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1. Introduction 

The theory of quasiregular mappings has turned out to be the fight extension of the 

geometric parts of the theory of analytic functions in the plane to real n-dimensional 

space. The study of these mappings was initiated by Re~etnjak around 1966 and his 

main contributions to the theory is presented in the recent book [8]. For the basic 

theory of quasiregular mappings we refer to [2], [3], [13]. The definition is given in 

Section 2.1. In 1967 Zofi~ [14] raised the question of the validity o f a  Picard's theorem 

on omitted values for quasiregular mappings. Such a theorem appeared in 1980 in the 

following form. 

THEOREM 1.1. [9]. For each K ~ I  and integer n>~3 there exists an integer 

q=q(n,K) such that every K-quasiregular mappings f:Rn---*R"\(ul . . . . .  Uq} is con- 

stant whenever u~ . . . . .  Uq are distinct points in R n. 

Already from the early beginning of the theory it has been conjectured that the 

Picard's theorem is true in the same strong form for n~>3 as in the plane, namely that q 

can be taken to be 2 in Theorem 1.1. The purpose of this paper is to give a solution to 

this question in dimension three. The result is presented in Theorem 1.2. It shows that 

the conjecture is false and that Theorem I. 1 is indeed qualitatively best possible for 

n=3. 

(t) Supported in part by an NSF Grant during the author's stay at the University of Minnesota. 
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THEOREM 1.2. For each positioe integer p there exists a nonconstant quasiregular 

mapping f'. R3---~R 3 which omits p points in R 3. 

The history of the problem is the following. At a rather early stage of the theory of 

quasiregular mappings it was proved both in [3, 4.4] and [7, Theorem 2] that a 

nonconstant quasiregular mapping f: Rn---~R " cannot omit a set of positive n-capacity. 

The discovery of Theorem 1. I was a result of a development of value distribution 

theory of quasiregular mappings some years earlier than [9]. Two proofs of Theorem 

1.I different from the original in [9] are presented in [II] and [12]. A defect relation, 

which is an analogue for a result from Ahlfors's theory of covering surfaces and a 

generalization of  Theorem 1.1, was proved in [ 1 0]. For p = 1 the construction of the map 

in Theorem 1.2 is easy. This was done by Zori~ in [14] and his construction can be 

generalized for all n in a straightforward manner. 

Already for p=2  it can be shown that a map f in Theorem 1.2 must satisfy hard 

requirements. In fact, the solution presented in this paper is geometrically one of the 

simplest possible in the same sense as the exponential function is the simplest in the 

plane to omit one point. In short terms, to construct f in Theorem 1.2 is a sensitive 

interplay between the combinatorial properties and the dilatation off .  A 2-dimensional 

deformation theory, developed in Section 5, has an essential role in this interplay. The 

main reason why a map f in Theorem 1.2 is at all possible to construct is that tubular 

neighborhoods of arcs do not separate in !i 3. To obtain Theorem 1.2 also for dimen- 

sions n~4 in a similar way would among other things require an  (n-l)-dimensional 

deformation theory. Such a theory is not available in a straightforward manner from the 

method presented here because we use essentially some properties of the plane. 

For the sake of clarity we shall give the proof of Theorem 1.2 in detail for p=2.  The 

general case is in principle almost the same and we shall indicate in the end (Section 8) 

what changes will be made for larger p. To help the reader to understand the strategy of 

the proof, the main features of  it will be outlined below. 

Let us first give a description of Zori~'s construction for p =  1. Let f0 be a 

quasiconformal mapping of the infinite cylinder C={xE113[(Xl,X2)EA}, with the 

square A={xER210<xl,x2<l} as base, onto the half space H+={xE1131x3>O} such 

that f o ( C n H + ) = H §  3 (B n is the unit ball in 11n) and the edges of C correspond to 

rays emanating from the origin. We extendfo by repeated reflections through the faces 

of C and al l+ and obtain a quasiregular mapping f: R3---~113~{0}. Let  D be a cylinder 

obtained from C by reflection in a face and let C~=CnH+, D~=DnH+. Let C2 and D2 

be obtained from C1 and Di respectively by reflection in all§ Then f maps C'1U/)l 
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onto UIUS 2 and C20/)2 onto U2US 2 where UI=R3~/~ 3 and U2=B3~(0} (S n-I is 

the unit sphere in R"). The preimages Wj=f-Iuj are halfspaces and hence very 

simple. 

Let then p=2 and suppose we are given a nonconstant quasiregular mapping 

f:R3-'--~R3~{u2, u3}, UE=--e3/2, u3=e3/2 (el is the standard ith basis vector in R"). 

Write ul=o0 and let UI, U2, U3 be the components of R3~(S2OB2U{u2, u3}) such 

that ujE ~ ,  j=2 ,  3. Since uj is omitted, each component of Wj=f-luj is unbounded. In 

our construction of such a map f the cylinders Cj, Dj .... in the Zori~'s map will 

correspond to tubes in Wj tending to oo and ending in aWj. Each such tube will be 

mapped b y f o n t o  half of Uj similarly as in the Zori~'s map. One of the main difficulties 

arises from the fact that if a tube in Wl has a common end with a tube in WE, then the 

neighboring tube in W~ must have a common end with a tube in W3, and this for all 

permutations of W1, WE, and W3. This makes the sets Vr 2 very complicated because the 

third must be near every common boundary point of two of the sets. For p=  1 there is 

no such problem because there is no third set Wj. To glue the various tubes at the ends 

together is essentially a combinatorial problem, the solution of which is part of Section 

7. 

The main idea of the proof is to first construct an approximation off-~(S2UB2), 

denoted by IM| The complement of IM~I will consist of eight components 

Vl, V2, V3(h), h=0 . . . . .  5, all topologically equivalent to a 3-ball. The sets V~, V2, and 

V3=V3(0) U ... U V3(5) are approximations of W1, W2, and W3 respectively. To achieve 

the requirement that a common boundary point of any two of the Vj's is not far from 

the third, we introduce an operation, called cave refinement, by which we can diminish 

the Hausdorff distance between parts of boundaries of sets like the Vj. To be able to 

decide when a cave refinement operation is needed, we have to have in mind the 

number of tubes ending at a given part off -~(S 2 O B2). For this we construct simulta- 

neously an approximation on each aV~ ..... aV3(5) of the configuration of the ends of 

the tubes. Such configurations are called map complexes and they are essentially 

triangulations with the property that each vertex is common to an even number of 2- 

simplexes. These constructions are made in Sections 2 and 3. 

The definition of the mappingfis  started in Section 4. There it is given on certain 

level surfaces which lie in the sets VI . . . . .  V3(5) and are almost obtained by similarities 

from aV~ ..... aV3(5). Since the number of repeated cave refinement operations tends 

to infinity when we approach oo, in order to keep the dilatation bounded we cannot take 

the map complexes corresponding to the tube configurations on the different level 

surfaces to be topologically equivalent, but we have to rearrange the order of the tubes 
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when we pass from one level surface to the next. This has led us to develop a 

deformation theory in Section 5 mentioned above for discrete open maps in the plane. 

Deformation of such maps has been studied rather extensively by M. Morse and M. 

Heins (see [6]), but their results are not applicable here. By means of a deformation 

lemma from Section 5 together with a technique of straightening caves, we are able to 

extend the map to the layers between the level surfaces in Section 6. In Section 7 we 

glue together the obtained maps near IM| Apart from the combinatorial aspects that 

part is somewhat similar to Section 6. Throughout the work we use mainly piecewise 

linear technique. 

We make no effort in striving for any good bound for the dilatation of f i n  Theorem 

1.2. Let it be remarked here that for n~>3 there exists K~>I with the property that for 

I<~K<~K,, every K-quasiregular mapping f is locally homeomorphic [4, 4.6]. If in 

addition f." R"---~R ~, t h e n f i s  quasiconformal [14], and hence does not omit any point. 

I want to thank Kari Astala for making valuable remarks about the manuscript, and 

Martti Pesonen who studied an earlier version of the subject. I am also grateful to 

Pekka Tukia for discussion of the proof of Lemma 5.2. 

2. Preliminary constructions 

Most of our constructions are based on special triangulations of surfaces. The main 

object in this section is to give a "cave" construction operation which will be used in 

Section 3 to construct the set [M| mentioned in the introduction. 

2.1. Terminology and notation. A continuous map g: D-*R n of a domain in the 

Euclidean n-space R n, n>~2, is called quasiregular if 

(1) g belongs to the local Sobolev space W~,moc(D), i.e. g has distributional first 

order partial derivatives which are locally L ~ integrable, and 

(2) there exists K, l~<K<oo, such that 

Ig'(x)l" KJ (x) a.e. (a) 

Here g'(x) is the formal derivative defined by means of the partial derivatives Dig(x) by 

g'(x)ei=Dig(x) (el is the standard ith basis vector), Ig'(x)l is its operator norm, and 

Jg(x) the Jacobian determinant. These are defined a.e. by (1). Let g be quasiregular. 

Then also 

J~(x) ~< K inf Ig'(x) hi n a.e. (b) 
Ihl=! 
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holds for some KE [1, oo[. The smallest K satisfying (a) and (b) is the dilatation K(g) of 

g. If K(g)<~K, g is called K-quasiregular. Although not used in this work we make the 

remark that the definition of quasiregularity extends immediately to the case g: M--.N 
where M and N are connected oriented Riemannian n-manifolds, see for example [5]. 

The term quasimeromorphic is reserved for the case where M is a domain in R n or in 

l~n=R"U{ oo} and N=l~ ~. 1~" is equipped with the spherical metric. A quasiregular 

homeomorphism is called a quasiconformal mapping. 
The ball {yER~lIx-yi<r} and the sphere (yER"l[x-yl=r} are denoted by 

Bn(x,r) and S~-l(x,r). We write B~(r)=B"(O,r), B~=B"(1), S~-l(r)=Sn-l(O,r), 
S~-l=S~-l(1).  We identify R k with Rkx{O}cR k+m. The normalized k-dimensional 

Hausdorff measure in R ~ is denoted by H k. The Euclidean metric is denoted by d. 

A complex means in this work a locally finite (rectilinear) simplicial homogeneous 

complex in R 3. For terminology, see [1]. If K is a complex, K i is the set of/-simplexes 

in K, IKI is the space of K, St(A, K) is the star ofA EK as a subcomplex, and K ~k) is the 

kth barycentric subdivision of K. If L is a subcomplex of K, L is also denoted by KIA 
where A=IL I. We shall need the notion of join of a complex K with a 0-simplex {v}, 

denoted by oK. If M is a complex or a simplex, M means the boundary complex and 

intM the relative interior. By (v0 . . . . .  vi) we denote the (geometrically realized) 

bsimplex with vertices Vo ..... Oz. If K is a 2-complex or a set of 2-simplexes, o(K) is the 

number of 2-simplexes in K. If K is a connected complex and v, v' E K ~ we let 

px(v, v')=p(v, v') be the smallest number of 1-simplexes in a path in IKII connecting v 

and v'. The closure fi, and boundary 0A of a set A c - R  3 is taken with respect to R 3. 

2.2. l-subdioisions and K-trees. We fix v=24000 througout except Section 8. A 

2-simplex T in R a is called admissible if all its angles are at least :r/12. For an integer 

l~>0 an admissible T is called an l-triangle if the side lengths of T are between vt/4 and 

8~. 

Let T be an (l+ l)-triangle, let s~, s2, s3 be the sides of T, and let di be the length of 

si. We assume that for each i= 1,2, 3 we are given an integer h~, 1 ~<h~<6. We divide s; 

by a set Xi of points into h~=h~ h'[ equal parts, where h7 is an integer, such that Idi/hi-vll 
takes its smallest possible value. Let aiEXi be a point such that lai-bil<di/8, i= 1,2, 3, 
where bi is the midpoint of si. By elementary geometry one shows then that there exists 

a 2-complex K with IKI--T and a 1-subcomplex L of K such that the following 

conditions hold: 

(I) All angles in K are at least ~r/8 except possibly two at vertices of T where it is at 

least :r/12. 
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(2) K ~ N ITlcXl  USE 023 and {v EXil Iv-b,l<di/6} c K  ~ 
(3) ILl is a tree and consists of  connected subcomplexes L;, i--0 . . . . .  3, such that 

L~176 K~ ]2/'1)~>5 } and IL~I, i=1 ,2 ,  3, is a line segment and a minimal path 

in the •K-distance connect ing ILol and ai. d(lLol, l:~l)~>4v I. 

(4) If  v E L ~ then the angles in St(v, K) are in the interval [~/3-20/v, ~d3+20/v]. If 

v6_K and ph-(v, v')~<l for  some v ' E L  ~ i=1 ,2 ,3 ,  the angles in St(v,K) are all zt/3. 

Hence  a(St(v, K)) is 6 if v E L ~  a2, a3) and 3 if v E {al, a2, a3}. 

(5) Let  r E K  1 and let t be the length of  r. Then vt/2<~t<-6v I. If  vEL  ~ and 

r 6_ St(v, K), then vl-40v l- l <t<v%40vt-  1 

(6) Le t  v,v'6_L ~ If  Qh-(v,v')=l,  then CrL(V,V')<-2. If  QK(V,V')=2, then 

QL(V, v')~<4. 

(7) If  v 6_ K ~ and Qx(v, K ~ N ITI)~>4, then Qh-(v, L~ 

(8) 2v-21H2(T)<~cr(g)<~4v-21H2(T) and a(K)/2<.a( {A 6_ K21A N [Ll=l=~})~<2o(K)/3. 

