The analogue of Picard's theorem for quasiregular mappings in dimension three

by

SEPPO RICKMAN⁽¹⁾

University of Helsinki Helsinki, Finland

1. Introduction

The theory of quasiregular mappings has turned out to be the right extension of the geometric parts of the theory of analytic functions in the plane to real *n*-dimensional space. The study of these mappings was initiated by Rešetnjak around 1966 and his main contributions to the theory is presented in the recent book [8]. For the basic theory of quasiregular mappings we refer to [2], [3], [13]. The definition is given in Section 2.1. In 1967 Zorič [14] raised the question of the validity of a Picard's theorem on omitted values for quasiregular mappings. Such a theorem appeared in 1980 in the following form.

THEOREM 1.1. [9]. For each $K \ge 1$ and integer $n \ge 3$ there exists an integer q=q(n, K) such that every K-quasiregular mappings $f: \mathbb{R}^n \to \mathbb{R}^n \setminus \{u_1, ..., u_q\}$ is constant whenever $u_1, ..., u_q$ are distinct points in \mathbb{R}^n .

Already from the early beginning of the theory it has been conjectured that the Picard's theorem is true in the same strong form for $n \ge 3$ as in the plane, namely that q can be taken to be 2 in Theorem 1.1. The purpose of this paper is to give a solution to this question in dimension three. The result is presented in Theorem 1.2. It shows that the conjecture is false and that Theorem 1.1 is indeed qualitatively best possible for n=3.

⁽¹⁾ Supported in part by an NSF Grant during the author's stay at the University of Minnesota.

THEOREM 1.2. For each positive integer p there exists a nonconstant quasiregular mapping $f: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ which omits p points in \mathbb{R}^3 .

The history of the problem is the following. At a rather early stage of the theory of quasiregular mappings it was proved both in [3, 4.4] and [7, Theorem 2] that a nonconstant quasiregular mapping $f: \mathbb{R}^n \to \mathbb{R}^n$ cannot omit a set of positive *n*-capacity. The discovery of Theorem 1.1 was a result of a development of value distribution theory of quasiregular mappings some years earlier than [9]. Two proofs of Theorem 1.1 different from the original in [9] are presented in [11] and [12]. A defect relation, which is an analogue for a result from Ahlfors's theory of covering surfaces and a generalization of Theorem 1.1, was proved in [10]. For p=1 the construction of the map in Theorem 1.2 is easy. This was done by Zorič in [14] and his construction can be generalized for all *n* in a straightforward manner.

Already for p=2 it can be shown that a map f in Theorem 1.2 must satisfy hard requirements. In fact, the solution presented in this paper is geometrically one of the simplest possible in the same sense as the exponential function is the simplest in the plane to omit one point. In short terms, to construct f in Theorem 1.2 is a sensitive interplay between the combinatorial properties and the dilatation of f. A 2-dimensional deformation theory, developed in Section 5, has an essential role in this interplay. The main reason why a map f in Theorem 1.2 is at all possible to construct is that tubular neighborhoods of arcs do not separate in \mathbb{R}^3 . To obtain Theorem 1.2 also for dimensions $n \ge 4$ in a similar way would among other things require an (n-1)-dimensional deformation theory. Such a theory is not available in a straightforward manner from the method presented here because we use essentially some properties of the plane.

For the sake of clarity we shall give the proof of Theorem 1.2 in detail for p=2. The general case is in principle almost the same and we shall indicate in the end (Section 8) what changes will be made for larger p. To help the reader to understand the strategy of the proof, the main features of it will be outlined below.

Let us first give a description of Zorič's construction for p=1. Let f_0 be a quasiconformal mapping of the infinite cylinder $C = \{x \in \mathbb{R}^3 | (x_1, x_2) \in A\}$, with the square $A = \{x \in \mathbb{R}^2 | 0 < x_1, x_2 < 1\}$ as base, onto the half space $H_+ = \{x \in \mathbb{R}^3 | x_3 > 0\}$ such that $f_0(C \cap H_+) = H_+ \setminus \overline{B^3}$ (B^n is the unit ball in \mathbb{R}^n) and the edges of C correspond to rays emanating from the origin. We extend f_0 by repeated reflections through the faces of C and ∂H_+ and obtain a quasiregular mapping $f: \mathbb{R}^3 \to \mathbb{R}^3 \setminus \{0\}$. Let D be a cylinder obtained from C by reflection in a face and let $C_1 = C \cap H_+$, $D_1 = D \cap H_+$. Let C_2 and D_2 be obtained from C_1 and D_1 respectively by reflection in ∂H_+ . Then f maps $\overline{C_1} \cup \overline{D_1}$

onto $U_1 \cup S^2$ and $\tilde{C}_2 \cup \tilde{D}_2$ onto $U_2 \cup S^2$ where $U_1 = \mathbb{R}^3 \setminus \tilde{B}^3$ and $U_2 = B^3 \setminus \{0\}$ (S^{n-1} is the unit sphere in \mathbb{R}^n). The preimages $W_j = f^{-1}U_j$ are halfspaces and hence very simple.

Let then p=2 and suppose we are given a nonconstant quasiregular mapping $f: \mathbb{R}^3 \to \mathbb{R}^3 \setminus \{u_2, u_3\}, u_2 = -e_3/2, u_3 = e_3/2$ (e_i is the standard *i*th basis vector in \mathbb{R}^n). Write $u_1 = \infty$ and let U_1, U_2, U_3 be the components of $\mathbb{R}^3 \setminus (S^2 \cup B^2 \cup \{u_2, u_3\})$ such that $u_j \in \overline{U}_j, j=2, 3$. Since u_j is omitted, each component of $W_j = f^{-1}U_j$ is unbounded. In our construction of such a map f the cylinders C_j, D_j, \ldots in the Zorič's map will correspond to tubes in W_j tending to ∞ and ending in ∂W_j . Each such tube will be mapped by f onto half of U_j similarly as in the Zorič's map. One of the main difficulties arises from the fact that if a tube in W_1 has a common end with a tube in W_2 , then the neighboring tube in W_1 must have a common end with a tube in W_3 , and this for all permutations of W_1, W_2 , and W_3 . This makes the sets W_j very complicated because the third must be near every common boundary point of two of the sets. For p=1 there is no such problem because there is no third set W_j . To glue the various tubes at the ends together is essentially a combinatorial problem, the solution of which is part of Section 7.

The main idea of the proof is to first construct an approximation of $f^{-1}(S^2 \cup B^2)$, denoted by $|M_{\infty}|$. The complement of $|M_{\infty}|$ will consist of eight components $V_1, V_2, V_3(h), h=0, ..., 5$, all topologically equivalent to a 3-ball. The sets V_1, V_2 , and $V_3=V_3(0)\cup...\cup V_3(5)$ are approximations of W_1, W_2 , and W_3 respectively. To achieve the requirement that a common boundary point of any two of the V_j 's is not far from the third, we introduce an operation, called *cave refinement*, by which we can diminish the Hausdorff distance between parts of boundaries of sets like the V_j . To be able to decide when a cave refinement operation is needed, we have to have in mind the number of tubes ending at a given part of $f^{-1}(S^2 \cup B^2)$. For this we construct simultaneously an approximation on each $\partial V_1, ..., \partial V_3(5)$ of the configuration of the ends of the tubes. Such configurations are called *map complexes* and they are essentially triangulations with the property that each vertex is common to an even number of 2simplexes. These constructions are made in Sections 2 and 3.

The definition of the mapping f is started in Section 4. There it is given on certain level surfaces which lie in the sets $V_1, ..., V_3(5)$ and are almost obtained by similarities from $\partial V_1, ..., \partial V_3(5)$. Since the number of repeated cave refinement operations tends to infinity when we approach ∞ , in order to keep the dilatation bounded we cannot take the map complexes corresponding to the tube configurations on the different level surfaces to be topologically equivalent, but we have to rearrange the order of the tubes

when we pass from one level surface to the next. This has led us to develop a deformation theory in Section 5 mentioned above for discrete open maps in the plane. Deformation of such maps has been studied rather extensively by M. Morse and M. Heins (see [6]), but their results are not applicable here. By means of a deformation lemma from Section 5 together with a technique of straightening caves, we are able to extend the map to the layers between the level surfaces in Section 6. In Section 7 we glue together the obtained maps near $|M_{\infty}|$. Apart from the combinatorial aspects that part is somewhat similar to Section 6. Throughout the work we use mainly piecewise linear technique.

We make no effort in striving for any good bound for the dilatation of f in Theorem 1.2. Let it be remarked here that for $n \ge 3$ there exists $K_n > 1$ with the property that for $1 \le K \le K_n$ every K-quasiregular mapping f is locally homeomorphic [4, 4.6]. If in addition $f: \mathbb{R}^n \to \mathbb{R}^n$, then f is quasiconformal [14], and hence does not omit any point.

I want to thank Kari Astala for making valuable remarks about the manuscript, and Martti Pesonen who studied an earlier version of the subject. I am also grateful to Pekka Tukia for discussion of the proof of Lemma 5.2.

2. Preliminary constructions

Most of our constructions are based on special triangulations of surfaces. The main object in this section is to give a "cave" construction operation which will be used in Section 3 to construct the set $|M_{\infty}|$ mentioned in the introduction.

2.1. Terminology and notation. A continuous map $g: D \to \mathbb{R}^n$ of a domain in the Euclidean *n*-space \mathbb{R}^n , $n \ge 2$, is called *quasiregular* if

(1) g belongs to the local Sobolev space $W_{n,loc}^{l}(D)$, i.e. g has distributional first order partial derivatives which are locally L^{n} integrable, and

(2) there exists K, $1 \le K \le \infty$, such that

$$|g'(x)|^n \le K J_{\rho}(x) \quad \text{a.e.} \tag{a}$$

Here g'(x) is the formal derivative defined by means of the partial derivatives $D_i g(x)$ by $g'(x) e_i = D_i g(x)$ (e_i is the standard *i*th basis vector), |g'(x)| is its operator norm, and $J_g(x)$ the Jacobian determinant. These are defined a.e. by (1). Let g be quasiregular. Then also

$$J_g(x) \le K \inf_{|h|=1} |g'(x)h|^n$$
 a.e. (b)

holds for some $K \in [1, \infty[$. The smallest K satisfying (a) and (b) is the *dilatation* K(g) of g. If $K(g) \leq K$, g is called K-quasiregular. Although not used in this work we make the remark that the definition of quasiregularity extends immediately to the case $g: M \rightarrow N$ where M and N are connected oriented Riemannian n-manifolds, see for example [5]. The term quasimeromorphic is reserved for the case where M is a domain in \mathbb{R}^n or in $\hat{\mathbb{R}}^n = \mathbb{R}^n \cup \{\infty\}$ and $N = \hat{\mathbb{R}}^n$. $\hat{\mathbb{R}}^n$ is equipped with the spherical metric. A quasiregular homeomorphism is called a quasiconformal mapping.

The ball $\{y \in \mathbb{R}^n | |x-y| < r\}$ and the sphere $\{y \in \mathbb{R}^n | |x-y| = r\}$ are denoted by $B^n(x, r)$ and $S^{n-1}(x, r)$. We write $B^n(r) = B^n(0, r)$, $B^n = B^n(1)$, $S^{n-1}(r) = S^{n-1}(0, r)$, $S^{n-1} = S^{n-1}(1)$. We identify \mathbb{R}^k with $\mathbb{R}^k \times \{0\} \subset \mathbb{R}^{k+m}$. The normalized k-dimensional Hausdorff measure in \mathbb{R}^n is denoted by H^k . The Euclidean metric is denoted by d.

A complex means in this work a locally finite (rectilinear) simplicial homogeneous complex in \mathbb{R}^3 . For terminology, see [1]. If K is a complex, K^i is the set of *i*-simplexes in K, |K| is the space of K, St(A, K) is the star of $A \in K$ as a subcomplex, and $K^{(k)}$ is the kth barycentric subdivision of K. If L is a subcomplex of K, L is also denoted by K|Awhere A=|L|. We shall need the notion of join of a complex K with a 0-simplex $\{v\}$, denoted by vK. If M is a complex or a simplex, \dot{M} means the boundary complex and int M the relative interior. By $\langle v_0, ..., v_i \rangle$ we denote the (geometrically realized) *i*-simplex with vertices $v_0, ..., v_i$. If K is a 2-complex or a set of 2-simplexes, $\sigma(K)$ is the number of 2-simplexes in K. If K is a connected complex and $v, v' \in K^0$, we let $\varrho_K(v, v') = \varrho(v, v')$ be the smallest number of 1-simplexes in a path in $|K^1|$ connecting v and v'. The closure \tilde{A} and boundary ∂A of a set $A \subset \mathbb{R}^3$ is taken with respect to \mathbb{R}^3 .

2.2. *l-subdivisions and K-trees.* We fix $v=24\,000$ througout except Section 8. A 2-simplex T in \mathbb{R}^3 is called *admissible* if all its angles are at least $\pi/12$. For an integer $l \ge 0$ an admissible T is called an *l-triangle* if the side lengths of T are between $v^l/4$ and $8v^l$.

Let T be an (l+1)-triangle, let s_1, s_2, s_3 be the sides of T, and let d_i be the length of s_i . We assume that for each i=1, 2, 3 we are given an integer h'_i , $1 \le h'_i \le 6$. We divide s_i by a set X_i of points into $h_i = h'_i h''_i$ equal parts, where h''_i is an integer, such that $|d_i/h_i - v'|$ takes its smallest possible value. Let $a_i \in X_i$ be a point such that $|a_i - b_i| < d_i/8$, i=1, 2, 3, where b_i is the midpoint of s_i . By elementary geometry one shows then that there exists a 2-complex K with |K|=T and a 1-subcomplex L of K such that the following conditions hold:

(1) All angles in K are at least $\pi/8$ except possibly two at vertices of T where it is at least $\pi/12$.

(2) $K^0 \cap |\dot{T}| \subset X_1 \cup X_2 \cup X_3$ and $\{v \in X_i | |v - b_i| < d_i/6\} \subset K^0$.

(3) |L| is a tree and consists of connected subcomplexes L_i , i=0, ..., 3, such that $L_0^0 = \{v \in L^0 | \varrho_K(v, K^0 \cap |\dot{T}|) \ge 5\}$ and $|L_i|$, i=1,2,3, is a line segment and a minimal path in the ϱ_K -distance connecting $|L_0|$ and a_i . $d(|L_0|, |\dot{T}|) \ge 4v^l$.

(4) If $v \in L^0$, then the angles in St(v, K) are in the interval $[\pi/3 - 20/\nu, \pi/3 + 20/\nu]$. If $v \in K$ and $\varrho_K(v, v') \leq 1$ for some $v' \in L^0_i$, i=1,2,3, the angles in St(v, K) are all $\pi/3$. Hence $\sigma(St(v, K))$ is 6 if $v \in L^0 \setminus \{a_1, a_2, a_3\}$ and 3 if $v \in \{a_1, a_2, a_3\}$.

(5) Let $r \in K^1$ and let t be the length of r. Then $\nu^l/2 \le t \le 6\nu^l$. If $\nu \in L^0$ and $r \in St(\nu, K)$, then $\nu^l - 40\nu^{l-1} \le t \le \nu^l + 40\nu^{l-1}$.

(6) Let $v, v' \in L^0$. If $\varrho_K(v, v') = 1$, then $\sigma_L(v, v') \leq 2$. If $\varrho_K(v, v') = 2$, then $\varrho_L(v, v') \leq 4$.

(7) If $v \in K^0$ and $\varrho_K(v, K^0 \cap |\dot{T}|) \ge 4$, then $\varrho_K(v, L^0) \le 3$.

(8) $2\nu^{-2l}H^2(T) \le \sigma(K) \le 4\nu^{-2l}H^2(T)$ and $\sigma(K)/2 \le \sigma(\{A \in K^2 | A \cap |L| \neq \emptyset\}) \le 2\sigma(K)/3$.

If we fix one of the points a_i , call it a, to be the last point in L^0 , we are given a natural (partial) order in L^0 such that each $v \in L^0 \setminus \{a\}$ has a unique successor. The complex K is called an *l-subdivision* of T (with partition numbers h'_i) and L a K-tree. Each 2-simplex B of K will be given partition numbers for its sides by the following rule. Let t be a side of B. If t is not in $|\dot{T}|$, then its partition number is 1. If t is contained in s_i and if the length of t is c, then the partition number of t is ch_i/d_i .

2.3. Cave complexes. Let M be a finite 2-complex consisting of (l+1)-triangles such that the following holds:

(a) |M| is homeomorphic to a disk and is contained in a plane.

(b) Each $T \in M^2$ is given partition numbers for its sides and so that the partition number for a common side $T \cap S$, $S \in M^2$, is always 1.

(c) Let P be a 1-subcomplex of the dual cell complex of M, defined by the barycentric subdivision, such that P^1 is a union of pairs $\{\langle v, x \rangle, \langle x, w \rangle\}$ where v and w are barycenters of some S and T in M^2 with a common side s and x is the barycenter of s. We assume that |P| is a tree, for every $T \in M^2$ the barycenter of T is in P^0 , and there is a barycenter p of some $T \in M^2$ which belongs to only one 1-simplex of P. If we fix p to be the last element, we are given a natural (partial) order in P^0 . This induces an order on M^2 .

If S, $T \in M^2$ and if T is the successor of S, we call $S \cap T$ the last side of S.

