps and the triple space. Our discussion in the preceding 

sections was valid for all homeomorphisms f o f  1~ ~. We now consider the situation for 

quasiconformalf.  For  this class of mappings we prove results which are generalizations 

of the facts that M6bius transformations preserve the hyperbolic metric of / /~+1 and 

that they induce mappings in T n preserving the fibers p-~(x)cT ~ for x E H  ~+~. 

Both of  our theorems in this section depend on the fact that the set of normalized 

K-quasiconformal homeomorphisms of ii  ~ is compact,  see [42, 20.5 and 21. I] for n > l  

and for n---1 either [8, Theorem 2] or [40, 3.4-3.7]. 

THEOREM 3.4. Let n ~ l  and K>~I. Then there is m~x>~O such that if f is a 

K-quasiconformal homeomorphism o f  It ~ and if  x, y E T ~ and p(x)=p(y), then 

d(pf(x),pf(y)) <<. mr. 

12-858286 Acta Mathematica 154. Imprim6 le 15 mai 1985 
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Proof. If g is a M6bius transformation of 1~ n, then the extension of g to /_p+l 

preserves the hyperbolic metric, the map of T '~ induced by g preserves fibers p- l (u)  

and g commutes with p (see (3.7)). These facts imply that by using auxiliary Mrbius 

transformations we can assume that p(x)=p(y)=en+l and that f i s  normalized. 

Let A={h(u):uEp-l(en+l), h a normalized K-quasiconformal homeomorphism 

of 1~}. Now both p-l(e~+O and the set of normalized K-quasiconformal maps of 1~ ~ 

are compact and hence so is A. It follows that the map AxA-- ;R ,  (u, v)-->d(p(u),p(v)), 

attains a maximal value m~: for which the theorem is true. 

Our next theorem is based on the well-known fact that quasiconformal maps are 

Hrlder continuous ([23, 3.2]; for quasisymmetric maps see [40, 3.10 and 3.14]. Since 

the argument of [40] is very simple for quasiconformal homeomorphism of R n, we give 

the theorem we need here. 

LEMMA 3.5. Let n~  l and K ~  I. Then there are a>~ l and C>- I such that if  f is a K- 

quasiconformal homeomorphism of  R ~ and if x, y, z E R n are distinct and [y-xl<~lz-xl, 
then 

- - X  I/a c - ,  { ly-xl  ~a<~ If(y)-f(x)[ <~ c { [Y-X[ ~ 
\ [z-xl/ If(z)-f(x)[ \ Iz-xl ] " (3.11) 

Proof. There are a E (0, 1) and b>0 such that ifh is a normalized K-quasiconformal 

homeomorphism of 1~ ~, then [u[<<.a implies [h(u)[<<.l/2 and [u[~<l implies [h(u)i<<.b. Using 

auxiliary similarity maps we get now that, if f,  x, y, and z are as in the lemma and 

r=[y-x[/[z-x[ and r'=[f(y)-f(x)i/f(z)-f(x)[, then r<<.a implies r'<<.l/2 and r<~l implies 

r'<<.b. A recursive argument, using a sequence Yi such that [yo-x[/ly-x[ E [a, 1] and 

[yi+l-x[/[yi-x[=a, now gives that rE[ak+l,a k] implies r'<<.b2 -k. This implies the 

right-hand inequality and a similar argument gives the left-hand one. 

n ~  THEOREM 3.6. Let n>~l and K>>-l. Then there are L x ~ l  and M~x>~O such that i f f is  

a K-quasiconformal homeomorphisra of  R~ and if x iEH ~+1 and u iEp-I (x i ) for  

i= 1,2, then 
d(xl , xz)/L~r <~ d(pf(u ~), pf(u2) ) <<. L ~ d(x~ , x2) (3.12) 

provided that d(xj,x2)>>-M~r. 

Proof. As in the proof of the preceding theorem, we can assume that f is normal- 

ized, xl=e,+l and that x2=ten+l for some 0<t~<l. If u~Ep-l(xi), then 

[d(pf(uO, pf(u2))-d(pf(u'l), pf(u;))l <~ 2m~x (3.13) 

by Theorem 2.4. 
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In view of  (3.13), it suffices to estimate the middle term of (3.12) for u3 =(0, oo, e0  

and u2=(0, ~ ,  t el). Then f(uO=u3 and f(u2)=(0, oo, f ( t  e0) and thus 

d(pf(ul), pf(u2)) = d(en+ 3, If(te 01en+ 0 = Ilogf(t e01. (3.14) 

Since d(xl,x2)=d(en+l, te~+l)=logt, we obtain from this and (3.11), where we set 

x=0,  y=te l  and z=el,  

- l o g  C + d(Xl, x2)/a <<- d(pf(uO, pf(u2)) <~ log C +ad(x3, x2) (3.15) 

provided that [f(tel)l<~l which is true if t<.C -a by (3.11). Combined with (3.13) this 

implies the theorem. 

Remarks. (1) By [23, 3.2 and 3.4], we can choose a = K  3/(~-1) in (3.11) if n > l .  

Consequently (3.12) is true with L~x--*K l/(n-l) as d(Xl,X2)---> oo, cf. (3.15). 

(2) It is not difficult to define a metric in T" (resembling the hyperbolic metric of  

H "§ in such a way that if a map of  T ~ is induced by a Mfbius  transformation of  1i", 

then it is an isometry, and if it is induced by a K-quasiconformal map, then it is an 

(L, M)-pseudo-isometry with L and M depending only on K and n. 

3 D. Transformation o f  angles. Next we study how quasiconformal maps of  1~ n 

affect angles of hyperbolic triangles, the transformation for triangles being affected via 

the triple space  T ~. 

We first prove a result which shows that for large hyperbolic triangles the angle at 

a vertex and the distance to the opposite side are closely connected. 

LEMMA 3.7. Let T be a hyperbolic triangle o f  H ~+i (possibly with zero angles). 

Let vEI-1 "§ be a vertex o f  T, let aE(O, zO be the angle o f  T at v and let r be the 

distance o f  v to the hyperbolic line containing the side o f T  opposite to v. Let a3 and a2 

be the other two angles o f  T, a3<~a2. Then 

2 cos a2/cosh r < a < 2 cos a3/sinh r <~ 2/sinh r. (3.16) 

I f  T has a right angle and aa~zd2, then 

cos fl/cosh r < a < cosfl/sinh r ~< 1/sinh r. (3.17) 

when fl is the other angle o f  T not equal to zd2. 

Proof. We prove only (3.17) which then obviously implies (3.16). So let the 

situation be as in (3.17). Then 

a > s ina  = cosfllcoshr (3.18) 
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by [3, 7.11.3], and we have the left-most inequality. Using again the equality in (3.18), 

we get 

a < sin a /cos  a = cos fl/cosh r( 1 - (cos fl/cosh r) 2) i/2 

= cos/~/(cosh 2 r--COS2~) I/2 

~< cos/~/sinh r ~< 1/sinh r, (3.19) 

and we have also the other  inequalities of  (3.17). 