If  we fix one of  the points ai, call it a, to be the last point in L ~ we are given a 

natural (partial) order  in L ~ such that each v6_L~ has a unique successor.  The 

complex K is called an l-subdivision of  T (with partition numbers h~) and L a K-tree. 

Each 2-simplex B of  K will be given partition numbers  for its sides by the following 

rule. Let  t be a side o fB .  I f t  is not in I 1, then its partition number is 1. I f t  is contained 

in s; and if the length of  t is c, then the partition number  of  t is ch/d~. 

2.3. Cave complexes. Let  M be a finite 2-complex consisting of  ( l+l)- tr iangles 

such that the following holds: 

(a) IMI is homeomorphic  to a disk and is contained in a plane. 

(b) Each T E M  2 is given partition numbers for its sides and so that the partition 

number for a common side TNS, S E M  z, is always 1. 

(c) Let  P be a 1-subcomplex of  the dual cell complex of M, defined by the 

barycentric subdivision, such that pi  is a union of  pairs { (v ,x ) ,  (x, w)} where v and w 

are barycenters  of  some S and T in M 2 with a common side s and x is the barycenter  of 

s. We assume that IPI is a tree,  for every T E M  2 the barycenter  of T is in pO, and there 

is a barycenter  p of  some TE M 2 which belongs to only one l-simplex of  P. If we fix p 

to be the last element,  we are given a natural (partial) order  in pO. This induces an order  

on M 2. 

If  S, T6-M 2 and if T is the successor  of  S, we call SN T the last side of  S. 

For  each TE M 2 we choose an/-subdivis ion Kr with the given partition numbers 

and a Kr - t ree  Lr  with the following condition: 

(d) Let  the a; and L; in Section 2.2 be for T now denoted by aT-i and Lri. If  
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S, TEM 2 and T is the successor of S, the last asi in L ~ is some arj and arj is not the 

last in L ~ Moreover, Ls~ and Lrj are then symmetric with respect to the common side 

of S and T. 

If TEM 2 is not the last in M E, we let L~- be the subcomplex of L r  defined as 

follows. Suppose that at3 is the last of L ~ Let Ic{1,2} be the set of indices i for 

which ari is not the last of any L ~ such that T is the successor of S. Then we obtain L~- 

from Lr  by removing the Lr : s ,  iEl,  and completing it to a complex. Then we form 

L = U L '  r 
r<Tp 

where Tp is the last in M 2. 

Let u be a normal of IMI of length vk Let aEL and let A=(vO, Vl,V2) be a 2- 

simplex in St(a, K) where K=OrKT.  Note that K is not a complex in general but 

St(a,K) is well defined for aEL  by (2) in Section 2.2. Write U=(vO, Vl,V2}flL O, 

W={vO, Vl,VE)\L O, and let A+ and A_ be the 2-simplexes with (U+u)UW and 

(U-u)O W as the set of vertices respectively. From K we form a new union of 

complexes, denoted by KL=K(L), as follows. All A's as above are replaced by A+ and 

A_ and all other 2-simplexes in K are left untouched. KL is called a cave complex and 

the bounded component of R3\IKLI the cave of KL. All 2-simplexes in KL are l- 

triangles. The partition number for a side of a 2-simplex of Kt. is defined to be the 

partition number of the corresponding side in KT for some TE M E. 

2.4. Bending and opening of  cave complexes. We also need two modifications of 

the above construction. Suppose that IMI is not necessarily contained in a plane. We fix 

a normal ur of length v I of each TE M 2 such that uT points towards the same side of IMI 

for all T. Let S, TEM 2, let T be the successor of S, and let a=asi be in L~ where 

s=S n T. We assume that Us and UT form an angle q0, 0~<~p~<~t/3. Then, when forming 

KL from K we replace the vertex a by b and c defined as follows. Let C be the line 

containing the line segment Lsi and let X be the plane spanned by s and Us+ur+a. 

Then b is the point in (C+us)nX and c the point in (C-us)nX.  This modification is 

called bending at s. If there are bendings at several sides, we assume that no self 

intersection occurs. The normals ur are said to be positive. 

Our second modification is called cave opening. Let S, T, s and a be as above and 

let T= To be the last in M 2. We shall first replace To by two (l+ 1)-triangles T+ and T_ 

with partition number 1 on the sides. We assume that Us=UT. T+ and T_ have s as a 

common side and they lie in planes obtained by turning the plane containing To around 

s by angles q~+ E ]0, ~r/2[ and q0_ E ]-~r/2, 0[ respectively. The orientation is chosen so 

14-858286 Acta Mathematica 154. Imprim(~ le 15 mai 1985 
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b I a b e 
Fig. 2.1. 

that T+ lies in the nonnegative side of To defined by Ur. In T+ we choose an 

/-subdivision K+ as follows. If T+ is considered as a successor of S, then the pair 

S, 1"+ satisfies the condition (d) in Section 2.3 modified to bending at s. Similarly we 

choose an/-subdivision K_ in T_. We deform K+ to an isomorphic complex K~_ by 

moving the two vertices b3 and b4 in St(a, K+) and not in s (Figure 2.1) to bJ and b~ to 

a greater distance form a. A complex K'_ is similarly defined. To form the new cave 

complex K~. we first replace Kr0 by K+ and K'_. We replace each A E K 2 with A C T  o 

by A+ and A_ as before, in particular a is replaced by a+us and a - u s .  Each 

A=(a ,  c, d) in St(a, K~.) 2 is replaced by A+=(a+us,  c, d) and all others in K+ 2 are 

kept untouched. The deformed K+ is so chosen that all resulting 2-simplexes are 

/-triangles. K'__ is treated similarly. The 2-simplexes T+ and T_ are called cave 

opening simplexes, the set Q = M 2 \  { To} is called a cave base, s=T+ n T_ the last side 

of Q, and a the cave center in s. By K we denote now the union 

K =  O KsOK+tJK'_. 
S < T  o 

All 2-simplexes in KL are /-triangles also in these modifications. The cave opening 

simplexes will always be in certain positions with respect to the cave base, see Sections 

2.5 and 3. 

A cave complex KL is thus always obtained by replacing each 2-simplex of K by 

one or two 2-simplexes. This gives a natural simplicial projection ~: ]KL[---*]K]. If 

TEM2\{To}, the 2-subcomplex N=w(T) of Kt. with [w(T)I=~-~T is said to be 
inherited from T. The 2-subcomplex of N, the 2-simplexes of which are the A+'s 
(A_'s), is denoted by N+ (N_). The 2-subcomplex of N which ~ leaves invariant is 

denoted by No. The map ~ induces from uT positive normals on the 2-simplexes of N. 

2.5. Cave refinements. Let TEM2\{To} and N be as in the last paragraph, and let 
J=NonN+ (=N+nN_). We shall next form opened cave complexes such that the 
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cave bases are subsets of N g. There exists a set Qo of disjoint such cave bases such 

that 

(1) for each QEg2 0 Q,--N~ and the last side of Q is in J,  

(2) UQe,0 O = N 2, 

(3) o(Q)~ < 10v for all Q E ~0. 

Let QE f~o, let s be the last side of Q, and let A+ and A_ be the 2-simplexes of N+ 
and N_ with A+f lA_=s .  We form (l-1)-subdivisions of elements in 

Q'=Qu {A+,A_} and an opened cave complex with Q as a cave base and A+ and A_ 

as cave opening simplexes. Recall that the sides of each 2-simplex in N are given 

partition numbers. The union of  these cave complexes when Q runs over f~o is denoted 

by K(~o). Some 2-simplexes in N+ U N_, namely those which appear as cave opening 

simplexes, are replaced by ( l -  1)-subdivisions followed by a simplicial homeomorphism 

when K(f~o) is formed. 

With No replaced by N+ and N_ we form similarly corresponding sets ~+ and 

~_ .  Let Q ' E ~ +  and let s be the last side of Q'. Then s=ANB for some AEN2o, 
B E N2_. We shall now form a union of complexes which we again call an opened cave 

complex with Q' as a cave base and A and B as cave opening simplexes. The difference 

from the constructions in K(~o) is that now we use the (/-1)-triangles already con- 

structed, possibly together with some (/-1)-subdivisions for 2-simplexes not earlier 

subdivided. We require that if s is also a last side of Q E f~o and a and a' are the cave 

centers in s corresponding to Q and Q', then Q(a,a')>~6 measured in the (/-1)- 

subdivisions. This requirement makes it possible to do the opening constructions 

independently. We also require that each A E No z contains a last side for at most one 

cave base Q' E f~+. The union of these cave complexes is denoted by K(~+). We can 

choose ~+ so that the angles in the bendings for any Q' E Q+ do not exceed ~/3. Note 

that K(f~0)N K(f~+) is a nonempty union of 2-complexes. In a similar way we form 

K(f2_) using also (/-l)-triangles already constructed in K(Qo)UK(f~+). We require 

that if Q and Q' are any two in Q=f~oUf~+UQ_ with a common last side s, then 

Q(a,a')~>6 for the cave centers a and a' of Q and Q' in s. We write 

K(Q)=K(~o)UK(~+)UK(Q_) and say that K(~) is obtained from N by cave refine- 
ment and that K(Q) is inherited from N. We write K(Q)=o~(N)=os2(T). All 2-simplexes 

of K(~) are admissible. In Section 3 we shall use the symbol ~ for a generic notation of 

a set of cave bases as presented here. 

2.6. @inheriting. Let N and K(f~) be as in Section 2.5. Fix A0 E N 2. If a E intAo, 

B3(a, t)\Ao has exactly two components for small t. Two such components are said to 
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61 

62 

3 

Fig. 2.2. 

be equivalent if they lie on the same side of Ao. Let us call the equivalence classes 6~ 

and 62. This equivalence relation is extended naturally over sides which are common 

for two 2'simplexes. If three 2-simplexes AI,A2, and A3 in N have a common side, we 

deliver the classes as in Figure 2.2 by introducing a third class 63. We extend the 

definition of the equivalence classes for K(f~) in a natural way as follows. For a 2- 

simplex B in K(fl) which is kept untouched when the cave refinement is performed, the 

classes remain the same as those for the 2-simplex in N containing B. We use the same 

symbols 6~, 62, 63 for the classes in all cases. 

Let A E N 2 and let 6j and 6k be the classes of A. We define a union wj(A) of 2- 

complexes as a subset of  K(f~) as follows. The 2-simplexes of toj(A) are desribed by the 

following two conditions: 

(1) IfDEto(A) 2 and i f6j  is a class of D, then DEtoj(A) 2. 
(2) Let A be one of the cave opening simplexes for a cave complex with some base 

Q E f l  and IQI has not 6j as a class. If DEw(B) 2 for some BEQ and if6j  and 6k are the 

classes of D, then D E toj(A). 

The condition (2) means that half of the walls of the cave corresponding to Q are in 

wj(A). 

2.7. Map complexes. Let 

F+ = ( x E R E I O ~ x 2 ~ x !  ~ 1}. 

We divide the 2-simplex vF§ into 2-simplexes congruent to F+ by repeated reflections 

as shown in Figure 2.3 and call this subdivision the first canonical subdivision (vF+)o) 
of vF+. Let 2>  1. A pair (A, qgA), also denoted by A, is called a La-simplex if A is 

contained in a plane in R 3, q~A:A---~tAF+ is a 2-bilipschitz homeomorphism for some 

tA>O, and if qgAIIB is affine for all BEv-'tA((VF+)llli) 2. Recall that K ~~ denotes the ith 

barycentric subdivision o f  a complex K. The map q0A defines vertices and sides of A. 
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Let  G be a set of L~-simplexes and all their faces. G is called a map complex (with 

constant  2) if the following conditions hold (we use notation similar to the simplicial 

case whenever applicable): 

(1) G is locally finite and [G[=O{A~EG 2} is either homeomorphic to a closed 

disk or to R 2. 

(2) If  A, B E G 2, A NB is empty or a set of faces of A and B. Hence,  because of  (l), 

i fA NB contains a side, A NB consists of  (a) one side, (b) two sides, or (c) one side plus 

one vertex. 

(3) o(St(v, G)) is even for v E G O N int G. 

(4) If  A, B E G  2 and ANB*f~ ,  the map cpBocp;t~Iq~A(AnB) is x~ tax / t  ~. 

LEMMA 2.8. Let G be a map complex. Then there exists a decomposition o f  G o 

into three classes a, fl, and ~, such that every A E G 2 has one vertex in each class. Such 

a decomposition is uniquely determined i f w e f i x  the classes for the vertices of  a side. 

Proof. We call a sequence F=(A~ . . . . .  Ak) of  elements of G 2 a chain connecting A! 

and Ak ifA~flAi+~ contains at least one side for i=1 . . . . .  k - 1 .  If we in F replace a part 

(At .. . . .  Aj), l<~i<j~k, where Ai,...,A~E St(v, G) for some v E G ~ by a chain 

(Bi . . . . .  B,,,) in St(v, G) such that B~=A, Bm=Aj, we say that the new chain F' is 

obtained from F by an elementary deformation. Fix A E G 2 and let B E G 2. A chain 

connecting A and B induces naturally an equivalence relation on the vertices of A and 

B. If  an elementary deformation is performed, the relation does not change because of 

(3). The condition (1) implies that any two chains connecting A and B can be obtained 
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from one another by a sequence of elementary deformations. Hence the equivalence 

relation is well defined. This proves the lemma. 