For each $T \in M^2$ we choose an *l*-subdivision K_T with the given partition numbers and a K_T -tree L_T with the following condition:

(d) Let the a_i and L_i in Section 2.2 be for T now denoted by a_{Ti} and L_{Ti} . If

201

S, $T \in M^2$ and T is the successor of S, the last a_{Si} in L_S^0 is some a_{Tj} and a_{Tj} is not the last in L_T^0 . Moreover, L_{Si} and L_{Tj} are then symmetric with respect to the common side of S and T.

If $T \in M^2$ is not the last in M^2 , we let L'_T be the subcomplex of L_T defined as follows. Suppose that a_{T3} is the last of L^0_T . Let $I \subset \{1, 2\}$ be the set of indices *i* for which a_{Ti} is not the last of any L^0_S such that *T* is the successor of *S*. Then we obtain L'_T from L_T by removing the L_{Ti} 's, $i \in I$, and completing it to a complex. Then we form

$$L = \bigcup_{T < T_p} L'_T$$

where T_p is the last in M^2 .

Let u be a normal of |M| of length v^{I} . Let $a \in L$ and let $A = \langle v_{0}, v_{1}, v_{2} \rangle$ be a 2simplex in St(a, K) where $K = \bigcup_{T} K_{T}$. Note that K is not a complex in general but St(a, K) is well defined for $a \in L$ by (2) in Section 2.2. Write $U = \{v_{0}, v_{1}, v_{2}\} \cap L^{0}$, $W = \{v_{0}, v_{1}, v_{2}\} \setminus L^{0}$, and let A_{+} and A_{-} be the 2-simplexes with $(U+u) \cup W$ and $(U-u) \cup W$ as the set of vertices respectively. From K we form a new union of complexes, denoted by $K_{L} = K(L)$, as follows. All A's as above are replaced by A_{+} and A_{-} and all other 2-simplexes in K are left untouched. K_{L} is called a *cave complex* and the bounded component of $\mathbb{R}^{3} \setminus |K_{L}|$ the *cave* of K_{L} . All 2-simplexes in K_{L} are *l*triangles. The partition number for a side of a 2-simplex of K_{L} is defined to be the partition number of the corresponding side in K_{T} for some $T \in M^{2}$.

2.4. Bending and opening of cave complexes. We also need two modifications of the above construction. Suppose that |M| is not necessarily contained in a plane. We fix a normal u_T of length v^l of each $T \in M^2$ such that u_T points towards the same side of |M|for all T. Let S, $T \in M^2$, let T be the successor of S, and let $a=a_{Si}$ be in $L^0 \cap s$ where $s=S \cap T$. We assume that u_S and u_T form an angle φ , $0 \leq \varphi \leq \pi/3$. Then, when forming K_L from K we replace the vertex a by b and c defined as follows. Let C be the line containing the line segment L_{Si} and let X be the plane spanned by s and u_S+u_T+a . Then b is the point in $(C+u_S) \cap X$ and c the point in $(C-u_S) \cap X$. This modification is called *bending* at s. If there are bendings at several sides, we assume that no self intersection occurs. The normals u_T are said to be positive.

Our second modification is called *cave opening*. Let S, T, s and a be as above and let $T=T_0$ be the last in M^2 . We shall first replace T_0 by two (l+1)-triangles T_+ and $T_$ with partition number 1 on the sides. We assume that $u_S=u_T$. T_+ and T_- have s as a common side and they lie in planes obtained by turning the plane containing T_0 around s by angles $\varphi_+ \in]0, \pi/2[$ and $\varphi_- \in]-\pi/2, 0[$ respectively. The orientation is chosen so

14-858286 Acta Mathematica 154. Imprimé le 15 mai 1985

that T_+ lies in the nonnegative side of T_0 defined by u_T . In T_+ we choose an *l*-subdivision K_+ as follows. If T_+ is considered as a successor of S, then the pair S, T_+ satisfies the condition (d) in Section 2.3 modified to bending at s. Similarly we choose an *l*-subdivision K_- in T_- . We deform K_+ to an isomorphic complex K'_+ by moving the two vertices b_3 and b_4 in $St(a, K_+)$ and not in s (Figure 2.1) to b'_3 and b'_4 to a greater distance form a. A complex K'_- is similarly defined. To form the new cave complex K_L we first replace K_{T_0} by K'_+ and K'_- . We replace each $A \in K^2$ with $A \notin T_0$ by A_+ and A_- as before, in particular a is replaced by $a+u_S$ and $a-u_S$. Each $A = \langle a, c, d \rangle$ in $St(a, K'_+)^2$ is replaced by $A_+ = \langle a+u_S, c, d \rangle$ and all others in K'_+^2 are kept untouched. The deformed K'_+ is so chosen that all resulting 2-simplexes are *l*-triangles. K'_- is treated similarly. The 2-simplexes T_+ and T_- are called *cave opening simplexes*, the set $Q = M^2 \setminus \{T_0\}$ is called a *cave base*, $s = T_+ \cap T_-$ the *last side* of Q, and a the *cave center* in s. By K we denote now the union

$$K = \bigcup_{S < T_0} K_S \cup K'_+ \cup K'_-.$$

All 2-simplexes in K_L are *l*-triangles also in these modifications. The cave opening simplexes will always be in certain positions with respect to the cave base, see Sections 2.5 and 3.

A cave complex K_L is thus always obtained by replacing each 2-simplex of K by one or two 2-simplexes. This gives a natural simplicial projection $\pi: |K_L| \rightarrow |K|$. If $T \in M^2 \setminus \{T_0\}$, the 2-subcomplex $N = \omega(T)$ of K_L with $|\omega(T)| = \pi^{-1}T$ is said to be *inherited* from T. The 2-subcomplex of N, the 2-simplexes of which are the A_+ 's $(A_-$'s), is denoted by N_+ (N_-) . The 2-subcomplex of N which π leaves invariant is denoted by N_0 . The map π induces from u_T positive normals on the 2-simplexes of N.

2.5. Cave refinements. Let $T \in M^2 \setminus \{T_0\}$ and N be as in the last paragraph, and let $J = N_0 \cap N_+$ ($= N_+ \cap N_-$). We shall next form opened cave complexes such that the

cave bases are subsets of N_0^2 . There exists a set Ω_0 of disjoint such cave bases such that

- (1) for each $Q \in \Omega_0$ $Q \subset N_0^2$ and the last side of Q is in J,
- (2) $U_{Q \in \Omega_0} Q = N_0^2$,
- (3) $\sigma(Q) \leq 10\nu$ for all $Q \in \Omega_0$.

Let $Q \in \Omega_0$, let s be the last side of Q, and let A_+ and A_- be the 2-simplexes of N_+ and N_- with $A_+ \cap A_- = s$. We form (l-1)-subdivisions of elements in $Q' = Q \cup \{A_+, A_-\}$ and an opened cave complex with Q as a cave base and A_+ and $A_$ as cave opening simplexes. Recall that the sides of each 2-simplex in N are given partition numbers. The union of these cave complexes when Q runs over Ω_0 is denoted by $K(\Omega_0)$. Some 2-simplexes in $N_+ \cup N_-$, namely those which appear as cave opening simplexes, are replaced by (l-1)-subdivisions followed by a simplicial homeomorphism when $K(\Omega_0)$ is formed.

With N₀ replaced by N₊ and N₋ we form similarly corresponding sets Ω_+ and Ω_{-} . Let $Q' \in \Omega_{+}$ and let s be the last side of Q'. Then $s=A \cap B$ for some $A \in N_{0}^{2}$, $B \in N_{-}^2$. We shall now form a union of complexes which we again call an opened cave complex with Q' as a cave base and A and B as cave opening simplexes. The difference from the constructions in $K(\Omega_0)$ is that now we use the (l-1)-triangles already constructed, possibly together with some (l-1)-subdivisions for 2-simplexes not earlier subdivided. We require that if s is also a last side of $Q \in \Omega_0$ and a and a' are the cave centers in s corresponding to Q and Q', then $\varrho(a, a') \ge 6$ measured in the (l-1)subdivisions. This requirement makes it possible to do the opening constructions independently. We also require that each $A \in N_0^2$ contains a last side for at most one cave base $Q' \in \Omega_+$. The union of these cave complexes is denoted by $K(\Omega_+)$. We can choose Ω_+ so that the angles in the bendings for any $Q' \in \Omega_+$ do not exceed $\pi/3$. Note that $K(\Omega_0) \cap K(\Omega_+)$ is a nonempty union of 2-complexes. In a similar way we form $K(\Omega_{-})$ using also (l-1)-triangles already constructed in $K(\Omega_{0}) \cup K(\Omega_{+})$. We require that if Q and Q' are any two in $\Omega = \Omega_0 \cup \Omega_+ \cup \Omega_-$ with a common last side s, then $\varrho(a, a') \ge 6$ for the cave centers a and a' of Q and Q' in s. We write $K(\Omega) = K(\Omega_0) \cup K(\Omega_+) \cup K(\Omega_-)$ and say that $K(\Omega)$ is obtained from N by cave refinement and that $K(\Omega)$ is inherited from N. We write $K(\Omega) = \omega(N) = \omega^2(T)$. All 2-simplexes of $K(\Omega)$ are admissible. In Section 3 we shall use the symbol Ω for a generic notation of a set of cave bases as presented here.

2.6. $\delta_{\mathcal{F}}$ inheriting. Let N and $K(\Omega)$ be as in Section 2.5. Fix $A_0 \in N^2$. If $a \in int A_0$, $B^3(a, t) \setminus A_0$ has exactly two components for small t. Two such components are said to

be equivalent if they lie on the same side of A_0 . Let us call the equivalence classes δ_1 and δ_2 . This equivalence relation is extended naturally over sides which are common for two 2-simplexes. If three 2-simplexes A_1, A_2 , and A_3 in N have a common side, we deliver the classes as in Figure 2.2 by introducing a third class δ_3 . We extend the definition of the equivalence classes for $K(\Omega)$ in a natural way as follows. For a 2simplex B in $K(\Omega)$ which is kept untouched when the cave refinement is performed, the classes remain the same as those for the 2-simplex in N containing B. We use the same symbols $\delta_1, \delta_2, \delta_3$ for the classes in all cases.

Let $A \in N^2$ and let δ_j and δ_k be the classes of A. We define a union $\omega_j(A)$ of 2complexes as a subset of $K(\Omega)$ as follows. The 2-simplexes of $\omega_j(A)$ are desribed by the following two conditions:

(1) If $D \in \omega(A)^2$ and if δ_i is a class of D, then $D \in \omega_i(A)^2$.

(2) Let A be one of the cave opening simplexes for a cave complex with some base $Q \in \Omega$ and |Q| has not δ_j as a class. If $D \in \omega(B)^2$ for some $B \in Q$ and if δ_j and δ_k are the classes of D, then $D \in \omega_i(A)$.

The condition (2) means that half of the walls of the cave corresponding to Q are in $\omega_i(A)$.

2.7. Map complexes. Let

$$F_{+} = \{ x \in \mathbf{R}^{2} | 0 \le x_{2} \le x_{1} \le 1 \}.$$

We divide the 2-simplex νF_+ into 2-simplexes congruent to F_+ by repeated reflections as shown in Figure 2.3 and call this subdivision the *first canonical subdivision* $(\nu F_+)_{(1)}$ of νF_+ . Let $\lambda > 1$. A pair (A, φ_A) , also denoted by A, is called a L_{λ} -simplex if A is contained in a plane in \mathbb{R}^3 , $\varphi_A: A \to t_A F_+$ is a λ -bilipschitz homeomorphism for some $t_A > 0$, and if $\varphi_A^{-1}|B$ is affine for all $B \in \nu^{-1} t_A((\nu F_+)_{(1)}^{(1)})^2$. Recall that $K^{(i)}$ denotes the *i*th barycentric subdivision of a complex K. The map φ_A defines vertices and sides of A.

Let G be a set of L_{λ} -simplexes and all their faces. G is called a *map complex* (with constant λ) if the following conditions hold (we use notation similar to the simplicial case whenever applicable):

(1) G is locally finite and $|G| = \bigcup \{A | A \in G^2\}$ is either homeomorphic to a closed disk or to \mathbb{R}^2 .

(2) If $A, B \in G^2, A \cap B$ is empty or a set of faces of A and B. Hence, because of (1), if $A \cap B$ contains a side, $A \cap B$ consists of (a) one side, (b) two sides, or (c) one side plus one vertex.

(3) $\sigma(St(v, G))$ is even for $v \in G^0 \cap \text{int } G$.

(4) If A, $B \in G^2$ and $A \cap B \neq \emptyset$, the map $\varphi_B \circ \varphi_A^{-1} | \varphi_A(A \cap B)$ is $x \mapsto t_B x/t_A$.

LEMMA 2.8. Let G be a map complex. Then there exists a decomposition of G^0 into three classes α , β , and γ such that every $A \in G^2$ has one vertex in each class. Such a decomposition is uniquely determined if we fix the classes for the vertices of a side.

Proof. We call a sequence $\Gamma = (A_1, ..., A_k)$ of elements of G^2 a chain connecting A_1 and A_k if $A_i \cap A_{i+1}$ contains at least one side for i=1, ..., k-1. If we in Γ replace a part $(A_i, ..., A_j)$, $1 \le i < j \le k$, where $A_i, ..., A_j \in St(v, G)$ for some $v \in G^0$, by a chain $(B_1, ..., B_m)$ in St(v, G) such that $B_1 = A_i$, $B_m = A_j$, we say that the new chain Γ' is obtained from Γ by an elementary deformation. Fix $A \in G^2$ and let $B \in G^2$. A chain connecting A and B induces naturally an equivalence relation on the vertices of A and B. If an elementary deformation is performed, the relation does not change because of (3). The condition (1) implies that any two chains connecting A and B can be obtained

from one another by a sequence of elementary deformations. Hence the equivalence relation is well defined. This proves the lemma.

2.9. Suppose we are given the decomposition $G^0 = \alpha \cup \beta \cup \gamma$ as in Lemma 2.8 for a map complex G and \dot{G} does not contain sides with vertices $a \in \alpha$ and $b \in \beta$, called $\alpha\beta$ -sides. Then G^2 is the disjoint union of pairs $\{T, T'\}$ such that $T \cap T'$ contains an $\alpha\beta$ -side and we say that G is given a *pairing with common* $\alpha\beta$ -sides. For a map complex G we call the elements of G^2 also 2-simplexes. If H is a subcomplex of G and K a complex such that |K| = |H|, we write also H = G|K (instead of G||K|).

We also need a slightly more general concept, namely a set G as before except that we require only that $\varphi_A^{-1}|B$ be affine for $B \in t_A v^{-1}|((vF_+)_{(1)}^{(i)})^2$ for some fixed i>1. These are called *refined map complexes* (of subdivision order *i*).

3. Basic cave and map complexes

In this section we shall lay a basis for all later constructions by defining a part of a union M_{∞} of 2-complexes (see Section 4.1). As indicated in the introduction, the space $|M_{\infty}|$ will be an approximation of $f^{-1}(S^2 \cup B^2)$. Along with the construction of M_{∞} we define certain map complexes which will guide the definition of f on level surfaces defined in Section 4.

3.1. First cave refinements. Recall that $v=24\,000$. Set

$$E_0 = \{x \in \mathbf{R}^2 | \sqrt{3} | x_2 | \le x_1 \le \sqrt{3} / 2 \}$$

and let M_* be the 2-complex with space \mathbb{R}^2 obtained by successive reflections in the sides of E_0 . For k=0, 1, ... we let M_{k0} be the 2-complex with $M_{k0}^2 = \{\nu^k E_0\}$. We let K_{10} be the subcomplex of M_* with $|K_{10}| = |M_{10}|$ and write $K_{k0} = \nu^{k-1} K_{10}$, k=2, 3, ... Then K_{k0} is a (k-1)-subdivision of M_{k0} .

We are going to define unions M_{kq} of 2-complexes obtained by successive cave refinements for $1 \le q \le k-1$, $k \ge 2$. To define M_{21} we take the 1-subdivision K_{20} of M_{20} . Let K'_{20} be the complex obtained from K_{20} by reflecting through the line $\{x \in \mathbb{R}^2 | x_1 = \sqrt{3} \nu^2 / 2\}$. We form a (nonopened) cave complex K_L with $K = K_{20} \cup K'_{20}$ and M_{20}^2 as the cave base. We let M_{21} be $\omega(M_{20})$. Recall the inheriting operation ω from Section 2.4.

207

We use similarity to define M_{31} , namely, we put $M_{31}=\nu M_{21}$. Consequently, $M_{31}=\omega(M_{30})$. It is clearly possible to choose a cave refinement of M_{31} such that the obtained refinement $\omega(M_{31})$ includes M_{21} . We set $M_{32}=\omega(M_{31})$.

Supposing that M_{kq} is obtained by some rules by cave refinements from M_{k0} we shall fix the δ_j -inheriting defined in Section 2.6 by letting M_{k0} have classes δ_1 and δ_2 and by letting the elements of δ_1 for M_{k0} lie in $H_+ = \{x \in \mathbb{R}^3 | x_3 > 0\}$. We let M_{kqj} , j=1,2,3, be the union of 2-complexes such that M_{kqj}^2 consists of all A in M_{kq}^2 having δ_j as a class.