3.6. 

Now we can prove our theorem on distortion of  angles which is similar to Theorem 

THEOREM 3.8. Let n>~ 1 and K>~I. Then there are fin K E (0, 1] and s=s~>>-I with the 

following property. Let T I be a hyperbolic triangle, possibly with zero angles, and let 

x~ EI;I n+l, i<.3, be the vertices o f  T 1. Let a~ be the angle o f  T ~ at x~ and assume that 
! n O<~ai <~flK for i<~3. Let f be a K-quasiconformal homeomorphism o f  Rn and let 

ziEp-l(x~). Set x~=pf(zi) and let T 2 be the hyperbolic triangle with vertices ~ ,  i<.3. 

Then T 2 is a non-degenerate hyperbolic triangle such that i f  a 2 is the angle o f  T z at x~, 

then 

(a) (a~) s ~< a~ ~< (al) I/s. 

(b) Let n = 1. Let T i have the orientation induced by the triple (x" I, ~ ,  x~). Suppose 

that T I is oriented compatibly with the natural orientation o f  U=H 2. Then this is true 

o f  T 2 if  and only i f  f is orientation preserving. 

Proof. Since f - ~  is also K-quasiconformal,  it suffices to prove only the fight-hand 

inequality of  (a). We can also assume that x~ E/_p+l since this then implies the general 

case by a limit process,  cf. Lemma 3.2. 
Let L~ be the hyperbolic line containig the side of  T ~ opposite to x~ and let 

r~ = d(x:, L~). (3.20) 

In view of  (3.16), the fight-hand inequality of  (a) follows if we can prove: 

There are r=r(n, K ) > 0  and c=c(n, K)>0  such that if  r~>_-r for i~<3, then T 2 is non- 

degenerate and 

cr~ <<. d(~,  L~) (3.21) 

when L~ is the hyperbolic line containing the side o f  T 2 opposite to ~ .  
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We proceed to prove (3.21). Clearly, we can assume that i= 1 and that the situation 

is such tha t f i s  normalized, xtl 6. L(e~+ 1 , 0), and x~, x~ 6. L(e I, -el) .  If r~  1, which we now 

assume, (3.16) implies that all the angles of T t a r e  acute and hence x21 and x~ are in 

different components of L ( e l , - e l ) \ { e ~ + l } .  Thus we can choose the notation in such 

a way that 

xll 6- L(e,,+l, 0), x~ E L(en+ 1, et) and x~ 6. L(e,,+l , --el). (3.22) 

We have d(xll, e~+l)=rll---~oo as r--.oo in (3.21). By (3.16), the angles of T--*0 as 

r--->oo. By (3.17), then also d(x~, e~+l)--*oo and d(x~, e~+l)-->oo as r--.oo (see (3.22)). As a 

consequence we obtain that 

IX~ --Xi[ ~ (~ (3.23) 

where xl=O, x 2 = e l  and x 3 = - - e l  and where 6=6(r)--~0 as r-.-,oo. Lemma 3.2 implies 

then that 

at least two points in the triple zi are in Bn(xi, (X/-2+ 1) c~). (3.24) 

We prove next that, given e>O, there is r'=r'(n, K, e) such that if r~>~r', then 

I~-f(x~)l  <~ e. (3.25) 

Now, the family of normalized K-quasiconformal maps of 1i n is equicontinuous (for 

instance, one can prove this using (3.11).) In the present situation this means that we 

can find 6'=6'(n,K,e)E(O, 1) such that if u, vEB"(2) and [u-vl<~6', then 

]f(u)-f(v))[<~e/(VT+l). Choose now r'=r'(n,K, 6')=r'(n,K,e) so big that (3.23) is 

true with 6=6'/(V'-2-+1) ff r ~ r ' .  Then by (3.24) and by equicontinuity, at least two 

points in the triple f(zi) for each i~<3 are in Bn(xi, e/(V'-2-+ 1)). This implies (3.25) by 

Lemma 3.2. 

Since f is normalized, f(xl)=f(O)=O and f(x2)=f(et)=et. However, f need not fix 

x3=-e~, but (3.11) implies that 

If(x3)l ~> c -~ and If(x3)-ell  >>- c -I ,  (3.26) 

where C=C(n, K)>>. 1. 
Fix r"=r"(n, K)~>2 such that (3.25) is true with e= 1/4C if r~>~d'. Then by (3.25) and 

(3.26), the points ~ ,  i~<3, are distinct and hence the line L~ passing through ~ and ~ is 
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well-defined. Let u and v be its endpoints. Again (3.25) and (3.26) imply that 

u, v~Bn(1/2C) and hence 

L~ c/-P+1\Bn+I(1/2C) (3.27) 

if r~>r". By (3.25), ~EBn+i(e)=B~+I(1/4C) and hence, in particular, T 2 is a non- 

degenerate triangle. 

By (3.22), xl=te~+ l for some tE(O,e-e')r'(O, 1/5). Thus, by Lemma 3.2, at least 

two of the points of the triple z~ are in B~((~r2-+ I) t). Then (3.1 I) implies that at least 

two of the points of the triple f(z~) are in B~(C(V~-+I)n/~t l/a) where a=a(n, lO>>-l. 

Again by Lemma 3.2, we get, if r~>r", 

= Pf(zl) E Bn+i(c(v'-2-+ 1)l+l/atl/a). (3.28) 

NOW r l=d(x l ,L ( -e  l, el))=d(xll, e~+l)=--logt, and then, by (3.27) and (3.28), 

d(~, L~)>- d(aB~+~(ll2C) N H n+l , aBe+ n(C(V'-2-+ 1)n+n/~t ~/~) n H ~+~) 

= rlJa+log 1/2C-log C(V"2-+ 1) I+l/a (3.29) 

if r~>r". It is now apparent that (3.21) is true for such c and r as claimed and (a) follows. 

Part (b) of Theorem 3.8 is an immediate consequence of (3.25) and (3.26), and it is 

true as soon as e<I/2C in (3.25). 

Combining Theorem 3.8 with Theorem 3.3 we get as a 

COROLLARY 3.9. Let f be a K-quasiconformal homeomorphism o f  It and let ~ be 

a triangulation o f  U such that the angles o f  triangles o f  ~r do not exceed the constant 

)81 x o f  Theorem 3.8. Suppose that F: U---,U is compatible with F and f f  (see Section 

3 B). Then F(T) is a non-degenerate triangle for every TE ~', and i f  FIT is always an 

embedding, then F and f define a homeomorphism o f  U. 

