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A. The setting 

1. Introduction 

Let V be a homogeneous algebraic set in C s defined over the rationals, i.e. a set 

v = v(_~)= v ( ~ ,  . . . . .  ~r), 

consisting of the common zeros of given forms ~l . . . . .  ~r of positive degrees, in s 

variables, and with rational coefficients. We are interested in 

ze(V) = ze(_~), 

the number of integer points x.=(Xl . . . . .  xs) on V with 

I_xl := max (Ixd . . . . .  Ix, I) ~< e .  

Not much is known in general about the behaviour of ze(V) as a function of P. In those 

cases where we do have information and where ze(V)--->~ (i.e. where V contains an 

integer point besides O) we have 

ze(V) - ~ P ~ ,  

where/z>O, fl>O and fl is an integer. 

Birch [1] could show that a system ~_ of r forms of odd degrees ~<k in s>cl(k,  r) 

variables possesses a nontriviai integer zero. In particular, ze(_~)--.~. It would be  easy 

(t) Partially supported by NSF-MCS-8015356. 
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to deduce that ze(_~) tends to infinity quite fast if s is rather larger than Cl. However, 

the elementary diagonalization method of Birch is "wasteful" in the number of varia- 

bles, and does not seem to yield our first theorem, which will be proved by analytic 

methods: 

THEOREM I. Suppose that ~ consists o f  r forms o f  odd degrees <~k in s>c2(k, r) 

variables. Then 

$--C 2 ze(~_) >> e , 

with a constant in >> which may depend on ~_. 

Let 

_~ = (_~(k~ . . . . .  ~ ( , )  (1.1)  

be a system of forms, with the subsystem ~(a) (l~<d~<k) consisting of ra>>-O forms of 

degree d and with rational coefficients. The number of integer points with I_x[~<P is 

~(2P) s. When we substitute such a point into a form of degree d, we will in general 

obtain a value of the order of magnitude of pa, and hence the "probability" for the 

form to vanish should be about p-a.  Therefore the probability for ~ to vanish 

simultaneously should be about p-R, where 

k 
R = Z dra" (I .2) 

d = l  

Hence when s>R,  one might expect (somewhat optimistically) that ze(~) will have the 

order of magnitude of p~-R. 

More generally, let ~ be a box with sides parallel to the cordinate axes, i.e. a set 

~ = I t  x.. .  xls, where each li is an interval (open, closed, or half open) of finite positive 

length. We write z,*(_~, ~)  for the number of zeros of ~ in the blown up box P~ .  We 

will call _~ a Hardy-Littlewood system (or briefly HLS) if for every box ~ ,  

ze(~_ , ~ )  = tees-R + O(P'-R-~) ,  (1.3) 

where 6>0 and where ~=tt(_~, ~)  is defined by an infinite product which will be 

explained in w 3. We further will call _~ a proper Hardy-Littlewood system (or briefly 

PHLS) iftt(_~, ~)>0,  where ~ is the cube 

~: [_x I ~< 1. (1.4) 
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This terminology was chosen since up to now the Hardy-Littlewood circle method has 

been the most successful in estimating ze. 
Let us recall some known cases. Waring's problem, i.e. that of representing an 

integer m as a sum of dth powers of nonnegative integers, does not quite fall into our 

framework, since the equation d d x~+. . .+xs=m is not homogeneous (but see w and 

since the variables are restricted a priori to the bounded domain O<~xi<~m lid 

( i=l ,  ...,s). In Waring's problem one is interested in the numbers of solutions as a 

function of m. 

(A) Davenport and Lewis [5] have shown that a single additive form 

~ = a~ Xd +... +asX d 

where d>~18, s > d  2 and al a2...as~O, and where either d is odd or where the coeffi- 

cients are not all of the same sign, is a PHLS. 

Now if ~ is a form of degree d>  1, write h(~) for the least number h such that 

"splits into h products",  i.e. 

with forms 9.1i,~; of positive degrees and with rational 

_~=(~1 ... . .  ~r) consists of forms of equal degree d > l ,  write 

(I .5) 

coefficients. When 

h(_~) = min h(~), (1.6) 

with the minimum taken over forms ~ of the rational pencil of 5, i.e. ~=cl ~l 
+...+c, q~r=C_~, where _c*_0 has rational components. 

(B) Although Davenport [4] did not give such a formulation, he did prove that a 

single cubic form ~ with h(~)~>16 is a PHLS. 

(C) A system of r quadratic forms with h(~)>2r2+3r is a HLS, and it is even a 

PHLS if h(_~)>4r3+4r 2 and if it possesses a real nonsingular zero (i.e. a zero with 

O~j/Oxi (l<~j<~r, l<~i<~s) of rank r) (Schmidt [9]). Again, a system of r cubic forms with 

h(~_)>car4>O is a PHLS (Schmidt [12]). 

(D) Let V*(_~) be the set ofxEC s for which the matrix ~j/OX i (l<~j<~r, l<~i<~s) has 

rank less than r. When r= 1, then V*(_~)c_ V(_~) by Euler's identity, but this need not be 

the case when r> l .  Birch [2] showed that a system ~ of r forms with dim V = s - r  and 

with 

s > d im V*+(d- 1) 2 d-I  r (r+  1) 



246 W. M. SCHMIDT 

is a HLS. It is even a PHLS if it possesses a nonsingular zero in each local field. (The 

dimension of an algebraic manifold is the maximum dimension of its irreducible 

components.) 

Another result on "general" systems is due to Tartakovsky [14]. 

On the other hand, there are many examples of systems which are not HLS or 

PHLS. First of all, there may not be any local zeros. Or take ~ = ~ d  where ~ is a linear 

form, so that ze(q~)=zp(9.)--/~P ~-1, rather then _/~p~-d. The trouble here is that R 

was defined in terms of _~ and not of V=V(_~). Perhaps one should replace R by 

/~=/~(V)=minR(_~), over all systems _~ with V= V(~). Another example with too many 

zeros is when ~ =  ~(X1, X2). Then z ~ ) > > P  ~-2, no matter what the degree of ~. As a 

final example take 

where D is even and where ~ = ( ~ l  ... .  ,~lh) is a PHLS of forms of degree d. Here 

Zp(~)=Zp((~)~/.lP s-dh, whereas R(q~)=dD may be both larger or smaller than dh. The 

trouble here seems to be that h(~) is small, namely h(q~)<~h. 

Linear equations can always be got rid of by elimination, and they will not quite fit 

into our general scheme. Hence we will deal with systems 

_~ = ( _~(~,~ .. . . .  _~(2)), (1.7) 

where ~(,0 (2~<d~<k) consists of rd>~O forms of degree d. The total number of forms is 

We put 

r=rk+.. .+r2.  (1.8) 

hd_ - ~h(~- t'O) if rd> 0, 
[+oo if rd_~O. (1.9) 

THEOREM II. There is a function z(d) such that a system ~_ as in (1.7) with 

hd~X(d)rdkR (2 ~<d~<k) (l.10) 

is a HLS. For instance one may take X(2)=2, X(3)=32, Z(4)=l 152, and in general 

z(  cl) < 2 4d . d !. 

Write v(r_)=v(rk . . . . .  rl) [or u(rk . . . . .  rz, 0)] for the least number such that a system 

(1.I) [or a system (1.7)] in more than v(_r) variables has a nontrivial p-adic zero for each 

prime p. To obtain a PHLS we need the following 
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SUPPLEMENT. ~ as in (1.7) is a PHLS provided, firstly, 

hd >~ ~(cl) rd kv(r) (2 ~< d ~< k), 

andsecondly,  

( 1 . 1 1 )  

dim Vn ~> s - r ,  

where Vn is the manifold o f  real zeros of~_. This second condition is always satisfied i f  

all the forms o f  ~_ are o f  odd degree, i.e. i f  rd=O for d even. 

To prove Theorem II and its supplement we will need exponential sums. The 

following theorem is typical of the estimates which we will obtain. 

THEOREM III. Suppose ~=~(Xl  . . . . .  Xs) is a form o f  degree d > l  with integer 

coefficients and with h(~)=h, say. Given a and given P > I ,  put 

S = ~ e(a~(_x)), 
[~l~P 

where e(z)=e z~iz. Suppose that 0<fl<h/r(d)  where r(2)=2, r(3)=8, r(4)=72, and in 

general r(d)<d. 22d. d [. Then for  A>0 and for P>P0(~,  s A), either 

(i) IS I ~< p ~ - a ~ ,  

o r  

(ii) there is a natural q<~pA with IIqall<-p where ]1" II denotes the distance 

to the nearest integer. 

The plan of the paper is as follows. In w 2 we will deduce Theorem I from Theorem 

II. In w 3 we will explain the product formula for the coefficient Iz in (1.3). The proofs of 

Theorem II and III will be contained in parts B, C, D. In part B we will give an 

"axiomatic" exposition of the Hardy-Littlewood Method. In part C we will estimate 

exponential sums in terms of a certain invariant g. In part D, which is essentially 

algebraic in nature, we will derive a relation between g and h. Part B will be fairly 

routine, part C will be less so, and part D still less. 