3.2. First map complexes. On each $|M_{kqj}|$ we shall define a map complex G_{kqj} . In the definitions of M_{kq} and G_{kqj} we shall make use of as much similarity as possible when raising k by 1.

By definition $M_{201}=M_{202}=M_{20}$. Fix $\lambda=20$. We let $G_{201}=G_{202}$ (G_{203} is not defined) be a map complex with constant λ and with a given decomposition $\alpha \cup \beta \cup \gamma$ of G_{201}^0 as in Lemma 2.8 such that

- (i) $|G_{201}| = |M_{20}|$.
- (ii) $|M_{20}^i|$ contains only $\alpha\gamma$ -sides of G_{201} and each point in M_{20}^0 is an α -vertex,
- (iii) $\sigma(G_{201}) = \nu^2$.

Map complexes with the properties we need are easily constructed by starting from a sufficiently regular simplicial triangulation, taking the barycentric subdivision, and then adjusting the number of 2-simplexes by replacing some sides by pairs A, B of type (b) in condition (2) in Section 2.7.

To define G_{21j} we shall give the 2-simplexes of M_{21} weights as follows. We can define a map w_2 of M_{21}^2 into the set of positive integers N such that for $B, B' \in M_{21}^2$

- (a) 6 divides $w_2(B)$,
- (b) $\Sigma_{B \in M_{21}^2} w_2(B) = v^4$,
- (c) $w_2(B)/H^2(B) \leq 4$,
- (d) $w_2(B) H^2(B')/(w_2(B') H^2(B)) \leq 4$,
- (e) $w_2(|M_{10}|) = v^2$.

We can construct a map complex G_{21j} with an α, β, γ decomposition and with constant λ on $|M_{21j}|$, j=1, 2, 3, such that the following conditions hold:

- (1) $G_{21i}|M_{10}=\nu^{-1}G_{201}, i=1, 2.$
- (2) $|M_{21j}^1| \subset |G_{21j}^1|$, $M_{21j}^0 \subset G_{21j}^0$.
- (3) $|M_{21j}^1|$ contains only $\alpha\gamma$ -sides of G_{21j} and each point in M_{21j}^0 is an α -vertex.
- (4) $\sigma(G_{21i}) = v^4$ and for each $A \in M_{21i}^2$

$$\sigma(G_{21j}|A) = w_2(A) + \frac{1}{2} \sum_{B \in Q(A,j)} w_2(B),$$

where

$$Q(A, j) = \{B \in M_{21}^2 | A \neq B, \ \omega_j(\nu A) \cap \operatorname{int} \omega(\nu B) \neq \emptyset\}$$

Here νA and νB are elements in M_{31}^2 and ω and ω_j are the inheriting operations for $M_{31} \rightarrow M_{32}$ and $M_{31j} \rightarrow M_{32j}$.

(5) The α, β, γ decomposition is chosen so that the maps $\varphi_C: C \to t_C F_+$, $C \in G^2_{21j}$, satisfy $\varphi_C^{-1}(0) \in \alpha, \varphi_C^{-1}(t_C e_1) \in \beta, \varphi_C^{-1}(t_C(e_1+e_2)) \in \gamma$.

Because of (3) G_{21j} can be given a pairing with common $\alpha\beta$ -sides and such a pairing is induced in each $A \in M_{21j}^2$. The set Q(A, j) appearing in (4), if nonempty, corresponds to the cave base νQ having νA as a cave opening simplex and not having δ_j as a class when M_{32} is formed from M_{31} by cave refinement. Hence such Q is an element of an Ω for M_{21} . Note, however, that no cave refinement is done for M_{21} .

We proceed by defining G_{31j} on $|M_{31j}|$, j=1, 2, 3, by similarity, i.e. $G_{31j}=\nu G_{21j}$. Also the maps $\varphi_{\nu B}$, $B \in M_{21}^2$, are induced by similarity, i.e. $\varphi_{\nu B}(x) = \nu \varphi_B(x/\nu)$. A weight function $w_3: M_{32}^2 \rightarrow \mathbb{N}$ is now defined so that the following conditions are satisfied where *B* is any element in M_{21}^2 :

- (a') 6 divides $w_3(C)$, $C \in M_{32}^2$.
- (b') $\Sigma_{C \in \omega(vB)^2} w_3(C) = v^2 w_2(B).$
- (c') $w_3(C)/H^2(C) \le w_2(B)/H^2(B), C \in \omega(\nu B)^2$.

(d') $w_3(C) H^2(C')/(w_3(C') H^2(C)) \le 4$ whenever $C, C' \in \omega(\nu B)^2$ or $C, C' \in M^2_{32}$, $C \cap C' \neq \emptyset$.

(e') $w_3|M_{21}^2 = w_2$.

We can construct a map complex G_{32j} with a α, β, γ decomposition and with constant λ on $|M_{32j}|$, j=1,2,3, such that the conditions (2), (3), and (5) hold with M_{21j} and G_{21j} replaced by M_{32j} and G_{32j} , and such that (1) and (4) are replaced by the following conditions:

$$(1') \ G_{32j}|M_{21j}=G_{21j}.$$

(4') Let $B \in M_{21}^2$. Then

$$\sigma(G_{32i}|\omega(\nu B)\cap M_{32i})=\nu^2 w_2(B)$$

and for each $A \in \omega(\nu B) \cap M_{32j}^2$

209

$$\sigma(G_{32j}|A) = w_3(A) + \frac{1}{2} \sum_{C \in Q(A, j)} w_3(C)$$

where Q(A, j) is defined by means of an Ω for $\omega(\nu B)$ similarly as explained above after the condition (5).

3.3. Canonical subdivisions. Recall the first canonical subdivision $(\nu F_+)_{(1)}$ of νF_+ from Section 2.7. We give $(\nu F_+)_{(1)}^0$ the decomposition $\alpha \cup \beta \cup \gamma$ as in Figure 3.1. If G is any map complex G_{kqj} or its restriction to a map subcomplex, we form the first canonical subdivision $G_{(1)}$ of G by giving each $A \in G^2$ the subdivision induced by $x \mapsto \varphi_A^{-1}(t_A x/\nu)$ from $(\nu F_+)_{(1)}$. Because of (4) in Section 2.7 $G_{(1)}$ is a map complex and the decomposition $\alpha \cup \beta \cup \gamma$ of $(\nu F_+)_{(1)}^0$ is induced on $G_{(1)}^0$.

The second canonical subdivision is formed as follows. In $\nu(\nu F_+)_{(1)}$ we form in the 2-simplex νF_+ the first canonical subdivision $(\nu F_+)_{(1)}$ and continue this to all 2-simplexes in $\nu(\nu F_+)_{(1)}$ in a congruent way. The obtained map complex is called the second canonical subdivision $(\nu^2 F_+)_{(2)}$ of $\nu^2 F_+$. The decomposition $\alpha \cup \beta \cup \gamma$ of $(\nu^2 F_+)_{(2)}^0$ for the part $(\nu F_+)_{(1)}^0$ is as in Figure 3.1. If G is as above, the second canonical subdivision $G_{(2)}$ of G is induced from $(\nu^2 F_+)_{(2)}$ via the maps $x \mapsto \varphi_A^{-1}(t_A x/\nu^2)$. Similarly we form the kth canonical subdivision $G_{(k)}$ of G.

The main idea in the construction of the map complexes G_{kqj} is to give a rearrangement process to the pairs of 2-simplexes with common $\alpha\beta$ -sides. For example, we should think $G_{32j}|\omega_j(\nu B)$ for $\nu B \in M_{31j}^2$ as a map complex obtained by a rear-

rangement of the pairs with common $\alpha\beta$ -sides in $(G_{31j})_{(1)}|\nu B$. This is the meaning of conditions (4) and (4') in Section 3.2.

3.4. General induction step. We have $\sigma(G_{32j})/\sigma(G_{31j})=v^2$. From (8) in Section 2.2 we obtain $v^2 \leq \sigma(M_{313}) \leq 4v^2/3$ and directly from the construction that $\sigma(M_{311})=\sigma(M_{312})=v^2$. From the construction together with (8) in Section 2.2 we get furthermore $\sigma(M_{32j})>1.55v^4$, j=1,2,3. Hence $\sigma(M_{32j})/\sigma(M_{31j})>1.55v^2$, j=1,2, and $\sigma(M_{323})/\sigma(M_{313})>1.15v^2$. These ratios are essentially larger than $\sigma(G_{32j})/\sigma(G_{31j})=v^2$, and this means in particular that if we would copy the steps in Section 3.2 to be used as an induction step, the number of 2-simplexes of G_{kqj} in a 2-simplex of M_{kqj} would have a tendency to decrease essentially. However, we want to keep this number above a fixed bound. This will be arranged by leaving out sometimes cave refinements when M_{kq} is formed from $M_{k,q-1}$.

Suppose M_{kq} , $q \le k-1$, is formed from $M_{k,q-1}$ by some cave refinements. The notations ω and ω_j are inheriting operations when a cave refinement is performed. We need also indexed inheriting operations $\omega_{k,q-1}: M_{k,q-1}^2 \to \mathcal{P}(M_{kq})$ and $\omega_{k,q-1,j}: M_{k,q-1,j}^2 \to \mathcal{P}(M_{k,q,j})$, j=1,2,3, defined as follows. We set $\omega_{k,q-1}(A)=A$ if $A \in M_{k,q-1}^2$ is not replaced by $\omega(A)$ when M_{kq} is formed and $\omega_{k,q-1}(A)=\omega(A)$ otherwise, and similarly for $\omega_{k,q-1,j}$.

With a certain integer *m* defined below, we shall first proceed by induction up to $k \le m-1$ as follows. M_{kq} and G_{kqj} are defined to be $\nu M_{k-1,q}$ and $\nu G_{k-1,q,j}$ by similarity for $1 \le q \le k-2$, j=1,2,3, and $M_{k,k-1}$ and $G_{k,k-1,j}$ are defined exactly as M_{32} and G_{32j} in Section 3.2 by shifting only indexes. This includes then the definition of the weight functions w_k . The integer *m* is the first k+2 such that $w_k(D) < \nu$ for some $D \in M_{k,k-1}^2$. Then we set $M_{mq} = \nu M_{m-1,q}$, $G_{mqj} = \nu G_{m-1,q,j}$ for $1 \le q \le m-2$, j=1,2,3. For each $D \in M_{m-2,m-3}^2$ we perform in $\omega_{m,m-3}(\nu^2 D) = \omega(\nu^2 D)$ a cave refinement if $w_{m-2}(D) \ge \nu$, otherwise not. This procedure gives $M_{m,m-1}$ as a union of complexes. Since $w_{m-2}|M_{m-3,m-4}^2 = w_{m-3}$, the condition $w_{m-2}(D) \ge \nu$ holds for all $D \in M_{m-3,m-4}^2 \subset M_{m-2,m-3}^2$. Hence we may do the construction of $M_{m,m-1}$ so that $M_{m-1,m-2} \subset M_{m,m-1}$.

In the definition of the weight function $w_m: M^2_{m,m-1} \to \mathbb{N}$ the conditions are as before for a $B \in M^2_{m-1,m-2}$ such that $\omega(\nu B) \subset M_{m,m-1}$. For a $B \in M^2_{m-1,m-2}$ such that $\nu B \in M^2_{m,m-1}$ we only replace (b') in Section 3.2 by

(b'') $w_m(vB) = v^2 w_{m-1}(B)$.

We construct a map complex $G_{m,m-1,j}$ with constant λ on $|M_{m,m-1,j}|$ by replacing

(4') in Section 3.2 by the following condition (4") and changing in the other conditions of (1')-(5') in Section 3.2 only indexes.

(4") Let first $D \in M^2_{m-2,m-3}$ be such that $w_{m-2}(D) \ge v$. If $B \in \omega_{m-1,m-3}(vD)^2$, then

$$\sigma(G_{m,m-1,j}|\omega(\nu B)\cap M_{m,m-1,j})=\nu^2 w_{m-1}(B)$$

and for each $A \in \omega(\nu B) \cap M^2_{m,m-1,j}$

$$\sigma(G_{m,m-1,j}|A) = w_m(A) + \frac{1}{2} \sum_{C \in \mathcal{Q}(A,j)} w_m(C)$$

where Q(A, j) is defined by means of an Ω for $\omega(\nu B)$. Secondly, if $D \in M^2_{m-2,m-3}$ is such that $w_{m-2}(D) < \nu$, then $G_{m,m-1,j} | \omega_{m,m-2} \omega_{m,m-3}(\nu^2 D) \cap M_{m,m-1,j} = G_{m,m-1,j} | \omega_{m,m-3}(\nu^2 D) \cap M_{m,m-2,j}$ is the first canonical subdivision $(G_{m,m-2,j} | \omega_{m,m-3}(\nu^2 D) \cap M_{m,m-2,j})_{(1)}$.

Figure 3.2 (not in scale) represents schematically the various simplexes appearing in (4'') in the first case.

In (4") we have in the first case $w_{m-2}(D) \ge v$ that $\omega(vB) \subset M_{m,m-1}$ and in the second

case $w_{m-2}(D) < v$ that $\omega(v^2D) \subset M_{m,m-1}$. We use similarity and put $M_{m+1,q} = vM_{mq}$ and $G_{m+1,q,j} = vG_{m,q,j}$ for $1 \leq q \leq m-1, j=1,2,3$. For each $E \in M_{mq}^2$ with $\omega(E) \subset M_{m,m-1}, \omega(vE)$ is replaced by a cave refinement if $\sum \{w_m(C) | C \in \omega(E)^2\} \geq v^3$, otherwise not. This will define $M_{m+1,m}$ if we also require, as we may, that $M_{m,m-1} \subset M_{m+1,m}$. Note that this agrees with the rule for the construction of $M_{m,m-1}$.

To construct $G_{m+1,m,j}$ we define w_{m+1} as w_m by raising the indexes by 1. In the definition of $G_{m+1,m,j}$ all other conditions are the same as before except for a slight change of (4") to the following form:

(4"") Let $E \in M_{mq}^2$ be such that $\omega(E) \subset M_{m,m-1}$. If $\Sigma \{w_m(B) | B \in \omega(E)^2\} \ge \nu^3$ and if $B \in \omega(E)^2$, then

$$\sigma(G_{m+1,m,j}|\omega(\nu B)\cap M_{m+1,m,j})=\nu^2 w_m(B)$$

and for each $A \in \omega(\nu B) \cap M^2_{m+1, m, j}$

$$\sigma(G_{m+1,m,j}|A) = w_{m+1}(A) + \frac{1}{2} \sum_{C \in Q(A,j)} w_{m+1}(C)$$

where Q(A, j) is defined by means of an Ω for $\omega(\nu B)$. If $\sum \{w_m(B)|B \in \omega(E)^2\} < \nu^3$, then

$$G_{m+1,m,j}|\omega(\nu E)\cap M_{m+1,m,j}=(G_{m+1,m-1,j}|\omega(\nu E)\cap M_{m+1,m,j})_{(1)}.$$

The general induction step will be the same as the step from m to m+1 just completed.

4. The construction of the map on some level surfaces

We shall now start the definition of the map f to be constructed. The definition will be continued in Section 6 where we extend it to layers between the level surfaces given here.

4.1. Notation. We shall extend the notions in Section 3. Therefore we write from now on $M_{kq}(0)$ instead of M_{kq} , constructed in Section 3, and similarly for other notions. Let ε_h be the reflection in the half plane $\{(r, \varphi, x_3) | \varphi = \pi/6 + (h-1)\pi/3, r \ge 0, x_3 \in \mathbb{R}^1\}$ presented in cylinder coordinates, h=1, ..., 5.

We let $M_{kq}(h) = \varepsilon_h M_{kq}(h-1)$, h=1, ..., 5, and set now

$$M_{kq} = \bigcup_{h=0}^{5} M_{kq}(h)$$

Similar extension is performed to other notions. Next we write

$$M_{j}(h) = \bigcup_{k=2}^{\infty} M_{k,k-1,j}(h), \quad j = 1, 2, 3, \quad h = 0, \dots, 5,$$
$$M_{j} = \bigcup_{h=0}^{5} M_{j}(h), \quad j = 1, 2, 3,$$
$$M_{\infty} = M_{1} \cup M_{2} = M_{1} \cup M_{2} \cup M_{3}.$$

Similarly we define $G_i(h)$ and G_i .

The set $\mathbb{R}^3 \setminus |M_{\infty}|$ has eight components. For j=1, 2 the elements of the class δ_j lie in one component V_j and the elements of δ_3 in six components $V_3(h)$ with $\partial V_3(h) = |M_3(h)|$.

4.2. A level surface. We shall here give the construction of a certain surface in V_1 which the final map f to be constructed will take onto a sphere. The constructions in V_2 and $V_3(h)$, h=0, ..., 5, are similar. The surface will be the space $|N_1|$ of a union N_1 of 2-complexes and it is in general approximately at the distance $\nu^{-1/2} d(A)$ from $|M_1|$ near a simplex $A \in M_1^2$. The conditions for N_1 are the following:

(1) There exists a simplicial homeomorphism $\psi: |M_1| \rightarrow |N_1|$ by which we mean that simplexes of M_1 are mapped onto simplexes of N_1 affinely. Note that M_1 and N_1 are not complexes.