Remark. Note that we cannot generalize Theorem 3.8 for (n+l)-simplexes of 

/.p+l if n> l .  Even if T l is a hyperbolic (n+l)-simples of/_p+l whose vertices are on 

1~ n (and hence the distance of a vertex to the hyperbolic n-plane defined by the 

opposite face is infinite), then one can always find a quasiconformal map of 1~" such 

that if the hyperbolic (n+l)-simplex T 2 is defined as in Theorem 3.8, then T 2 is 

degenerate. 

Similarly, part (b) of Theorem 3.8 and Corollary 3.9 cannot be generalized for n> 1. 
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4. Tessellations of the hyperbolic plane 

We now describe a method to obtain tessellations of the hyperbolic plane U = H  2 whose 

set of vertices is a given set A which needs to satisfy only a boundedness condition. 

This tessellation is dual to the familiar tessellation whose 2-cells are 

Fa = {xE U: d(x, a)<. d(x, b) for b EA}, (4.1) 

a EA, used to construct fundamental domains for discrete groups of hyperbolic isome- 

tries. However, we construct this tessellation directly, without making use of the 

tessellation { Fa}. 

A set X c  U is convex if it is convex in the hyperbolic metric. In this section we say 

that a set X c  U is closed if it is closed as a subset of U. We denote the closure and 

boundary in U by clv and by bdv (or 0v); recall that cl and bd (or 0) are the closure 

and boundary in 1~ z. We also use this notation if Xr  U in which case 

OvX = bdXN U. 

Here we consider only the 2-dimensional case. Higher-dimensional tessellations 

have been constructed in [39] using the present method. 

4A. The tessellation $r(A). Let A c U  be a discrete set of points. Given A, we 

define a subset V= V(A) of 0 as follows. 

If v E U, then v E V if and only if there is r>0 such that setting Bo=D(v, r)=the 

closed hyperbolic disk with center v and radius r, then 

i n t B v n A = ~  and Av=BoNA (4.2) 

contains at least three points. 

Note that this is the set of points of U that are at least in three cells Fa, aEA, 

where Fa is defined by (4.1). That is, Vn U is the set of vertices of the tessellation 

{Fa}. 

If v E 1~, then v is in V if and only if there is a horoball Bo of 0 at v (i.e. Bo is a 

closed ball in the spherical metric, BocUU {v} and OBo is tangent to 1~ at v) such that 

intBoNA=~) and if A~=BoNA, (4.3) 

then avBo\Ao  consists of a countable number of intervals both of whose endpoints 

are in Ao. 

Later, when we consider Fuchsian groups of U, the set Vnl~ will be the set of 

parabolic fixed points of the group. 
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We attach to every v E V a 2-cell Co as follows. If  a EAo, there is a unique interval 

la of  aBo\Ao  such that if la is or iented compatibly with the orientation of  aBo induced 

on aBo by the natural orientat ion of  Bo (as a subset of  1~2), then a is the beginning point 

of  la. Let  Sa be the hyperbolic  line segment with the same endpoints as la. Then there 

is a unique 2-cell CocBo N U such that 

a u C v  = U S a. 
aEA v 

Then obviously Co is a closed and convex subset of  U such that aCo is a topological 

2-cell. It is compact  if and only if vE VN U. 

A vertex of  Co is a point of Ao and a side of  Co is a segment So for  vEAo. 

We can now define the tessellation 8 =  8-(A) corresponding to A as 

~r= {Co: v E V}. 

A point is a vertex of  8-if  it is a vertex o f  some Co, and a hyperbolic segment is a side of  

8-if  it is a side of  some Co. We denote  the set of  vertices of  8 -by  8-o or  8-0(A), and the 

set of  sides of  f f i s  8-~ or ~r~(A). We can also denote  8-2=8- which is the set of  cells of  

8-. 

We now show that the name " tesse l la t ion"  for 8- is justified by 

THEOREM 4.1. Let A be a non-empty discrete subset o f  U. Then ~=8-(A) is a 

tessellation in the sense that i f  C, C' E 8-o U ~-i U 8-2 are distinct, then 

CNC' 

is either empty, a common vertex or a common side. I f  C E if,., C' E f f  i, and C N C' E 8-j, 

then j < m a x  (i, i'). 

Proof. Assume that CNC'~:(3. Assume first that both C and C' are in 8-2. Then 

C=Co and C' =Co, for  some distinct v, v' E V. If  int C N int C ' * ~ ,  then there is a vertex 

a either of  C or of  C' such that a E int C N int C' .  If, say, a is a vertex of  C, then 

a E intBo, which is impossible by (4.2) and (4.3). Hence  int C N int C ' = ~ .  

Since both C and C' are convex,  it now follows that C N C' is contained in a side s 

of  C and in a side s' o f  C'.  These  are hyperbolic segments whose endponts  lie on OBo 

and aBo,, respectively.  Hence  one sees as above that either s N s' is a common vertex or 

s=s'.  In the latter case s=CNC'  which is now a common side. 

This proves the theorem if C and C'  are 2-cells. Other  cases follow easily from this. 
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Note that in general ~ is not a tessellation of U since it need not cover U. For 

instance, this is always so if A is finite. We now give an additional condition which 

guarantees that ff  covers U. 

Let 
Ua = U',,(U(Bo: vE v n  l~}) (4.4) 

which depends only on A and suppose that there is M>0  such that 

U a= O D ( a , M )  and OrB o= O D ( a , M )  (4.5) 
a E A  a E A  v 

for every v E V. Under these conditions we have 

THEOREM 4.2. Let A be a discrete subset of U satisfying (4.5). Then if= $r(A) is a 

locally finite cover of U whose set of vertices is A and 

d(F) <~ 4M (4.6) 

whenever F is a side or a compact cell of $r. 

Proof. We prove first (4.6). Suppose first that F is a compact cell. Then F=Co for 

some vEVNU. If vEUA, then there is aEA such that d(v,a)<~M. It follows that 

d(v, a')~M for a' EAo and hence d(Co)<~2M<4M 

If vtt UA, then vEBu for some uE VNI~. There are consecutive points al,azEA~ 

such that if L~ is the hyperbolic line with endpoint u and passing through a,., then v is in 

the closure of the subdomain D of U bounded by LI and L2. In view of (4.3), a simple 

geometric argument now shows that 

Ao c c l D \ i n t B u  

since otherwise there would be b E {ah a2} such that d(v, b)<d(v, a) for a EAo which is 

impossible. 

Let B=B, be the horoball of 0 at u such that d(auB, auB,)=M. Then also 

since otherwise by (4.5) there is 

inclusions imply that 

Av c B \ i n t  Bu 

bEAu such that d(v,b)<d(v,a) for aEAo. These 

d(Co) = d(Ao) <- d(D n ( B \ i n t  Bu)) <~ 4M 

since two of the four arcs bounding DN(B\intBu) have diameter M and one has 

diameter ~<2M. 
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We have shown that (4.6) is true if F is a compact  cell. Thus,  if F is a side, then 

d(bO<.4M if F is a side of  a compact  cell of  ~r. If  this is not the case, then F is a side of  

some Co where vE VNI~ and then d(F)<~2M by (4.5). Hence  (4.6) is true also for sides. 