2.9. Suppose we are given the decomposition G~ , as in Lemma 2.8 for a 

map complex G and G does not contain sides with vertices a E a and b Eft, called aft- 
sides. Then G 2 is the disjoint union of pairs {T, T'} such that Tn T' contains an aft-side 
and we say that G is given a pairing with common aft-sides. For a map complex G we 

call the elements of G 2 also 2-simplexes. If H is a subcomplex of G and K a complex 

such that [KI--IHI, we write also H=G[K (instead of G I [K]). 

We also need a slightly more general concept, namely a set G as before except that 

we require only that q~A~[B be affine for BEt A v-~[((vF+)l~ 2 for some fixed i> l .  These 

are called refined map complexes (of subdivision order i). 

3. Basic cave and map complexes 

In this section we shall lay a basis for all later constructions by defining a part of a 

union Moo of 2-complexes (see Section 4.1). As indicated in the introduction, the space 

]M| will be an approximation off-t(S2OB2). Along with the construction of M~ we 

define certain map complexes which will guide the definition of f on level surfaces 

defined in Section 4. 

3.1. First cave refinements. Recall that v=24000. Set 

Eo = (x E R21X/-~-lx21 ~< x! ~< x/-3/2) 

and let M,  be the 2-complex with space R 2 obtained by successive reflections in the 

sides of E 0. For k=0, 1 .. . .  we let Mko be the 2-complex with M 2=  {vkE0}. We let KI0 

be the subcomplex of M,  with [Kiol=[Miol and write Kko=~-lKi0,  k=2, 3 . . . . .  Then 

K~ is a (k-D-subdivision of Mko. 

We are going to define unions Mkq of 2-complexes obtained by successive cave 

refinements for l<,q<~k-I, k~2. To define M2t we take the l-subdivision K2o of M20. 

Let K~o be the complex obtained from K20 by reflecting through the line 

{X E R2]xI=V'-3"v2/2}. We form a (nonopened) cave complex K L with K=K20 U K~0 and 

M20 as the cave base. We let M21 be to(M20). Recall the inheriting operation w from 

Section 2.4. 
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We use similarity to define M3~, namely, we put M31=VME1 . Consequently, 

M3t=to(M30). It is clearly possible to choose a cave refinement of M3~ such that the 

obtained refinement w(M30 includes M21. We set M32=to(M30. 

Supposing that Mkq is obtained by some rules by cave refinements from Mko we 

shall fix the 6y-inheriting defined in Section 2.6 by letting Mko have classes (~1 and die 

and by letting the elements of 61 for M/,o lie in H+={xER3Ix3>O}. We let MkoE, 
j =  1,2, 3, be the union of E-complexes such that M ~  consists of all A in M~q having 6j 

as a class. 

3.2. First map complexes.  On each [Mk~/[ we shall define a map complex Gka/. In 

the definitions of Mkq and Gk~ we shall make use of as much similarity as possible 

when raising k by 1. 

By definition MEo I =M202=M20 . Fix ~.=20. We let GEo I =GE02 (GEo 3 is not defined) be 

a map complex with constant 2 and with a given decomposition a U fl tJ 3' of G~20~ as in 

Lemma 2.8 such that 

(i) IGEod=lMEol. 
(ii) IMP01 contains only a3'-sides of GE0 ~ and each point in M~20 is an a-vertex, 

(iii) O(GEo0=V 2. 

Map complexes with the properties we need are easily constructed by starting 

from a sufficiently regular simplicial triangulation, taking the barycentric subdivision, 

and then adjusting the number of 2-simplexes by replacing some sides by pairs A, B of 

type (b) in condition (2) in Section 2.7. 

To define GEo we shall give the 2-simplexes of M2~ weights as follows. We can 

define a map w 2 of M~ into the set of positive integers N such that for B, B' E M~ 

(a) 6 divides WE(B), 

(b) EB~M2 ' w2(B)--v 4, 

(c)  w2(B)/H2(B)~4, 
(d)  w2(B) H2(B')/(w2(B') H2(B))<~4, 
(e) WE(]MloD---v 2. 
We can construct a map complex GEij with an a, fl, 3' decomposition and with 

constant 2 on [MEuI, j =  1,2, 3, such that the following conditions hold: 

(1) G21i[Mio =v-I G2o~ , i= 1,2. 

(2) IM ulcl6 o I, M~21jc~221j. 
(3) IM tjl contains only a3'-sides of GE~ / and each point in M~Et/ is an a-vertex. 

(4) O(GEo.)=v 4 and for each A E M~t / 
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where 

~ A)= w2 ( A ) + I  E w2(B), 
B 6. QfA, j) 

Q(A, .D = {B E M~]A =l= B, w~(vA) nint w(vB) * ~}. 

Here vA and vB are elements in M~ and w and wj are the inheriting operations for 

M31--->M32 and M31j--,M32 J. 

(5) The a, fl, y decomposition is chosen so that the maps r C--~tcF+, CEG~lj, 

satisfy ~ct(O) E a, q)ct(tcel) Eft, q)cl(tc(el +e2)) E •. 

Because of (3) G21/ can be given a pairing with common a•sides and such a 

pairing is induced in each A E M~.  The set Q(A, j) appearing in (4), if nonempty,  

corresponds to the cave base vQ having vA as a cave opening simplex and not having ~j 

as a class when M32 is formed from M31 by cave refinement. Hence such Q is an 

element of an Q for M2~. Note, however, that no cave refinement is done for M2~. 

We proceed by defining G3~ / on [M3~/[, j= l, 2, 3, by similarity, i.e. G31i=vG2tr Also 

the maps q~v~, BEM~I, are induced by similarity, i.e. CpvB(X)=Vq)B(X/V ). A weight 

function w3: M~2---,N is now defined so that the following conditions are satisfied where 

B is any element in M~t: 

(a') 6 divides w3(C), CEM~2. 

(b') Eceo,<~B)2 w3(C)=v2w2(B). 

(C') w3(C)/H2(C)<~w2(B)/H2(B), C @. w(vB) 2. 

(d') w3(C) H2(C')/(w3(C ') H2(C))~<4 whenever C, C' E w(vB) 2 or C, C' E M~e, 

CnC' . (3 .  
(e') w3lM~l=w2. 

We can construct a map complex G3V. with a a, fl, ~: decomposition and with 
constant ). on IM3v'[, j= 1,2, 3, such that the conditions (2), (3), and (5) hold with Met/ 

and G2~. replaced by M32j and G3~/, and such that (I) and (4) are replaced by the 
following conditions: 

(1') G3~/IMzl/=G2t/. 
(4') Let B E M~t. Then 

o(G3~/leo(vB) n M3~.) = v2w2(B) 

and for each A E w(vB) n M~j 
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1 a(G3~IA)=w3(A)+~ ~.~ w3(C) 
C E Q ( A , j )  

where Q(A, j) is defined by means of an ~ for w(vB) similarly as explained above after 

the condition (5). 

3.3. Canonical subdivisions. Recall the first canonical subdivision (vF+)o) of 

vF+ from Section 2.7. We give (vF+)~) the decomposition aUftUy as in Figure 3.1. If 

G is any map complex Gk,v or its restriction to a map subcomplex, we form the first 
canonical subdivision Go) of G by giving each A E G 2 the subdivision induced by 

x~--,qJ~l(tax/v) from (vF+)o). Because of(4) in Section 2.7 G(i ) is a map complex and the 

decomposition a Uft U y of (vF+)~l) is induced on G~u ). 

The second canonical subdivision is formed as follows. In v(vF+)(~) we form in the 

2-simplex vF+ the first canonical subdivision (vF+)o) and continue this to all 2- 

simplexes in v(vF+)(i) in a congruent way. The obtained map complex is called the 

second canonical subdivision (v2F+)(2)ofv2F+. The decomposition aUftUy of 

(v2F+)~2) for the part (vF+)~) is as in Figure 3.1. If G is as above, the second canonical 

subdivision G(2 ) of G is induced from (v2F+)(2) via the maps x~q~Ttl(tax/v2). Similarly 

we form the kth canonical subdivision G(k) of G. 

The main idea in the construction of the map complexes Gk~ is to give a 

rearrangement process to the pairs of 2-simplexes with common aft-sides. For exam- 

ple, we should think G32slo~i(vB) for vB E M~t i as a map complex obtained by a rear- 
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rangement of the pairs with common aft-sides in (G3t/)o)[vB. This is the meaning of 

conditions (4) and (4') in Section 3.2. 

3.4. General induction step. We have o(G32d)/o(G3t/)=v2. From (8) in Section 

2.2 we obtain v2<<.o(M3~3)<<.4v2/3 and directly from the construction that 

o(M311)=e(M312)=v 2. From the construction together with (8) in Section 2.2 we get 

furthermore o(M32d)> l.55v 4, j=1 ,2 ,3 .  Hence o(M32j)/o(M31/)> l.55v 2, j= l, 2, and 

o(M323)/o(M313)>l.15v 2. These ratios are essentially larger than o(G32j)/o(G3u)=v2, 
and this means in particular that if we would copy the steps in Section 3.2 to be used as 

an induction step, the number of 2-simplexes of Gk,v in a 2-simplex of Mk,v would have 

a tendency to decrease essentially. However, we want to keep this number above a 

fixed bound. This will be arranged by leaving out sometimes cave refinements when 

Mkq is formed from Mk, q-i.  

Suppose Mkq, q<~k-1, is formed from Mk, q-i by some cave refinements. The 

notations to and wj are inheriting operations when a cave refinement is performed. 

We need also indexed inheriting operations Wk, q-I: M2,q- l~(Mkq)  and 

Wk, q_R,j:M~,q_l,j---~(Mk, q,j), j=1 ,2 ,3 ,  defined as follows. We set Wk, q_l(A)=A if 

A E M~,q_ I is not replaced by w(A) when Mkq is formed and tok, q_l(A)=w(A) otherwise, 

and similarly for Wk, q_l, j. 

With a certain integer m defined below, we shall first proceed by induction up to 

k<~m-I as follows. Mkq and G ~  are defined to be *,Mk_l, q and vGk_Lq, j by similarity 

for 1 <<.q<<.k-2, j= 1,2, 3, and Mk. k-I and Gk, k-i,j are defined exactly as M32 and G3~ in 

Section 3.2 by shifting only indexes. This includes then the definition of the weight 

functions wk. The integer m is the first k+2 such that Wk(D)<v for some DEM2k_V 

Then we set Mmq=vMm_Lq, Gm~=vGm_Lq,j for l<<.q<~m-2, j=1 ,2 ,3 .  For each 

DEM2_2,m_3 we perform in tOm, m_3(v2D)=to(v2D) a cave refinement if Wm_2(D)~v , 

otherwise not. This procedure gives Mm, m_ ~ as a union of complexes. Since 

Wm_2[M2m_3,m_4=Wm_3, the condition Wm_2(D)~u holds for all D E M2 3,m_4~M2_2, m_3. 

Hence we may do the construction of Mm,,._ I so that Mm_t,m_ECMm, m_l. 
In the definition of the weight function wm:M2m_l-*N the conditions are as 

before for a BEM21,m_2 such that to(vB)cMm, m_ i. For aBEM2_l,m_2 such that 

vBEM2m_I we only replace (b') in Section 3.2 by 

(b") Wm(vB)=V2Wm_l(B). 
We construct a map complex Gm, m_~, J with constant X on  [gm, m_l,j[ by replacing 
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(4') in Section 3.2 by the following condition (4") and changing in the other conditions of 

(1')-(5') in Section 3.2 only indexes. 
(4'3 Let first D E M2_2,m_3 be such that wm_2(D)>-v. If B E w,,,_t,m_3(vD) 2, then 

O(Gm,m_l,jlm(vB) fl gm, m_l,j) = V2Wm_l(B) 

2 and for each A E w(vB) n Mm, m -  I,j 

~ m-l,jlA)= Wm (A)+ I E win(C) 
C E Q(A,j) 

2 where Q(A,j) is defined by means of an Q for w(vB). Secondly, if D ~. Mm_2,m_ 3 is such 

that Wm_2(D)<v, then Gm,,,,_JWm, m_2Wm,,,,_3(v2D)nMm,m_l,i=G,,,,m_J~Om,m_3(v2D)n 

Mm, m_2j is the first canonical subdivision (Gm, m_2jlWm, m_3(v2D)nMm,m_2j)(I ). 
Figure 3.2 (not in scale) represents schematically the various simplexes appearing 

in (4") in the first case. 

In (4") we have in the first case Wm_2(D)~v that w(vB)cMm.m_ ! and in the second 
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c a s e  Wm_2(D)<l; that o.)('ll2D)c--Mm, ra_l . We use similarity and put Mm+l,q='l.'Mmq and 

am+ l,q,j~-'llam, q,j for l ~ q ~ m -  1, j= I, 2, 3. For  each E E M2q with w(E)cMm, m_l, w(vE) 

is replaced by a cave refinement if r. {w,,,(C)lCEto(E)2}>.v 3, otherwise not. This will 

define Mm+l, m if we also require, as we may, that Mm, m_lcMm+l,.,. Note that this 

agrees with the rule for the construction of  M.,,m_ t. 

TO construct Gm+l,mj we define win+ ~ as w., by raising the indexes by 1. In the 

definition of  Gm+l,m, J all other conditions are the same as before except for a slight 

change of (4'9 to the following form: 

(4") Let  EEM2q be such that w(E)cMm,  m_ t. If  E {wm(B)[BEw(E)2}~v 3 and if 

B E to(E) 2, then 

O( Gm+ l, m,jito(vB) fl Mm+ l, re,j) = V2Wm(B) 

and for each A E w(vB) 2 N M~m+ l,m,j 

1 
~ m,jl A)  = Wm+l(A)+ "~ ~] w,.+l(C) 

CEQ(A,j) 

where Q(A,j~ is defined by means of an f~ for w(vB). If  E {wm(B)[B ~ r 3, then 

Gin+ I, m,jI tO(rE) 17 g m + I, m,j = (Gin+ I, m-I,j[O)(rE) fl gin+ I, m,j)(I)" 

The general induction step will be the same as the step from m to m + l  just  

completed. 