2. Deduction of Theorem I 

Given odd k and given a vector u_=(rk, rk_2,...,rl), we have to show that a system 

~=(~(k) ,  ~(k-2) . . . . .  ~(1)), with ~(d) consisting of rd~O forms of degree d, has(1) 

(i) The numbering of constants is started new in each section. 
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_ P , z.,,(~) > >  , -c ,  

where cl=c~(_u). In what follows, c~ will be the smallest number with this property. 

We start with the observation that (when the right hand side is finite) 

Cl(rk . . . . .  r3, r l )  ---- Cl(rk . . . . .  r3, O)+rl: (2.1) 

for there is an injective linear map 3: QS-,,__>QS which maps integer points into integer 

points such that _~~ identically in Y=(Y~ . . . . .  Ys-r)" Setting c 2 = c l ( r  k . . . . .  r3,0), 
and ~*=(~(k)(r_Y) . . . . .  ~(3)(r_Y)), we have 

Ze(~_ *) >> e(~-rt)-c2. 

Since Ir_E<~lrl I-I1, it follows that 

Zp(~_ ) ~ Zp/M(~_ :g) ~>~> ps-rl -c2. 

Thus cl(u_)<~c2+rl, and since the reverse inequality is obvious, (2.1) follows. 

It remains for us to deal with the case when u_=(rk, rk-2 . . . . .  r3, 0). By Theorem II 

and its supplement, we have in fact a PHLS,  unless some ha is small. Thus we may 

suppose that some form of  the pencil of _~(d) will be of the type (1.5) with h<<.c3(d, u_). 
We may suppose that one of  the forms of ~(d), say ~a), is of this type. Say 9J I . . . . .  92 h 

are of odd degrees. Let  ~l . . . . .  ~h be forms of degree d - 2 ,  obtained respectively from 

9J~ . . . . .  9J h by multiplication by suitable powers of  ~ + . . . + x ~ .  Then V~(_~)_~Vn(_~*), 

where _~* is obtained from _~ by replacing ~d) by ~l . . . . .  ~h" The vector _u* belonging to 

_~* is 

_u* = _u*(d) = (r k . . . . .  ra+ 2, r a -  1, ra_2+c3(d, u_), rd_ 4 .. . . .  r O. 

Thus whenever rk . . . . .  r3 are not all zero, we have 

cl(_u) ~< max cl(_u*(d)), (2.2) 

where the maximum is over odd d in 3<<.d<<.k with rd>O. By (2.1), the relation (2.2) is 

true whether r~=O or not. 

Now we will write _u*<_u if there is some l with r~<rl (possibly u_*=(r*, r*-2 .... ) 
with t</),  but r~=rd for d>l. Since each nonempty set of vectors _u contains a smallest 

element with respect to < ,  Theorem I may be proved by induction on _u. Since in (2.2), 

_u*(d)<_u, and since the components  of _u*(d) are bounded in terms of _u, the theorem 

follows. 
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By Theorem II and its supplement,  we may take(2) 

c3(d, u_) = z(d) rd kv(u_). 

u_=(r3,0), we have u_*(3)=(r3-!,c3(3,u_))=(r3-1,c4r3v(u_)), hence 
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(2.3) 

by (2.1), 

cl(r3,  O) ~ Cl(r 3 - 1 , 0 ) + c 4  r3 o(u).  

Since v(u)<<~ ([11]), one gets Cl(r3, O ) ~ c l ( r  3 - 1 , 0 ) +  O(r~), hence 

cl(r 3, 0) <<  ~,  

as in [12]. 

For  k>3 it is known (Leep and Schmidt [8]) that 

v(r~ . . . . .  r 0 <~ cs(k ) (rk+... +rl)  2~-'. (2.4) 

Define exptx by e x p l x = e  ~ and by exptx=exp(expl - zX) .  It may be shown that our 

estimates imply 

cl(rk . . . . .  r3, rl) < expk-3(c6(k) (rk+... +rl)).  (2.5) 

3. T h e  loca l  d e n s i t i e s  

Suppose _~ has integer coefficients. Let  p be a prime, and write Vl=Vl(p) for the number 

of solutions of  the system of  congruences 

~(x_) -- _0 (modpt). 

Further put/zt=vtp J(r-s). The limit 

•(p) = limgt, (3. I) 
I-*oo 

when it exists, will be called the p-adic density o f  zeros of _~. 

We note that, with the notation a_~_=al ~1+.. .  +ar aSr, 

L~ " ~  e(p-ta~(x)) = when _~(_x) --- _0 (modp/). 
- - - otherwise. 

0 (mod pt) 

(3.2) 

(2) In the notation of w 1, v(q) fv ( rk ,  O, rk-2 . . . . .  r3, O, rO. Observe that the condition (1.11) is stronger 
than (1.10), since v(O>R, as noted e.g. in (4.6) below. 

17-858286 Acta Mathematica 154. Imprim~ le 15 mai 1985 
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For _r/Ep-lZ r put 

In view of (3.2) we have 

Writing 

W. M. SCHMIDT 

E(_ r/)=p-t" E e(r/_~(x)). 
~(modp l) 

(3.3) 

A(prn)= E E(p-m~ (3..5) 

o (rood p") 
(q,p)=l 

where (_a, p) =gcd (al ..... at, p), we obtain 

~U I = 1 + A ( p ) + . . .  + a ( p l ) ,  

and when the p-adic density exists, it is given by 

/~(p) -- 1 +A(p)+A(p2)+ .... (3.6) 

Our formulae may be rewritten in the following more trendy way, which will 

however not be used in the sequel. (A more systematic exposition of this approach is 
given by Lachaud [6].) Let Qp be the field of p-adic numbers, Zp the ring of p-adic 
integers. Let ]~, be the p-adic absolute value on Qp. Let A(r/) be the indicator function 
of Zp, i.e. A(r/)= 1 when r/E Zp, and A(r/)=0 otherwise. Put 

{0 t when 'r/'p "< p-t' 
At(r/) = pl~,(p-tr/) = otherwise. 

Put At(r/)=At(r/t)...At(r/r) for _~=(r/I . . . . .  r/r) EQ~. An element ~EQp may uniquely be 
written as ~=[~]+{~} where [~]EZp and where {~}=atp-l+a2p-2+.. .  with 

O<~ai<p. The character 

e(~) := e({~}) 

is sometimes called the :late character. Let d~ be the Haar measure on Qp, normalized 
so that Zp has measure 1. Further let d~, dr/ be the Haar measure of Q~ and Q~, 

respectively. 

gt = ~2~ E(P-tO)" (3.4) 
O (mod pt) 
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With these conventions we have 

= p-tS X At(~(_x)) -- [ ~t,(~(_~)) d_~. /at 
(modfl) JZ~ 

The formula (3.3) may be replaced by 

E(~) = fz; e(~(g))  d~. 

This definition in fact makes sense for every y E Q~. Further (3.4) becomes 

--- fp E(y) dr/. /al -% _ 

When  the p-adic density/~(p) exists, then 

~u~) = f~ E(ff) dr1. 

We now turn to the real density. This density/a(~)=/a(oo ~)  will depend on the 
given box ~ .  Write ;t(r/)= 1-1,11 when Ir/l~l, and 2(17)=0 otherwise. For L>0 put 

2L(t/) = L2(Lr/)= {L(1-L]r/]) 

Put 2L(_r/)=2t.(r/1) ... 2t.(r/,) for r/E R r. Now set 

The limit 

when ]r/] ~< L -t, 
otherwise. 

uL= f 

/a(~)  = / a ( ~ ,  ~ )  = lira/aL, 
L--.o* 

when it exists, will be called the real density. 
Put 

K(_r/) -- J~ e(r/~(~)) d~. 

We will see that under certain assumptions on _~ we have 

K(_~/) < <  min (1, Lr/[-'- l). 

(3.7) 

(3.8) 

(3.9) 
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Thus 

~,(oo) := [ K(_r/) d_r/ 
dR 

exists. Moreover, as was shown in [9, w 11], it follows that 

< <  

so that the limit/z(oo) of (3.7) exists, and/z(oo)=/~*(oo). 

The analogy in the definitions of/~(p) and/z(oo) is clear. One difference is that only 

/~(oo) depends on ~ .  Under some further conditions, the local densities could be 

expressed as integrals along the manifold _~=0, either in Z~ or in ~___R s, by means of 

the Leray differential form. But these integrals offer no advantage for the purpose of 

this paper. 

When defining a HLS in w 1, we postponed the definition of/z. We now give the 

following condition: 

For a HLS we postulate that the local densities as given by (3.1) and by (3.7) exist, that 

the product i~(oo, ~ ) / z ( 2 ) / z ( 3 )  . . .  of  these densities exists, and that the number I~ of(1.3) 

is this product: 

/z =/~(oo, ~)/z(2)/z(3) .... (3. I0) 

Hence a HLS is a PHLS precisely when all the local densities are positive. 