Next  we show that f f  is locally finite in U. Le t  x E U and set 

Vx = { rE  V: x~intCo and intD(x, 1)N C o *  ~} .  

We show that Vx is finite which implies the local finiteness of  ~r since x E int Co for  at 

most one v E V by Theorem 4. I. 

I f  vEVx, then intD(x, 1 )NCo*~ .  Hence  there is a side S of  Co such that 

D(x, I) N S * ~ .  By (4.6), both endpoints of  S are in the set 

Ax = {aEA: d(a,x)<~4M+l} 

which is a finite set. Hence  the set of  sides S of  J - fo r  which D(x, 1 ) N S * ~  is finite. By 

Theorem 4.1, a side o f  f f  is a side of  at most  two cells Co for v E V, and it follows that 

Vx is finite. We have shown that ~-is locally finite. 

Since every TE f f i s  closed in U, it now follows that U f f i s  closed in U. Hence ,  to 

show that J-is a cover of  U, it suffices to show that (a) O f f * ~  and that (b) O f f i s  open. 

Now O f f = ~  if and only if V = ~ .  We show that V * ~  by showing that VNI~=~ 

implies VN U * ~ .  Assume now that VNI~=~ and pick aEA.  There  is such a by (4.5). 

Choose then a ray R with endpoint  a. Le t  u be the first point on R from a such that 

there is b E A \ { a }  with 

d(a, u) = d(b, u) <~ d(c, u) 

for cEA. There  is such point by (4.5). Let  L be the line 

L = Lab = {Z E U: d(z, a) = d(z,  b)}. (4.7) 

Note that u E L and let R '  c L  be either of  the rays with endpoint  u. Le t  v E R'  be the first 

point from u such that there is c E A \ { a ,  b} with 

d(a, v) = d(b, v) = d(c, v) <~ d(c', v) 

for c'EA. Again by (4.5), there is such v and then vEVNU4:f~. It follows that 

V * ~ * U ~ - .  

Finally, we show that every x E U ~  has a neighbourhood contained in U~Y. If  

x E int Co for some v E V, this is clear. Suppose then that x E S for some side S of  ~ and 

that x is not an endpoint  of  S. If  S is a side of  two cells of  ~,  then x has again a 

neighbourhood in U 3 .  So we will prove this. 
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In any case S is a side of  at least one Co for some oEV.  Le t  a and b be the 

endpoints of  S and define 

S' = {zE U: d(z, a) =d(z, b)<d(z, c) for  c E A \ { a ,  b}}. 

Then S' is, if  not empty,  a hyperbolic  line, segment,  or ray. We claim that 

(a) v is an endpoint  of  S' (and hence S '# :~ ) ,  and 

(b) if u is the other  endpoint  of  S ' ,  then uE  V and S is a side of  C,,. 

These imply that S is indeed a side of  two cells of  if, as claimed. 

Note  first that (a) is clear if v E U. Suppose then that v E 1~. Le t  L=Lab~S' be as in 

(4.7). We claim that points of  L near  v are in S' which implies (a). Let  D be the domain 

of  U whose boundary  consists of  the two hyperbolic lines with endpoint  v and passing 

through a and b, respectively.  I f  w ED\Bo  and z EL,  then one sees easily that 

d(w, z) = d(a, z)+d(w, OBo)+o(w, z) (4.8) 

where o(w, z)--*O as z--->v on L uniformly for w E D\Bo.  
I f  z E L N Bo, then 

d(a, z) < d(c, z) 

for c E ( A \ { a , b } ) \ D .  By (4.8), this is true also for cE(A\{a ,b} )ND i fz  is near o. 

These facts imply (a). 

Again, to prove (b), it is clear that u E V if u E U and that then a, b E U. If  u E 1~, 

then, by (4.5), points of  S' near  u must be in some B,,,, u'EVNf~. Hence  u=u'EV. 
Choose now c E Au. I f  a ~ Au, then, like in (4.8), one sees that d(z, c)<d(z, a) for  z E S' 

near u. Hence  aEA,, and, similarly, bEAu. 
Since S N i n t C ~ = ~  by Theorem 4.1, a and b must be consecutive points on A~ 

(caBs) ,  and thus S is indeed a side of  Cu, and (b) is true. 

Finally, we show that if x is a vertex of  if, then O f f  contains a neighbourhood of  x. 

Since f f i s  locally finite, the number  of  cells of  f fwi th  vertex x is finite. Since every side 

of  :3 is a side of  two cells o f  if, as we have shown, we can arrange the cells of  ~" with 

vertex x in order  as C~ ..... Cp=C1 such that C~N C;+~ is a common side with vertex x. 

Then C1 U ... tJ Cp_~ contains a neighbourhood of  x. Hence  0:3- is  open,  and conse-  

quently :3 is a cover of  U. 

Finally, if a EA, a is in some cell Co of  :3and  then (4.2) and (4.3) imply that a is a 

vertex of  Co. It follows that A,--fro and since the opposite inclusion is trivial, A is 

indeed the set of  vertices of  if, and the theorem is proved. 
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In the actual situation where  we use tessellations of  this kind, the points of  A are 

not too near  each other ,  and in this case we have 

LEMMA 4.3. Let Ac-U be a set such that d(a, b)~>m>0 ira, b E A  are distinct. Let 

Co, v E V(A), be a cell o f  the tessellation $r(A). Let a EAo and let a be the angle o f  Co at 

a. Then 

a ~< 2/sinh (m/2). 

Proof. Pick a side S o f  Co such that a is an endpoint  of  S. Le t  b be the other  

endpoint  of  S and let u be the bisector  of  S. Le t  T be the hyperbolic triangle with 

vertices a, u and v. Since d(v, a)=d(v, b) (or, if v E l~, a and b are on a horoball tangent 

to 1~ at v), T has a fight angle at u. Hence  d(a, u) is the distance of  a to the hyperbolic 

line containing the side of  T opposite to a. Then (3.17) implies that the angle of  T at a 

<.l/sinhd(a, u)= 1/sinh(d(a, b)/2)<.l/sinh m/2. Since the angle of  Co at a is the sum of  

two such angles, the lemma follows. 

4B.  G-invariant triangulations. Our aim in this section is to construct  certain 

triangulations invariant under  a Fuchsian group. We now fix such a group G and 

assume that there is an M > 0  such that if x E U, then 

d(x, g(x)) >~ M (4.9) 

either for all g E G \ { i d }  or at least for  all g E G \ H x  where Hx is a cyclic group 

generated by a parabolic e lement  (which depends on x.) (Here Hx is not a stabilizer at 

x; no g E H x \ { i d }  fixes x.) Observe that G cannot  contain elliptic elements.  