4. The construction of  the map on some level surfaces 

We shall now start the definition of the m a p f t o  be constructed. The definition will be 

continued in Section 6 where we extend it to layers between the level surfaces given 

here. 

4.1. Notation. We shall extend the notions in Section 3. Therefore we write from 

now on Mkq(O) instead of  Mkq, constructed in Section 3, and similarly for other 

notions. Let  e h be the reflection in the half plane {(r,q~,x3)lqg=:r/6+(h-l):r/3, r~>0, 

x3 ER l} presented in cylinder coordinates, h=  l . . . . .  5. 

We let Mkq(h)=eh Mkq(h- 1), h=  1 . . . . .  5, and set now 

5 

h=O 
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Similar extension is performed to other notions. Next we write 

oo 

M~(h) = U Mk, k_Lj(h), j = I, 2, 3, h = 0 . . . . .  5, 
k=2 

5 

Mj=hUoM,(h), j =  1,2,3, 

M| =MIUM2=MIUM2UM3.  

Similarly we define Gj(h) and Gj. 

The set R3\IM| has eight components. For j =  1,2 the elements of the class 6j. lie 

in one component V/ and the elements of 63 in six components Va(h) with 

OV3(h)=lM3(h) I. 

4.2. A level surface. We shall here give the construction of a certain surface in V~ 

which the final m a p f t o  be constructed will take onto a sphere. The constructions in Vz 

and V3(h), h=0 ... . .  5, are similar. The surface will be the space INd of a union Ni of 

2-complexes and it is in general approximately at the distance v-VZd(A) from JMd 

near a simplex A E M 2. The conditions for N~ are the following: 

(1) There exists a simplicial homeomorphism ~: IMII~IN11 by which we mean 

that simplexes of M~ are mapped onto simplexes of NI affinely. Note that MI and NI 

are not complexes. 

(2) Let A E M~ be an/-triangle. If every B E M~ with B N A : ~  is an/-triangle, then 

t~(x)-xl<3v 1-1/2 for all x E A  and the distance of A and [Nil satisfies 

d(A, INd)>v t-~/2. Let B E M  2 be an (l+l)-triangle and ANB~:f~. Then IW(x)-xl<9d 
for x E A  NB, d(A, lpA)>v l-l/z, and d(B, ~pB)>3vk 

(3) ~/, is 20-bilipschitz. 

(4) IN, I=Vm. 
It follows from the construction rules that such Ni and ~/, exist. NI is obtained by 

simple moving of the vertices of MI. 

4.3. The map on level surfaces. We shall now first define the m a p f o n  INd. Let 

DEN~. The map ~p induces in a natural way a pair 6j, 6j of classes forD. A normal of D 

pointing towards the elements of 6j is called an outward normal of D (with respect to 

~0. A simple closed path 3/in D is positively oriented (with respect to 60 if there is a 

sense preserving similarity map h of R 3 which takes the outward normal of D to e3, 

h D c R  2, and h o 3' is positively oriented in R 2. We fix a 20-bilipschitz homeomorphism 

of F§ onto S 2 = {x E S2lx3~>0} such that r induces from the positively oriented boundary 
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[~'+l positive orientation on its image S I t - R  2. On INd we have the map complex 

Hl=~pGl. The vertex assignment of  G1 is transferred to Ht by ~p. We call CEH] 

positively (negatively) oriented (with respect to 60  if along a positively oriented ItS[ the 

vertex classes follow in the order ct, y, fl (a, fl, ~). Let r: Ra---~R 3 be the reflection in R 2. 

We define a map go of [Nt] such that for CEH~, B=lp-IC, 

golC -- r olq~n o w-IIC 
tB 

golC = ~o r o ~  cpnow-~lC 

if C is positively oriented, 

if C is negatively oriented. 

For real numbers/~ we write 

Then we set 

s~ = e -1 e x p V  '+l .  

f l  [N~[ = (So, go) 

where (So, go) is presented in spherical coordinates (t, y), t>~0, y E S 2. 

By the construction of MI and NI, the surfaces v2i[N d, i=0, l, 2 .. . . .  are disjoint. 

We shall next define f on v2i[Nl[, i= 1,2 . . . . .  For this we use similarity as follows. We 

take the 2ith canonical subdivis ion  (v2iGi)(2 0 of v2iG I . In this subdivision each 

VZiA G v2iG~ is divided into v 4i 2-simplexes. Let A E G~ and let ~A(X)=~2itAI~)A(~r)-I(x/~2i)) 
for xEv2i~A. Let C =  ~ F + .  We define the restriction on C of a map g2i by 

g2ilC--- ~o~A[C if C is positively oriented, 

g2ilC = Xo~o~A[C if C is negatively oriented. 

Repeated reflections in the sides 

BE 2i 2 (V ~/)(20' we set 

g2~lB = ~ o w o ~AIB 

g~lB--- xor owo~AIB 

of (v2iF+)(20 gives a map w: v2iF+---~F+. If 

if B is positively oriented, 

if B is negatively oriented. 

In other words, g2i[C is extended to v2qpA by these natural reflections. We can glue all 

such maps together to get a map 

g2i: v2ilNd ~ S2. (4.4) 
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Then we set 

flv2ilNd = ($21, g2i), 

The map g2i factorizes now as 

i = O, l,  . . . .  (4.5) 

g2i "~ U2i 0 g2i (4.6)  

where ~2~ is defined by similarity from go, i.e. 

g2z(X)----'gO(X/V2~, i = 1 , 2  . . . . .  (4.7) 

and u2i'. S2-"~S 2 is a discrete open map of  degree v 4;. We call this factorization the 

canonicalfactorization of  g2i. The map v2,- depends only on r and i. 

We extend the definition of  g2i and ~2i to the surfaces INzl and IN3Ch)[, h=0 . . . . .  5, 

corresponding to INd by the same rules as above when 61 is changed to 62 and 63. To 

define f on these surfaces we need homeomorphisms u2:(]l---,(-12\{u2}, 
u3: 01--->03\{u3} where Uj, U2, and U3 are the components of R 3 \  

(S2UB2U{u2,u3}) such that u /E~ . ,  j = 2 , 3 ,  and u2=-e3/2, u3=e3/2. Let  w2 be the 

M6bius transformation of  !~ 3 which keeps S ~ fixed and takes $2+ onto B 2. We define u2 

and u3 such that u2lUl: Ur--,U2 and u3lUl: Ur--,U3 are quasiconformal and on the 
boundary 2 2 x2lS + =~lS+, ~2[S 2_ = w 2 o ~r 2 _ 2 x3lS +-w2lS +, u3[S2 =ulS 2. Then set 

flv2'lN2[ = x2~ g2i), i = 0, 1 . . . . .  (4.8) 

f[v2i[N3(h)l =x3o(s2i, g2i), i=O, 1 ..... h =0 ,  . . . ,5.  (4.9) 

5. Deformation of 2-dimensional maps 

In this section we shall present a method of deforming discrete open maps of plane 

domains into S 2. Our maps to be deformed are given by means of map complexes in the 

same way as the maps in Section 4.3. In fact, the deformations are used in Sections 6 

and 7 to de f ine fbe tween  the level surfaces given in Section 4. The extensive studies of  

deformations by M. Morse and M. Heins for example in [6] have not turned out to be 

useful here. In our method it is important to have the map at hand at every stage of  the 

deformation. 

5.1. Elementary deformations. Let  G be a finite map complex with some constant 

2>1 such that [G[r-R 2. Recall that by definition IGI is then homeomorphic to a closed 

disk. We assume that G o is given a decomposition a Ufl U 3' and that d; does not contain 
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any aft-sides. Hence we can give G a pairing with common aft-sides. We fix -e3 to be 

the outward normal for IG[. This defines then positively oriented 2-simplexes of G. Let 

~: F+-~S 2 be as in Section 4.3. We define g: IGI---~S 2 (cf. the definition of go in Section 

4.3) by 

gIC = ~ o l q ~ c  if CE G 2 is positively oriented, 
tc 

glC = ~c o r o l q ~ c  
tc 

if C E G 2 is negatively oriented, 

and say that g is represented by the map complex G. Its restriction to int G is a discrete 

open mapping into S 2. We shall in the following perform deformations of g by one 

parameter families of maps gt so that gt depends piecewise smoothly on t and each 

gtl int G is discrete open. In each complete deformation the final map is induced by 

some refined map complex (see Section 2.9) in the same way as g. 

We shall first define a deformation called exchange of  sides. We start with a 

topological description. Let r and s be two ay-sides of G with a common a-vertex ao 

and different y-vertices c~ and c2. In Figure 5.1 we have St(ao, G) of an example of this. 

In what follows we shall in general use the letters a, b, c for points in the classes a, fl, 7 

respectively, possibly with subscripts. Image points will be indicated by primes. We 

assume that St(r, G)USt(s, G) does not meet It~l. According to our convention, the 

simplex A is positively oriented and g maps it onto the upper hemisphere S 2. Let X and 

Z be the two middle sides between r and s with vertex ao (see Figure 5.1). We define a 

family gt, / E [ 0 ,  1], of maps as follows. During 0~<t~<l/2 we move g in St(ao, G) by a C ~ 
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Fig. 5.2. 

move so that the point ao becomes a branch point with local index 2 (Figure 5.2). The 

sides in Figure 5.2 form the preimage of S I under gl/2. The points el and e 2 are 

mapped onto a point e' between a' and b'. If there are three or more sides emanating 

from ao on the same "s ide"  of rOs  as X (as in Figure 5.2), then el becomes a branch 

point and this branch point moves from a0 to el along X during 0~<t~<l/2 and the image 

of this branch point moves from a' to e' along S l, and similarly for e2. If the local index 

o f g  is already 2 at ao, g t = g  for rE[0, 1/2]. During l/2~<t~<l we move cl and c2 to ao 

and at the same time we move the image of ao to c' and the image of el and e2 from e' 

to a' .  We rename points for obvious reasons: ao will be Co and el and e2 will be al and 

a2 (Figure 5.3). We get topologically a new set Gi of 2-simplexes and their faces. We 

see that GI is obtained from G by replacing the pair r, s of sides by the sides 

c o a l ,  coa2 .  

bl 

C3 

Fig. 5.3. 
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We can do the reformation gt, t E [0, 1], in addition so that the following metrical 

conditions are fullfilled: 

(1) The map g~: [0, 1]--->S 2, gX(t)=gt(x), is L-Lipschitz for all xE [GI, L depending 

only on 2. 

(2) for x E C E G 2 and t E [0, l] 

<~ l(x, g,) <. L(x, g,) <. Q(2) 
t c Q(2) t c 

where the constant Q(2)>0 depends only on 2 and where 

Igt(x + h)-gt(x)l 
l(x, g,) = lim inf 

h--,0 Ihl 

[g,(x+h)-gt(x)[ 
L(x, gt) = lim sup 

h--,0 [hi 

(3) The sides of GI are contained in IH~[ where H is the ith barycentric subdivision 

(r~(,~ of the first canonical subdivision (G)o) of G where i depends only on 2. "-" J(I) 

Barycentric subdivisions are defined by means of the maps tpA, A E G 2. 

(4) GI can be made to be a refined map complex of subdivision order i and 

constant A1, depending only on 2, and gl is represented by GI. 

To achieve these conditions only elementary methods are needed and the details 

are omitted. This completes the definition of exchange of sides of the pair r, s. 

Next we shall define a deformation called moving of a simple cover. A simple 

cover at X in the map complex G is the restriction of g to A U B where A, B is a pair with 
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X=A nB being two sides, i.e. we have case (2) (b) in Section 2.7. Let A, B be such a pair 

so that St(A, GO U St(B, GO does not meet IG[ and let Y be an aT-side or a fly-side of 

G\(S t (A ,  GO O St(B, GO U G). Set D=A U B. We shall define a family g,, t E [0, 1 ], of maps 

so that gl is represented by a refined map complex G~ obtained from G by "collaps- 

ing" the pair A, B to one side X and "expanding" the side Y to a pair AI, BI of type (2) 

(b) in Section 2.7 with Y=AINB1. The simple cover glD has the properties that 

g[(D\aD) covers once S2~gaD, gaD is an arc in S 1, and the endpoints of X are branch 

points ofg.  During 0<~t~<l we move the simple cover glD to a simple cover g~lD~ where 

D~=AI OBj. This means that we at the same time move the arcgaD. For 0~<t~<l let the 

moving simple cover be gt[Dt and Dt=AtUBt (Figure 5.4). Let G be the set of 

2-simplexes and their faces obtained from G by collapsing the pair A, B to one side X. If 

E is the union of elements in ~2 which meet Dt for some t E ]0, 1[, gt will coincide with 

g outside intE for t E [0, 1]. The map gt[(Dt\aDt) covers once S2~gtaOt for t E [0, 1], 

and gl aD~ is gY~-S ~. The set E is called the joining set for the move. 

The metrical conditions (1)--(4) are the same except that in (1) we replace L by mL 

where m is the number of 2-simplexes in the set E above. The obtained family gt, 

tE [0, 1], is called a move o f  a simple cover at the arc X to the side Y, or also a move o f  

the pair A, B to Y. 