Classically, ~=/~(oo) is called the singular integral, and ~=/z(2)/z(3)... is called the 

singular series. 

So far we have defined the density/~ only when ~ has integer coefficients. It may 

be seen that the local densities have simple transformation properties, and that the 

global density/z remains unchanged, when _~ is replaced by a proportional system 

=c_~ with integer coefficients. Hence in general we may define/~(~)=/z(~), where 

is proportional to ~ and has integer coefficients. 

B. The Hardy-Littlewood method 

4. A Hypothesis on exponential sums 

Our goal in part B will be to show that the machinery of the Hardy-Littlewood method 

may be applied, provided we make a certain assumption on exponential sums. Let 

_~=(_~(k) . . . . .  _~(2)) be a system of r=rk+. . .+r2 forms as in (1.7), with rational coeffi- 
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cients and in s variables _X=(Xt . . . . .  As). In proving Theorem II we can and we will 

suppose without loss of generality that the coefficients of _~ are in fact integers. Let T 

be the group T=R/Z, and T r the r-dimensional torus. Elements _a of T r will be written 

a s  

g .~_ (g(k) . . . . .  g(2)) ( 4 . 1 )  

with _a (a) E T ra (2~<d~<k), where T O-- {O}. The inner product of _a and ~ may be written 

a s  

a ~  = _a Ck) _~<k~+... + a~2) _~2). 

For a E T ,  let [[al[ be the distance f rom a to the zero element of T. That is, when a 

consists of  reals - ~ ( m o d  1), then Ilall is the distance from ~ to the nearest integer. For 

a_ E T 1 put II_all=max (lladl . . . . .  Iladl) when l>0, and II_all=0 when l=0. 
Given a box ~ and given P >  1 we put 

S(_a) = S(_a, ~)  = E e(a_~(x_)). (4.2) 
~EP~ 

Then 

f 
ze = | S(a_) da_. (4.3) 

Jr  r 

Given a positive number Q, we now introduce the following 

HYPOTHESIS ON _~. For any box ~ ,  any A>0, and for  P>P~(_~,f l ,~,A),  each 

a_ E T" satisfies at least one o f  the fol lowing two alternatives. Either 

(i) IS(_a)l ~<e  '-a'~,  or 

(ii) there is a natural q=q(a_)<~pa with 

Ilqa_(~ll<~P-a+a (2~<d~<k), 

We will say that the restricted Hypothesis holds if the above condition holds for 

each A in 0<A~<I. 

The r-tuples q with (ii) form a subset ~[I~(A) of T r which is the union of certain 

"boxes"  (see below), traditionally called the major arcs. The complement re(A) of 

~[I~(A) in T" is called the minor arcs (although for r> 1 this terminology, especially the 

plural, makes little sense). Thus the Hypothesis means that S(_a) is small on the minor 

arcs. Our main task in part B will be a proof of the following 
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PROPOSITION I. Suppose ~_ satisfies the Hypothesis with some 

• > r + l ,  

or the restricted Hypothesis with some 

Then ~_ is a HLS. 

Given a prime p, define 

(4.4) 

f~ > R. (4.5) 

Vp(r_)=Vp(rk . . . . .  rl) (or Vp(rk . . . . .  r2,0)) as the smallest 

number such that any system ~ as in (1.I) (or'as in (1.7)) in more than Vp(r) variables 

has a nontrivial p-adic zero. The number v(r_) introduced in w 1 is then the maximum of 

Vp(r) over all primes p. These quantities are known to be finite, and recursive estimates 

were derived in [8]. It is well known that (in the case (1.7)) 

(4.6) Vp(O>~k2rk+...+22r2> R >  r+ l. 

FIRST SUPPLEMENT. Suppose the restricted Hypothesis holds with 

Q > Vp(_r). (4.7) 

Then the p-adic density iz(p) is positive. 

SECOND SUPPLEMENT. Suppose the restricted Hypothesis holds with (4.4), and 

suppose that dim Vn(~)>~s-r, where Vn(~) is the manifold of  zeros o f ~  in the interior 
o f ~ .  Then the real density i~(oo, ~)  is positive. Moreover, we do have dim Vn(~)>~s-r 

if ~_ consists only of  forms of  odd degree. 

Combining Proposition I and its supplements with what we said in w 3, and noting 

that dim Vn(~)=dim Vn, we obtain the 

COROLLARY. Suppose the restricted Hypothesis holds with 

~2>v(_r), (4.8) 

and suppose that dim VR>~s-r. Then ~_ is a PHLS. 

5. The minor arcs 

We will assume that the assumption of Proposition I holds. 
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LEMMA 5.1. For each A > 0  we have 

fm da_ < <  ps-R-~ (5.1) IS(_a)l 
(A) 

where 6=6(A)>0. 

Proof. When the Hypothesis holds with f~>r+l, choose E so large that E~2>R; 

when the restricted hypothesis holds with ~>R, set E= I. At any rate, for _a E re(E) we 
have [S(_a)[<<P~-EQ~<P ~-R-6. Hence (5.1) is certainly true when A~>E, for then 

m(A)c_m(E). When A<E, pick numbers A=Ao<A~<...<Ah=E. Then re(A) is the 

union of re(E) and the set-theoretic differences 

mi = ~R(Ai)\~IR(Ai_s) ~i = 1 . . . . .  h). 

The measure o f m  i is <<p-R+A:,+, .  On the other  hand, on the complement  of  ~0~(Ai_~), 

the integrand IS(_a)[ is < < / : - A H u .  Thus the integral over mi is 

<<pS--R--AI_ 1 Q+ A,U+ I). 

But 

-A i_  ! r +  A~(r+ I) = - Ai(g2-r- 1)+(Ai-Ai_ 1) Q < - �89 A ( g 2 - r -  1) < 0 

if the sequence A o < . . . < A  h was chosen with small enough differences A i - A ; - i .  

6. The major arcs 

The major arcs ~IR(A) are the union of  the " b o x e s "  ~2(A, q, q), consisting of  q with 

iqa_(~_a_(~[ << p-d+A (2 ~< d ~< k), (6.1) 

where q<~P/' and where q=(q(k) . . . .  ,_a (2)) runs through the integer points. In fact, since 

we are interested in a_ETr=(R/Z) r, we may restrict ourselves to a set of  points 

q (rood q), and we further may suppose that (q, q )=gcd  (a2 ..... a,, q)= 1. The union will 

then be disjoint if A is small and P is large. 

Generalizing (3.3) we write 

E(q-'q) = q-~ ~ e(q-lq~_(x_)), 
(mod q) 
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and we set 
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1([3_) = fe~a e~_ ~_ ( ~_) ) d~. 

LEMMA 6.1. Suppose q=q-lq+~E~[~(A, q, q). Then 

S(a_) = q-SS(q- 1 a_) lf~_) + O(qP ~- J +a). 

The proof if as for Lemma 9 in [9]. 

Generalizing (3.5), put 

A(q)= E E(q-lq), 

and write 

O (rood q) 
(~,q)ffil 

(6.2) 

~(L) = E A(q), 
q~L 

f l~l,~L K (_rl ) drl, 3(L) 

with K(_~/) given by (3.8). 

LEMMA 6.2. For sufficiently small A>0 there is a 0>0 such that 

f ~  S(a_)da_ = p~-R~(pa) ~(pA)+O(ps-a-~). 
t~) 

The proof is as for Lemma 10 in [9]. 
In view of this and Lemma 5. I, and by (4.3), the proof of Proposition I will be 

complete if we can show that the local densities exist, that the infinite product 

= g(2)/a(3)/~(5) ... (6.3) 

is convergent, and that with suitable 6>0 

~(pA)_ ~ << p-6, (6.4) 

~(pa)_lz(~ ) = ~(pa)_ ~ << p -  a. (6.5) 

This will be accomplished in the next two sections. 
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7. The singular series 

LEMMA 7. I. Suppose (a, q)= 1. Now if the restricted Hypothesis holds with some 
[2>dp, then 

E(q-lq) << q-a,. (7.1) 

The constant in << may depend on ~_ and ~.  

Proof..E(q-lq)=q-SS(a_) with a_=q-lq, with P=q and with ~ the cube 0~<~i<1. 

We now apply the Hypothesis with A = ~ / f 2 < I .  Alternative (i) gives precisely (7.1). 

Alternative (ii) gives a number ~l~qa<q (when q4:1) with 

ii~q-l_a<a)[i <<q-a+a (2~<d~<k), 

so that l[~q-lqfd)l[<q -l when q is large. Since (a_, q)=l, this is impossible. 

Now if the restricted Hypothesis holds with t2>r+ I, we get E(q-lq)<<q -r-l-~ 

where/i>0, and hence A(q)<<q -l-~. Thus the sum 

is convergent, and 

~(oo) = ~ A(q) 
q=l 

~ ( p a ) _  ~(oo) << p-6.  

The densities/a(p) given by (3.6) exist, and since A is multiplicative, 

~(oo) = y I / ~ ( v )  = 
P 

Hence the assertions about the "singular series" ~ made in the last section are correct. 