(2) Let $A \in M_1^2$ be an *l*-triangle. If every $B \in M_1^2$ with $B \cap A \neq \emptyset$ is an *l*-triangle, then $|\psi(x)-x| < 3\nu^{l-1/2}$ for all $x \in A$ and the distance of A and $|N_1|$ satisfies $d(A, |N_1|) > \nu^{l-1/2}$. Let $B \in M_1^2$ be an (l+1)-triangle and $A \cap B \neq \emptyset$. Then $|\psi(x)-x| < 9\nu^l$ for $x \in A \cap B$, $d(A, \psi A) > \nu^{l-1/2}$, and $d(B, \psi B) > 3\nu^l$.

(3) ψ is 20-bilipschitz.

(4) $|N_1| \subset V_1$.

It follows from the construction rules that such N_1 and ψ exist. N_1 is obtained by simple moving of the vertices of M_1 .

4.3. The map on level surfaces. We shall now first define the map f on $|N_1|$. Let $D \in N_1^2$. The map ψ induces in a natural way a pair δ_1 , δ_j of classes for D. A normal of D pointing towards the elements of δ_j is called an *outward normal* of D (with respect to δ_1). A simple closed path γ in D is *positively oriented* (with respect to δ_1) if there is a sense preserving similarity map h of \mathbb{R}^3 which takes the outward normal of D to e_3 , $hD \subset \mathbb{R}^2$, and $h \circ \gamma$ is positively oriented in \mathbb{R}^2 . We fix a 20-bilipschitz homeomorphism ζ of F_+ onto $S_+^2 = \{x \in S^2 | x_3 \ge 0\}$ such that ζ induces from the positively oriented boundary

 $|\dot{F}_{+}|$ positive orientation on its image $S^{1} \subset \mathbb{R}^{2}$. On $|N_{1}|$ we have the map complex $H_{1} = \psi G_{1}$. The vertex assignment of G_{1} is transferred to H_{1} by ψ . We call $C \in H_{1}^{2}$ positively (negatively) oriented (with respect to δ_{1}) if along a positively oriented $|\dot{C}|$ the vertex classes follow in the order α, γ, β (α, β, γ). Let $\kappa: \mathbb{R}^{3} \to \mathbb{R}^{3}$ be the reflection in \mathbb{R}^{2} . We define a map g_{0} of $|N_{1}|$ such that for $C \in H_{1}^{2}, B = \psi^{-1}C$,

$$g_0|C = \zeta \circ \frac{1}{t_B} \varphi_B \circ \psi^{-1}|C \text{ if } C \text{ is positively oriented,}$$
$$g_0|C = \varkappa \circ \zeta \circ \frac{1}{t_B} \varphi_B \circ \psi^{-1}|C \text{ if } C \text{ is negatively oriented.}$$

For real numbers μ we write

$$s_{\mu}=e^{-1}\exp\nu^{\mu+1}.$$

Then we set

$$f||N_1| = (s_0, g_0)$$

where (s_0, g_0) is presented in spherical coordinates $(t, y), t \ge 0, y \in S^2$.

By the construction of M_1 and N_1 , the surfaces $\nu^{2i}|N_1|$, i=0, 1, 2, ..., are disjoint. We shall next define f on $\nu^{2i}|N_1|$, i=1, 2, ... For this we use similarity as follows. We take the 2*i*th canonical subdivision $(\nu^{2i}G_1)_{(2i)}$ of $\nu^{2i}G_1$. In this subdivision each $\nu^{2i}A \in \nu^{2i}G_1^2$ is divided into ν^{4i} 2-simplexes. Let $A \in G_1^2$ and let $\xi_A(x) = \nu^{2i}t_A^{-1}\varphi_A(\psi^{-1}(x/\nu^{2i}))$ for $x \in \nu^{2i}\psi A$. Let $C = \xi_A^{-1}F_+$. We define the restriction on C of a map g_{2i} by

> $g_{2i}|C = \zeta \circ \xi_A|C$ if C is positively oriented, $g_{2i}|C = \varkappa \circ \zeta \circ \xi_A|C$ if C is negatively oriented.

Repeated reflections in the sides of $(\nu^{2i}F_+)_{(2i)}$ gives a map $w: \nu^{2i}F_+ \to F_+$. If $B \in (\nu^{2i}\psi A)_{(2i)}^2$, we set

 $g_{2i}|B = \zeta \circ w \circ \xi_A|B$ if B is positively oriented,

 $g_{2i}|B = \varkappa \circ \zeta \circ w \circ \xi_A|B$ if B is negatively oriented.

In other words, $g_{2i}|C$ is extended to $\nu^{2i}\psi A$ by these natural reflections. We can glue all such maps together to get a map

$$g_{2i}: \nu^{2i}|N_1| \to S^2. \tag{4.4}$$

Then we set

$$f|v^{2i}|N_1| = (s_{2i}, g_{2i}), \quad i = 0, 1, \dots.$$
 (4.5)

The map g_{2i} factorizes now as

$$g_{2i} = v_{2i} \circ \bar{g}_{2i} \tag{4.6}$$

where \bar{g}_{2i} is defined by similarity from g_0 , i.e.

$$\bar{g}_{2i}(x) = g_0(x/\nu^{2i}), \quad i = 1, 2, ...,$$
 (4.7)

and $v_{2i}: S^2 \rightarrow S^2$ is a discrete open map of degree v^{4i} . We call this factorization the *canonical factorization* of g_{2i} . The map v_{2i} depends only on ζ and *i*.

We extend the definition of g_{2i} and \bar{g}_{2i} to the surfaces $|N_2|$ and $|N_3(h)|$, h=0, ..., 5, corresponding to $|N_1|$ by the same rules as above when δ_1 is changed to δ_2 and δ_3 . To define f on these surfaces we need homeomorphisms $\varkappa_2: \bar{U}_1 \rightarrow \bar{U}_2 \setminus \{u_2\}$, $\varkappa_3: \bar{U}_1 \rightarrow \bar{U}_3 \setminus \{u_3\}$ where U_1, U_2 , and U_3 are the components of $\mathbb{R}^3 \setminus (S^2 \cup B^2 \cup \{u_2, u_3\})$ such that $u_j \in \bar{U}_j$, j=2, 3, and $u_2 = -e_3/2$, $u_3 = e_3/2$. Let w_2 be the Möbius transformation of $\bar{\mathbb{R}}^3$ which keeps S^1 fixed and takes S^2_+ onto \bar{B}^2 . We define \varkappa_2 and \varkappa_3 such that $\varkappa_2|U_1: U_1 \rightarrow U_2$ and $\varkappa_3|U_1: U_1 \rightarrow U_3$ are quasiconformal and on the boundary $\varkappa_2|S^2_+ = \varkappa|S^2_+, \varkappa_2|S^2_- = w_2 \circ \varkappa|S^2_-, \varkappa_3|S^2_+ = w_2|S^2_+, \varkappa_3|S^2_- = \varkappa|S^2_-$. Then set

$$f|v^{2i}|N_2| = \varkappa_2 \circ (s_{2i}, g_{2i}), \quad i = 0, 1, \dots,$$
(4.8)

$$f|\boldsymbol{\nu}^{2i}|N_3(h)| = \boldsymbol{\varkappa}_3 \circ (s_{2i}, g_{2i}), \quad i = 0, 1, \dots, \quad h = 0, \dots, 5.$$
(4.9)

5. Deformation of 2-dimensional maps

In this section we shall present a method of deforming discrete open maps of plane domains into S^2 . Our maps to be deformed are given by means of map complexes in the same way as the maps in Section 4.3. In fact, the deformations are used in Sections 6 and 7 to define f between the level surfaces given in Section 4. The extensive studies of deformations by M. Morse and M. Heins for example in [6] have not turned out to be useful here. In our method it is important to have the map at hand at every stage of the deformation.

5.1. Elementary deformations. Let G be a finite map complex with some constant $\lambda > 1$ such that $|G| \subset \mathbb{R}^2$. Recall that by definition |G| is then homeomorphic to a closed disk. We assume that G^0 is given a decomposition $\alpha \cup \beta \cup \gamma$ and that G does not contain

any $\alpha\beta$ -sides. Hence we can give G a pairing with common $\alpha\beta$ -sides. We fix $-e_3$ to be the outward normal for |G|. This defines then positively oriented 2-simplexes of G. Let $\zeta: F_+ \rightarrow S_+^2$ be as in Section 4.3. We define $g: |G| \rightarrow S^2$ (cf. the definition of g_0 in Section 4.3) by

$$g|C = \zeta \circ \frac{1}{t_C} \varphi_C \quad \text{if } C \in G^2 \text{ is positively oriented,}$$
$$g|C = \varkappa \circ \zeta \circ \frac{1}{t_C} \varphi_C \quad \text{if } C \in G^2 \text{ is negatively oriented,}$$

and say that g is represented by the map complex G. Its restriction to int G is a discrete open mapping into S^2 . We shall in the following perform deformations of g by one parameter families of maps g_t so that g_t depends piecewise smoothly on t and each $g_t | \text{int } G$ is discrete open. In each complete deformation the final map is induced by some refined map complex (see Section 2.9) in the same way as g.

We shall first define a deformation called exchange of sides. We start with a topological description. Let r and s be two $\alpha\gamma$ -sides of G with a common α -vertex a_0 and different γ -vertices c_1 and c_2 . In Figure 5.1 we have $St(a_0, G)$ of an example of this. In what follows we shall in general use the letters a, b, c for points in the classes α, β, γ respectively, possibly with subscripts. Image points will be indicated by primes. We assume that $St(r, G) \cup St(s, G)$ does not meet $|\dot{G}|$. According to our convention, the simplex A is positively oriented and g maps it onto the upper hemisphere S_+^2 . Let X and Z be the two middle sides between r and s with vertex a_0 (see Figure 5.1). We define a family g_t , $t \in [0, 1]$, of maps as follows. During $0 \le t \le 1/2$ we move g in $St(a_0, G)$ by a C^1

Fig. 5.2.

move so that the point a_0 becomes a branch point with local index 2 (Figure 5.2). The sides in Figure 5.2 form the preimage of S^1 under $g_{1/2}$. The points e_1 and e_2 are mapped onto a point e' between a' and b'. If there are three or more sides emanating from a_0 on the same "side" of $r \cup s$ as X (as in Figure 5.2), then e_1 becomes a branch point and this branch point moves from a_0 to e_1 along X during $0 \le t \le 1/2$ and the image of this branch point moves from a' to e' along S^1 , and similarly for e_2 . If the local index of g is already 2 at a_0 , $g_t=g$ for $t \in [0, 1/2]$. During $1/2 \le t \le 1$ we move c_1 and c_2 to a_0 and at the same time we move the image of a_0 to c' and the image of e_1 and e_2 from e' to a'. We rename points for obvious reasons: a_0 will be c_0 and e_1 and e_2 will be a_1 and a_2 (Figure 5.3). We get topologically a new set G_1 of 2-simplexes and their faces. We see that G_1 is obtained from G by replacing the pair r, s of sides by the sides $c_0 a_1, c_0 a_2$.

15-858286 Acta Mathematica 154. Imprimé le 15 mai 1985

We can do the reformation g_t , $t \in [0, 1]$, in addition so that the following metrical conditions are fullfilled:

(1) The map $g^x: [0, 1] \to S^2$, $g^x(t) = g_t(x)$, is L-Lipschitz for all $x \in |G|$, L depending only on λ .

(2) for $x \in C \in G^2$ and $t \in [0, 1]$

$$\frac{1}{t_C Q(\lambda)} \leq l(x, g_t) \leq L(x, g_t) \leq \frac{Q(\lambda)}{t_C}$$

where the constant $Q(\lambda) > 0$ depends only on λ and where

$$l(x, g_{t}) = \liminf_{h \to 0} \frac{|g_{t}(x+h) - g_{t}(x)|}{|h|},$$
$$L(x, g_{t}) = \limsup_{h \to 0} \frac{|g_{t}(x+h) - g_{t}(x)|}{|h|}$$

(3) The sides of G_1 are contained in $|H^1|$ where H is the *i*th barycentric subdivision $(G)_{(1)}^{(i)}$ of the first canonical subdivision $(G)_{(1)}$ of G where *i* depends only on λ . Barycentric subdivisions are defined by means of the maps φ_A , $A \in G^2$.

(4) G_1 can be made to be a refined map complex of subdivision order *i* and constant λ_1 , depending only on λ , and g_1 is represented by G_1 .

To achieve these conditions only elementary methods are needed and the details are omitted. This completes the definition of exchange of sides of the pair r, s.

Next we shall define a deformation called moving of a simple cover. A simple cover at X in the map complex G is the restriction of g to $A \cup B$ where A, B is a pair with

 $X=A\cap B$ being two sides, i.e. we have case (2) (b) in Section 2.7. Let A, B be such a pair so that $St(A, G) \cup St(B, G)$ does not meet $|\dot{G}|$ and let Y be an $\alpha\gamma$ -side or a $\beta\gamma$ -side of $G \setminus (St(A, G) \cup St(B, G) \cup \dot{G})$. Set $D=A \cup B$. We shall define a family $g_t, t \in [0, 1]$, of maps so that g_1 is represented by a refined map complex G_1 obtained from G by "collapsing" the pair A, B to one side X and "expanding" the side Y to a pair A_1, B_1 of type (2) (b) in Section 2.7 with $Y=A_1\cap B_1$. The simple cover g|D has the properties that $g|(D \setminus \partial D)$ covers once $S^2 \setminus g \partial D, g \partial D$ is an arc in S^1 , and the endpoints of X are branch points of g. During $0 \le t \le 1$ we move the simple cover g|D to a simple cover $g_1|D_1$ where $D_1=A_1\cup B_1$. This means that we at the same time move the arc $g\partial D$. For $0 \le t \le 1$ let the moving simple cover be $g_t|D_t$ and $D_t=A_t\cup B_t$ (Figure 5.4). Let \hat{G} be the set of 2-simplexes and their faces obtained from G by collapsing the pair A, B to one side X. If E is the union of elements in \hat{G}^2 which meet D_t for some $t \in [0, 1[, g_t will coincide with$ $g outside int E for <math>t \in [0, 1]$. The map $g_t|(D_t \setminus \partial D_t)$ covers once $S^2 \setminus g_d \partial D_t$ for $t \in [0, 1]$, and $g_1 \partial D_1$ is $gY \subset S^1$. The set E is called the *joining set* for the move.

The metrical conditions (1)-(4) are the same except that in (1) we replace L by mL where m is the number of 2-simplexes in the set E above. The obtained family g_t , $t \in [0, 1]$, is called a move of a simple cover at the arc X to the side Y, or also a move of the pair A, B to Y.

Let now A, B be a pair in G of type (2) (a) in Section 2.7, i.e. $X=A \cap B$ is one side. Then one endpoint a_0 of X is an α -point. Let the γ -points of A and B be c_1 and c_2 and let r and s be the sides a_0c_1 and a_0c_2 of A and B respectively. Let us assume that $St(r, G) \cup St(s, G)$ does not meet |G|. We perform a deformation g_t , $t \in [0, 1]$, of exchange of sides to the pair r, s. Then the pair A, B is deformed to a pair A_1, B_1 of type (b) in the new refined map complex G_1 with $X=A \cap B=A_1 \cap B_1$ and $g_1|A_1 \cup B_1$ is a simple cover. If we move this simple cover to a side Y of G as above by a deformation g_t , $t \in [1, 2]$, we also here say that we move the pair A, B to the side Y by the deformation g_t , $t \in [0, 2]$. The various deformations presented above are called elementary. We can apply these deformations also to a refined map complex instead of G.

As a main result of this section we shall prove a deformation lemma suitable for our purposes. I want to point out, however, that the method presented here is quite general and could be used to produce many other results as well. In the proof of the deformation lemma we need the following result for PL homeomorphisms. The idea of the proof of Lemma 5.2 was given to me by Pekka Tukia.

LEMMA 5.2. Let Q>1, ι a positive integer, Δ an equilateral triangle in \mathbb{R}^2 with side length 1 and origin as center, let K and M be 2-complexes with space $|K|=|M|=\Delta$ such

that $\iota^2 = \sigma(K^2) = \sigma(M^2)$ and each $A \in K^2 \cup M^2$ can be mapped affinely onto $\iota^{-1}\Delta$ with bilipschitz constant Q. Let $K|\dot{\Delta} = M|\dot{\Delta}$ and let $h: \Delta \to \Delta$ be a simplicial homeomorphism with respect to K and M such that $h||\dot{\Delta}|$ is the identity. Then there is a PL isotopy h_t , $t \in [0, 1]$, of PL homeomorphisms $h_t: \Delta \to \Delta$ such that

- (1) h_0 is the identity, $h_1 = h$,
- (2) h_t is L_0 -bilipschitz, L_0 depending only on ι and Q,
- (3) the map $h^x: [0, 1] \rightarrow \Delta$, $h^x(t) = h_t(x)$, is L_0 -Lipschitz for all $x \in \Delta$,
- (4) $h_t ||\dot{\Delta}|$ is the identity.