Let now A, B be a pair in G of type (2) (a) in Section 2.7, i.e. X=A nB is one side. 

Then one endpoint ao of X is an a-point. Let the ),-points of A and B be c~ and c2 and 

let r and s be the sides aoct and aoc2 of A and B respectively. Let us assume that 

St(r, GO O St(s, G) does not meet [(~[. We perform a deformation gt, t E [0, 1], of ex- 

change of sides to the pair r, s. Then the pair A,B  is deformed to a pair A~,B~ of type 

(b) in the new refined map complex Gi with X=AnB=A~nBI  and gI~41UBi is a 

simple cover. If we move this simple cover to a side Y of G as above by a deformation 

gt, tE[1,2], we also here say that we move the pair A , B  to the side Y by the 

deformation gt, t E [0, 2]. The various deformations presented above are called elemen- 

tary. We can apply these deformations also to a refined map complex instead of G. 

As a main result of this section we shall prove a deformation lemma suitable for 

our purposes. I want to point out, however, that the method presented here is quite 

general and could be used to produce many other results as well. In the proof of the 

deformation lemma we need the following result for PL homeomorphisms. The idea of 

the proof of Lemma 5.2 was given to me by Pekka Tukia. 

LEMMA 5.2. Let Q> I, t a positive integer, A an equilateral triangle in R 2 with side 

length 1 and origin as center, let K and M be 2-complexes with space IKI=JMJ=A such 



220 s. RICKMAN 

that t2=o(K2)-~o(M2) and each A E K 2 U M  2 can be mapped affinely onto t - lA with 

bilipschitz constant Q. Let KIA=MIA and let h: A--->A be a simplicial homeomorphism 

with respect to K and M such that h i IA[ is the identity. Then there is a PL isotopy ht, 

t E [0, 1], o f P L  homeomorphisms ht: A---~A such that 

(1) ho is the identity, hi=h, 

(2) ht is Lo-bilipschitz, Lo depending only on t and Q, 

(3) the map hX: [0, 1]--~A, hX(t)=ht(x), is Lo-Lipschitz for all x E A, 

(4) h, IIAI is the identity. 

Proof. Let W be the family of all maps h as in the lemma for constants Q and t. Let 

W be the family of all triples (h, K, M) as in the lemma. To simplify notation, we write h 

for such a triple. There is a finite subset W' of W depending on t and Q with the 

following property: If h 6 W, there exists u E W' and an isotopy ut, t E [1/2, 1], between 

u~/2=u and u~=h which is obtained by moving vertices along line segments and such 

that the bilipschitz constant of ut is bounded by L, depending only on Q, and 

uX:[I/2, I]--*A, UX(t)=ut(x), is 2-Lipschitz. Let W ' = { h  I . . . .  ,fin}. For each h i we can 

(see [I, Lemma IV.24]) choose a PL isotopy h~: A--~A, tE [0, 1/2], such that 

(a) hg is the identity, hi,/2=h i, 

(b) hilA is the identity for all tE [0, 1/2]. 

The bilipschitz constant L~ of h~ depends continuously on t, hence 

L~=max {L~ll<<.i<<.m , 0-..<t-.<l/2}<oo. If hU(t)=hi(x) and Lix is the Lipschitz constant of 

h t', also L2=max {Uxll<~i<~m, xE A}<oo. For u=h i we define the isotopy hi, tE [0, 1], 

by 

ht=h  ~, 0~<t~<I/2, 

ht=ut,  1/2<~t~< 1. 

We can make LI and L2 depend only on t and Q. This proves the lemma. 

DEFORMATION LEMMA 5.3. Let A be the 2-simplex as in Lemma 5.2 and let G 

and G' be map complexes with constant 2 such that the following conditions hold: 

(1) 2A,--IGI=IG'IcR 
(2) G o and G '~ are given decompositions into classes a, f ,  y and pairings with 

common aft-sides. 

(3) IAI=IGII, and G and G' coincide together with the a, fl, ~ decompositions and 
maps q~A in [GI\A.  
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(4) IAI contains only ay-sides o f  G, and hence of  G'. 

(5) o(GIA)=o(G'IA)=r and 0<dq~<d(A)~<62 < 1/50 for  all A E G 2 tJ G '2. 

Let g: IG[---,S 2 and g': IG'I---,S 2 be the maps as in Section 5.1 with respect to G and 

G' respectively. Then g=go can be deformed as a family gt, tE [0,/z], to the map gu=g' 

such that the following conditions hold: 

(i) Each gt is a mapping o f  IGI onto S 2 such that it is discrete open in int G, 

gt(IGI\2A)=gI(IG[\2A) and the inequalities 

0 < Cl(/~, r, ~1, ~2) ~ l(x, gt) ~ L(x, gt) <- C2(2, r, 61, (~2) 

hold for  all xE IGI. 
(ii) /z~<Pr where P is an absolute constant. 

(iii) Let gX(t)=gt(x). Then for  all xE Ial, g~: [0,/~]---,S 2 is an L-Lipschitz map with 

L <~C(2, r, 62,62). 

Proof. The strategy is to deform both g and g' so that glA and g'lA are replaced by 

a bunch of simple covers. 

We start by deforming g. Because of (4), GIA has a pairing with common aft-sides. 

First we show that there exists at least one pair of type (2) (a) or (2) (b) in Section 2.7 in 

G[A. Suppose all pairs in G[A are of type (c). Let A~,BI be a pair in GIA. Then 

R2\ in t (Ai  UB0 has a bounded component CICA. Also CI contains a pair A2,B2 and 

R2\int(A2UB2) a bounded component C2cCl, C2*CI. By repeating this we end up 

with a contradiction because G[A is finite. 

By (5) we can fix a side Y! of G in (3/2) A\ (4 /3)  A which is an ay-side or an fly- 

side. We can take a pair AI,BI  of type (a) or (b) in G[A and move it to the side ]Ii. 

During this elementary deformation g is fixed outside the set ISt(A~, 631U ISt(BI, 631 u E 

where E is the joining set. By (5) it is possible to do this deformation so that gI(IGI\2A) 
remains fixed. Let the obtained refined map complex be G~ and let g~ be the map 

represented by G~. When the pair A~,Bz is collapsed, the part GIA has changed to 

GIIV~ where int V~ may have several components. Let U be a component of int V~. 

Since OV~ is connected, U is homeomorphic to a disc. Also OU contains only ay-sides 

and we can repeat the above by replacing A by 0 and G by G~. The simple cover 

glAl UB~ was moved to a simple cover gdD~ at Y~. Let Y2 be a side in GdOD ~. There 

is a pair A2,B2 of type (a) or (b) in GdO. We move the pair A2,B2 to the side Y2. We 

can repeat until all pairs originating from GIA have been moved similarly. We end up 

with a refined map complex Gi and a map gi: IGI---,S 2 represented by Gi where the 

original GIA has been transformed to a l-subcomplex A which is a tree plus a bunch 
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Fig. 5.5. 
D 

gild of simple covers, see Figure 5.5. The deformation from g to gi induces a bijective 

map ~p: [AI--,A onto the set A of boundary elements of RE~[A[. If :t: A-->]A I is the 

natural projection, we have 

g[]/~l = g i~176  

Note that A consists of ay-sides only. Similarly we deform g' to a map gj and get a 

refined map complex Gj, a 1-subcomplex A', maps ~p': IAI--,A' and :t': A'--,IA'l, and a 

bunch gjlD' of simple covers. We do the construction so that D=D' and gi[D=gjlD. 

This is possible because of (3) and (5). 

Next we fix a y-vertex c E G~ [A[=G'~ IAI. It corresponds to vertices c0E A and 

c~EA' by the maps :romp and :r' o~p'. We shall continue deformations so that A and A' 

become simple arcs where the points corresponding Co and c~ are endpoints. First we 

define a deformation called moving of an endside. Let r be a side of A which is an end 

of A, i.e. the other endpoint of r, say cl, is a vertex of one side of A only. Let us 

assume that c~ is a y-vertex. Let s * r  be a side of A so that r and s are induced from 

neighboring sides in GIIAI by the map : ro~.  We deform gi by moving two pairs from D 

to the sides r and s (Figure 5.6). Then the arcs r and s are divided by fl-points bl and b2. 
Let rl and Sl be the new sides in the arcs r and s with the common vertex ao. Next we 

perform the exchange of sides first to the pair r~, s~ and obtain Figure 5.7 and then to 

\ 

~ r 

Fig. 5.6. 

ill  

Fig. 5.7. 
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Fig. 5.8. 
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C2 

Fig. 5.9. 

the sides bocl and boc2 in Figure 5.7 and obtain Figure 5.8. There we see two simple 

covers which we finally move back to D to the original places. As a result, r is moved a 

distance of one side along ~,, A is changed to a 1-subcomplex A~ of a new refined map 

complex, and the new side r* is again an end of A1 (Figure 5.9). We call this 

deformation the mooing o f  the endside r to c2. 

By using repeatedly the deformation of moving an endside we may now deform gi 

as follows. Take a subcomplex A~ of A such that IA~ I is a maximal simple arc having Co 

as one endpoint. Let d be the other endpoint of A~. Since AI is maximal, only one side 

of A contains d. We may assume A~:#A. There exists an endside r not belonging to A~. 

We move r by repeatedly using the moving of an endside to d, call the new side r~, and 

add r~ to A~ to form a new subcomplex A 2 of a 1-complex which replaces A. Repeating 

this we obtain a deformed gk of gi such that A is deformed to a 1-subcomplex Ao of the 

refined map complex Gk corresponding to gk such that IAol is a simple arc with Co as 

one endpoint. Similarly we deform gj to a map g~ such that A' is deformed to a 

1-subcomplex A~ of a map complex G~ such that IA~I is a simple arc with c~ as one 

endpoint. The maps gk and g~ are topologically equivalent. 

We still have to deform gk to g~. For this we will apply Lemma 5.2. It follows from 

(5) and the metrical conditions for the elementary deformations that the deformations 

gt, t E [0, k], and g~, t E [0,/], satisfy conditions of the form (i), (ii), and (iii). The refined 

map complexes Gk and G~ are of some subdivision orders m and n respectively, have a 

constant 2o, and m, n, and ;to depend only on ;t, r, 61, and 62. Let q=max (m, n). Set 

K=(G~I))(q)I2A, M=(G'lo))tq)12A, and let h:2A--~,2A be the simplicial homeomor- 

phism with respect to K and M defined by g~ o ht2A=gkl2A. Then, ff A is replaced by 

2A in Lemma 5.2, h satisfies the conditions of Lemma 5.2 with constants t and Q 

depending only on ;t, 3, 6b and 62. The isotopy ht given by Lemma 5.2 defines a 

deformation g,, t E [k, k+ 1], by g,12A =gk o ht. lk  , gtl(IGl\2A)=g. By taking the deforma- 
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tion gt, t E [0, k+ 1], and after this the deformation g[, t E [0,/], backwards we get the 

required deformation. The lemma is proved. 

5.4. Remark. It follows from the proof of Lemma 5.3 that the deformation lemma 

is valid also for refined map complexes G and G' in a form where the constants in the 

statements (i)--(iii) depend also on the subdivision orders of G and G'. 

6. The construction of  the map between level surfaces 

In this section we shall extend the definition of f to the layers between the level 

surfaces defined in Section 4. An essential role is played by the deformation lemma 

from Section 5. These extensions must still be glued together near IM~I, which will be 

accomplished in the next section. 

6.1. Straightening of layers. We shall first define bilipschitz maps which straighten 

pieces between level surfaces. Let us consider the layer A between INtl and Iv2Nd 

which is the closure of the domain bounded by IN11 u IvZNd. 
As a preliminary step we shall remove the caves of "finest order" in INII. Let C, D 

be a pair of cave opening simplexes with 61 as one class such that tot(C), tot(D)cMt 
and C, DEtoI(C')Utot(D') for some C',D'Ev2Mt. Let Pc be the 2-complex 

~(tot(c)l(ltot(c)l\intto(c))) and eo=~(tot(D)l(ltodD)l\intto(D))). Then P=PcUPo 
forms the "walls" of the cave in INd corresponding to the pair C, D. The 1-complex/~ 

has four vertices a, b, c, d so that c E Pc\PD, d E PD\Pc, a, b E Pc N Po. Let E be 

the third 2-simplex in Mkq which has a common side with C and D if C, D E Mkq. 
Let T be the plane containing E and let e E T \ E  be a point such that the 2-simplex 

( ~-t(a), ~o-l(b), e ) c T  is an equilateral triangle. Then the 3-simplexes X=(a, b, c, e) 
and Y= (a, b, d, e) are in A. The polyhedron R bounded by Iel U (a, b, c) O (a, b, d) is 

the "cave part" and will be pushed into XU Y as follows. Set R*=RUXU Y. 
We need some elementary maps. Let L be the 1-complex which defines the cave in 

toi(C)Utot(D) and let K be the union of complexes such that Kt. is the corresponding 

cave complex. Let v be an end vertex of L which is not the last vertex of L, and let s be 

the side in L which has v as a vertex. Set L '=L\{s ,  v}. We shall here push R by a PL 
homeomorphism into a polyhedron R' corresponding to L'.  Let w be the other endpoint 

of s. Let us assume that the 0r-distance of v to L~ w} is at least 2. Let r be the 

side in St(v, K) opposite s, let V and V' (W and W') be the 2-simplexes in St(v, K) with r 

(s) as a side, and let (Z, Z'}=St(v, K)2\{V,  V', W, W'}. We assume that int (VU WUZ) 

lies in one component of tSt(v, lOl\(rOs). When K is formed, each U of these 
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2-simplexes is replaced by two 2-simplexes U_ and U+. We may assume that each U+ 

is in wl(C). 