Next, suppose that the restricted Hypothesis holds with Q>Vp(_r). Then 

E" - l a ' < <  -vp(t)-~ tq _) q , and A(q)<<q "-~162 so that 

I+ I l+2- l(r-v (0-~) A(p )+A(p ) + . . . < < p  P . (7.2) 

On the other hand the argument for Lemma 2 in [12] yields 

> >  pl(S-Vp(r)), 
vt (7.3) 

so that 

1 +A(p)+... +A(p t) = l~t = Ptr >> pt{,-vp{r)). 
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This, together with (7.2), shows that the first supplement to Proposition I is correct. 

We remark that (7.3) may be regarded as the analogue of Theorem I in the local 
field Qp. But (7.3) was very easy to prove. 

8. The singular integral 

LEMMA 8.1. The restricted Hypothesis with f~>r+ 1 implies (3.9). 

As we had seen in w 3, it follows that the real density exists, and 

/~(oo) = ~*(oo) = f K(_r/) 
JK 

Further, 
f 

/ z (~ ) -~ (P  a) = j K(y) d_~ << p-a ,  
i>e ~ 

so that (6.5) holds. 

Moreover, as was shown in [9, Lemma 2], we have / z (~ ,~)>0  when 

dim Vn(~)~s-r. And, as was shown in [12, w 2], 

dim Vn = dim VR(~) >~ s -r  (8.1) 

is certainly true if all the forms of  _~ are of odd degree. Hence the second supplement 
follows. 

Proof of the lemma. We proceed as in Lemma 11 of [9] and Lemma 12 of [12]. We 

may suppose that It/l>2. Writing _~=P-~_~' we have 

K(_r~) = e - s1~)  (8.2) 

where I(~) is given by (6.2) and where 

# = O~k~, .: . ,  #2))  = (p-k_~(k) . . . . .  p-2_~%. 

We are still free to choose P; we set 

e= l 

Put q0=(r+2) -~. Then ~ lies on the boundary of the "box"  ~l~(q~, 1,9). The boxes 
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~lR(cp, q, a_) with q~<P~, with _a (mod q) and with (a, q)= 1 are disjoint, at least when Lr/I 

and hence P is large. Hence ~ lies on the boundary of ~lR(q0), hence lies on the boundary 

of re(q0). By the Hypothesis with A=9,  we have 

IS )l = - ~  << PS~/l-r-I. 

But since fl_ lies in ~[I~(ff, 1,0), Lemma 6.1 yields 

S~O) = I~)+ O(P "-~+~) -- I~)+ O(P~ll-~-~) 

The last two relations in conjunction with (8.2) yield (3.9). 

We remark that (8.1) may be regarded as the analogue of Theorem I in the local 

field R. We also remark that the hypothesis was used for the minor arcs, for the 

singular series and the densities/~(p), as well as for the singular integral ~=/~(~). 

Incidentally, the restricted Hypothesis with some f~>r, and in consequence (3.9) 

weakened to K(9)<<min(l,  ~/I -'-6') with hi>0, would have been enough to prove the 

weaker version ~(pa)_/~(~)<<p-,~ of (6.5), and hence enough to deal with the 

singular integral. 

9. Inhomogeneous polynomials 

The results of part B easily generalize the systems 

~_~ ( ~ ( k )  . . . . .  ~ ( 2 ) ) ,  

where ~{k) is a set of polynomials of degree d. Namely, let ~=(~{k) .... .  ~2)), where 

~r consists of the forms of degree d belonging to $r Define/z(p) as in w 3, but with 

replaced by ~ .  On the other hand define/z(oo, ~) exactly as in w 3, so that it depends 

only on the homogeneous part ~ of ~ .  Define S(a) in terms of ~ .  Then if ~ satisfies the 

Hypothesis with f~>r+ 1 (or the restricted Hypothesis with f2>R), we may conclude 

that ~ is a HLS, in the sense that a formula analogous (1.3) holds. About the only extra 
line is in Lemma 6.1, where one has to note that 

f e(~(~_)) d~_ = ft,~ e(~_(~_)) d~_+ O(P s-'+a) = I(~) + O(p$-I+A). 

There is no analogue to the first supplement. But the second supplement holds, 

with VR(~) the manifold of zeros of _~ (not _~) in D. 
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C. Estimation of exponential sums 

10. Manifolds ~ and invariants 

With each form ~(_X) of degree d we associate the unique symmetric multilinear form 

~(_Xl[...l_Xa) with ~(_X~...I_X)=(-1)dd!~(_X). Suppose ~=(~ l  .. . . .  ~r) is a system of 

forms with complex coefficients and of equal degree d> 1. The complex pencil of 

consists of forms _a~=al ~ + . . . + a r ~ ,  with nonzero _aEC r. Let _e~ .. . . .  _e, be the basis 

vectors. When d > l  we associate with ~ the set ~I~=~(~) of (d-1)-tuples 

(_xl .. . . .  _xa- ~) E C "(a- D for which the matrix 

(mu) = (~j(_xl[... [_Xd-l[_ei)) (1 ~ i<~ S, 1 <~j<~ r) (10.1) 

has rank <r. Thus ~ is an algebraic manifold in C s(d-~), consisting of the (d- l ) - tuples  

for which some form ~ of  the complex pencil has 

~(_x, I ... IX_d_d_Z) = O, (10.2) 

identically in _Z. The manifold ~2 depends only on the complex pencil of ~, i.e. it is 

invariant under substitutions _~,--~T~_ where T is a nonsingular linear map of C r. 

Birch [2] had defined V* = V*(~) as the set of _x E C" for which the matrix O~j/Oxi 
(l~i<~s, l<.j<.r) has rank less than r, i.e. for which the matrix 

~j(_x l... l_xlr (1 <<.i<<.s, I <<.j<<.r) 

has rank less than r. Hence V* is the intersection of ~ with the "diagonal" 

X_z=...=X_d-I. This diagonal has codimension s(d-2), and hence V*, interpreted in this 

way as a submanifold of C s(a-~), has codimension 

<~ codim ~ + s ( d - 2 ) .  

(S. Lang [7, w II.7]). Hence if V* is interpreted as a submanifold of C s, we get 

codim V* ~< codim ~O~, (10.3) 

as had already been noted by Birch. 

Suppose that the forms of  _~ have rational coefficients. An integer (s-1)-tuple 

(_x~ ... . .  _Xd-0 now lies in ~ precisely if there is a form ~ of the rational pencil with 

(10.2). We write g=g(_~) for the largest real number such that 

ze(~ly 0 << ps(d-l)-s+~ (10.4) 
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holds for each e>0. Since Z p ( ~ ) < < P  dimple, w e  have 

codim ~ ~< g. 

261 

(10.5) 

The number g is invariant under substitutions _~-}T~_ where T is a nonsingular linear 

map of Qr. It is easily seen to be invariant also under substitutions ~_(X)~-}_~(r(_X)) 

where r is a nonsingular linear map of QS. 

PROPOSITION IIo. Let _~=~Cd)=(~l .. . . .  ~r) be a system of forms of  equal degree 

d>~2, with rational coefficients. The Hypothesis of  w 4 is then true for any ~ in 

O <  ~ <g/(2d-I(d--1)r). 

In conjunction with Proposition I this shows that _~ is a HLS when 

g > 2d-l(d-l)r(r+ l). 

By (10.3) and (10.5), this is certainly true if 

codim V* > 2d-l(d-- 1) r(r+ 1). 

(10.6) 

rational coefficients. For each d with rd>O put 

gd = g(~d)) .  

Further set 

(10.7) 

yd=gd12d-I(d--1)rd w h e n  r d > 0 ,  g d > 0 ,  (10.8) 

and yd=0 when rd=0, and y d = + ~  when rd>0, gd=O. Finally set 

r = )~2+4~'3+ ... +4k-2~k. (10.9) 

PROPOSITION II. The system ~ satisfies the restricted Hypothesis of  w 4for every 
f~in 

0 <  [2 < r - I .  (10. I0) 

It follows via Proposition I that _~ is a HLS if 

r R < l .  (lO.11) 

Thus we have recovered the theorem of Birch quoted in w 1. 

Now let _~=(_~,) . . . . .  ~<2)), where ~d) consists of rd~O forms of degree d, with 
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Furthermore, by the corollary to Proposition I, we have a PHLS if dim VIt>~s-r, and if 

rv(_r) < 1. (10.12) 

Noting the definition of r, and E2k(l+21-d)<k, we obtain the 

COROLLARY. ~_=(~r . . . . .  _~r is a HLS ~f 

gd > ( d -  1) (1 +21-d) - 1 23d-5rdkR (2 ~< d ~< k). (10.13) 

It is even a PHLS if dim VR>~s-r and i f  

gd>  ( d -  1) (I +2~-d) -123d-5rdkV(r_) (2 ~< d ~< k). (10.14) 

In view of (I0.3), (I0.5), the conclusions remain valid if the gd in (10.13), (10.14) is 

replaced by codim V~, with V~= V*(_~r 

Part C will be devoted to a proof of Propositions II0 and II. 