Proof. Let W be the family of all maps h as in the lemma for constants Q and ι . Let W be the family of all triples (h, K, M) as in the lemma. To simplify notation, we write h for such a triple. There is a finite subset W' of W depending on ι and Q with the following property: If $h \in W$, there exists $u \in W'$ and an isotopy u_t , $t \in [1/2, 1]$, between $u_{1/2}=u$ and $u_1=h$ which is obtained by moving vertices along line segments and such that the bilipschitz constant of u_t is bounded by L, depending only on Q, and $u^x: [1/2, 1] \rightarrow \Delta$, $u^x(t)=u_t(x)$, is 2-Lipschitz. Let $W'=\{h^1, \ldots, h^m\}$. For each h^i we can (see [1, Lemma IV.24]) choose a PL isotopy $h_t^i: \Delta \rightarrow \Delta$, $t \in [0, 1/2]$, such that

- (a) h_0^i is the identity, $h_{1/2}^i = h^i$,
- (b) $h_t^i | \dot{\Delta}$ is the identity for all $t \in [0, 1/2]$.

The bilipschitz constant L_t^i of h_t^i depends continuously on t, hence $L_1 = \max \{L_t^i | 1 \le i \le m, \ 0 \le t \le 1/2\} < \infty$. If $h^{ix}(t) = h_t^i(x)$ and L_x^i is the Lipschitz constant of h^{ix} , also $L_2 = \max \{L_x^i | 1 \le i \le m, \ x \in \Delta\} < \infty$. For $u = h^i$ we define the isotopy h_t , $t \in [0, 1]$, by

$$h_t = h_t^i, \quad 0 \le t \le 1/2,$$

 $h_t = u_t, \quad 1/2 \le t \le 1.$

We can make L_1 and L_2 depend only on ι and Q. This proves the lemma.

DEFORMATION LEMMA 5.3. Let Δ be the 2-simplex as in Lemma 5.2 and let G and G' be map complexes with constant λ such that the following conditions hold:

(1) $2\Delta \subset |G| = |G'| \subset \mathbb{R}^2$.

(2) G^0 and G'^0 are given decompositions into classes α, β, γ and pairings with common $\alpha\beta$ -sides.

(3) $|\dot{\Delta}| \subset |G^1|$, and G and G' coincide together with the α, β, γ decompositions and maps φ_A in $|G| \setminus \Delta$.

221

- (4) $|\dot{\Delta}|$ contains only $\alpha\gamma$ -sides of G, and hence of G'.
- (5) $\sigma(G|\Delta) = \sigma(G'|\Delta) = \tau$ and $0 < \delta_1 \le d(A) \le \delta_2 < 1/50$ for all $A \in G^2 \cup G'^2$.

Let $g: |G| \rightarrow S^2$ and $g': |G'| \rightarrow S^2$ be the maps as in Section 5.1 with respect to G and G' respectively. Then $g=g_0$ can be deformed as a family $g_t, t \in [0,\mu]$, to the map $g_{\mu}=g'$ such that the following conditions hold:

(i) Each g_t is a mapping of |G| onto S^2 such that it is discrete open in int G, $g_t(|G| \ge \Delta) = g|(|G| \ge \Delta)$ and the inequalities

$$0 < C_1(\lambda, \tau, \delta_1, \delta_2) \leq l(x, g_t) \leq L(x, g_t) \leq C_2(\lambda, \tau, \delta_1, \delta_2)$$

hold for all $x \in |G|$.

(ii) $\mu \leq P\tau$ where P is an absolute constant.

(iii) Let $g^{x}(t) = g_{t}(x)$. Then for all $x \in |G|$, $g^{x}: [0,\mu] \to S^{2}$ is an L-Lipschitz map with $L \leq C(\lambda, \tau, \delta_{1}, \delta_{2})$.

Proof. The strategy is to deform both g and g' so that $g|\Delta$ and $g'|\Delta$ are replaced by a bunch of simple covers.

We start by deforming g. Because of (4), $G|\Delta$ has a pairing with common $\alpha\beta$ -sides. First we show that there exists at least one pair of type (2) (a) or (2) (b) in Section 2.7 in $G|\Delta$. Suppose all pairs in $G|\Delta$ are of type (c). Let A_1, B_1 be a pair in $G|\Delta$. Then $\mathbb{R}^2 \setminus \operatorname{int} (A_1 \cup B_1)$ has a bounded component $C_1 \subset \Delta$. Also C_1 contains a pair A_2, B_2 and $\mathbb{R}^2 \setminus \operatorname{int} (A_2 \cup B_2)$ a bounded component $C_2 \subset C_1$, $C_2 \neq C_1$. By repeating this we end up with a contradiction because $G|\Delta$ is finite.

By (5) we can fix a side Y_1 of G in $(3/2) \Delta \setminus (4/3) \Delta$ which is an $\alpha\gamma$ -side or an $\beta\gamma$ side. We can take a pair A_1, B_1 of type (a) or (b) in $G|\Delta$ and move it to the side Y_1 . During this elementary deformation g is fixed outside the set $|St(A_1, G)| \cup |St(B_1, G)| \cup E$ where E is the joining set. By (5) it is possible to do this deformation so that $g|(|G| \setminus 2\Delta)$ remains fixed. Let the obtained refined map complex be G_1 and let g_1 be the map represented by G_1 . When the pair A_1, B_1 is collapsed, the part $G|\Delta$ has changed to $G_1|V_1$ where int V_1 may have several components. Let U be a component of int V_1 . Since ∂V_1 is connected, U is homeomorphic to a disc. Also ∂U contains only $\alpha\gamma$ -sides and we can repeat the above by replacing Δ by \overline{U} and G by G_1 . The simple cover $g|A_1 \cup B_1$ was moved to a simple cover $g_1|D_1$ at Y_1 . Let Y_2 be a side in $G_1|\partial D_1$. There is a pair A_2, B_2 of type (a) or (b) in $G_1|\overline{U}$. We move the pair A_2, B_2 to the side Y_2 . We can repeat until all pairs originating from $G|\Delta$ have been moved similarly. We end up with a refined map complex G_i and a map $g_i: |G| \rightarrow S^2$ represented by G_i where the original $G|\Delta$ has been transformed to a 1-subcomplex Λ which is a tree plus a bunch

 $g_i|D$ of simple covers, see Figure 5.5. The deformation from g to g_i induces a bijective map $\psi: |\dot{\Delta}| \rightarrow \tilde{\Lambda}$ onto the set $\tilde{\Lambda}$ of boundary elements of $\mathbb{R}^2 \setminus |\Lambda|$. If $\pi: \tilde{\Lambda} \rightarrow |\Lambda|$ is the natural projection, we have

$$g||\dot{\Delta}| = g_i \circ \pi \circ \psi.$$

Note that Λ consists of $\alpha\gamma$ -sides only. Similarly we deform g' to a map g'_j and get a refined map complex G'_j , a 1-subcomplex Λ' , maps $\psi': |\dot{\Delta}| \rightarrow \tilde{\Lambda}'$ and $\pi': \tilde{\Lambda}' \rightarrow |\Lambda'|$, and a bunch $g'_j|D'$ of simple covers. We do the construction so that D=D' and $g_i|D=g'_j|D$. This is possible because of (3) and (5).

Next we fix a γ -vertex $c \in G^0 \cap |\dot{\Delta}| = G'^0 \cap |\dot{\Delta}|$. It corresponds to vertices $c_0 \in \Lambda$ and $c'_0 \in \Lambda'$ by the maps $\pi \circ \psi$ and $\pi' \circ \psi'$. We shall continue deformations so that Λ and Λ' become simple arcs where the points corresponding c_0 and c'_0 are endpoints. First we define a deformation called moving of an endside. Let r be a side of Λ which is an end of Λ , i.e. the other endpoint of r, say c_1 , is a vertex of one side of Λ only. Let us assume that c_1 is a γ -vertex. Let $s \neq r$ be a side of Λ so that r and s are induced from neighboring sides in $G||\dot{\Delta}|$ by the map $\pi \circ \psi$. We deform g_i by moving two pairs from D to the sides r and s (Figure 5.6). Then the arcs r and s are divided by β -points b_1 and b_2 . Let r_1 and s_1 be the new sides in the arcs r and s with the common vertex a_0 . Next we perform the exchange of sides first to the pair r_1, s_1 and obtain Figure 5.7 and then to

the sides $b_0 c_1$ and $b_0 c_2$ in Figure 5.7 and obtain Figure 5.8. There we see two simple covers which we finally move back to D to the original places. As a result, r is moved a distance of one side along $\tilde{\Lambda}$, Λ is changed to a 1-subcomplex Λ_1 of a new refined map complex, and the new side r^* is again an end of Λ_1 (Figure 5.9). We call this deformation the *moving of the endside r to* c_2 .

By using repeatedly the deformation of moving an endside we may now deform g_i as follows. Take a subcomplex Λ_1 of Λ such that $|\Lambda_1|$ is a maximal simple arc having c_0 as one endpoint. Let d be the other endpoint of Λ_1 . Since Λ_1 is maximal, only one side of Λ contains d. We may assume $\Lambda_1 \neq \Lambda$. There exists an endside r not belonging to Λ_1 . We move r by repeatedly using the moving of an endside to d, call the new side r_1 , and add r_1 to Λ_1 to form a new subcomplex Λ_2 of a 1-complex which replaces Λ . Repeating this we obtain a deformed g_k of g_i such that Λ is deformed to a 1-subcomplex Λ_0 of the refined map complex G_k corresponding to g_k such that $|\Lambda_0|$ is a simple arc with c_0 as one endpoint. Similarly we deform g'_i to a map g'_i such that Λ' is deformed to a 1-subcomplex Λ'_0 of a map complex G'_i such that $|\Lambda'_0|$ is a simple arc with c'_0 as one endpoint. The maps g_k and g'_i are topologically equivalent.

We still have to deform g_k to g'_i . For this we will apply Lemma 5.2. It follows from (5) and the metrical conditions for the elementary deformations that the deformations g_t , $t \in [0, k]$, and g'_t , $t \in [0, l]$, satisfy conditions of the form (i), (ii), and (iii). The refined map complexes G_k and G'_l are of some subdivision orders m and n respectively, have a constant λ_0 , and m, n, and λ_0 depend only on λ , τ , δ_1 , and δ_2 . Let $q=\max(m, n)$. Set $K=(G'_{k(1)})^{(q)}|2\Delta$, $M=(G'_{l(1)})^{(q)}|2\Delta$, and let $h:2\Delta\rightarrow 2\Delta$ be the simplicial homeomorphism with respect to K and M defined by $g'_l \circ h|2\Delta = g_k|2\Delta$. Then, if Δ is replaced by 2Δ in Lemma 5.2, h satisfies the conditions of Lemma 5.2 with constants ι and Qdepending only on λ , τ , δ_1 , and δ_2 . The isotopy h_t given by Lemma 5.2 defines a deformation g_t , $t \in [k, k+1]$, by $g_t|2\Delta = g_k \circ h_{t-k}^{-1}, g_t|(|G| \setminus 2\Delta) = g$. By taking the deformation g_t , $t \in [0, k+1]$, and after this the deformation g'_t , $t \in [0, l]$, backwards we get the required deformation. The lemma is proved.

5.4. Remark. It follows from the proof of Lemma 5.3 that the deformation lemma is valid also for refined map complexes G and G' in a form where the constants in the statements (i)-(iii) depend also on the subdivision orders of G and G'.

6. The construction of the map between level surfaces

In this section we shall extend the definition of f to the layers between the level surfaces defined in Section 4. An essential role is played by the deformation lemma from Section 5. These extensions must still be glued together near $|M_{\infty}|$, which will be accomplished in the next section.

6.1. Straightening of layers. We shall first define bilipschitz maps which straighten pieces between level surfaces. Let us consider the layer Λ between $|N_1|$ and $|\nu^2 N_1|$ which is the closure of the domain bounded by $|N_1| \cup |\nu^2 N_1|$.

As a preliminary step we shall remove the caves of "finest order" in $|N_1|$. Let C, Dbe a pair of cave opening simplexes with δ_1 as one class such that $\omega_1(C), \omega_1(D) \subset M_1$ and $C, D \in \omega_1(C') \cup \omega_1(D')$ for some $C', D' \in v^2 M_1$. Let P_C be the 2-complex $\psi(\omega_1(C)|(|\omega_1(C)| \setminus \operatorname{int} \omega(C)))$ and $P_D = \psi(\omega_1(D)|(|\omega_1(D)| \setminus \operatorname{int} \omega(D)))$. Then $P = P_C \cup P_D$ forms the "walls" of the cave in $|N_1|$ corresponding to the pair C, D. The 1-complex \dot{P} has four vertices a, b, c, d so that $c \in P_C \setminus P_D$, $d \in P_D \setminus P_C$, $a, b \in P_C \cap P_D$. Let E be the third 2-simplex in M_{kq} which has a common side with C and D if $C, D \in M_{kq}$.

Let T be the plane containing E and let $e \in T \setminus E$ be a point such that the 2-simplex $\langle \psi^{-1}(a), \psi^{-1}(b), e \rangle \subset T$ is an equilateral triangle. Then the 3-simplexes $X = \langle a, b, c, e \rangle$ and $Y = \langle a, b, d, e \rangle$ are in Λ . The polyhedron R bounded by $|P| \cup \langle a, b, c \rangle \cup \langle a, b, d \rangle$ is the "cave part" and will be pushed into $X \cup Y$ as follows. Set $R^* = R \cup X \cup Y$.

We need some elementary maps. Let L be the 1-complex which defines the cave in $\omega_1(C) \cup \omega_1(D)$ and let K be the union of complexes such that K_L is the corresponding cave complex. Let v be an end vertex of L which is not the last vertex of L, and let s be the side in L which has v as a vertex. Set $L' = L \setminus \{s, v\}$. We shall here push R by a PL homeomorphism into a polyhedron R' corresponding to L'. Let w be the other endpoint of s. Let us assume that the ϱ_K -distance of v to $L^0 \setminus \{v, w\}$ is at least 2. Let r be the side in St(v, K) opposite s, let V and V' (W and W') be the 2-simplexes in St(v, K) with r (s) as a side, and let $\{Z, Z'\} = St(v, K)^2 \setminus \{V, V', W, W'\}$. We assume that int $(V \cup W \cup Z)$ lies in one component of $|St(v, K)| \setminus (r \cup s)$. When K is formed, each U of these

2-simplexes is replaced by two 2-simplexes U_{-} and U_{+} . We may assume that each U_{+} is in $\omega_{1}(C)$.

We first push the part R_0 of R spanned by $I_0 = \psi(V_- \cup V_+ \cup V'_- \cup V'_+)$ into the part R_1 of R defined correspondingly by Z, Z', W, and W' by a PL homeomorphism $h_0: R^* \to \overline{R^* \setminus R_0}$ which is simplicial on the boundary. More precisely, let $\{v_-\} = \psi(V_- \cap W_-), \{v_+\} = \psi(V_+ \cap W_+)$, let v_0 be the barycenter of $\langle v_-, v_+ \rangle$, and let P_0 be the subcomplex of P with $|P_0| = I_0$. The map h_0 will take I_0 simplicially with respect to P_0 onto $|v_0 \dot{P}_0|$ and it is the identity on $(\partial R^* \setminus I_0) \cup (R^* \setminus (R_0 \cup R_1))$. We can in addition choose h_0 to be locally θ_0 -bilipschitz with θ_0 an absolute constant.

Next we push the part R_2 of $h_0 R^*$ spanned by $\psi(Z_- \cup Z_+)$ into the part R_3 spanned by $\psi(W_- \cup W_+)$ similarly by a *PL* homeomorphism $h_1: \overline{R^* \setminus R_0} \rightarrow \overline{R^* \setminus (R_0 \cup R_2)}$ such that h_1 takes $I_1 = h_0(\psi(V_- \cup V_+)) \cup \psi(Z_- \cup Z_+)$ simplicially onto $|v_1 P_1|$ where v_1 is the barycenter of the triangle $R_2 \cap R_3$. Here $h_0(\psi(V_- \cup V_+))$ is given the subdivision induced by h_0 from P_0 , and P_1 is defined as a complex with $|P_1| = I_1$ similarly as earlier. Let us define corresponding sets with primes. Then we push R'_2 into R'_3 similarly by a *PL* homeomorphism $h'_1: \overline{R^* \setminus (R_0 \cup R_2)} \rightarrow \overline{R^* \setminus (R_0 \cup R_2 \cup R'_2)}$.

Let $\{z\}=\psi(W_{-}\cap W_{+}), \{z'\}=\psi(W'_{-}\cap W'_{+})$. One endpoint of $\psi(W_{+}\cap W'_{+})$ is v_{+} . Let the other be w_{+} and define w_{-} similarly. Let w_{0} be the barycenter of $\langle w_{-}, w_{+} \rangle$. Let R_{4} and R_{5} be the polyhedra spanned by $\{z, z', v_{0}, v_{+}, w_{+}\}$ and $\{z, z', v_{0}, w_{+}, w_{0}\}$ respectively. We push R_{4} into R_{5} similarly as above by a *PL* homeomorphism h_{2}^{+} : $h'_{1}h_{1}h_{0}R^{*} \rightarrow h_{2}^{+}h'_{1}h_{1}h_{0}R^{*}$ so that $h_{2}^{+}(v_{+})$ is the barycenter of $\langle v_{0}, w_{+} \rangle$. Similarly we define a map h_{2}^{-} : $h_{2}^{+}h'_{1}h_{1}h_{0}R^{*} \rightarrow h_{2}^{-}h_{2}^{+}h'_{1}h_{1}h_{0}R^{*}$. Set $h=h_{2}^{-}h_{2}^{+}h'_{1}h_{1}h_{0}$. The map h is now the required *PL* homeomorphism which pushes R into R'. If the ϱ -distance of v to $L^{0} \setminus \{v, w\}$ is 1, the map h is defined with obvious modifications. The complex L' is again a tree.