We first push the part Ro of R spanned by lo=~p(V_ O V+ tJ V" tJ V'+) into the part 

R~ of R defined correspondingly by Z, Z', W, and W' by a PL homeomorphism 

ho:R*-->R*\R o which is simplicial on the boundary. More precisely, let 

{o_}=~p(V_nW_), {v+}=~p(V+n W+), let Vo be the barycenter of (v_, v+), and let 

P0 be the subcomplex of P with IPo]=Io. The map h0 will take Io simplicially with 

respect to Po onto Iv0/~o] and it is the identity on (aR*\lo)tJ (R* \ (Ro  0 RO). We can in 

addition choose h0 to be locally 0o-bilipschitz with 0o an absolute constant. 

Next we push the part R2 of hoR* spanned by ~p(Z_ t.IZ+) into the part R3 

spanned by ~p(W tJW+) similarly by a PL homeomorphism hl:R*\Ro---> 

R*\ (RotJR 2) such that h I takes ll=hoOP(V tJV+))u~p(Z UZ+) simplicially onto 

[UI/~11 where v I is the barycenter of the triangle R 2 fiR 3. Here ho(~O(V_ 0 V+)) is given 

the subdivision induced by ho from Po, and PI is defined as a complex with IPd=I~ 
similarly as earlier. Let us define corresponding sets with primes. Then we push 

R~ into R~ similarly by a PL homeomorphism h~: R* \ ( R  0 U R 2) ---, R* \ (R 0 tJ R 2 tJ R~) . 

Let {z} =~0(W_ n W+), {z'}=~p(W '_ n W+). One endpoint of ~p(W+ n W~_) is v+. Let 

the other be w+ and define w_ similarly. Let Wo be the barycenter of (w_, w+).  Let 

R4 and R5 be the polyhedra spanned by {z, z', Vo, v+, w+} and {z, z', Vo, w+, Wo} 

respectively. We push R 4 into R 5 similarly as above by a PL homeomorphism h~: 

h' I h I hoR*---,h ~ h' l h I hoR* so that h~ (v +) is the barycenter of (v o, w+). Similarly we 

-. + , h IhoR*---,h 2 + , define a map h 2.h 2 h I h 2 h th t hoR*. Set h=h; h~ h Ih Ih o. The map h is 

now the required PL homeomorphism which pushes R into R'.  If the 0-distance of v to 

L ~  w} is 1, the map h is defined with obvious modifications. The complex L' is 

again a tree. 

We can apply maps like h repeatedly to get a PL homeomorphism r Y 

which has the following properties: 

(1) 91(OR*\IPI) is the identity and q~ is simplicial on P. 

(2) q0 is locally exp (01 v3)-bilipschitz where 01 is an absolute constant. 

We assume now that all caves of the described type have been pushed in. We 

extend the obtained maps q0 to the rest of A by identity and call the extended map q00. 

The set r is again a union of complexes. 

Next we define the union M~ of complexes which we obtain from v2Mi by 

applying the operation to1 once. More precisely, M~=O{tol(A)~4Ev2M2}. Then 

[milfllv2Nl[=~. Let A' be the layer bounded by [MI[OIV2Nll . At this point it is 
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elementary to perform a PL homeomorphism 9~: q~oA--)A' with the following proper- 

ties: 

(a) qh is 10-bilipschitz. 

(b) q~l] [V2Nl[ is the identity. 

(c) qh maps foolN~l onto IMil simplicially in the sense that ~1 is affine in each 

simplex of (poN1. 

(d) Let AE),2M~ and BEah(A) 2. If BEM2,k_2.~, q~q~o~ltok, k_2,~(B)I=B. If 

B E M2,k_I,I, CPl q~o ~B=B. 
We proceed now somewhat similary with A' as we did with A. First we push in all 

caves of finest order in M~ by the same method as before and obtain a PL homeomor- 

phism q~ of A' which is locally exp(01v3)-bilipschitz, the identity on [yEN1], and 

simplicial on M~. After this we perform a PL homeomorphism tp~ of ~ A '  onto the 

layer A" bounded by [r2MI[ U [v2Nl[ such that (c) and (d) are replaced by the following 

conditions: 

(c') ~ maps tp~]M~[ onto [v2gl[ simplicially. 

(d') For each A E v2Ml, q~ tp~[wl(A)] =A. 
Finally we shall map pieces of A" onto products as follows. First we construct a 

family of PL homeomorphisms Y:A, A E v2M~, with the following properties: 

(i) I fA is an/-triangle, ~PA is a map of A*• v t] into A", where A*=uAcR 2 and u 

is a motion in R 3. Moreover, Y:A is u -I on A* and maps A*x{v l} affinely onto 

v2~(v-2A). We set here IA=[O, vl], L~=V I. 
(ii) The sets XA=Im~A form a decomposition of A" such that for A*BEv2M~, 

XA nXz) is either empty or ~pA(rXIA)=~B(sXIa) where r and s are sides of A* and B* 

respectively. Let in the latter case r=~a,b), s=(c,d) ,  and ~pA(a)=~pB(C). If 3EIA, 
3'=3~3/3A, x=l~a+(1-/z)b, x'=l~c+(1-1z)d, and 0~<p~<l, then ~pA(x, 3)=~B(x', 3'). 

(iii) Every ~A is 40-bilipschitz. 

The construction of the maps ~A is elementary. For each A E v2M~ we write 

WA=]St(A, v2Mi)] where St(A, v2Mi) is the union of subcomplexes of v2Mi whose 

2-simplexes meet A. By the construction of M~ we can extend ~pA[A*x{0} to a PL 
homeomorphism ~jO:VA'-'~WA, where VA,--R2x{O}=R 2, such that (~o)-i  is affine 

in each simplex in St(A, v2M1) and such that Tp ~ is 0'-bilipschitz where 0' is an 

absolute constant. We let r/A: VAXIA---)A" be the extension of ~PA defined by 

rlAfX, 0 = ~Psf~P~t~O(x),3B3/3A) if xE(~PO) -'B, BESt(A, v2M,) 2, 3El  A. 

The map ~/A is a PL homcomorphism onto ~IA(VA• and it is 0"-bilipschitz where 0" 
is an absolute constant. 
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6.2. The extension of  the map to layers between level surfaces. We continue to 

consider the layer A between INd and Iv2Nd. The map ~=q0~ q0~tpl tp0: A---,A" induces 

the map complex ~H1 on ~lNd=lv2Mll . On Iv2Nd ~ is the identity and there we have 

the map complex v2Hl. Recall the maps g~i, i=0, 1 .... from (4.4). Our task is to deform 

o~)=goo~-l]lv2Md: Iv2Md--*S 2 to el=g2: Iv2Nd~S 2 when we move from Iv2MiI to 

Iv2Nd. These maps are represented by F~=~HI and the second canonical subdivision 
F~ =(v2H0~z~ of v2H! respectively. 

To apply the Deformation lemma 5.3 we perform a preliminary deformation which 

adjusts the map complexes so that they correspond on the sides of v2Ml and v2N~. 
According to the construction F~ and F~ contain only a~,-sides on the sides of  v2M~ and 

v2Ni respectively and the vertices are a-vertices. For 0~<t~<l we let St be the surface 

{V/A(X, r)lx EA*, r=trA, A E v2M 2} and call St the t-level. 

Let A E v2M~ be an/-triangle such that all B E v2M~ with a common side with A are 

/-triangles or (l+ 1)-triangles. Let r be a side of A*. Suppose there are p pairs of sides 

less in F~irlAr than in F~lr/A(rx {rA)). We apply repeatedly the elementary deformation 

of  exchange of sides (see Section 5.1) to pairs of sides in F~lrla(rX{rA) ). More 

precisely, let :r: Rs---,R 2 be the orthogonal projection, or: VA--'VAx {trA} the map with 

:root the identity, 0~<t~<l, let Fi be the map complex :rr/~tlF~, and Qi: VA ~$2 the map 

Q~o ~?A ~ which is represented by Fi, i=0, 1. We perform a deformation Or, t E [3/4, I] 

of 01 starting from t= 1 which consists o f p  repeated exchanges of sides, where in each 

a pair of side in r is removed, and in addition such a PL homeomorphism which moves 

the vertices of the obtained refined map complex along r so that we end up with a 

refined map complex F3/4 which coincides with Fo on r. Such a PL homeomorphism 

clearly exists. I f p  is negative, we perform a similar deformation during tE [0, I/4] and 

change the role of Oo and 01. The part of exchanges of sides can clearly be done for 

each side of v2Ml corresponding to a side like r simultaneously during t E [0, 1/4] and 

tel3/4,  1]. On the level surface St we obtain for these t a map 0~: St --~$2 defined by 

e~lY~t=ot ortorl~'lY~ where Y~----r/A(VAXIA)NSt. 
According to the construction of M! there is a decomposition ~t I t.l ... U ~t i of v2M 2 

into disjoint subsets ~tj. with the property that intSt(A, v2MO fl intSt(B, v2M0=O for 

all A, BEs~tj with Aa~B, and i depends only on v. We divide [1/4,3/4] into intervals 

/j= [tj_ 1, tj] j = 2  . . . . .  i+ 1, of equal length corresponding to the sets .~t i. 

Let A E ~tl and let the notation be as above. By performing a preliminary homeo- 

morphism of VA, which is simplicial with respect to rlTtl(v2MitWA), if necessary, we 

may assume that A* is the A as in the Deformation lemma 5.3 and 2A=Va. We now 

want to apply Lemma 5.3 together with Remark 5.4 to the map g-'-Qtt--Ql/4 and to 



228 s. RICKMAN 

g': VA--~S 2 defined by 

g'lA* = Q3/4l A*, 

g ' I (VA  ~ A  * ) = Ot,I(VA \ A  *). 

All other assumptions in Lemma 5.3 are satisfied except possibly d2<1/50 in (5), but 

this we achieve by choosing the various preliminary maps properly. We obtain a 

deformation Qt, tE[tl ,  t2], with Ot2=g '. On the t-levels we have then the maps 

0~: Y~ -~$2, O~=Qt~ ~ ~/AI[Y~, tE [t 1, t2]. By the definition of the sets 4 we can do such 

a deformation for all A E M1 simultaneously and we obtain maps 0~: St --*$2, t E [tl, t2], 

if we in addition put Q~IX s [') St  = ~t I o .7[ o ~r [') St  for B E vEM~ with 

intB n U{WAIA E Mi}=(~. By continuing similarly for the subsets Me, ..., M i we get all 

together a family Q~: St---~S 2, tE [0, 1], of maps which deforms 06 to s 

We are now in a position to define f i n  the layer A between [Nil and [v2Nl[. Recall 

the formula (4.5) for the definition of f on original level sets: 

f[v2i[N,[ = (s2i, g2i), i = O, 1 . . . . .  

Here s/,=e - i  expv ~'+1 for al l /zER I. The definition in A=Ao is given by (the map ~ is 

given in the beginning of Section 6.2) 

f[(~-ISt) = (SEt, g2,), t e  [0, 1], 

where g2t=O~o~[(~-Ist). Write X2t=~-Ist, tE [0, I]. 

To define f i n  any other layer Ai between [v2iNd and Iv2i+2Nd, i= 1,2 .. . . .  we use 

similarity as follows. In the deformation we replace go and g2 by the maps ~2i and 

v2o~2i+2 where we recall the formulae (4.6) and (4.7): g2i=v2io~2i,~2a(x)=go(x/v2i). 
From the deformation we obtain maps ~2t: Y-2t-*S 2, t E [i, i+1], where Z2t is again a 

level surface be tween  [v2iNl[ and [v2i+2Nl[, and gei=g2i, gei+e=oeOgei+2 . Set 

g2t=O2iOg2t" )~2t---~S 2, tE[i , i+l] .  Observe that 02iOOE=O2i+2, so that this agrees 

with the earlier definitions of g2i and g2i+2. In A; we define f then by 

We have now defined f in 

f[~,2t = (S2t, g2t), t E [i, i+ 1]. (6.3) 

oo 

W~ = O A;. (6.4) 
i=0 
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The construction has been carried out so that flint W] is Koquasiregular, K depending 

only on 2 and v. 

The set W] is contained in V1 (see Section 4.2). The construction of f in a 

corresponding subset W~ of V2 and in a subset W~(h) of Vs(h), h=0 . . . . .  5, is similar. 

We use formulae corresponding to (4.8) and (4.9). 

7. Final glueing 

In this section we shall complete the construction for the case p=2 by performing a 

glueing near the set [M| I of the maps flWi, flW~, flWJ(h), h=0 . . . . .  5, constructed in 

Section 6. The constructions resemble the cave construction, but we work this time 

directly with map complexes rather than complexes. 

7.1. New map complexes. On [M~[ we have the map complex G1. Transferring it 

to IN1[ by the map ~p: [MII---~[NII we obtained the map complex H ! . Corresponding to 

M2 and M3(h), h=0 . . . . .  5, we have map complexes G2, G3(h), HE, H3(h), h=O ..... 5. 
To simplify notation in the conditions 0)-(4) below we write for a moment 

M3(h)=M~;+h, h=0 . . . . .  5, Mj=M*, j =  1,2. We define new map complexes ~ with 

constant 2=20 on Mf, j =  I . . . . .  8, which satisfy the following conditions: 

(1) ~ /and ~. coincide together with the maps q0A on common parts of [Mi*[ and 

IM I. 
(2) IM I I u  I, u 

(3) ~ has a decomposition into classes a, fl, y, and these coincide on common 

parts for different j. IM~l contains only ay-sides and M~174 consists only of a-vertices. 