Remark on inhomogeneous polynomials. It will be clear from our proofs that 

Propositions II0 and II continue to hold for systems ~ of inhomogeneous polynomials 

as in w 9, provided the sets ~i~d and the invariants gd, ~/d and r are defined in terms of 

the "homogeneous part"  ~ of ~ .  

11. Weyl's inequality 

Given a function ~(X), define 

I I 
. . . .  , _xd)=  . . .  

el~O ed'O 

as in [10]. Then ~d is symmetric in its d arguments, and ~d(_X! . . . . .  X_d-i, Q)=0. By [10, 

(2.1)], or directly, 

~d+,(-Xl . . . . .  gd+l)  

= ~d(X,  . . . . .  _Xd_ i, _Xd) + ~d( _X I . . . . .  _Xd_ i, _Xd+ i)--  ~d( _X , . . . . .  X_d-l,X-d"}-X-d+l). 

Therefore, ff for fixed X-l . . . . .  X-d-1 we set (~(_X)=~d(X-I . . . . .  _Xd-l, _X), we obtain 

~d+l(Xi . . . .  , X_d_l, _Xd, Xd+l)  = -- (~2( _Xd, Xd+,) .  (11.1)  

Given a finite set ~ of integer points in R s, write ~-x_ for the set of points a_-x_ 

with _a E ~.  The difference set ~D is of  the union of the sets ~-x_ with x_ E ~.  Define 
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1 ! 

92(x_! ..... _x,)= n ... n (92--el_Xl--...--et_xt). 
~1=0 et=O 

Then 92(x_)=92 n (92-x_), and for t~>2, 

92(-XI ..... -at) ~--" 92(-XI ..... -Xt- I) 17 (92(X_ i ..... X-t- I)--X- t). 

LEMMA 1 1.1. Let ~ be defined on Z ~ and real-valued, and put 

S = ~] e(~(_x)). 

Then for each d>~2, 

ISl2~-'-~<192012d-'-a ~ ... ~ ~ e(~a(x- ,  . . . . .  x_a)) 
-~l E ~t ~ ,~,t_l E ~ta '~,tE 2(gl  .. . . .  gd-~) 

Here 192~ of course means the cardinality of 920. The lemma is a modem 

formulation of  Weyl's inequality. 

Proof. In 

Isle= 

set _x1=_x-_y, x_2=_y. Then _xlE92 ~ and _x2E92N(92-x_0=92(x_l). We note 

~(x_)-~ _0,)=~(x_ 1 +x_2)-~(_x2)= ~2(_xl, _x2)-~(x_ !). Thus 

IS[ 2= E e(-~|(_x,>> E e(~2(-x,,-x2 >>~< E ] E 

that 

which is the case d=2 of the lemma. 

For the step from d to d+ 1, we square the inequality of the lemma, and use 

Cauchy's inequality, to obtain 

2 

IsIe"<"I92D[2"-2a+d-1E "'" ~ E e(~d(-X, .....  -Xd)) (11.2) 
~lE ~/I D ~a_z E ~1D ~ E  r .. . . .  a:,H) 

Denote the sum over X d on the inside by Sd. Then Sd is like S, except that ~(X) is 

replaced by ~l(_X)=~a(x_l .. . . .  X_d-b_X), and 92 is replaced by 92(x_1 . . . . .  X_d-0. By 

applying the case d=2 of  the lemma, and observing (ll .1) as well as the relation 

92(x_1, ...,X_d-l)~ 92 D, we get 
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I 
ISal2 ~ ~ ~ e(~d+,(X-, ..... _Xd+,)) ]. 

.~d E ~I ~ ~d+I E ~[(Sl ..... ~d) I 

By substituting this into (11.2) we get the desired result. 

LEMMA 11.2. Suppose q~ is a form of degree j>O. Then 

(a) ~a=O when d>j. 

(b) ~j(X_I,...,X_j) is multilinear. 
(c) When l<~d<j, then 

j - d +  1 

~d(-XI . . . . .  -Xd) = E ~[~d,/(-XI . . . . .  -Xd), 
Iffil 

where (~d,l is a form of  degree I in X_d, and a form of  total degree j - l  in X_ l, ...,X_d-l. 

Proof Since ~d(0, _X2 .. . . .  _Xa)=0, each monomial occurring in ~d(_Xl . . . . .  _Xd) has 

some component of _Xi as a factor. The same is true for _X2 ....  ,_Xd. Since the total 

degree is j ,  each monomial has a degree between 1 a n d j - d + l  in each of_X1 ... . .  _Xd. (In 

the case d= 1, all but (~l.j vanish identically.) 

Now if ~ is a form of degree d, then by (b), ~d(_X!,..., _Xd) is symmetric and 

multilinear. Each of the 2 d summands in the definition of ~d(_X ... . .  _X) is a multiple of 

~(_X), so that ~d(X_ ..... X)=Q(d) ~(_X) with a numerical factor Q(d). Taking ~(X)=X d we 

see that 0 ( d ) = ( -  Dad !. Thus 

~a( _XI . . . . .  _Xd) = ~(_X~I ... ~a) ,  (11.3) 

where the right hand side is the multilinear form of the last section. 

Write 1~1 for the maximum absolute value of the coefficients of a polynomial 

with real coefficients. Write I]~1] for the maximum of Ilfll over the coefficients f o f  ~. 

LEMMA 11.3. Suppose ~ is a form of degree j. Then 

II~dll ~< 2d" aJll~l[ �9 

Proof. We have II (_xl+...+_Xp)ll <pJll ll. Since ~d consists of 2 d summands, each 

of the form +~(e~X_l+...+edX_d), the assertion follows. (It would not be difficult to 

prove a stronger assertion.) 

LEMMA 11.4. Suppose 

~(_x) = ~<~ +~<k)(_X) 
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where q~w (O<~j~k) is a form of  degree j with real coefficients. Then 

(A) ~k(Xl . . . . .  -Xk)=~(k)(-Xll ... ~-k). 

(B) Suppose that l<.d<k and that Ilq~(J)ll<<.P~ for d<j<<-k, where 0>10, P>I .  Also 

suppose that x_l . . . . .  X_d-i are integer points in P~.  (This last supposition is empty 
when d= 1.) Then 

k-d+ l  

~d(_x, . . . . .  -~.-~.-~ = ~'%,1..-I~_~_~+ ~ ~(~_ ,  . . . . .  _ ~ _ , , ~ ,  
I=! 

where ~r176 , . . . . .  X_d_t, _X) is a form in X_ of  degree I with 

II~a011<<P ~ (1 ~l~k-d+ l ) ,  

and with the constant in << depending only on k, s. 

Proof. (A) follows from Lemma 11.2 and from (11.3). As for (B), 

k 

jffi d+ 1 

k j - d + l  

d.l 
jffid+! /=1 

k - d + l  

Iffil 

where 
k 

d,l" 
jffimax(d+ l , l+d-I )  

Since II~a~?lll~ll~a~ll<<tl~~ and since (~r is a form of degree j - l  in X! . . . . .  X_a-1, d, /  - - 

and since further Ix_d . . . . .  Ix_d-d are bounded by P, we see that (as a form in _X only) 

k 

I1~')11<< ~ eJ-'ll~U)ll 
j=d+ I 

k 
<< ~ pj-tpO-j 

j f d +  ! 

<<po-~ (1 ~l~k-d+1). 

18-858286 Acta Mathematica 154. Imprim~ le 15 mai 1985 
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12. Predominantly linear exponential sums 

Write ~x_=fll xl +... +flsx, for the standard inner product.  

LEMMA 12.1. Suppose ( ~ ( _ X ) = ( ~ ( ~  where @0~ is a form 

o f  degree j with II(~C'll~<Q -j  (j= 1 . . . . .  m) with some given Q> 1. Suppose that 0 < 6 < 1  

and that Mi . . . . .  Ms lie in I<~Mi<~Q 1-o (l~<i~<s). Given fl__, put 

Then 

S =  2 e~x+(~(_x)). 
~r 

I ~ q < M  i 

$ 

ISI << 1-I min ( M  i, IIEII-'), 
i ffi l 

with the constant in < <  depending only on m, s, 6. 

Proof. We may suppose that the constant term 1~(~ We further may suppose 

without loss of  generality that I@~ (j= 1 . . . . .  m). For  the vectors _x of  the sum, 

I(~O)(x_)l<<Q-JQ~ ( j=l  . . . . .  m), so that I~(_x)l<<Q -~. Let l be an integer 

with 16>s, and put 

I 

~(_X) = E (2~zi(~(_X))"/n!. 
n = O  

Then 

e((~(x_)) = ~(_x)+O((~(x_) t) = ~ (x )+O(Q -t6) = ~(x_)+O(Q-S), 

and therefore 

S= Z e~g)@(x)+O(1) .  
(12.1) 

We now write 

~(_x) = 1 +~")(_x)+...  +~("~(_X) (12.2) 

where ~('~ is a form of  degree j .  Our hypothesis  implies that 

I~O~l < <  Q - j  (l<~j<<.ml). (12.3) 
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Now 
M M 

Z e(flx)~ = Z (x t - (x -  1)t) (e(flx)+e~(x+ 1))+... +e~M))  
x = l  x = l  

M 

<< Z xt-l min (M, I ll-b 
X=I 

<< M t min (M, I~[I-I). 