We fix some notation. Let  

P =  {xEl~: x is fixed by some parabolic gEG},  

and if v E P,  let 

Go -- (g E G: g(o) = v),  

which is a cyclic group generated by a parabolic element.  We fix for every v E P a 

horoball Bo o f  0 at v such that 

d(x, g(x)) = M/3 (4.10) 

if x E auBo and g is a generator  of  Go. Then (4.9) and (4.10) imply that 

d(avBo, avB,,) >~ M/3 (4.11) 
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for distinct v, uEP.  Finally, we set 

We first construct a G-invariant set A which is then used in the construction of a Go 

invariant tessellation N(A) as in Section 4 A. 

LEMMA 4.4. There is a G-invariant set A c U  such that 

(i) U'cUaEAD(a, M/3), 

(ii) d(a, b)>~M/3 for distinct a, b EA, 

(iii) A NBo=Goaofor some aoEavBo when vEP. 

Proof. Pick first a G-invariant set A ' c H  ~+l such that 

A' nBv = Goao 

for some aoEBo. We then construct inductively sets Ao, A~ .... as follows. Pick first a 

set X={xl,x2,  . . . } cU '  which is dense in U'. Set Ao=A '. IfAi has been defined, we set 

Ai+~=A~ if there is aEAi such that x~+IED(a,M/3); otherwise we set 

Ai+l=AiUGxi+l. An inductive argument, using (4.10) and (4.11) for Ao, now easily 

shows that A=AoUAI O ... satisfies the conditions of the lemma. 

We then consider the set Vc  0 defined by (4.2) and (4.3) using the set A construct- 

ed in Lemma 4.4. It is obvious that 

V Nfi = P (4.13) 

and that the horoballs Bo defined by (4.10) and (4.3) coincide. Hence the set U' of (4.12) 

is the set UA of (4.4). Thus conditions (i), (iii) and (4.11) imply that A satisfies (4.5) 

when one substitutes M/3 for M. 

It then follows by Theorem 4.2 that the tessellation if=if(A) is a locally finite 

cover of U. Since A is G-invariant, so is ff  and thus we can form a G-invariant 

hyperbolic triangulation of U (see Section 3 B) by dividing the cells of ffinto hyperbolic 

triangles. We do this in the following manner. 

If Co is a compact cell of ;3-(that is, if vEU),  then we choose uEAo and let 

Ao\{u}={uo ,  ..., uk} where ui and ui+! are consecutive points on aBb. Let Ti be the 

triangle with vertices u, ui-~ and u~. Then {Ti .. . . .  Tk} is a subdivision of Co into 

hyperbolic triangles. 

If Co is non-compact (that is, if v E 1~), then we enumerate Ao as ai, i E Z, where a; 
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and a~+l are consecutive points on aBo. We let Ti be the hyperbolic triangle with 

vertices v, ai and ai+l. Again, {Ti: i E Z} is a subdivision of Co into triangles. 

We denote the resulting triangulation of U by ~. Obviously, we can do the 

subdivision in such a way that ~ is G-invariant (which has bearing only on subdivision 

of compact cells). If a triangle T of ~C is compact, then T is a finite triangle, otherwise T 

is an infinite triangle. A side of ~f is a side of some triangle of ~ ,  again such a side can 

be finite or infinite according to whether it is compact or non-compact. A vertex of ~ is 

a vertex of some triangle of ~.  Thus also points of VN 1~ are vertices of ~;  again, these 

are called infinite vertices of ~ ,  others are finite vertices. The set of vertices of ~ is 

AU(VNR)=AUP. 

We introduce the following notation for a triangle T of ~ ,  a side S of ~,  and a 

vertex v of ~: 

= int  T, 

= S\{endpoin ts  of S}, and 

~={v}nu. 

We enumerate the properties of ~ needed later in 

THEOREM 4.5. Let G be a Fuchsian group acting in U which satisfies (4.9). Then 

there is a hyperbolic triangulation 5( of  U such that 

(i) g(~X0 = ~ for all g E G, 

(ii) g(~N ~ = ~  i f  g E G \ ( i d }  and T is a triangle, side or a vertex of  ~,  

(iii) if  T is a finite side or a finite triangle of  ~,  then 

d(T) E [M/3, 4M/3], 

(iv) i f  a is an angle in a triangle of  ~, then 

a ~< 2/sinh (M/6), 

(v) the set of  vertices at infinity of  ~ is the set P of  points of  R fixed by some 

parabolic g E G, and 

(vi) i f  a triangle TE ~ has vertex v EP, then the other two vertices u and u' o f  T 

are in U and satisfy 

d(u, u') = M/3 

and u' =g(u)for  a generator g o f  Go. 
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Proof. It is easy to check that Yfis locally finite since i f  is, andpart  (i) is true since 

if(A) is G-invariant and we subdivided if(A) into Yl in a G-invariant manner. 

Since G acts without fixed points in U, it is obvious that ~ Ng(~)=~ if u is a vertex 

of X and g E G \ { i d } .  For this same reason, int Co N g (int Co) = ~ if Co is a finite cell of 

if(A). It follows that ~ N g ( ~ ) = ~  if T is a finite triangle of X a n d  g E G \ ( i d } .  If vEP, 
then int Co N g (int Cu)=~ for g E G \ G o  by (4.11). Considering how the subdivision of 

Co was performed, it follows that ~N g ( ~ ) = ~  if g E G \ ( i d }  and T is an infinite triangle 

of X. 

Finally, if S is a side of ~ ,  then the above considerations and the fact that G acts 

without fixed points in U, imply that ~ N g(~)= ~ for g 6 G \ ( i d ) .  Thus (ii) is true. 

Since A satisfies (4.5) with M/3 substituted for M, part (iii) is a consequence of 

(4.6) and part (ii) of Lemma 4.4. Part (iv) is a consequence of Lemma 4.3 and (ii) of 

Lemma 4.4. 

Part (v) follows from (4.13) and (vi) from (iii) of Lemma 4.4 and from (4.10). 

5. Quasiconformal extension 

In this section we first construct a quasiconformal extension of a quasisymmetric map 

in a special case (Theorem 5.2) and then prove some auxiliary results which allow to 

reduce the general case to the special case. Finally, we put all threads together and 

prove the general extension theorem (Section 5 E). 

5 A. Canonical maps between hyperbolic triangles. Let a, b, c E U be three dis- 

tinct points of the hyperbolic plane not lying on a hyperbolic line. Then there is a non- 

degenerate hyperbolic triangle with vertices a, b and c which we denote by T(a, b, c). 
We now construct a canonical homeomorphism between two such triangles 

Tl=T(a I) and T2--T(a2) where - i i i U 3. ai-(al, a2, a3)E We denote this homeomorphism by 

f(a 1, a2)= f and it is defined by the following conditions where we have denoted by s~ 

the side of Ti not containing a~.. 