(4) If CEM2k_~ NM~, then o(~lC)=wk(C)/2, where wk was defined in Sections 3.2 

and 3.4. 

We have ~ U... U ~ =  ~ U ~ .  Set qJ| qJl U ~ .  We shall now construct a new 

kind of cave refinement on the basis of qd| Let A EM2~ be such that to (A)cMk,  k_ I. 

Write qdA = qJ| The definition of we: M 2, k- i --~N includes an assignment of an f2 for 

to(A). Choose one point as in the interior of each B E c~| For Q E f~ and for TE Q we 

choose a union Lr  of simple arcs s(B, C) in T each of which joins two points as, ac 
through exactly one common side of some B and C. Such points form the set L ~ of 

vertices of Lr. We require the following: 

(a) L r is a tree and an endvertex Pr=asEL ~ exists such that a side of Br=BE 

is contained in the last side of T. We choose Pr to be the last vertex in 

L ~ This gives L ~ a natural order. 
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(b) L~ ,~| 
(c) Let 

3 

J= n Mk, k_Jto(A). 
j = l  

If T is the last in Q and S is the last in Q' E f~, Q'~=Q, then Brfl IJI is different from 

Bs n IJI. 
(d) Let T be in Q which is not the last, and let S be the successor of T. We can join 

Lr  to Ls by an additional arc sr of the type s(B, D) where as=pr and ao is an 

endvertex in L ~ The union of the arcs s r, TE Q not the last, and all Lr  is denoted by 

L. 

The set L is again a tree and the order in each L~ induces an order in L~ L~ 

This gives an order in % where ~e=~AIQ. If n, c e  and C is the successor of B, 

then the side in B 13 C which meets s(B, C) is the last side of B. 

We shall next define positive and negative elements of ~g2. We define outward 

normals in to(A) and positively oriented simple closed paths in any element in to(A) 2 

with respect to 6j as in Section 4.3. We say that B E qd2A is positive if for somej  the order 

a, y, fl is positively oriented in Ibl with respect to 6j and the classes of B are 6j and 6k 

where k=j+ 1 (mod 3). Otherwise B is negative. Let B and C be two elements in ~a with 

at least one common side. It follows from the definition that B and C have different 

(same) signs if B and C have same (different) classes. 

7.2. New caves. In our new cave constructions we shall now replace each positive 

2-simplex in ~dA by two and each negative by four sheets. The purpose of this is to get 

the right order of entering when we switch from one set Wj=f -1Uj, j =  1,2, 3, to 

another. Recall that the sets Uj are the components of R3\(XoU{u2,u3}) where 

Xo---S2UB 2 and u2=-e3/2, u3=eJ2. Note that f is not completely defined yet. The 

sheets will be attached to each other with certain identifications on the boundaries and 

they will all be mapped into Xo by the final map f. 

Let Q E ft. For each negative B E ~Q we choose one side r B, called the connection 

sideforB, as follows. I fB  is not the last in ~Q, we let r B be the last side ofB.  I fB  is the 

last in qd~Q, choose one C E ~ such that B is the successor of C and let rB be the last 

side of C. By the construction such a C exists and it is positive. Suppose the classes of 

IOl are 61 and 62, IQIcR 2, and that the elements of 61 are in H+=(xER31x3>O}. Note 

that Q belongs then to f~o, see Section 2.5. For CE ~ positive we let W~, W2: C___>R 3 

be maps which are PL homeomorphisms onto their images and which are parametric 
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representations of the sheets for C to be defined below. Let ~ . . . . .  ~ :  B---~R 3 be 

corresponding maps for a negative B E ~ .  The upper indexing shows the order of the 

sheets when we pass in the negative direction of the x3-axis. We set N=U{BE ~1 

B negative}, P=LI{CE ~2QIC positive}, and define ~m: N__.~R 3 and W~:P---~R 3 by 

means of the maps ~ '  and W~ respectively in the obvious way. We require that all 

open sheets ~m intB and Wn int C are mutually disjoint and do not touch the sets Wi, 

W~, W~(h), h=0 . . . . .  5 (see end of Section 6.2). Let s be a side in ~JQ which is not the 

last side r of the last in ~ ,  for some Q' E fl, Q':~Q. We call sides like r excluded for Q 

in this context. To define the identifications of the maps ~m and qjn on s we separate 

the following cases: 

(1) s is not a last side of any element in ~ .  

(2) s is the last side of D E ~ ,  D is not the last of ~ ,  and s is not a connection 

side. 

(3) s is a connection side. 

(4) s is the last side of the last in ~ .  

The maps (I 3m and W n are defined in these cases as follows. Here n runs over 1,2 

and m over I, 2, 3, 4. 

Case (1): We let ~ "  and qjn be the identity on s. 

Case (2): Let zt: R3---~R 2 be the ortogonal projection. We set the following condi- 

tions in this case: 

(a) The endpoints of s are fixpoints for all ~ "  and qjn. 

(b) On s, : t o o  m and : t o w  n are the identity. 
(c) On s, ol=(I)2=l-I ,/I, (I)3=(I)4=1-I -/2. 

(d) On int s the third coordinates satisfy ~ > 0 > ~ ] .  

The purpose of the identifications in case (2) is to get a cave connection in W3 

between the sheets ~2B, ~3B, qJ~c, qjEc where B and C have s as a side. In Figure 7.1 
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this connection is shown by an arrow. The arrow shows here, and in other figures 

below, the way towards oo in Wj (here j=3).  The sets Wj are marked simply b y j  in the 

figures. A s f i s  not fully defined yet, we use only the sets Wj in the figures to help the 

reader to follow the arguments. Formally we give each sheet a pair of classes ~) such 

that the elements of the class lie in the set marked by j. 

Case (3): Let s be a connection side for B. We shall do the identifications so that 

cave connections appear as in Figure 7.2. (The arrow for W3 is in the opposite direction 

i fB is the last of ~ . )  For this let s be divided into three consecutive closed arcs sl, s2 

and s3 of equal length. The conditions (a) and (b) remain the same, we only replace s by 

si,  i= I, 2, 3, in (a), but (c) and (d) are replaced by the following: 

(c') On si  we have 

(I~l ~-~LI/l = l ' I  -/2, (I)2=(I~3=(I)4 i f i= l ,  

I~l ~-~(I)2=l'I/1 , (I~3=(I)4--'1"I/2 ifi=2, 

1 ~ 1 = ( I ) 2 = ~  3 , ~4=LI'/I  =LI/2 i f i=3,  

(d') On ints; we have 

* I > 0 >  ~ i f i =  1, 

~ > 0 > * ]  if i = 2 ,  

~ ] > 0 >  ~ if i = 3 .  

The identifications on s~(s3) will give a cave connection of W2 (W0 to the layer 

between ~ B  and ~2B ((I)3B and ~4B). The identifications on s2 are similar to the case 

(2). 

Case (4): Let first the last in ~ , s a y  C, be positive. There are two other 

2-simplexes in ~ with s as a side, say D and E. Suppose D is the one with non-negative 

x3-coordinates. According to the definition, D and E are also positive. The conditions 

for the maps W~, ~ ,  W[ on s are the following: 

(a') The endpoints of s are fixpoints for W~, tlJ~, W[. 

(b') On s, ~r o W~ is the identity. 
IIII --I.D'I __I.D'2 I.D'2 --UJI --UJ2 (c") On s ,  l c - - - o - - -  o ,  i c - - - e - - - e .  

(dO On ints, (qJ~)3>0>(qJ~) 3. 

Let then C be negative. The 2-simplexes D and E are then also negative. In (a') and 
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(b') we replace W by �9 and n by m. The conditions (c") and (d") are replaced by the 

following: 
d.,tl __r 2 __~1 __r 2 __dh3 _t ,~4 t.h3 __t,~4 _ t ~ l  __d.~2 __c~3 _ tl,,14 (c") On s, Y c - T c - Y o - Y o - Y o - Y o ,  Y c - ~ c - Y e - ~ e - ~ - e - . ~ E .  

(d") On ints, (*~)3>0>(q)~) 3. 

These indentifications are illustrated in Figure 7.3. The conditions for the maps 

�9 " and qsn on s in each case is now completed. If Q~ f~o, the geometry is slightly 

different, but we achieve the same topological connections by modifying the conditions 

(b), (b'), (d), (d'), (d"), and (d"). When we let Q run over f~, we obtain the identifica- 

tions for all possible . m  and W" maps in all sides s. This is because in case (4) above 

we gave also conditions for maps ~ ,  *~,  W~, qJ[ on s which is an excluded side for 

some Q', Q"E f~ with D E Q ' , E E Q " .  

We have above given a topological description of the sheet maps ~ and qJ~ for B 

and C in ~d2A . On the boundary Id [ these sheet maps are the identity. Hence we can 

simply put together all sheet maps for the elements in ~| The upper indexes in the 

maps ~ '  and W~ are not important, all that matters is what classes 6j are attached to 

each sheet. Let the set of all sheets for elements in ~r174 be denoted by ~2. According to 

the construction of ~2, the set R3\1~21 contains eight components 

WI, W2, W3(0) .. . . .  W3(5) such that WI=WI etc. (see (6.4)). A notion called cave part is 

defined in Section 7.6. 

7.3. Definition o f  the map on the sheets. We define the notion of a positively 

oriented sheet with respect to ~j topologically as was done for elements in H~ in 

Section 4.3. Let D be a sheet with classes ~s and 6,.. Let D be positively oriented with 

respect to ~j. Then D is negatively oriented with respect to hi. Recall the quasiconfor- 

16-858286 Acta Mathematica 154. lmprim(~ le 15 mai 1985 
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mal maps x2 and u3 from the formulae (4.8) and (4.9). Let ul be the identity in Ul. Let 

the sheet map of D be 0: B--~D which means that 0 is some ~ '  or qJ~. Then we set 

fJD = xj o ~ O--~B q~B o 0 -I. (7.4) 

According to the definitions of the maps uj, we may rephrase (7.4) by 

I 0_1. f l  D = xio x o ~ ~ ~ (7.5) 
tB 

Here x is the reflection in R 2 and the map ~ was defined in Section 4.3. We give more 

conditions for the sheet maps in Section 7.6 to guarantee that we are able to construct a 

quasiregular map. 

7.6. Final extension. We shall now use more or less the principles in Section 6 to 

extend f to the remaining parts W I \  Wi etc. However, one of the differences is that 

flaW! etc. is not represented topologically by a map complex, but rather by something 

which could be called a generalized map complex. We shall confine ourselves to the 

part W~\WI.  The treatment in W2\W~ etc. is similar. 

We let ~ be the set of sheets which form the boundary 0WI, i.e. the sheets which 

have 61 as one class. Let Q be in some Q for to(A)=Mk, k_ j where A is in some M~. Let 

the classes of Q be 62 and 63. Let the set of sheets for B when B runs over ~Q be FQ. 

We call FQn ~ a cave part of ~ .  We also say that Iron ~ 1  is a cave part of J~J.  

Let then Q have 6j as one class and let BE C~Q be negative. If the sheets (b~B ... . .  (I)4B 

lie like in Figure 7.2, we call F={Cp3B, r  (resp. 1IT) a hollow part of ~2 (resp. 

Let F = F Q n ~  be a cave part of ~l z. Let s=(a, b) be the last side of the last in 

c~Q. We may assume that the sheet maps take s onto (a, c) U (c, b) and (a, d> U (d, b) 

for some points c and d, and that Z=int({a, b, c) U (a, b, d))~-Wt. We call the compo- 

nent R of W t \ Z ,  with JFJ contained in OR, the cave part of W~ corresponding to F. We 

choose a point e E W~\/~ similarly as in the beginning of Section 6.1 and write 

X=(a, b, c, e), Y=(a, b, d, e). There is an obvious decomposition o f f  into the sets Fc 

and Fz) where C and D in M~ are cave opening simplexes for Q (cf. Section 6.1). We 

may assume c EIrc l .  A sort  of 61-inheriting is also defined from elements of 

M~ into ~2. To define it for C we let ~2(C) be the set of sheets OB in 

~2 for which BE (glJC. We say that ~2(C, 61)=~2(C)UFc is 6rinherited from C. If 
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EEM~ and i f E  is not a cave opening simplex for any Q with classes 6 2 and 63 we set 

We shall next push R into W~\/~. Now R is not locally connected on the 

boundary, but the boundary elements of R have an obvious meaning. We perform a 

preliminary PL homeomorphism h of the domain WI which is the identity on W I \ R  

and which shrinks R slightly onto a domain R'  which is locally connected on the 

boundary. The boundary elements of R are transferred to boundary points of R'  

bijectively. Let W*=(WI\R)UR' .  We can then modify the method in 6.1 to ob- 

tain a PL homeomorphism ~*:  I~*--. W I \ R  such that ~ *  is the identity on 

WI\(RUXU Y). It is possible to choose the sheet maps 0 in the beginning, the 

shrinking map h, and the map qs. such that the composed maps qJ* o h o 0 (here h is 

extended to the boundary elements), with 0: B--.B' running over the sheet maps giving 

the sheets B' in F, are simplicial with respect to Bil I. Recall that B0) is the first 

canonical subdivision of B, see Section 3.3. Furthermore, we can do the construction 

so that 

(1) the sheets in Fc (FD) are taken into ~a, b, c) (~a, b, d)) by the boundary 

element correspondence of qJ* o h, 

(2) qJ* o h is locally exp (01 v3)-bilipschitz where 01 is an absolute constant. 