Hence for a monomial ~IR(_X)=X~ ... X~' of total degree j l+.. .  +j~=j, we have 

$ 

Z e(~_x)~i~(_x)<< QJH min(Mi, I[e,ll-b. 
,15 i=1 

This, together with (12.1), (12.2), and (12.3), gives the desired result. 

LEMMA 12.2. Suppose ( ~ ( X ) - - ( ~ ( ~  where ~o~ is a form 

of  degree j. Suppose 0~<0<I/4, P > I ,  and suppose there is a natural q with 

q<~pO and Ila~C'~ll~<ce~ 0"=1 . . . . .  m), 

where c is a constant. Given ~ and given a box f~ with sides at most 1, write 

S =  Z e(/~_x+(~($)). 
# E P ~  

Then for e>O, 

$ 

S << e2Os+~ H min (p,-2o IIq ,ll-'), 
iffil 

with a constant in << which depends only on m, s, c, t. 

Proof. Choose 6 with 0<6<I/2 ,  and put 

Q = pi-2o-6, M = QI-6. 

The box P ~  may be split into <<(P/Mq) s boxes with sides <~Mq. In each such small 

box write x=q+qy, where q runs through a residue system modulo q, and y runs 

through a box with sides ~<M. Given the small box and given the residue class q, we 

have ~=~+qz, where z runs through a box ~(b) of the type l<~zi<~M~ with Mi<~M 
(i= 1 .....  s). Put 
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S(b_)= E e(q#~.+(~(b_+qz)). 
E ~(~) 

Since the number  Of possibilities for _b is 

< <  (P/Mq)SqS = (p/M)S <<  p2O~+ 2~, 

and since 6 may be chosen arbitrarily small, it will suffice for us to show that 
$ 

S(_b) <<  I - I  min (pi-2o, 
i ffi 1 

Now @CO(_X+ _Y)=~t~ _Y)= ~l~ y)+...+~IO(_X, _Y), say, where each term is a form 

of  total degree I in _X, _Y, and where  @~ is of  degree j  in _Y and of  degree l - j  in _X. Clearly 

For fixed ~ we have 

@~~ + q Z) = ~l~ z_ )- + ... + q ~t ,_, "-COtb 

= + 10f_z), 

say, where ff{~) is a form of  degree j .  Since I_bl<<P, we obtain for j =  1 . . . . .  l that 

ii ? ll <<  f-,l_bl,-Jllq  Oll < <  qjpl-jpe-! 

= pO(p/q)-j  <<  pOpj(O-I)<< Q-j(I+~). 

Now 

( ~ ( b + q Z )  = ~ ( ~  + ~ ( m ) ( e )  

with ~O~-~O~.L~U~ - +fft~ ~" - " ' j  - " ' j+ l  . . . .  ( j=0 ,  1 . . . . .  m), so that 

II o)ll <~ Q-J (j  = 1 . . . . .  m) 

i f P  and hence Q is large. L e m m a  12.1 yields 
$ 

S(_b) <<  I - [  min (M, Ilqt ,ll-'). 
iffil 

13. Exponential sums and multilinear inequalities 

LEMMA 13.1. Suppose ~(_X)=~(~ where ~u~ is a form o f  

degree j with real coefficients. Let  ~ be a box with sides <<. 1, let P> 1, and put 
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S= Z e(~(x_)). 
~EP~3 

Now let 2<.d~k and e>0. Suppose that either d=k, and put  0=0 and q= 1. Or else, 

suppose that 2~d<k ,  that 0~<0<1/4, and that there is a natural 

Then 

q ~ p O  with Ilq~O)ll<~PO-J for  d < j < . k .  

,s,e   (iHmin   2~ l,ei,,, , ) 

where the sum E is over (d-1)-tuples o f  integer points x_! . . . . .  X_d-i in P ~ ,  where 

e_~ . . . . .  e_s are the basis vectors, and where the constant in << depends only on s, k, e. 

Proof. The case d=k  is e.g. Lemma 2.1 of Birch [2]. But Birch does not give details 

of the proof and refers to Davenport [3], who did the case k=3. Hence it seems 

appropriate to go into the details. 

Our hypothesis on ~ implies that (p f~)O~p~.  Lemma 11.1 gives 

E . . .  5] 

In the case when d=k,  

E e(~d(_xl ..... _xd_~,x_a)) I. (13.1) 
~E (/'~)(~1 ..... ~d-~) 

~ d ( X l  . . . . .  X d -  1, _X) ~--#_X 

with 

~i = q~(dd)(x_, . . . . .  X_a_l, e i) = ~cd)(x,I ... IX d_l]6,i) (i = 1 . . . . .  s). (13.2) 

Hence a bound 

<< ~ min (P, I1~,11- b 
i=1 

holds for the inner sum in (13.1). In the case when 2 ~ d < k ,  Lemma 11.4 tells us that 

k - d + l  

~x_, ..... _xd_,, _X)=~_X+ ~] ~(_X) 
/=1 
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where/3 is given by (13.2) and where @~ is a form of degree I with 

iiq~ga)l < <  p o - t  (l = 1 . . . . .  k - d +  1). 

Now Lemma 12.2 gives a bound 

$ 

<< p2O,+, H min (pt-2o, IIq/ ,ll-') 
i=l 

for the inner sum in (13.1). 

LEMMA 13.2. Make all the assumption o f  the preceding lemma. Suppose further 

that 

[SI ~>P*-K (13.3) 

where K>0. Then the number N o f  (d-1)-tuples o f  integer points x_l .. . . .  X_d-i in P@ 

with 

. . .  < P - ' + ~  (i -- 1 . . . . .  s)  (13 .4)  

satisfies 

N > >  P '(d-I)-2~-tr-~, (13.5) 

with a constant in >> depending only on s, k, e. 

Proof. Let No(x_t . . . . .  _xd-2) be the number of points _Xd-i E P ~  with (13.4). Then 

N=No when d=2,  and 

N =  E "'" E No(~' . . . . .  X-d=2) (13.6) 

when d>2, It will be convenient to set 

j = pi-2o, (13.7) 

and to write {a} for the fractional part of a real number a. Then for any set of integer 

points _xl . . . . .  X_d-2 and any integers ai ... . .  a, with O<~a,<J, the inequalities 

J- 'a ,  < 1) (I <~ i ~< s) 

cannot hold for more than No(_X~ .. . . .  x_a-2) integer points _xd-~ lying in a prescribed 
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box of side P: for if x_~-i is one solution of these inequalities, and if _Xd-~ denotes the 

general solution, then 

[Iq~('~ ... Ix_a_2lx_a_,-x_'d_,le_i)ll < J - '  ( i= 1 . . . . .  s), 

and x_a_m-X_~_~ EP@. Thus the number of possibilities for _xa-~ is indeed at most 

No(_XI . . . . .  X_d-2). 

Dividing the cube P ~  into 2 s cubes of side P, we obtain 

( I ' I  min (J, l[q~(a~(x- ,l... lX-d-2lX-d-~le-i)ll-~) ) 
.~d_l E P ~  iffil 

( . . . . .  _xa_ 2) ... I - [min J, max ~/ [ j -a i - l l  < <  N0(_x I 
= = \ i f f i l  ' ,  

<< No(x_ l ..... x_a_2).lS (log J)S. 

In conjunction with (13.6), (13.7), and the preceding lemma, this gives 

IS[  2d-I < <  Np(2d-'-d+l) s+2e. 

Since t > 0  is arbitrary here, the hypothesis (13.3) yields the desired conclusion. 

14. An application of the geometry of numbers 

LEMMA 14.1. Let 

~,<_X)=AiiXl+...+AisXs ( i= 1 . . . . .  s) 

be linear forms with 2u=Aji (1 <~i, j<.s). Given A> 1 and Z>0, let N(Z) be the number of 
integer points x_ with 

Ix_I~<ZA and II~,<~II<.ZA - '  ( i = l  . . . . .  s). (14.1) 

Then for 0<Zi ~<Z2< I we have 

N(Z O >> (ZI/Z2)S N(Z2), 

with a constant in >> which depends only on s. 

Proof. See Davenport [3, Lemma 3.3]. Davenport has strict inequalities in (14.1), 

but it is easily seen that this does not matter. 
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COROLLARY 1. Suppose that I<R<~P<J, and let 

N be the number oflx_l <-e with II~,<x_)ll ~ J - ~  ( i =  1 . . . . .  s) 

N' be the number oflx_l~R with II~,<x_)ll<.J-1Re -I ( i - -  1 . . . . .  s). 

N' >>  (R/p)sN. (14.2) 

Proof. Apply the lemma with A=(PJ) v2, Z2=(P/J) 1/2, ZI=R/A. 