(1) f(a))=a 2 for j= l ,2 ,3 .  

(2) f(s))fs~ and f ls  ) is a linear stretch in the hyperbolic metric, j= 1,2, 3. 

i be the hyperbolic segment joining x and a~. Then f(s~)=sftx) and (3) I f x  E s~, let sx 

fts~ is a linear stretch in the hyperbolic metric. 

Obviously in this manner we get a well-defined homeomorphism between triangles 

not having vertices in l~. However, in the triangulations we later consider, some 
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triangles may have one vertex in IL Therefore we need to define f(a, b) also for such 

triangles. 

We now define such a map. We use the above notation and assume that if a triangle 

T= T(a, b, c) has vertices a, b, c of which one is in IL then c E 1~ and a, b E U. So assume 

that aiE Ux Uxl~ and let Lj be the hyperbolic line containing sj. Let 

r =  min d(aj, Lj.). 
i,j=l,2 

Then there are points ail E s~ and a~ E s~, t~4:a~, such that, for i, j =  1,2, 

d(dj, Lj)= r/2. (5.1) 

We now divide 7",. into three triangles as follows. Let Ti~= T(ail, d~, a~), T,~=T(ail, a I,-' a 2)" 

and - i -i T~3-T(a2, a2, t~il). Then (5.1) implies that Tii and T21 are conformally equivalent: 

There is a MObius transformation g of O such that g(a~)=a~ and that g(d])=d 2 for 

j = l ,  2. Using this map g and the maps f(a, b) defined above we can now define a 

homeomorphism f =f(a 1, a2): TI--~ T 2 by setting 

f i T .  = g i l l ,  

flT~2=f((a~,-, ~ 2 -2 a~)), (5.2) al,a2),(al,al, 
f lTi 3 I -I -I 2 -2 ~)). =f((a 2, a 2, al), (a2, a2, 

By (1) and (2) and the fact that g preserves hyperbolic metric, this is indeed a well- 

defined homeomorphism Ti--~ T2. 

It is important that these homeomorphisms are compatible with MObius transfor- 

mations, that is, i f  g a n d  h are MObius transformations o f  U ,  then 

f(g(a), h(b)) = h of(a, b) o (g- I I T(g(a))). (5.3) 

Another important property of these maps is that they are quasiconformal. More- 

over, the dilatation are uniformly bounded if the triangles vary in a compact set. We 

give this in 

LEMMA 5.1. Let cE(O, 1). Then there is K=K(c)>~I such that the map f(al,a2): 

T(a0--~T(a2) is K-quasiconformal if  the triangles T(ai) satisfy 

(i) either both al,a2E U 3 or both a l , a 2 E U x U x R ,  

(ii) the angles o f  T(ai) do not exceed : t -c ,  and 

(iii) the lengths of  the finite sides of  T(ai) lie in [c, 1/c]. 



QUASICONFORMAL EXTENSION OF QUASISYMMETRIC MAPPINGS 185 

Proof. We can normalize the situation by (5.3) in such a way that the first vertex of 

T(ai) is e2. Suppose first that both T(al) and T(a2) are finite triangles. Now, the set of 

such finite triangles which satisfy (ii) and (iii) is compact in an obvious sense. (Note 

that (ii) guarantees that it does not contain degenerate triangles.) Since every single 

f (al ,  a2) is quasiconformal and since the triangles (and vert ices)vary in a compact set, 

the uniform K-quasiconformality follows; cf. Lemma 4.1 of [35]. 

Suppose then that both T(al) and T(a2) are infinite triangles. Again by (ii) and (ii), 

the triangles, as well as the subtriangles T o. in (5.2) into which we have divided T(ai), 

vary in a compact set; note that f(a~, a2) is conformal in Tl~. 

5 B. Quasiconformal extension in a special case. Now we construct a quasiconfor- 

mal extension to a G-compatible k-quasisymmetric map f ,  provided that G satisfies a 

condition depending on k. 

THEOREM 5.2. Let k ~ l .  Then there are M=M(k)>O and K=K(k)~I  with the 

following property. Let G be a Fuchsian group such that G and M satisfy condition 

(4.9). Under these conditions any k-quasisymmetric and G-compatible map f admits a 

K-quasiconformal and G-compatible extension F to a homeomorphism of  the closed 

upper half-plane (J. 

Proof. Let K'=K'(k)~I  be a number such that every k-quasisymmetric map is 

K'-quasiconformal in the sense of Section 1 F. Choose then M=M(K')=M(k) such that 

2/sinh (M/6) ~flJx, and m I> m~, (5.4) 

where fl~,~l is as in Theorem 3.8 and M~, as in Theorem 3.6. 

We show that the theorem is true with this M. We first choose a G-invariant 

triangulation ~ o f  U as in Theorem 4.5. Let  A be the set of vertices of ~.  We represent 

every triangle TE f f  in the form T=T(aT) as in the preceding section (i.e., we fix an 

order for the vertices of T). By (vi) of Theorem 4.5, at most one point of the triple aT is 

in 1~, and in accordance with the preceding section, we assume that then the last point 

of aT is in 1~. If  T 'E  ~ is another triangle and T'=g(T), gEG,  then we assume that 

aT, =g(aT). 
We next pick for every vertex a E A a point za E T I t31~ (cf. Section 3 A) such that 

p(za)=a and do this in a G-invariant manner: Zg~)=g(z~). 

We can now define FIT using the map f (a ,  b) of the preceding section. If T=T(aT) 

and ar=(an, at2, at3), we set a'ri=Pf(Zar,) and a'r=(a'rl, a'~, a~) and define 

FIT = f(ar, a'r). 

13-858286 Acta Mathematica 154. Imprim~ le 15 mai 1985 
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By (5.4) and Theorem 4.5 (iv), the angles of T do not exceed fllx,~<l and hence a'ri are 

the vertices of a non-degenerate triangle by Theorem 3.8. Thus f(ar, a'r) is indeed 

defined. 

In 1~ we define F by Fll~=f. 

We claim that this gives the required extension. First, we must show that F is well- 

defined. This is clear if x E 1~ or if x E int T for some TE ~r. It is also clear if x is a vertex 

of ff  or if xES where S is a finite side of some TE ~-, cf. the definition o f f ( a ,  b) in 

Section 5 A. Suppose then that x E S where S is an infinite side. Let o E 1~ be the vertex 

at infinity of S (as we have seen, there is only one such vertex). Let Ti,/'2 E ~r be the 

triangles of ~-such that S c  Ti. Then Theorem 4.5 (vi) implies that there is a generator g 

of Go such that g -  l(S) and S are sides of TI and S and g(S) are sides of T2. Hence the 

points tijES defined by (5.1) are the same regardless of whether we regard S as a side 

of Ti or T2. It follows that F is well-defined also on infinite sides, and hence 

everywhere. 