We can apply maps like h repeatedly to get a PL homeomorphism $\varphi: \mathbb{R}^* \to X \cup Y$ which has the following properties:

(1) $\varphi|(\partial R^* \setminus |P|)$ is the identity and φ is simplicial on P.

(2) φ is locally exp $(\theta_1 v^3)$ -bilipschitz where θ_1 is an absolute constant.

We assume now that all caves of the described type have been pushed in. We extend the obtained maps φ to the rest of Λ by identity and call the extended map φ_0 . The set $\varphi_0 N_1$ is again a union of complexes.

Next we define the union M'_1 of complexes which we obtain from $\nu^2 M_1$ by applying the operation ω_1 once. More precisely, $M'_1 = \bigcup \{\omega_1(A) | A \in \nu^2 M_1^2\}$. Then $|M'_1| \cap |\nu^2 N_1| = \emptyset$. Let Λ' be the layer bounded by $|M'_1| \cup |\nu^2 N_1|$. At this point it is

elementary to perform a *PL* homeomorphism $\varphi_1: \varphi_0 \Lambda \rightarrow \Lambda'$ with the following properties:

(a) φ_1 is 10-bilipschitz.

(b) $\varphi_1 || \nu^2 N_1 |$ is the identity.

(c) φ_1 maps $\varphi_0|N_1|$ onto $|M'_1|$ simplicially in the sense that φ_1 is affine in each simplex of $\varphi_0 N_1$.

(d) Let $A \in v^2 M_1^2$ and $B \in \omega_1(A)^2$. If $B \in M_{k,k-2,1}^2$, $\varphi_1 \varphi_0 \psi | \omega_{k,k-2,1}(B) | = B$. If $B \in M_{k,k-1,1}^2, \varphi_1 \varphi_0 \psi B = B$.

We proceed now somewhat similary with Λ' as we did with Λ . First we push in all caves of finest order in M'_1 by the same method as before and obtain a *PL* homeomorphism φ'_0 of Λ' which is locally $\exp(\theta_1 v^3)$ -bilipschitz, the identity on $|v^2N_1|$, and simplicial on M'_1 . After this we perform a *PL* homeomorphism φ'_1 of $\varphi'_0 \Lambda'$ onto the layer Λ'' bounded by $|v^2M_1| \cup |v^2N_1|$ such that (c) and (d) are replaced by the following conditions:

(c') φ'_1 maps $\varphi'_0|M'_1|$ onto $|\nu^2 M_1|$ simplicially.

(d') For each $A \in v^2 M_1$, $\varphi'_1 \varphi'_0 |\omega_1(A)| = A$.

Finally we shall map pieces of Λ'' onto products as follows. First we construct a family of *PL* homeomorphisms ψ_A , $A \in v^2 M_1^2$, with the following properties:

(i) If A is an *l*-triangle, ψ_A is a map of $A^* \times [0, \nu^l]$ into Λ'' , where $A^* = uA \subset \mathbb{R}^2$ and u is a motion in \mathbb{R}^3 . Moreover, ψ_A is u^{-1} on A^* and maps $A^* \times \{\nu^l\}$ affinely onto $\nu^2 \psi(\nu^{-2}A)$. We set here $I_A = [0, \nu^l]$, $\tau_A = \nu^l$.

(ii) The sets $X_A = \operatorname{Im} \psi_A$ form a decomposition of Λ'' such that for $A \neq B \in \nu^2 M_1^2$, $X_A \cap X_B$ is either empty or $\psi_A(r \times I_A) = \psi_B(s \times I_B)$ where r and s are sides of A^* and B^* respectively. Let in the latter case $r = \langle a, b \rangle$, $s = \langle c, d \rangle$, and $\psi_A(a) = \psi_B(c)$. If $\tau \in I_A$, $\tau' = \tau_B \tau / \tau_A$, $x = \mu a + (1 - \mu) b$, $x' = \mu c + (1 - \mu) d$, and $0 \leq \mu \leq 1$, then $\psi_A(x, \tau) = \psi_B(x', \tau')$.

(iii) Every ψ_A is 40-bilipschitz.

The construction of the maps ψ_A is elementary. For each $A \in v^2 M_1^2$ we write $W_A = |St(A, v^2 M_1)|$ where $St(A, v^2 M_1)$ is the union of subcomplexes of $v^2 M_1$ whose 2-simplexes meet A. By the construction of M_1 we can extend $\psi_A | A^* \times \{0\}$ to a PL homeomorphism $\psi_A^0: V_A \to W_A$, where $V_A \subset \mathbb{R}^2 \times \{0\} = \mathbb{R}^2$, such that $(\psi_A^0)^{-1}$ is affine in each simplex in $St(A, v^2 M_1)$ and such that ψ_A^0 is θ' -bilipschitz where θ' is an absolute constant. We let $\eta_A: V_A \times I_A \to \Lambda''$ be the extension of ψ_A defined by

$$\eta_A(x,\tau) = \psi_B(\psi_B^{-1}\psi_A^0(x), \tau_B \tau/\tau_A) \quad \text{if } x \in (\psi_A^0)^{-1}B, \ B \in St(A, \nu^2 M_1)^2, \ \tau \in I_A.$$

The map η_A is a *PL* homeomorphism onto $\eta_A(V_A \times I_A)$ and it is θ'' -bilipschitz where θ'' is an absolute constant.

6.2. The extension of the map to layers between level surfaces. We continue to consider the layer Λ between $|N_1|$ and $|v^2N_1|$. The map $\xi = \varphi'_1 \varphi'_0 \varphi_1 \varphi_0$: $\Lambda \to \Lambda''$ induces the map complex ξH_1 on $\xi |N_1| = |v^2M_1|$. On $|v^2N_1| \xi$ is the identity and there we have the map complex v^2H_1 . Recall the maps g_{2i} , i=0, 1, ... from (4.4). Our task is to deform $\varphi'_0 = g_0 \circ \xi^{-1} ||v^2M_1| : |v^2M_1| \to S^2$ to $\varphi'_1 = g_2$: $|v^2N_1| \to S^2$ when we move from $|v^2M_1|$ to $|v^2N_1|$. These maps are represented by $\Gamma'_0 = \xi H_1$ and the second canonical subdivision $\Gamma'_1 = (v^2H_1)_{(2)}$ of v^2H_1 respectively.

To apply the Deformation lemma 5.3 we perform a preliminary deformation which adjusts the map complexes so that they correspond on the sides of $\nu^2 M_1$ and $\nu^2 N_1$. According to the construction Γ'_0 and Γ'_1 contain only $\alpha\gamma$ -sides on the sides of $\nu^2 M_1$ and $\nu^2 N_1$ respectively and the vertices are α -vertices. For $0 \le t \le 1$ we let S_t be the surface $\{\psi_A(x, \tau) | x \in A^*, \tau = t\tau_A, A \in \nu^2 M_1^2\}$ and call S_t the t-level.

Let $A \in v^2 M_1^2$ be an *l*-triangle such that all $B \in v^2 M_1^2$ with a common side with A are *l*-triangles or (l+1)-triangles. Let r be a side of A^* . Suppose there are p pairs of sides less in $\Gamma'_0|\eta_A r$ than in $\Gamma'_1|\eta_A(r \times \{\tau_A\})$. We apply repeatedly the elementary deformation of exchange of sides (see Section 5.1) to pairs of sides in $\Gamma'_1|\eta_A(r \times \{\tau_A\})$). More precisely, let $\pi: \mathbb{R}^3 \to \mathbb{R}^2$ be the orthogonal projection, $\sigma_t: V_A \to V_A \times \{t\tau_A\}$ the map with $\pi \circ \sigma_t$ the identity, $0 \le t \le 1$, let Γ_i be the map complex $\pi \eta_A^{-1} \Gamma_i$, and $\varrho_i: V_A \to S^2$ the map $\varrho_i' \circ \eta_A \circ \sigma_i$ which is represented by Γ_i , i=0, 1. We perform a deformation ϱ_i , $t \in [3/4, 1]$ of ϱ_1 starting from t=1 which consists of p repeated exchanges of sides, where in each a pair of side in r is removed, and in addition such a PL homeomorphism which moves the vertices of the obtained refined map complex along r so that we end up with a refined map complex $\Gamma_{3/4}$ which coincides with Γ_0 on r. Such a PL homeomorphism clearly exists. If p is negative, we perform a similar deformation during $t \in [0, 1/4]$ and change the role of ρ_0 and ρ_1 . The part of exchanges of sides can clearly be done for each side of $v^2 M_1$ corresponding to a side like r simultaneously during $t \in [0, 1/4]$ and $t \in [3/4, 1]$. On the level surface S_t we obtain for these t a map $\varrho'_t: S_t \to S^2$ defined by $\varrho_t'|Y_A^t = \varrho_t \circ \pi \circ \eta_A^{-1}|Y_A^t$ where $Y_A^t = \eta_A(V_A \times I_A) \cap S_t$.

According to the construction of M_1 there is a decomposition $\mathscr{A}_1 \cup ... \cup \mathscr{A}_i$ of $v^2 M_1^2$ into disjoint subsets \mathscr{A}_j with the property that int $St(A, v^2 M_1) \cap \operatorname{int} St(B, v^2 M_1) = \emptyset$ for all $A, B \in \mathscr{A}_j$ with $A \neq B$, and *i* depends only on v. We divide [1/4, 3/4] into intervals $I_j = [t_{j-1}, t_j] \ j = 2, ..., i+1$, of equal length corresponding to the sets \mathscr{A}_j .

Let $A \in \mathcal{A}_1$ and let the notation be as above. By performing a preliminary homeomorphism of V_A , which is simplicial with respect to $\eta_A^{-1}(\nu^2 M_i|W_A)$, if necessary, we may assume that A^* is the Δ as in the Deformation lemma 5.3 and $2\Delta \subset V_A$. We now want to apply Lemma 5.3 together with Remark 5.4 to the map $g = \varrho_{r_1} = \varrho_{1/4}$ and to

 $g': V_A \rightarrow S^2$ defined by

$$g'|A^* = \varrho_{3/4}|A^*,$$
$$g'|(V_A \setminus A^*) = \varrho_{1/4}|(V_A \setminus A^*).$$

All other assumptions in Lemma 5.3 are satisfied except possibly $d_2 < 1/50$ in (5), but this we achieve by choosing the various preliminary maps properly. We obtain a deformation $\varrho_t, t \in [t_1, t_2]$, with $\varrho_{t_2} = g'$. On the *t*-levels we have then the maps $\varrho'_t: Y_A^t \to S^2, \ \varrho'_t = \varrho_t \circ \pi \circ \eta_A^{-1} | Y_A^t, \ t \in [t_1, t_2]$. By the definition of the sets \mathcal{A}_j we can do such a deformation for all $A \in \mathcal{A}_1$ simultaneously and we obtain maps $\varrho'_t: S_t \to S^2, \ t \in [t_1, t_2]$, if we in addition put $\varrho'_t | X_B \cap S_t = \varrho_{t_1} \circ \pi \circ \psi_B^{-1} | X_B \cap S_t$ for $B \in \nu^2 M_1^2$ with int $B \cap \bigcup \{W_A | A \in \mathcal{A}_1\} = \emptyset$. By continuing similarly for the subsets $\mathcal{A}_2, \ldots, \mathcal{A}_i$ we get all together a family $\varrho'_t: S_t \to S^2, \ t \in [0, 1]$, of maps which deforms ϱ'_0 to ϱ'_1 .

We are now in a position to define f in the layer Λ between $|N_1|$ and $|\nu^2 N_1|$. Recall the formula (4.5) for the definition of f on original level sets:

$$f|v^{2i}|N_1| = (s_{2i}, g_{2i}), \quad i = 0, 1, \dots$$

Here $s_{\mu} = e^{-1} \exp \nu^{\mu+1}$ for all $\mu \in \mathbb{R}^1$. The definition in $\Lambda = \Lambda_0$ is given by (the map ξ is given in the beginning of Section 6.2)

$$f|(\xi^{-1}S_t) = (s_{2t}, g_{2t}), t \in [0, 1],$$

where $g_{2t} = \varrho'_t \circ \xi | (\xi^{-1}S_t)$. Write $\Sigma_{2t} = \xi^{-1}S_t$, $t \in [0, 1]$.

To define f in any other layer Λ_i between $|v^{2i}N_1|$ and $|v^{2i+2}N_1|$, i=1, 2, ..., we use similarity as follows. In the deformation we replace g_0 and g_2 by the maps \bar{g}_{2i} and $v_2 \circ \bar{g}_{2i+2}$ where we recall the formulae (4.6) and (4.7): $g_{2i}=v_{2i}\circ \bar{g}_{2i}, \bar{g}_{2i}(x)=g_0(x/v^{2i})$. From the deformation we obtain maps $\bar{g}_{2i}: \Sigma_{2i} \rightarrow S^2$, $t \in [i, i+1]$, where Σ_{2t} is again a level surface between $|v^{2i}N_1|$ and $|v^{2i+2}N_1|$, and $\bar{g}_{2i}=\bar{g}_{2i}, \ \bar{g}_{2i+2}=v_2\circ \bar{g}_{2i+2}$. Set $g_{2t}=v_{2i}\circ \bar{g}_{2t}: \Sigma_{2t}\rightarrow S^2$, $t \in [i, i+1]$. Observe that $v_{2i}\circ v_2=v_{2i+2}$, so that this agrees with the earlier definitions of g_{2i} and g_{2i+2} . In Λ_i we define f then by

$$f|\Sigma_{2t} = (s_{2t}, g_{2t}), \quad t \in [i, i+1].$$
(6.3)

We have now defined f in

$$W_1' = \bigcup_{i=0}^{\infty} \Lambda_i.$$
 (6.4)

The construction has been carried out so that $f|int W'_1$ is K-quasiregular, K depending only on λ and ν .

The set W'_1 is contained in V_1 (see Section 4.2). The construction of f in a corresponding subset W'_2 of V_2 and in a subset $W'_3(h)$ of $V_3(h)$, h=0,...,5, is similar. We use formulae corresponding to (4.8) and (4.9).

7. Final glueing

In this section we shall complete the construction for the case p=2 by performing a glueing near the set $|M_{\infty}|$ of the maps $f|W'_1, f|W'_2, f|W'_3(h), h=0, ..., 5$, constructed in Section 6. The constructions resemble the cave construction, but we work this time directly with map complexes rather than complexes.

7.1. New map complexes. On $|M_1|$ we have the map complex G_1 . Transferring it to $|N_1|$ by the map $\psi: |M_1| \rightarrow |N_1|$ we obtained the map complex H_1 . Corresponding to M_2 and $M_3(h)$, $h=0, \ldots, 5$, we have map complexes G_2 , $G_3(h)$, H_2 , $H_3(h)$, $h=0, \ldots, 5$. To simplify notation in the conditions (1)-(4) below we write for a moment $M_3(h)=M_{3+h}^*$, $h=0, \ldots, 5$, $M_j=M_j^*$, j=1, 2. We define new map complexes \mathcal{G}_j with constant $\lambda=20$ on M_j^* , $j=1, \ldots, 8$, which satisfy the following conditions:

(1) \mathscr{G}_i and \mathscr{G}_j coincide together with the maps φ_A on common parts of $|M_i^*|$ and $|M_i^*|$.

(2) $|M^1_{\infty}| \subset |\mathscr{G}^1_1 \cup \mathscr{G}^1_2|, \ M^0_{\infty} \subset \mathscr{G}^0_1 \cup \mathscr{G}^0_2.$

(3) \mathscr{G}_{j}^{0} has a decomposition into classes α, β, γ , and these coincide on common parts for different j. $|M_{\infty}^{1}|$ contains only $\alpha\gamma$ -sides and M_{∞}^{0} consists only of α -vertices.

(4) If $C \in M_{k,k-1}^2 \cap M_j^*$, then $\sigma(\mathscr{G}_j|C) = w_k(C)/2$, where w_k was defined in Sections 3.2 and 3.4.

We have $\mathscr{G}_1 \cup ... \cup \mathscr{G}_8 = \mathscr{G}_1 \cup \mathscr{G}_2$. Set $\mathscr{G}_{\infty} = \mathscr{G}_1 \cup \mathscr{G}_2$. We shall now construct a new kind of cave refinement on the basis of \mathscr{G}_{∞} . Let $A \in M_{kq}^2$ be such that $\omega(A) \subset M_{k,k-1}$. Write $\mathscr{G}_A = \mathscr{G}_{\infty} | \omega(A)$. The definition of $w_k: M_{k,k-1}^2 \to \mathbb{N}$ includes an assignment of an Ω for $\omega(A)$. Choose one point a_B in the interior of each $B \in \mathscr{G}_{\infty}^2$. For $Q \in \Omega$ and for $T \in Q$ we choose a union L_T of simple arcs s(B, C) in T each of which joins two points a_B, a_C through exactly one common side of some B and C. Such points form the set L_T^0 of vertices of L_T . We require the following:

(a) L_T is a tree and an endvertex $p_T = a_B \in L_T^0$ exists such that a side of $B_T = B \in \mathscr{G}_A^0$ is contained in the last side of T. We choose p_T to be the last vertex in L_T^0 . This gives L_T^0 a natural order.