COROLLARY 2. Suppose that 6<R<.J<~P. Define N as in Corollary 1, and let 

N" be the number oflx_l<.R with II~,<_x)ll~<j-eR ( i =  1 . . . . .  s). 

N" > >  (R/P)SN. 

Proof. Divide the cube I_x[~<P into cubes of  side <.(1/3)J, more precisely into 

<<(p/j)s  such cubes. One of  these subcubes will contain >>(J/P)*N points x_ with 

II~,<_x)ll<~J - t  (i=1 . . . . .  s). If  x_* is a fixed one of these points and x_ any one of these 

points, then y=x_-x_*E(I/3)J~ and [l~,s -1.  By Coiollary I, applied with 

(I/6)R, (1/3)J, (1/2)J in place of R , P , J ,  we find that the number of I_xl<~R with 

II~,<x)ll-<J-2R ( i =  1 . . . . .  s)  is 

>>  (RI2J) s (JIP)SN >> (RIP)SN. 

LEMMA 14.2. Make the same assumptions as in Lemma 13.2. Suppose )7>0, and 

)/+40--. < 1. (14.3) 

Then the number NOD of  (d-1)-tuples 

X_l, .. . ,X_d-! 

with 

satisfies 

in P~ 

IIq~a)(x_ d ... I_xd_ d_ei)ll ~ p-d+4O+(d-I)tl 

N(~/) > >  P s(d-l) r/-2a-'K-e, 

with the constant in >> dependent only on s, k, r i, e. 

(i = 1 . . . . .  s) 
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Proof. F o r  f ixed _x2 . . . . .  _Xd- l, let 

~,(_X) = q~(a)( _Xlx_2l ... J_Xd-,l_~;). 

Put j=pI-2e,  R=�89 and let  Nt(_x 2 . . . . .  _xa_ 0 be the n u m b e r  o f  

_xlEP@ with J[$,(_x~)ll~J-' ( i =  I . . . . .  s). 

By L e m m a  13.2, 

Y. . . .  Y. u,<~_~,:..,~_~_,)>>e "`~-''-~"~-~ 
~z EP~ ~a-z EP~ 

Le t  N~(_X2 . . . . .  _Xd-I) be the  n u m b e r  o f  

_x) E P ~  with II~i(_x,)ll <<-J-2R = �89 

We infer  from. Coro l la ry  2 that  

N"(x P..-2 . . . . .  -Xd-R) > >  P(q-DSNl(x-2 . . . . .  x-d-l). 

The re fo r e  the n u m b e r  o f  ( d - 1 ) - t u p l e s  x_~ . . . . .  X_d-m with 

x_iEP'I~, x_2EP~ . . . . .  x_a-lEP~ 

and with 

is 

(i = 1 . . . . .  s). 

Ilq~(d)(_x~[ ... i_Xd_,l_ei)[ I ~<�89 ( i =  1 . . . . .  s) 

~ ps(d-2+~/) -2a- Ig-e. 

Next ,  fo r  f ixed x_~, _x3 . . . . .  _Xd-1, let 

~,<_X) = q~(a~(_xl~'_ [_x31 ... Ix_a_lle_i) (i = 1 . . . . .  s). 

Put J=2P 2-4~ R = P  '~, and let NE(_x~, _x3 . . . . .  _Xa-0 be the n u m b e r  o f  

_x2EP~ with [ [ ~ t ( _ x 2 ) [ l ~ J  - 1  ( i =  I . . . .  ,s).  

We have jus t  seen  that  

Z Z . .  Z ..... x_.) >> 
~l E/m(~ ~t3EP~ ~d_tEP~ 

273 
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Let  N~(x_l, _xs . . . . .  _Xd-l) be the number  of  

x_2EP"~ with �89 ( i=  1 . . . . .  s). 

We infer from Corollary 1 that 

N~(_xl, _xs . . . . .  X_d_l) > >  Pt~-l)'N2(x_l , x_ s . . . . .  X_d_l). 

Hence the number  of  ( d -  1)-tuples 

x_~EP~,  x_2E P ~ ,  x_sEP~ . . . . .  X_d_~EP~ 

with 

ilq~<d)(_Xll ... iX_d_de_i)ll <~�89 (i = 1 . . . . .  s) 

is 

~>~> e s ( d -  3+ 2T1) - 2d-l g - e .  

Continuing with this process ,  considering x_s . . . . .  _Xd-Z in turn, and applying Corol- 

lary 1 each time, we finally obtain the desired conclusion. 

15. Systems of forms 

Let _~=(_~(k) . . . . .  _~(2)) be a system of  forms as in (1.7) and with integer coefficients, and 

let q=(qtk) . . . . .  _a (2)) be as in (4.1). Further  let ~d=~IR(~_ (d)) (2~<d~<k) be the manifolds 

of  w 10. 

LEMMA 15.1. Suppose  that K>0,  e>O, and that 2<.d<<.k. Suppose that either d=k,  

in which case set 0=0 and q = l .  Or else, suppose that 2<~d<k with rd>O, that 

0~<0<1/4, and that there is a natural 

q<~pO with llqa_Wll<~pO-j for  d<j<~k .  (15.1) 

Given a box ~ with sides ~<1, and given P > I ,  define the sum S(a_) as in (4.2). Given 

r/>0 with (14.3), one o f  the fol lowing three alternatives must  hold. Either 

(i) IS( )l P or 

(ii) there is a natural 

n < <  pr,~d-l)~ with Ilnq_a(~ll < <  p-d+4e+r~(d-I)~, or 

(iii) ZR(~f~d)>>R (d-i)s-2d-I(K/~)-e 
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holds with R = P  ~. The cons tan t s  in < <  and  > >  here depend  only on s, k, r k . . . . .  r2, ~, e, 

and  ~_ , and  hence  only on ~_ , ~1, e. 

Proof .  We have q~=~(2)..~....q_~(k) with ~(d)=_a(d)_~(d). In the case when 

2~<d<k, the hypothesis  (15.1) implies that Ilq~tSgll<<P ~  for each j in d<j<~k, with a 

constant in < <  which depends only on _~o). It is clear that Lemmas  13.1, 13.2 and 14.2 

hold with this slightly weaker  assumption.  In particular we may apply Lemma 14.2 

when (i) fails. Then the number  N(r/) of  integer (d-1)- tuples  x_i . . . . .  _Xd-1 in R ~  with 

satisfies 

IIq_a(~ _~(~(x_d ... I_Xd-d_e,)ll <~ 6 P-a+4o+(a-')~ (i = 1 . . . . .  s) (15.2) 

N(~) >> R s(d-I)-2d-I(KhD-e. 

Suppose ~a~=(~,O, (d) - " '"  ~'d )" Given x_ I . . . . .  _Xd_ 1 as above, form the matrix 

(m#) = (~)d)(_Xll ... I_Xd_alr (1 ~ i ~ S, 1 ~ j  ~ rd). 

Now if this matrix has rank less than rd for each of  the ( d -  1)-tuples counted by N(r/), 

then clearly alternative (iii) holds. Hence  we may suppose that one at least of  these 

matrices has rank rd. We may suppose that the submatrix with 1 <.i<~rd is nonsingular. 

Write n for the absolute value of  the determinant of  this submatrix. We have 

and hence 

mu < <  R d- I, 

n < <  R "~a-~ = t r 

From (15.2) we have 

rd 

q aJ' m0-- b,+o, 
jffil 

(1 <.i<.s) ,  

where the bi are integers and the Oi are bounded by the right hand side of  (15.2). Let  

a m . . . . .  ard be the solution of  the sys tem of  linear equations 

rd 

~ a j m o . = n b  i (l  <-i<~rd). 
jffil 

(15.3) 
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Then 
ra 

(qnaJa)-aj) m O. = nei (I <. i <<. ra). (15.4) 
j=i 

Cram6r's rule applied to (15.3) shows that the aj are integers, and applied to (15.4) it 

shows that 

IlqnaJd)ll ~< [qnaJa)-ajl<< R(d-I)(rd-I)e-d+40+(d-l)• 
= e-d+40+(d-I)ra~. 

The proof of Lemma 15. I is complete. 

For d with ra>O, define ga=g(~  <a)) and Yd as in w 10, and put 

Y'a = 2a-l/ga = ya/((d-  1) ra). (15.5) 

The third alternative of Lemma 15.1 may not happen for large P if 2a-~K/rl<ga. In 

particular it may not happen with ~/=K~,b+e. The condition (14.3) is fulfilled when 

40+K7~<1 and when e>0 is sufficiently small. 

COROLLARY. Let  ~_=(~_fk) . . . . .  ~_~2)), _a=(_af~) . . . . .  a_ ~2)) and P be as above. Sup- 

pose  either that d=k,  in which case set 0=0, q= 1. Or suppose that 2<-d<k, that ra>O, 

that 0~<0<I/4, and that there is a natural q with (15.1). Suppose  that e>0, and that 

K>0 satisfies 

40+Ky~< 1 (15.6) 

there is an nk with 

n k < < P  xy~+~ and Ilnk_a~k)ll <<p-k+~c~k+,. (15.7) 

Then either 

(i) IS(a)l <P "-x, o r  

(ii) there is a natural n with 

n << pXrd+~ and Ilnq_ar << e-a+4o+ry,+,. 