If f induces ~p: G---~G', then F also induces ~0 by (5.3) since Zg(a)=g(za) and 

ag(r)=g(aT) for g E G. Hence F is G-compatible. 

Obviously, FlU is compatible w i th f and  ff  (Section 3 B), and in addition FIT is an 

embedding for every TE ft. Then Corollary 3.9 implies that F is a homeomorphism of 

O. 
Finally, by (5.4) and Theorem 4.5 (iii) and (iv), the angles of the triangles TE ff  

do not exceed 1, and the lengths of their finite sides lie in [M/3,4M/3]. Then, in view of 

Theorem 3.6 and 3.8 the angles of the triangles F(T), TE ~-, do not exceed 1, and the 

lengths of their finite sides lie in [M/3L~x,, 4L~r, M/3]. Hence the conditions of Lemma 

5.1 are satisfied for some c=c(k) E (0, 1). Thus there is K=K(c)=K(k)~ 1 such that FIT is 

K-quasiconformal for every TE ~-. It follows that F is K-quasiconformal. and the 

theorem is proved. 

Remarks. (1) The complex dilatation of the mapf(a, b) in Section 5 A depends real 

analytically on b when a is fixed, cf. Lemma 4.1 of [35], and this is true also if the 

triangles have one vertex in 1~. I f fE  T(G) (cf. Section 2 B), and x E R, thenf(x) depends 

real analytically on f([34, p. 139]). It follows that the complex dilatation of the map 

constructed in Theorem 5.2 depends real analytically on f E  {g E T(G): g k-quasisym- 

metric}. Thus there is c>0  such that for k near 1 we have the estimate 

K =  l + c ( k -  1). (5.6) 

(2) Actually, one sees as in Lemma 4.1 of [35] that the maps f(a, b) are bilipschitz 
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maps in the hyperbolic metric and then, as above, a compactness argument shows that 

the extension of Theorem 5.2 is (in U) bilipschitz with respect to the hyperbolic metric. 

However, this property is lost in Theorem 2 since its proof involves passing to 

extremal quasiconformal mappings and we do not know whether they are bilipschitz 

maps for the hyperbolic metric. On the other hand, the constant K(k) of Theorem 5.2 is 

valid for Theorem 2 as well. 

5 C. Normal subgroups o f  Fuchsian groups. In this section we show that, if a 

finitely generated Fuchsian group G and M>0 are given, then G has a normal subgroup 

N of finite index such that N and M satisfy condition (4.9). Basically, this is due to the 

fact that Fuchsian groups are residually finite, i.e., the following lemma is true. 

LEMMA 5.3. Let G be a finitely generated Fuchsian group and let 

hi .....  hs E G \ { i d } .  Then G has a normal subgroup N o f  finite index not containing the 

elements h i . 

Proof. This follows since the lemma is true if G is a finitely generated group of n x n 

matrices with entries in a field of characteristic zero, cf. Malcev [20, Theorem VII]. 

(This can be proved like Lemma 8 of Selberg [29].) And a Fuchsian group is isomorphic 

to a subgroup of the 3-dimensional ortochroneous Lorentz group, cf. [3, 3.7.7] or [24, 

Theorem 1.1 ]. 

In view of the importance of this lemma in our construction, we give references 

also to a more direct proof of it. Zieschang-Vogt-Coldewey [44, 4.10.8] proved that G 

has a normal subgroup N'  of finite index not containing torsion elements. Then Hempel 

[12] showed that N' is residually finite. Since a subgroup of finite index of a finitely 

generated group contains a normal subgroup of finite index, the lemma follows. 

Using Lemma 5.3, we can prove 

LEMMA 5.4. Let G be a finitely generated Fuchsian group and let M>0. Then 

there is a normal subgroup N o f  G o f  finite index such that N and M satisfy condition 

(4.9), i.e. i f  xE U and if  

A(N, M, x) = {g E N: d(x, g(x)) < M),  

then either A(N, M,x)={id} or is contained in a subgroup Nx o f  N generated by a 

parabolic element. 

Proof. Let Go be the subgroup of G consisting of orientation preserving elements. 

If there is g E G \ G o  and if No is a normal subgroup of Go such that the lemma is true 
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for Go and No, then the lemma is true also for G and N=NoNgNog - l .  Hence  we can 

assume that G does not contain orientation reversing elements.  

Let  then P c l ~  be the set of  points fixed by a parabolic g E G. Fix for every v E P an 

open horoball Bo at v (i.e Boc U is an open 2-ball such that OBo is tangent to 1~ at v). As 

is well-known, we can do this in such a way that Bv's are disjoint and that Bg~o)=g(Bo) 

for gEG.  Let  Gv={gEG:g(v)=v} if vEP.  Then 

g(Bv)=Bo i f g E G o  and 
(5.7) 

g(Bo)NBo=Bg~o~NBo = ~ if g 6 G \ G v .  

Define then another  horoball  B~cBo at v by d(auB' ,avBo)=M. Then also 
V _ _  v I Bg~o)-g(Bo) for  g E G and v E P and if x E Bo, then D(x, M)cBo. Hence,  by (5.7), 

A(G, M, x) ~ Go (5.8) 

if x E B 6 and v E P and here Go is a cyclic group generated by a parabolic element of  G. 

Let  L(G)=fi be the limit set of  G. Le t  y E R \ L ( G ) .  Since G does not contain 

orientation reversing elements,  y has a neighbourhood V in ( ] \L (G)  such that 

A(G, M,x)={ id )  for  xEVN U. In the finitely generated case ( f I \L(G)) /G is compact  

and hence we can find a G-invariant neighbourhood W of  f I \ L ( G )  in U \ L ( G )  such 

that 

A(G, M, x) = (id} (5.9) 

for xE WN U. 

Since G is finitely generated ( O \ [ L ( G ) U  WU(Uve,,,B'o)])/G is compact .  Hence  

there is a compact  set C c  U such that 

Let  

U c G C U W U (  IJ B'v). 
vEP  

A = {g E G: d(x, g(x)) < M for some x E C} 

which is a finite set by compactness  of  C. Hence ,  by Lemma 5.3, there is a normal 

subgroup N of  G such that NNA={id} .  

We claim that this is the sought-for subgroup. Let  x E U. If x E W or x E B~, for some 

v E P, then A(N, M, x) is of  the required form by (5.8) and (5.9). If  this is not the case, 

then x=g(y) for  some y EC and g EG. Suppose that there is h E N  such that 

d(x, h(x))<M. Then 

d(x, h(x ) ) = d(g(y ) , h g(y ) ) = d(y, g -  ~ h g( y ) ) < M. 