(b) $L_T^0 = \{a_B | B \in \mathscr{G}_{\infty}^2 | T\}.$ (c) Let

If T is the last in Q and S is the last in $Q' \in \Omega$, $Q' \neq Q$, then $B_T \cap |J|$ is different from $B_S \cap |J|$.

 $J = \bigcap_{i=1}^{3} M_{k,k-1,j} | \omega(A).$

(d) Let T be in Q which is not the last, and let S be the successor of T. We can join L_T to L_S by an additional arc s_T of the type s(B, D) where $a_B = p_T$ and a_D is an endvertex in L_S^0 . The union of the arcs s_T , $T \in Q$ not the last, and all L_T is denoted by L.

The set L is again a tree and the order in each L_T^0 induces an order in $L^0 = \bigcup_T L_T^0$. This gives an order in \mathscr{G}_Q^2 where $\mathscr{G}_Q = \mathscr{G}_A | Q$. If $B, C \in \mathscr{G}_Q^2$ and C is the successor of B, then the side in $B \cap C$ which meets s(B, C) is the last side of B.

We shall next define positive and negative elements of \mathscr{G}_A^2 . We define outward normals in $\omega(A)$ and positively oriented simple closed paths in any element in $\omega(A)^2$ with respect to δ_j as in Section 4.3. We say that $B \in \mathscr{G}_A^2$ is *positive* if for some *j* the order α, γ, β is positively oriented in $|\dot{B}|$ with respect to δ_j and the classes of *B* are δ_j and δ_k where $k=j+1 \pmod{3}$. Otherwise *B* is *negative*. Let *B* and *C* be two elements in \mathscr{G}_A^2 with at least one common side. It follows from the definition that *B* and *C* have different (same) signs if *B* and *C* have same (different) classes.

7.2. New caves. In our new cave constructions we shall now replace each positive 2-simplex in \mathscr{G}_A by two and each negative by four sheets. The purpose of this is to get the right order of entering when we switch from one set $W_j=f^{-1}U_j$, j=1,2,3, to another. Recall that the sets U_j are the components of $\mathbb{R}^3 \setminus (X_0 \cup \{u_2, u_3\})$ where $X_0=S^2 \cup B^2$ and $u_2=-e_3/2$, $u_3=e_3/2$. Note that f is not completely defined yet. The sheets will be attached to each other with certain identifications on the boundaries and they will all be mapped into X_0 by the final map f.

Let $Q \in \Omega$. For each negative $B \in \mathscr{G}_Q^2$ we choose one side r_B , called the *connection* side for B, as follows. If B is not the last in \mathscr{G}_Q^2 , we let r_B be the last side of B. If B is the last in \mathscr{G}_Q^2 , choose one $C \in \mathscr{G}_Q^2$ such that B is the successor of C and let r_B be the last side of C. By the construction such a C exists and it is positive. Suppose the classes of |Q| are δ_1 and δ_2 , $|Q| \subset \mathbb{R}^2$, and that the elements of δ_1 are in $H_+ = \{x \in \mathbb{R}^3 | x_3 > 0\}$. Note that Q belongs then to Ω_0 , see Section 2.5. For $C \in \mathscr{G}_Q^2$ positive we let $\Psi_C^1, \Psi_C^2: C \to \mathbb{R}^3$ be maps which are PL homeomorphisms onto their images and which are parametric

representations of the *sheets* for C to be defined below. Let $\Phi_B^1, ..., \Phi_B^4: B \to \mathbb{R}^3$ be corresponding maps for a negative $B \in \mathscr{G}_Q^2$. The upper indexing shows the order of the sheets when we pass in the negative direction of the x_3 -axis. We set $N = \bigcup \{B \in \mathscr{G}_Q^2 | B \text{ negative}\}, P = \bigcup \{C \in \mathscr{G}_Q^2 | C \text{ positive}\}, \text{ and define } \Phi^m: N \to \mathbb{R}^3 \text{ and } \Psi^n: P \to \mathbb{R}^3$ by means of the maps Φ_B^m and Ψ_C^n respectively in the obvious way. We require that all open sheets Φ^m int B and Ψ^n int C are mutually disjoint and do not touch the sets W_1' , $W_2', W_3'(h), h=0, ..., 5$ (see end of Section 6.2). Let s be a side in \mathscr{G}_Q which is not the last side r of the last in \mathscr{G}_Q' for some $Q' \in \Omega, Q' \neq Q$. We call sides like r excluded for Q in this context. To define the identifications of the maps Φ^m and Ψ^n on s we separate the following cases:

(1) s is not a last side of any element in \mathscr{G}_{O}^{2} .

(2) s is the last side of $D \in \mathscr{G}_Q$, D is not the last of \mathscr{G}_Q^2 , and s is not a connection side.

(3) s is a connection side.

(4) s is the last side of the last in \mathscr{G}_{O} .

The maps Φ^m and Ψ^n are defined in these cases as follows. Here *n* runs over 1,2 and *m* over 1,2,3,4.

Case (1): We let Φ^m and Ψ^n be the identity on s.

Case (2): Let $\pi: \mathbb{R}^3 \to \mathbb{R}^2$ be the ortogonal projection. We set the following conditions in this case:

(a) The endpoints of s are fixpoints for all Φ^m and Ψ^n .

- (b) On s, $\pi \circ \Phi^m$ and $\pi \circ \Psi^n$ are the identity.
- (c) On s, $\Phi^1 = \Phi^2 = \Psi^1$, $\Phi^3 = \Phi^4 = \Psi^2$.
- (d) On int s the third coordinates satisfy $\Phi_3^2 > 0 > \Phi_3^3$.

The purpose of the identifications in case (2) is to get a cave connection in W_3 between the sheets $\Phi^2 B$, $\Phi^3 B$, $\Psi^1 C$, $\Psi^2 C$ where B and C have s as a side. In Figure 7.1

this connection is shown by an arrow. The arrow shows here, and in other figures below, the way towards ∞ in W_j (here j=3). The sets W_j are marked simply by j in the figures. As f is not fully defined yet, we use only the sets W_j in the figures to help the reader to follow the arguments. Formally we give each sheet a pair of classes δ_j such that the elements of the class lie in the set marked by j.

Case (3): Let s be a connection side for B. We shall do the identifications so that cave connections appear as in Figure 7.2. (The arrow for W_3 is in the opposite direction if B is the last of \mathscr{G}_Q^2 .) For this let s be divided into three consecutive closed arcs s_1, s_2 and s_3 of equal length. The conditions (a) and (b) remain the same, we only replace s by s_i , i=1,2,3, in (a), but (c) and (d) are replaced by the following:

(c') On s_i we have

$$\Phi^{1} = \Psi^{1} = \Psi^{2}, \quad \Phi^{2} = \Phi^{3} = \Phi^{4} \quad \text{if } i = 1,$$

$$\Phi^{1} = \Phi^{2} = \Psi^{1}, \quad \Phi^{3} = \Phi^{4} = \Psi^{2} \quad \text{if } i = 2,$$

$$\Phi^{1} = \Phi^{2} = \Phi^{3}, \quad \Phi^{4} = \Psi^{1} = \Psi^{2} \quad \text{if } i = 3,$$

(d') On int s_i we have

$$\Phi_3^1 > 0 > \Phi_3^2 \quad \text{if } i = 1,$$

$$\Phi_3^2 > 0 > \Phi_3^3 \quad \text{if } i = 2,$$

$$\Phi_3^3 > 0 > \Phi_3^4 \quad \text{if } i = 3.$$

The identifications on $s_1(s_3)$ will give a cave connection of $W_2(W_1)$ to the layer between $\Phi^1 B$ and $\Phi^2 B$ ($\Phi^3 B$ and $\Phi^4 B$). The identifications on s_2 are similar to the case (2).

Case (4): Let first the last in \mathscr{G}_Q^2 , say C, be positive. There are two other 2-simplexes in \mathscr{G}_A^2 with s as a side, say D and E. Suppose D is the one with non-negative x_3 -coordinates. According to the definition, D and E are also positive. The conditions for the maps Ψ_C^n , Ψ_D^n , Ψ_E^n on s are the following:

- (a') The endpoints of s are fixpoints for $\Psi_{C}^{n}, \Psi_{D}^{n}, \Psi_{E}^{n}$.
- (b') On s, $\pi \circ \Psi_C^n$ is the identity.
- (c'') On s, $\Psi_C^1 = \Psi_D^1 = \Psi_D^2$, $\Psi_C^2 = \Psi_E^1 = \Psi_E^2$.
- (d'') On int s, $(\Psi_C^1)_3 > 0 > (\Psi_C^2)_3$.

Let then C be negative. The 2-simplexes D and E are then also negative. In (a') and

233

(b') we replace Ψ by Φ and *n* by *m*. The conditions (c") and (d") are replaced by the following:

(c''') On s, $\Phi_C^1 = \Phi_C^2 = \Phi_D^1 = \Phi_D^2 = \Phi_D^3 = \Phi_D^4$, $\Phi_C^3 = \Phi_E^4 = \Phi_E^1 = \Phi_E^2 = \Phi_E^3 = \Phi_E^4$.

(d''') On int s, $(\Phi_C^2)_3 > 0 > (\Phi_C^3)_3$.

These indentifications are illustrated in Figure 7.3. The conditions for the maps Φ^m and Ψ^n on s in each case is now completed. If $Q \notin \Omega_0$, the geometry is slightly different, but we achieve the same topological connections by modifying the conditions (b), (b'), (d), (d'), (d''), and (d'''). When we let Q run over Ω , we obtain the identifications for all possible Φ^m and Ψ^n maps in *all* sides s. This is because in case (4) above we gave also conditions for maps $\Phi_D^m, \Phi_E^m, \Psi_D^n, \Psi_E^n$ on s which is an excluded side for some $Q', Q'' \in \Omega$ with $D \in Q', E \in Q''$.

We have above given a topological description of the sheet maps Φ_B^m and Ψ_C^n for Band C in \mathscr{G}_A^2 . On the boundary $|G_A|$ these sheet maps are the identity. Hence we can simply put together all sheet maps for the elements in \mathscr{G}_{∞}^2 . The upper indexes in the maps Φ_B^m and Ψ_C^n are not important, all that matters is what classes δ_j are attached to each sheet. Let the set of all sheets for elements in \mathscr{G}_{∞} be denoted by \mathscr{H}^2 . According to the construction of \mathscr{H}^2 , the set $\mathbb{R}^3 \setminus |\mathscr{H}^2|$ contains eight components $W_1, W_2, W_3(0), \dots, W_3(5)$ such that $W'_1 \subset W_1$ etc. (see (6.4)). A notion called cave part is defined in Section 7.6.

7.3. Definition of the map on the sheets. We define the notion of a positively oriented sheet with respect to δ_j topologically as was done for elements in H_1^2 in Section 4.3. Let D be a sheet with classes δ_j and δ_i . Let D be positively oriented with respect to δ_j . Then D is negatively oriented with respect to δ_i . Recall the quasiconfor-

16-858286 Acta Mathematica 154. Imprimé le 15 mai 1985

mal maps \varkappa_2 and \varkappa_3 from the formulae (4.8) and (4.9). Let \varkappa_1 be the identity in \overline{U}_1 . Let the sheet map of D be $\theta: B \to D$ which means that θ is some Φ_B^m or Ψ_B^n . Then we set

$$f|D = \varkappa_j \circ \zeta \circ \frac{1}{t_B} \varphi_B \circ \theta^{-1}.$$
(7.4)

According to the definitions of the maps \varkappa_j , we may rephrase (7.4) by

$$f|D = \varkappa_i \circ \varkappa \circ \zeta \circ \frac{1}{t_B} \varphi_B \circ \theta^{-1}.$$
(7.5)

Here \varkappa is the reflection in \mathbb{R}^2 and the map ζ was defined in Section 4.3. We give more conditions for the sheet maps in Section 7.6 to guarantee that we are able to construct a quasiregular map.

7.6. Final extension. We shall now use more or less the principles in Section 6 to extend f to the remaining parts $W_1 \setminus W'_1$ etc. However, one of the differences is that $f | \partial W_1$ etc. is not represented topologically by a map complex, but rather by something which could be called a generalized map complex. We shall confine ourselves to the part $W_1 \setminus W'_1$. The treatment in $W_2 \setminus W'_2$ etc. is similar.

We let \mathscr{H}_1^2 be the set of sheets which form the boundary ∂W_1 , i.e. the sheets which have δ_1 as one class. Let Q be in some Ω for $\omega(A) \subset M_{k,k-1}$ where A is in some M_{kq}^2 . Let the classes of Q be δ_2 and δ_3 . Let the set of sheets for B when B runs over \mathscr{G}_Q^2 be Γ_Q . We call $\Gamma_Q \cap \mathscr{H}_1^2$ a cave part of \mathscr{H}_1^2 . We also say that $|\Gamma_Q \cap \mathscr{H}_1^2|$ is a cave part of $|\mathscr{H}_1^2|$. Let then Q have δ_1 as one class and let $B \in \mathscr{G}_Q$ be negative. If the sheets $\Phi^1 B, ..., \Phi^4 B$ lie like in Figure 7.2, we call $\Gamma = \{\Phi^3 B, \Phi^4 B\} \subset \mathscr{H}_1^2$ (resp. $|\Gamma|$) a hollow part of \mathscr{H}_1^2 (resp. $|\mathscr{H}_1^2|$).

Let $\Gamma = \Gamma_Q \cap \mathcal{H}_1^2$ be a cave part of \mathcal{H}_1^2 . Let $s = \langle a, b \rangle$ be the last side of the last in \mathscr{G}_Q^2 . We may assume that the sheet maps take s onto $\langle a, c \rangle \cup \langle c, b \rangle$ and $\langle a, d \rangle \cup \langle d, b \rangle$ for some points c and d, and that $Z = int(\{a, b, c \rangle \cup \langle a, b, d \rangle) \subset W_1$. We call the component R of $W_1 \setminus Z$, with $|\Gamma|$ contained in ∂R , the cave part of W_1 corresponding to Γ . We choose a point $e \in W_1 \setminus \overline{R}$ similarly as in the beginning of Section 6.1 and write $X = \langle a, b, c, e \rangle$, $Y = \langle a, b, d, e \rangle$. There is an obvious decomposition of Γ into the sets Γ_C and Γ_D where C and D in M_1^2 are cave opening simplexes for Q (cf. Section 6.1). We may assume $c \in |\Gamma_C|$. A sort of δ_1 -inheriting is also defined from elements of M_1^2 into \mathcal{H}_1^2 . To define it for C we let $\mathcal{H}_1^2(C)$ be the set of sheets θB in \mathcal{H}_1^2 for which $B \in \mathcal{G}_1|C$. We say that $\mathcal{H}_1^2(C, \delta_1) = \mathcal{H}_1^2(C) \cup \Gamma_C$ is δ_1 -inherited from C. If

 $E \in M_1^2$ and if E is not a cave opening simplex for any Q with classes δ_2 and δ_3 we set $\mathscr{H}_1^2(E, \delta_1) = \mathscr{H}_1^2(E)$.

We shall next push R into $W_1 \setminus \overline{R}$. Now R is not locally connected on the boundary, but the boundary elements of R have an obvious meaning. We perform a preliminary PL homeomorphism h of the domain W_1 which is the identity on $W_1 \setminus R$ and which shrinks R slightly onto a domain R' which is locally connected on the boundary. The boundary elements of R are transferred to boundary points of R' bijectively. Let $W^* = (W_1 \setminus R) \cup R'$. We can then modify the method in 6.1 to obtain a PL homeomorphism $\Psi^* \colon \overline{W^*} \to \overline{W_1 \setminus R}$ such that Ψ^* is the identity on $W_1 \setminus (R \cup X \cup Y)$. It is possible to choose the sheet maps θ in the beginning, the shrinking map h, and the map Ψ^* such that the composed maps $\Psi^* \circ h \circ \theta$ (here h is extended to the boundary elements), with $\theta: B \to B'$ running over the sheet maps giving the sheets B' in Γ , are simplicial with respect to $B_{(1)}^{(1)}$. Recall that $B_{(1)}$ is the first canonical subdivision of B, see Section 3.3. Furthermore, we can do the construction so that

(1) the sheets in Γ_C (Γ_D) are taken into $\langle a, b, c \rangle$ ($\langle a, b, d \rangle$) by the boundary element correspondence of $\Psi^* \circ h$,

(2) $\Psi^* \circ h$ is locally $\exp(\theta_1 v^3)$ -bilipschitz where θ_1 is an absolute constant.

Similarly we can define and push in hollow parts of W_1 . We can perform all these pushings simultaneously and we get a map Ψ_0 of W_1 onto a domain X_1 . If needed, we extend Ψ_0 to the boundary elements and use the same notation. The domain X_1 is locally connected at the boundary. The map Ψ_0 is the identity in W'_1 (see (6.4)). If the sheet maps are originally chosen in a suitable simple way, \bar{X}_1 can be mapped by a *PL* homeomorphism Ψ_1 onto \bar{V}_1 (see Section 4.1) in a straightforward manner such that

(a) Ψ_1 is 10-bilipschitz,

(b) $\Psi_1 | W_1'$ is the identity,

(c) $|\mathscr{H}_1^2(C, \delta_1)|$ is taken onto C by the boundary element correspondence of $\Psi_1 \circ \Psi_0$ for every $C \in M_1^2$.