Similarly we can define and push in hollow parts of WI. We can perform all these 

pushings simultaneously and we get a map qJo of WI onto a domain XI. If needed, we 

extend qJo to the boundary elements and use the same notation. The domain X~ is 

locally connected at the boundary. The map q/o is the identity in Wi (see (6.4)). If the 

sheet maps are originally chosen in a suitable simple way, ,~1 can be mapped by a PL 

homeomorphism qJt onto I7'1 (see Section 4.1) in a straightforward manner such that 

(a) qJl is 10-bilipschitz, 

(b) qJl[Wi is the identity, 

(c) [~2(C, 61) I is taken onto C by the boundary element correspondence of W I o ~  0 

for every C E M~. 

(d) If O:B--.B' is a sheet map with B ' E ~  ~ then tFioW0o0 is simplicial with 

respect to ~iml. 

The map f[ [~12[, given in (7.4) and considered as defined on the boundary elements 

of W I, splits as f [ [ ~ [ = F  o ~1 o W0, where F: [MI[-~,S 2 is a discrete open map. Since f 

maps each sheet homeomorphically onto S 2 or $2_, we get a topological description of 

F if we study F-IS ~. In particular, we shall describe how F-IS l can be formed from 

[~g~[. Each hollow part corresponds to a configuration of F-IS l shown in Figure 7.4 
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where we have assumed that the corresponding connection side ab in ~ ,  call it s, is an 

aft-side. Here and in other figures below we indicate points in the classes a, ft, 7 by 

letters a, b, c, possibly with subscripts, when they are vertices of ~3~. Corresponding 

points in F-~S 1 are denoted by adding one or more primes. We use the latter principle 

also for elements in ~ .  We see that the hollow part corresponds for F to a simple cover 

with branching at a '  and d',  and we obtain this part of F-1S 1 by replacing the subarc 

ad in ab by the boundaries of the pair B', B". We may also do the construction such that 

a'=a, b'=b, d'=d, and the side s is contained in F-~S ~ as shown in Figure 7.4. 

To study to what a cave part corresponds for F we let Q be an element of an f] 

such that IQ[ has classes 62 and 63. Let B be the last in ~Q and the side ab the last side r 

of B (Figure 7.5). The side r is also a side of ~ and it is always a line segment. To see 

the principle here it is enough to consider the case in Figure 7.5 where a part of ~dQ is 

presented. The arrows have the same meaning as in Figures 7. I and 7.3, and show also 

the increasing order in ~Q. The 2-simplex B corresponds to a pair B', B". The set B' UB" 

has one hole because there is one arrow entering B. The 2-simplex C corresponds to a 

pair C', C" such that C' U C" has two holes because there are two arrows entering C. The 

outer boundary curve of C' U C" coincides with the boundary of the hole ofB'  UB". This 

way we can go through all of ~Q because the order is based on a tree. The part of 

F - I S  ~ corresponding to the cave part is obtained by replacing the side r by the 

1-dimensional configuration inside the outer boundary curve of B' UB". Points like 

d', e', dl, el are branch points for F. 

We may perform the map qJ~ oqJ 0 so that apart from the sides like s and r above all 

other sides in ~d ~ remain untouched in F-~S I. The map F can be deformed in an 

obvious way to obtain a map represented by a refined map complex as follows. For a 

hollow part we move the simple cover FIB' U B" (Figure 7.4) such that the branch point 

d' moves to b'. Then also b" moves to b' (cf. Section 5.1). For a cave part we deform 
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similarly. In Figure 7.5 we move first the branch point d' to a' and the branch point e' 

to b'. Then a" moves to a' and b" moves to b'. In the next step we move dl to c' and el 

to b' and then also c" moves to c' and b" to b'. We continue similarly. In Figure 7.6 we 

see the part ofF-~S ~ shown in Figure 7.5 after the deformation. The line segment r is 

required to divide it in an obvious manner. All hollow and cave parts for F can be 

deformed simultaneously. As in Section 6.2 we define t-levels St, t E [ - l , 0 ] ,  in the 

layer A"I between IM11 and INl], in fact we can transfer the t-levels SorE[0,1] ,  

between Iv2Ml] and IV2Nl] by the similarity x~v-Ex. The local product representation 

of the layer A"  I (see Section 6.2) makes it possible to see each BEM 2 on St as a 

subset B, for t E [ -  l, 0]. As in Section 6.2 we transfer the deformations to t-levels. For 

this, let F_I=F. We do the deformations described above during t E [ - l , - I / 2 ]  and 

obtain a family of maps F,:Sr--,S 2, t E l - l , - 1 / 2 ] .  Now F-i/2 is represented by a 

refined map complex, call it F"  u2. 
Our final task is to deform F-u2 on the t-levels, t E [-1/2, 0], to the map 

go: INd--,S 2. The map go is represented by the map complex Hi. We have made the 

construction so that the number o(Hd~pB) of 2-simplexes in HdvIB equals 

o(F'~/2[B_~/2) for every BEM 2. In order to do the deformation from F-~/2 to go 

similarly as in Section 6.2, we should in addition have only ay-sides on the boundary 

and a-points at vertices for each B_ ~/2. The latter condition is satisfied, but the first is 

not on those parts which correspond to cave parts. This difficulty is circumvented by 

the observation that cave opening simplexes for a Q with classes 62 and 63 are grouped 

into pairs B,B' of elements in M 2 such that E=BOB' is homeomorphic to a disk. For 

such E["-I/2[E-I/2 has only ay-sides. We replace each cave opening simplex BEM~ 

by such E~B and get from M~ a new set h~t~ with IM~l--IM, I. We decompose h;/~ simi- 

larly as v2M~ was decomposed into sets MI . . . . .  Mi in Section 6.2, and transfer all to the 
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- I/2-1evel. Also the condition 62< 1/50 in (5) of Lemma 5.3 causes here a little problem 

because it may not be automatically satisfied for our application of Lemma 5.3. This 

can be arranged simply by taking it into account in the construction of (0| After these 

remarks we can adjust the sides and apply the Deformation lemma 5.3 as in Section 6.2 

to get a family of  maps Ft: St--*S 2, t E [ -  1/2, 0], with Fo=go. 

It remains to define f i n  W I \ W ~ .  We write WE=W! o ~  o and set 

f l l . I I21St  = (st, F t o ~F2[~eI St), t E [ -  1,0] (7.7) 

where the coordinate presentation is as in (6.3). Recall s t=e- l exp  v t+l. The construc- 

tion has been carried out so that f [W~\W~ is K-quasiregular, K depending only on 

and v. 

Combining (7.7) with the definition (6.3) in W~ wc have completed the definition of 

.fin I~i. The definitions of fin the domains W2, W3(h), h=0 ..... 5, are similar. Since all 

these match on common boundaries, we have defined a K-quasircgular mapfof R 3. By 

construction f omits u2,u3ER 3 and the proof of Theorem 1.2 for p=2 is hereby 

completed. 

8. The case p>2  

In this final section we shall sketch the proof of Theorem 1.2 for p>2  by indicating the 

main changes to be made to our construction for p=2.  The idea will be to replace the 

caves both in Section 2 and Section 7 by caves with p -  1 passages (the original are said 

to have one passage). On the other hand, the parts involving deformation of maps 

remain almost unchanged. 

8.1. Cave complexes with p -  1 passages. The notions l-triangle,/-subdivision, and 

K-tree from Section 2.2 are all defined similarly by changing only constants, for 
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example v will be chosen larger for larger p. In the cave complex KL in Section 2.3 we 

replaced those A E K  2 with ANLaF~ by two 2-simplexes A_ and A+ and in the 

construction we used two normals - u  and u. To get a cave complex with p - 1  passages 

we use vectors r~u .. . . .  rpU, where -l<~r~<...<rp<.l, instead of - u  and u. The new 

cave complex Kt. has p - 1  bounded components. 

It is clear how bending will be performed in the general case. The opening of a cave 

complex with p -  1 passages can be described as follows. Let P be a cave complex with 

p - 1  passages based on an (l+l)-subdivision. Let T1 . . . . .  Tp EP 2 be the (l+ 1)-triangles 

obtained from a 2-simplex T by the replacement operation and let T~ n... n Tp be a side 

s which is also a side of S E P  2, S:~T. i=l .. . . .  p. We write Tp+l=S. Let classes (~j, 
j=  1 . . . . .  p+  l, be given in a similar way as before for 2-simplexes of P such that the (~/'s 

appear in a cyclic order (mod (p+ 1)) around a side like s. In Figure 8.1 we see the side 

profile for p=4 where T5 has classes 65 and 61 (the classes 6j is denoted b y j  in Figure 

8.1). In general Tp+! may have any pair 6j, (~j+l (mod(p+l)) of classes. 

Suppose Tp+l is the last in a cave base Q for an opened cave complex I=KL with 

p - 1  passages. Opened means then that the passages have connections to the passages 

of P in the same order, i.e. the side profile for the passages of I are like in Figure 8. I. 

The construction to obtain these connections is similar to the one in Section 2.4. The 

2-simplexes TI . . . . .  Tp are called cave opening simplexes for Q. If some Ti, i= 1 . . . . .  p, is 

the last of a cave base Q' for an opened cave complex I ' ,  the connections of the 

passages of P to those of I '  are similar. For example, if i=3 in Figure 8.1, then the 

classes 6j in the passages of I' appear as in Figure 8.2. These connections are obtained 

by a suitable modification of the construction in Section 2.4. The connections corre- 

sponding to various 2-simplexes Tl . . . . .  T,+! are here also performed at a sufficiently 

large 0-distance from each other to avoid interaction. 

The cave refinement operation is generalized in an obvious manner. The same is 

true for the inheriting operation (o. The 6finheriting operation toj is defined by the same 
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rules as before ((1) and (2) in Section 2.6). Note that now we may have plenty of Q's for 

one A in (2) in Section 2.6 whereas earlier there were at most one. 

8.2. Definition on level surfaces. Section 3 can be carded out for the general case 

with only obvious changes. As a result we obtain (by the notation in Section 4.1) 

Mkq(O), Mkq~(O) and Gkq~(O), j = l  . . . . .  p + l .  As in Section 3, we let Mk0 have classes 61 

and 62. The set R3\IM| where M| (see Section 4.1), has now 

2+6(p-1) components V1, V2, Vj(h), j=3  . . . . .  p + l ,  h=0 . . . . .  5. The level surfaces in 

Section 4.2 are defined as before with obvious changes. To define f on these surfaces 

we only need a discussion of the quasiconformal maps xj since the maps g2i, v2, g2J are 

defined formally as before in (4.4), (4.6), and (4.7). Let Wp be the Mfbius transforma- 

tion of 1~ 3 which keeps S I fixed, maps S 2 into B 3, and for which S 2 and wp S~ form a 

dihedral angle zdp. Let U' be the bounded domain bounded by ~'-! S+2 and u;p S+,2 p+ 2-j  

j = l  . . . . .  p. Let Up+! be the midpoint of the part of the x3-axis which lies in U~+ I. We 

define a homeomorphism ~r (]!-"~O'p+l\{Up+~} such that it maps U!=R3 \B  3 

onto Up+l=Up+l\{Up+l} quasiconformally and 2 __ 2 

Then set xp+2_j=~ -! OXp+!, j=2, ...,p. As before, xl: O!--*/-/! is the identity. We write 

uj= W~p+l-J(up+ !), Uj= U~ \ {uj}, j= 2 ..... p. The only change after this in the definition of 

f o n  the level surfaces is that we replace the index 3 b y j  and le t j  run from 3 to p+ 1 in 

(4.9). 

8.3. Final glueing. The extension of the definition of f to the layers between the 

level surfaces is done in the general case in the same manner as in Section 6. However, 
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comments must be made to the final glueing presented for p=2  in Section 7. We define 

on M~* for j = l  . . . . .  2+6(p-1) ,  similarly as in Section 7.1 and set 

~3| t.I.., tJ~2+60,-1). Order in a ~go, QEt2,  and positive and negative elements in 

~| are defined as in Section 7.1 ((mod3) is replaced by (mod(p+l)) .  Similarly we 

adopt the notion of a connection side for a negative B E ~Q from Section 7.2. 

Each positive element in ~d2| will be replaced by p sheets and each negative by 

p+2  sheets. By a technique similar to that in Section 7.2 we make identifications on the 

boundaries of the sheets. The principle is that connections between the layers between 

the sheets is done so that the 6rclasses appear in cyclic order and the direction of this 

order is opposite for neighboring elements in ~ for eachj.  In the case (1) in Section 7.2 

the identifications are as before. In the case (2) the connections are shown in Figure 8.3 

for p---4, which illustrates the general case adequately too. At a connection side (case 

(3)) these connections are shown in Figure 8.4 for p=4.  We see that now we have to 

switch the order of the layers in the classes 63 and 6~. In the case (4) we form 

connections between the passages in a cave of  Moo and the passages in a cave part 

formed by the sheets so that the same classes 6j. will be connected. If in (4) the last in 

~Q is positive, the connections are made as in the opening of a cave complex with p -  I 

passages. This is illustrated in Figure 8.5 for p=4.  If the last ~Q is negative, we have 

again to switch arround the order of passages as shown in Figure 8.6 to get the right 

cyclic orders. This completes the description of  the set ~2 of sheets. The s e t  R3~I~a2 I 

has now 2+6(p-1)  components WI,W2, W~(h), j =3  .. . . .  p + l ,  h=0 ... . .  5. The rest of 

Section 7 can be carried out like before and this ends the proof of Theorem 1.2 for the 

general case. 
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