Since g -~hgENNA={ id} ,  it follows that h=id ,  and the lemma is proved. 
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5D. Quasiconformal extension and subgroups of  finite index. Macbeath [19] 

observed that if G is a Fuchsian group with a compact fundamental domain and if N c G  

is a normal subgroup of finite index, then an extremal N-compatible quasiconformal 

map of U is also G-compatible. We use this idea to show that in the construction of a 

G-compatible quasiconformal extension of a quasisymmetric map, we can pass to a 

subgroup of finite index. 

LEMMA 5.5. Let G be a Fuchsian group and f a quasisymmetric G-compatible 

map. Let N be a subgroup of finite index and assume that there is a K-quasiconformal 

N-compatible extension F' o f f  to O. Then there is a K-quasiconformal G-compatible 

extension F o f f  to 0. 

Proof. We can assume that N contains only orientation preserving elements. 

We first assume that G is finitely generated. Now G has only finitely many 

subgroups of the same index as N and then their intersection is a normal subgroup of G 

of finite index. Hence we can assume that N is a normal subgroup. 

Let tp: G-.G'  be the isomorphism induced by f ,  i.e., q0(g)ll~=fgf -l .  Let L(G) be 

the limit set of G. It is also the limit set of N. If L(G)*fi, choose a set 

{xl,x2 .... } c I i \ L ( G )  which is dense in f i \L (G)  and does not contain G-equivalent 

points. Let, if n>0, 

f~ if L(G) = f~ 
X~ = [G({x~ ..... x.}) if L(G)* R. 

Then XflN is finite. This and the fact that N is a finitely generated Fuchsian group not 

containing orientation reversing elements imply that there is a uniquely determined 

map F~: 0--*0, n~>3, such that 

(a) F~ is N-compatible and F induces ~0lN, 

(b) F,,(x)=f(x) if x E X,, U L(G), and 

(c) F~ is the unique extremal quasiconformal map satisfying conditions (a) and (b). 

This is a consequence of the existence and uniqueness of Teichm011er's extremal 

mapping. (Cf. Bers [4, w 7] where this has been proved in the form we need it.) We 

show that Fn is G-compatible. Choose gEG. We must show that if F"=cp(g)-lFng, 

then F"=F~. We show that also F"  satisfies (a) and (b). Then by the uniqueness of the 

extremal map, we must have F"=F~ since the maximal dilatations of F" and Fn are 

equal. Let h E N. Then, if h'=ghg-~E N, 
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q~(h)-IF"h = r = cp(g)-Icp(h')-tF, h' g 

= q~(g)-'Fn g = F" 

since F," induces tp[N. Thus F" satisfies (a). If xfiX,'OL(G), then 

F'(x)=cp(g)-IF,'g(x)=cp(g)-Ifg(x)=f(x) since f induces ~ and g(x) fiX,, UL(G). Thus 

F" satisfies also (b), and consequently F," is G-compatible. 

Since we know that there is at least one K-quasiconformal map of 0 satisfying (a) 

and (b) (i.e. F'), F,, must be also K-quasiconformal. 

The normal family properties of quasiconformal mappings imply that there is a 

sequence n(1)<n(2).., and a K-quasiconformal homeomorphism F of 0 such that 

F,'t,9----~F uniformly in the spherical metric. It is G-compatible since every F," is, and, 

by (b), F(x)=f(x) ifxfiL(G)U(U,,~oX,,) which is dense in I~. Therefore b-]l~=f and the 
lemma is true for finitely generated G. 

If G is not finitely generated, there is a sequence G~cG2c... of finitely generated 

subgroups of G whose union G is. Let Ni=N N Gi which is a subgroup of finite index of 

Gi. Since an N-compatible map is also Nrcompatible, the above proof shows that there 

is a K-quasiconformal, Grcompatible extension F~ of f to t). As above, a normal family 

argument now shows that there is a G-compatible K-quasiconformal extension F of f to 

0. 

Remarks. (1) Actually, it would suffice to assume that N n H is a subgroup of finite 

index of H whenever H is a finitely generated subgroup of G. 

(2) After the first version of this paper was completed, we got Sakan's paper [28] 

where he gives a different proof of this theorem. 

5 E. Conclusion o f  the proof o f  Theorem 2. We put now all the pieces together and 

conclude the proof of Theorem 2. There are two cases. 

G is discrete. If G is finitely generated, then Lemma 5.4 implies that G has a 

normal subgroup N of finite index which satisfies condition (4.9) for M--M(k) of 

Theorem 5.2. Hence Theorem 5.2 can be applied to construct an N-compatible K(k)- 

quasiconformal extension of f .  Then Lemma 5.5 implies that there is also a 

G-compatible K(k)-quasiconformal extension of f .  

If G is not finitely generated, pick a sequence G~cG2c. . .  of finitely generated 

groups whose union G is. Let Fi be a K(k)-quasiconformal Grcompatible extension of 

f .  By passing to a subsequence we obtain that there is a K(k)-quasiconformal F such 

that F~---)F uniformly on compact sets. Then F is a G-compatible homeomorphism of C/, 

and Theorem 2 is proved for discrete G. 
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G is non-discrete. We prove that if f is a G-compatible homeomorphism of 1~, then 

there is an extension of f to a G-compatible homeomorphism of 0 which is K(k)- 

quasisymmetric i f f  is k-quasisymmetric, K(k) as for discrete G. 

We can assume that G is a closed subgroup of the group of MObius transformations 

of U. Let Go be the component subgroup of G containing the identity element. Then 

(Greenberg [11]) Go must be one of the following groups: (a) the group of elliptic 

transformations fixing a point of U; (b) the group of parabolic, or of parabolic and 

hyperbolic, transformations fixing a point of 1~; (c) the group of hyperbolic elements 

fixing a point-pair of 1~; (d) the group of all orientation preserving MObius transforma- 

tions of t.7/. 

It is easy to check that t h e n f m u s t  be a MObius transformation except possibly in 

(c). Suppose now that we have case (c) and let {0, oo} be the point-pair fixed by 

elements of Go. Then one sees that f i s  of the form 

fclxl a, x ~> 0 
f ( x )  -- t ' x <. O, 

where a>0  and cc'>O. In particular, f is then always k-quasisymmetric for some k~> 1. 

It would not be difficult to find directly an extension of f i n  this case but it can be 

reduced to the discrete case as follows. Since Go is normal in G, one sees that elements 

of G fix setwise the point-pair fixed pointwise by elements of Go. Using this fact and 

the known structure of Go, one can find discrete subgroups G~cG2c. . .  of G whose 

union is dense in G. Hence there is a K(k)-quasiconformal Grcompatible extension o f f  

to 0 and the proof can be concluded by a normal family argument. 
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