(d) If $\theta: B \to B'$ is a sheet map with $B' \in \mathcal{H}_1^2$, then $\Psi_1 \circ \Psi_0 \circ \theta$ is simplicial with respect to $B_{(1)}^{(1)}$.

The map $f||\mathscr{H}_1|$, given in (7.4) and considered as defined on the boundary elements of W_1 , splits as $f||\mathscr{H}_1|=F \circ \Psi_1 \circ \Psi_0$, where $F:|M_1| \to S^2$ is a discrete open map. Since fmaps each sheet homeomorphically onto S_+^2 or S_-^2 , we get a topological description of F if we study $F^{-1}S^1$. In particular, we shall describe how $F^{-1}S^1$ can be formed from $|\mathscr{G}_1^1|$. Each hollow part corresponds to a configuration of $F^{-1}S^1$ shown in Figure 7.4

where we have assumed that the corresponding connection side ab in \mathscr{G}^1 , call it s, is an $\alpha\beta$ -side. Here and in other figures below we indicate points in the classes α, β, γ by letters a, b, c, possibly with subscripts, when they are vertices of \mathscr{G}_1 . Corresponding points in $F^{-1}S^1$ are denoted by adding one or more primes. We use the latter principle also for elements in \mathscr{G}_1^2 . We see that the hollow part corresponds for F to a simple cover with branching at a' and d', and we obtain this part of $F^{-1}S^1$ by replacing the subarc ad in ab by the boundaries of the pair B', B''. We may also do the construction such that a'=a, b'=b, d'=d, and the side s is contained in $F^{-1}S^1$ as shown in Figure 7.4.

To study to what a cave part corresponds for F we let Q be an element of an Ω such that |Q| has classes δ_2 and δ_3 . Let B be the last in \mathscr{G}_Q^2 and the side ab the last side r of B (Figure 7.5). The side r is also a side of \mathscr{G}_1 and it is always a line segment. To see the principle here it is enough to consider the case in Figure 7.5 where a part of \mathscr{G}_Q is presented. The arrows have the same meaning as in Figures 7.1 and 7.3, and show also the increasing order in \mathscr{G}_Q^2 . The 2-simplex B corresponds to a pair B', B''. The set $B' \cup B''$ has one hole because there is one arrow entering B. The 2-simplex C corresponds to a pair C', C'' such that $C' \cup C''$ has two holes because there are two arrows entering C. The outer boundary curve of $C' \cup C''$ coincides with the boundary of the hole of $B' \cup B''$. This way we can go through all of \mathscr{G}_Q^2 because the order is based on a tree. The part of $F^{-1}S^1$ corresponding to the cave part is obtained by replacing the side r by the 1-dimensional configuration inside the outer boundary curve of $B' \cup B''$. Points like d', e', d'_1, e'_1 are branch points for F.

We may perform the map $\Psi_1 \circ \Psi_0$ so that apart from the sides like s and r above all other sides in \mathscr{G}^1 remain untouched in $F^{-1}S^1$. The map F can be deformed in an obvious way to obtain a map represented by a refined map complex as follows. For a hollow part we move the simple cover $F|B' \cup B''$ (Figure 7.4) such that the branch point d' moves to b'. Then also b'' moves to b' (cf. Section 5.1). For a cave part we deform

similarly. In Figure 7.5 we move first the branch point d' to a' and the branch point e' to b'. Then a" moves to a' and b" moves to b'. In the next step we move d'_1 to c' and e'_1 to b' and then also c" moves to c' and b"' to b'. We continue similarly. In Figure 7.6 we see the part of $F^{-1}S^1$ shown in Figure 7.5 after the deformation. The line segment r is required to divide it in an obvious manner. All hollow and cave parts for F can be deformed simultaneously. As in Section 6.2 we define t-levels S_t , $t \in [-1, 0]$, in the layer $\Lambda_{-1}^{"}$ between $|M_1|$ and $|N_1|$, in fact we can transfer the t-levels S_t , $t \in [0, 1]$, between $|v^2M_1|$ and $|v^2N_1|$ by the similarity $x \mapsto v^{-2}x$. The local product representation of the layer $\Lambda_{-1}^{"}$ (see Section 6.2) makes it possible to see each $B \in M_1^2$ on S_t as a subset B_t for $t \in [-1, 0]$. As in Section 6.2 we transfer the deformations to t-levels. For this, let $F_{-1}=F$. We do the deformations described above during $t \in [-1, -1/2]$ and obtain a family of maps $F_t: S_t \to S^2$, $t \in [-1, -1/2]$. Now $F_{-1/2}$ is represented by a refined map complex, call it $\Gamma_{-1/2}'$.

Our final task is to deform $F_{-1/2}$ on the *t*-levels, $t \in [-1/2, 0]$, to the map $g_0: |N_1| \rightarrow S^2$. The map g_0 is represented by the map complex H_1 . We have made the construction so that the number $\sigma(H_1|\psi B)$ of 2-simplexes in $H_1|\psi B$ equals $\sigma(\Gamma'_{-1/2}|B_{-1/2})$ for every $B \in M_1^2$. In order to do the deformation from $F_{-1/2}$ to g_0 similarly as in Section 6.2, we should in addition have only $\alpha\gamma$ -sides on the boundary and α -points at vertices for each $B_{-1/2}$. The latter condition is satisfied, but the first is not on those parts which correspond to cave parts. This difficulty is circumvented by the observation that cave opening simplexes for a Q with classes δ_2 and δ_3 are grouped into pairs B, B' of elements in M_1^2 such that $E=B \cup B'$ is homeomorphic to a disk. For such $E\Gamma'_{-1/2}|\dot{E}_{-1/2}$ has only $\alpha\gamma$ -sides. We replace each cave opening simplex $B \in M_1^2$ by such $E \supset B$ and get from M_1^2 a new set \tilde{M}_1^2 with $|\tilde{M}_1^2|=|M_1|$. We decompose \tilde{M}_1^2 similarly as $\nu^2 M_1^2$ was decomposed into sets $\mathcal{A}_1, \dots, \mathcal{A}_i$ in Section 6.2, and transfer all to the

-1/2-level. Also the condition $\delta_2 < 1/50$ in (5) of Lemma 5.3 causes here a little problem because it may not be automatically satisfied for our application of Lemma 5.3. This can be arranged simply by taking it into account in the construction of \mathscr{G}_{∞} . After these remarks we can adjust the sides and apply the Deformation lemma 5.3 as in Section 6.2 to get a family of maps $F_t: S_t \rightarrow S^2$, $t \in [-1/2, 0]$, with $F_0 = g_0$.

It remains to define f in $W_1 \setminus W_1'$. We write $\Psi_2 = \Psi_1 \circ \Psi_0$ and set

$$f|\Psi_2^{-1}S_t = (s_t, F_t \circ \Psi_2 | \Psi_2^{-1}S_t), \quad t \in [-1, 0]$$
(7.7)

where the coordinate presentation is as in (6.3). Recall $s_t = e^{-1} \exp \nu^{t+1}$. The construction has been carried out so that $f|W_1 \setminus W_1'$ is K-quasiregular, K depending only on λ and ν .

Combining (7.7) with the definition (6.3) in W'_1 we have completed the definition of f in \bar{W}_1 . The definitions of f in the domains W_2 , $W_3(h)$, $h=0, \ldots, 5$, are similar. Since all these match on common boundaries, we have defined a K-quasiregular map f of \mathbb{R}^3 . By construction f omits $u_2, u_3 \in \mathbb{R}^3$ and the proof of Theorem 1.2 for p=2 is hereby completed.

8. The case p>2

In this final section we shall sketch the proof of Theorem 1.2 for p>2 by indicating the main changes to be made to our construction for p=2. The idea will be to replace the caves both in Section 2 and Section 7 by caves with p-1 passages (the original are said to have one passage). On the other hand, the parts involving deformation of maps remain almost unchanged.

8.1. Cave complexes with p-1 passages. The notions *l*-triangle, *l*-subdivision, and K-tree from Section 2.2 are all defined similarly by changing only constants, for

example ν will be chosen larger for larger p. In the cave complex K_L in Section 2.3 we replaced those $A \in K^2$ with $A \cap L \neq \emptyset$ by two 2-simplexes A_- and A_+ and in the construction we used two normals -u and u. To get a *cave complex with* p-1 *passages* we use vectors $r_1u, ..., r_pu$, where $-1 \le r_1 \le ... \le r_p \le 1$, instead of -u and u. The new cave complex K_L has p-1 bounded components.

It is clear how bending will be performed in the general case. The opening of a cave complex with p-1 passages can be described as follows. Let P be a cave complex with p-1 passages based on an (l+1)-subdivision. Let $T_1, \ldots, T_p \in P^2$ be the (l+1)-triangles obtained from a 2-simplex T by the replacement operation and let $T_1 \cap \ldots \cap T_p$ be a side s which is also a side of $S \in P^2$, $S \neq T_i$, $i=1, \ldots, p$. We write $T_{p+1}=S$. Let classes δ_j , $j=1, \ldots, p+1$, be given in a similar way as before for 2-simplexes of P such that the δ_j 's appear in a cyclic order (mod (p+1)) around a side like s. In Figure 8.1 we see the side profile for p=4 where T_5 has classes δ_5 and δ_1 (the classes δ_j is denoted by j in Figure 8.1). In general T_{p+1} may have any pair $\delta_j, \delta_{j+1} \pmod{(p+1)}$ of classes.

Suppose T_{p+1} is the last in a cave base Q for an opened cave complex $I=K_L$ with p-1 passages. Opened means then that the passages have connections to the passages of P in the same order, i.e. the side profile for the passages of I are like in Figure 8.1. The construction to obtain these connections is similar to the one in Section 2.4. The 2-simplexes $T_1, ..., T_p$ are called cave opening simplexes for Q. If some $T_i, i=1, ..., p$, is the last of a cave base Q' for an opened cave complex I', the connections of the passages of P to those of I' are similar. For example, if i=3 in Figure 8.1, then the classes δ_j in the passages of I' appear as in Figure 8.2. These connections are obtained by a suitable modification of the construction in Section 2.4. The connections corresponding to various 2-simplexes $T_1, ..., T_{p+1}$ are here also performed at a sufficiently large q-distance from each other to avoid interaction.

The cave refinement operation is generalized in an obvious manner. The same is true for the inheriting operation ω . The δ_{r} -inheriting operation ω_{i} is defined by the same

rules as before ((1) and (2) in Section 2.6). Note that now we may have plenty of Q's for one A in (2) in Section 2.6 whereas earlier there were at most one.

8.2. Definition on level surfaces. Section 3 can be carried out for the general case with only obvious changes. As a result we obtain (by the notation in Section 4.1) $M_{kq}(0), M_{kqj}(0)$ and $G_{kqj}(0), j=1, ..., p+1$. As in Section 3, we let M_{k0} have classes δ_1 and δ_2 . The set $\mathbb{R}^3 \setminus |M_{\infty}|$, where $M_{\infty} = M_1 \cup ... \cup M_{p+1}$ (see Section 4.1), has now 2+6(p-1) components $V_1, V_2, V_1(h), j=3, \dots, p+1, h=0, \dots, 5$. The level surfaces in Section 4.2 are defined as before with obvious changes. To define f on these surfaces we only need a discussion of the quasiconformal maps x_i since the maps g_{2i} , v_{2i} , \bar{g}_{2i} are defined formally as before in (4.4), (4.6), and (4.7). Let w_p be the Möbius transformation of $\mathbf{\bar{R}}^3$ which keeps S^1 fixed, maps S^2_+ into $\mathbf{\bar{B}}^3$, and for which S^2_+ and $w_p S^2_+$ form a dihedral angle π/p . Let U'_{p+2-j} be the bounded domain bounded by $w_p^{j-1}S_+^2$ and $w_p^jS_+^2$, j=1,...,p. Let u_{p+1} be the midpoint of the part of the x_3 -axis which lies in U'_{p+1} . We define a homeomorphism $\varkappa_{p+1}: \bar{U}_1 \rightarrow \bar{U}'_{p+1} \setminus \{u_{p+1}\}$ such that it maps $U_1 = \mathbb{R}^3 \setminus \bar{B}^3$ onto $U_{p+1} = U'_{p+1} \setminus \{u_{p+1}\}$ quasiconformally and $\varkappa_{p+1} | S^2_+ = w_p | S^2_+, \varkappa_{p+1} | S^2_- = \varkappa | S^2_-.$ Then set $\varkappa_{p+2-j} = w_p^{j-1} \circ \varkappa_{p+1}, j=2, ..., p$. As before, $\varkappa_1: \bar{U}_1 \to \bar{U}_1$ is the identity. We write $u_i = w_p^{p+1-j}(u_{p+1}), U_i = U_i' \setminus \{u_i\}, j=2, ..., p$. The only change after this in the definition of f on the level surfaces is that we replace the index 3 by j and let j run from 3 to p+1 in (4.9).

8.3. Final glueing. The extension of the definition of f to the layers between the level surfaces is done in the general case in the same manner as in Section 6. However,

PICARD'S THEOREM FOR QUASIREGULAR MAPPINGS IN DIMENSION THREE

comments must be made to the final glueing presented for p=2 in Section 7. We define \mathscr{G}_j on M_j^* for j=1,...,2+6(p-1), similarly as in Section 7.1 and set $\mathscr{G}_{\infty}=\mathscr{G}_1\cup\ldots\cup\mathscr{G}_{2+6(p-1)}$. Order in a \mathscr{G}_Q , $Q\in\Omega$, and positive and negative elements in \mathscr{G}_{∞} are defined as in Section 7.1 ((mod 3) is replaced by (mod (p+1))). Similarly we adopt the notion of a connection side for a negative $B\in\mathscr{G}_Q$ from Section 7.2.

Each positive element in \mathscr{G}^2_{∞} will be replaced by p sheets and each negative by p+2 sheets. By a technique similar to that in Section 7.2 we make identifications on the boundaries of the sheets. The principle is that connections between the layers between the sheets is done so that the δ_r classes appear in cyclic order and the direction of this order is opposite for neighboring elements in \mathscr{G}_i for each j. In the case (1) in Section 7.2 the identifications are as before. In the case (2) the connections are shown in Figure 8.3 for p=4, which illustrates the general case adequately too. At a connection side (case (3)) these connections are shown in Figure 8.4 for p=4. We see that now we have to switch the order of the layers in the classes δ_3 and δ_5 . In the case (4) we form connections between the passages in a cave of M_{∞} and the passages in a cave part formed by the sheets so that the same classes δ_i will be connected. If in (4) the last in \mathscr{G}_{Q} is positive, the connections are made as in the opening of a cave complex with p-1passages. This is illustrated in Figure 8.5 for p=4. If the last \mathscr{G}_{0} is negative, we have again to switch arround the order of passages as shown in Figure 8.6 to get the right cyclic orders. This completes the description of the set \mathcal{H}^2 of sheets. The set $\mathbb{R}^3 \setminus |\mathcal{H}^2|$ has now 2+6(p-1) components $W_1, W_2, W_j(h), j=3, ..., p+1, h=0, ..., 5$. The rest of Section 7 can be carried out like before and this ends the proof of Theorem 1.2 for the general case.

References

- [1] GLASER, L. C., Geometrical combinatorial topology, Vol. I. Van Nostrand Reinhold Co, 1970.
- [2] MARTIO, O., RICKMAN, S. & VÄISÄLÄ, J., Definitions for quasiregular mappings. Ann. Acad. Sci. Fenn. A I, 448 (1969), 1-40.
- [3] Distortion and singularities of quasiregular mappings. Ann. Acad. Sci. Fenn. A I, 465 (1970), 1-13.
- [4] Topological and metric properties of quasiregular mappings. Ann. Acad. Sci. Fenn. A I, 488 (1971), 1-31.
- [5] MATTILA, P. & RICKMAN, S., Averages of the counting function of a quasiregular mappings. Acta Math., 143 (1979), 273-305.
- [6] MORSE, M. & HEINS, M., Deformation classes of meromorphic functions. Acta Math., 79 (1947), 51-103.
- [7] REŠETNJAK, J. G., Extremal properties of mappings with bounded distortion. Sibirsk. Mat. Ž., 10 (1969), 1300-1310 (Russian).
- [8] Space mappings with bounded distortion (Russian). Izdatel'stvo "Nauka" Sibirsk. Otdelenie, Novosibirsk, 1982.
- [9] RICKMAN, S., On the number of omitted values of entire quasiregular mappings. J. Analyse Math., 37 (1980), 100-117.
- [10] A defect relation for quasimeromorphic mappings. Ann. of Math., 114 (1981), 165-191.
- [11] Value distribution of quasiregular mappings. Proceedings of the Nordic Summer School on Value Distribution, Joensuu 1981. Lecture Notes in Mathematics 981. Springer-Verlag, 1983.
- [12] Quasiregular mappings and metrics in the *n*-sphere with punctures. Comment. Math. Helv., 59 (1984), 136-148.
- [13] VÄISÄLÄ, J., A survey of quasiregular maps in Rⁿ. Proceedings of the ICM, Helsinki 1978, (1980), 685-691.
- [14] ZORIĆ, V. A., The theorem of M. A. Lavrentiev on quasiconformal mappings in space. Mat. Sb., 74 (1967), 417-433 (Russian).

Received December 25, 1983