The constant in << depends only on ~_, rl and e. 

In particular, when Ky~< 1 and when 

IS(a_)l > e ' - x ,  
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Suppose now that r k _ l > 0  and that 4Kyk+Ky'k-l<l.  When e is sufficiently small we 

may apply the corollary with d = k - 1 ,  O=Kyk+e and q=nk. (Clearly everything works, 

even though the <~ in (15.1) is replaced by << in (15.7).) We infer that there is a natural 

nk- I  w i t h  

nk_ l<<P  xyk-~+~ and alnknk_la_~k-I)ll<<P -tk-~)+4x~*+xr~-'+~. (15.8) 

(Actually one obtains multiples of e in the exponents, but since e>0 was arbitrary these 

multiples may be replaced by e itself.) In the case when rk-~=O we have 7k_1=0, and 

(15.8) is trivially satisfied with nk_l=l .  Now when 42Ky,+4Kyk_~+Ky'k_2<1, the 

argument may be repeated. Ultimately we obtain 

LEMMA 15.2. Put 

rd = )J d+ 4yd+ 1 +. . .  + 4k-dyk 

Suppose that e>0, and that K>0  has 

(2~<d~<k). 

K~'2 < 1 (15.9) 

Given ~., a_ and P as above, we either have 

(i) IS(_a)I~<P s-x,  or 

(ii) there are natural numbers nk, nk- 1 .. . . .  n2 with 

n d < <  ~ 7d+E 

and 

(15.10) 

link.., nda-td)l[ < <  p-d+x,~+e (2 ~< d <~ k). (15.11) 

Proof  o f  Proposition II0. We apply the corollary to Lemma 15. I with d=k. We 

suppose (10.6) to hold, so that f /yd<l .  We set K=Af / ,  so that Kyd+e<A when e>0 is 

small. Thus when P is large, say when P>.P~(~_, ~ ,  A), then either 

(i) IS(~)l~<P "-a'=, or 

(ii) there is a q with 

q<~pa and llqa_ll~P -d§ 

But what about the condition (15.6)? In our context this condition means that KF~<I, 

and for this it suffices that Ky'd<~yd, i.e. that A~/~/~<yd, i.e. that A~<(d-1)r. We are 

thus left with the case when 



278 w.M. SCHMIDT 

A > ( d - 1 ) r .  

But in this case (ii) (of the Hypothesis) is always true by Dirichlet's Theorem on 

approximation. 

In our lemmas we supposed that ~ had sides ~< 1. But clearly the proposition is true 

in general with P>~Ps(_~, Q, A, ~).  

Proof of  Proposition II. We apply Lemma 15.2 with K=Af2. In view of (10.10) we 

have f~r<l.  Setting q=nknk-I ... n2 we have 

q << pKr+e and Ilqa(~l] << p-d+K~+~ (2 ~< d ~< k), 

since ~d-t-~d_l-t-...-l-~2~r2=r (2~<d~<k). Here Kr+e=A•r+e<A if e>O is sufficiently 

small. Thus, as in the proof of Proposition II0, either (i) or (ii) holds. In our present 

context, (15.9) becomes A Q r < I ,  which is true for A~<I. Hence _~ satisfies the restrict- 

ed Hypothesis. 

D. The invariants g and h 

16. Invariants gc and hc 

In this section we will introduce quantities gc and hc which are easier to handle than g 

and h. 

If ~ is a form of degree d > l  with complex coefficients, let hc=hc(~) be the least 

number h such that ~ may be written in the form (1.5), where the ~;, ~ i  are forms of 

positive degrees with complex coefficients. Given an r-tuple _~ of forms of degree d, let 

hc(_~) be the minimum of hc(~) over all forms of ~ of the complex pencil of _~. Define 

the manifold ~[I~=~IR(_~) as in w 10, and put 

gc = codim ~IR. 

LEMMA 16.1. gc<~2d-lhc. 

Proof. We may suppose that _~=(~1 .. . . .  ~,) and that ~l may be written as in (1.5) 

with h=hc. Write e(O=deggAi, f(O=deg~i, so that e(O+f(O=d (l~<i~<hc). It is easily 

seen that the multilinear form ~I(_Xll ... ~-d) is a sum of products 

~,( _Xj, I ... I _Xj~,) ~,{  _Xk,I ... I 

where l<~i<~hc and where jl<...<je(O and kl<...<kf(,~ are disjoint subsets of 

{ 1 .. . . .  d}. A point (_xl ... .  , _Xd-I) will certainly lie in ~ if 
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~t,~_~j,{ . . .  {,j~0) = 0 

for l<~i<~hc and any l<~j~<...<jeo3<.d-1, and if furthermore 

~,(x_k,I ... I_x%) = 0 

for l<<_i<~hc and any l<~k~<...<kfo3<~d-1. The number of all these equations is 

hc ( ( d - 1 ) + ( d - l ~  
2 e(O \f(O//~< 2d-lhc" 
i=1 

PROPOSITION IIIc. For a single form ~ of degree d > l ,  

h c ( ~ )  -< ~0(d) g c ( ~ ) ,  

where 9(2)=9(3)= I, 9(4)=3, 9(5)= 13, and cp(d)<(log 2)-dd[ in general. 

COROLLARY. For a system ~_ of r forms of degree d > l ,  

hc(_~) <~ ~o(d) (gc( _~)+ r-- 1). 

Proof. Since ~rd(_~) is the union of ~R(~) over the forms ~ of the pencil, and since 
~ ( ; t ~ ) = ~ ( ~ )  for )~=t=0, there is some ~ in the pencil with 

dim ~R(~) I> dim ~2 (~ ) - ( r -  1), 

o r  

Then 

gc(~) = codim ~R(~) ~< g c ( ~ ) + r -  1. 

he(_~) <~ hc(~) ~< 9(d) gc(~) ~< 9(d) (gc( _~)+r- 1). 

17. The arithmetical case 

Now let ~ be an r-tuple of forms of degree d> 1 with rational coefficients, and define 
h, g as before, i.e. as in w 1, w 10. It is easily seen that 

hc<~h, gc<~g. (17.1) 

The proof of Lemma 16.1 does not seem to have an analogue in the arithmetical case, 

nor is such an analogue of importance for the main purpose of this investigation. 
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However, the analogue of Proposition IIIc holds, i.e. for a single form ~, 

h(~) ~< ~0(d) [g(~)], (17.2) 

where [ ] denotes the integer part. 

PROPOSITION III. Suppose that ~ is a form o f  degree d > l  with rational coeffi- 
cients, and write ~{R=~O~(~). Suppose that for  some P > I ,  

Zp(~Y~) > AP  s~a-I)-r-l, (17.3) 

where A=A(d,  s) is a constant independent o f  ~, and where ), is an integer. Then 

h(~) ~< q0(d) y. (17.4) 

Now if y= [g(~)], then (17.3) is certainly true for some arbitrarily large values of P, 
so that (17.4), and hence indeed (17.2) holds. 

COROLLARY. For a system ~_ o f  r forms o f  degree d with rational coefficients, 

h(_~) ~< q0(d) ([g( _~)] + ( d -  1) r ( r -  1)). 

Proof. Put y=[g(_~)]+(d- 1) r ( r -  1), and choose e>0 with 

y+ 1 > g(~r)+(d- 1) r ( r -  1)+2e. (17.5) 

By definition of g=g(_~), there are certain arbitrarily large values of P with 

Ze(~9~(~_) ) >> p~d-I)-~-~. (17.6) 

The constant in >> here and in what follows may depend on _~. 

Suppose (x_! . . . . .  _xa-0 with Ix_il<~P lies in ~IY~(~). The matrix (10.1) then has rank 
less than r. Thus there is a linear combination ~=al  ~l+...+ar~r with (10.2). The 
coefficients as have to satisfy the system of linear equations 

~ m u a  j = 0 (i= 1 . . . . .  s). (17.7) 
j=l  

The rank of the matrix (m0) is ~<r-1, and the entries m o. are <<pd- I .  Hence there is a 
nontrivial integer solution q=(al . . . . .  a,) of (17.7) with 

la_l < <  e(d-I)(r-I). 
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The number of possibilities for such _a is <<ptd-l)r(r-I). Hence there is a form ~ in the 

rational pencil with 

Ze(~ff~(q~) ) >> p-fd-1) ,~,-1) Z p(~f~(~) ). 

In conjunction with (17.5), (17.6) this gives 

Zp(~[~(~)) > >  es(d- I ) -y -  I + e, 

and hence gives (17.3) when P is large. Thus (17.4) holds, and further 

h(~) ~< h(~) ~< q~(d) y. 

In the next section we will deduce Theorems II and III. Proposition IIIc will be 

proved in w167 19-23. The necessary modifications for the proof of Proposition III will be 

given in w 24. 

18. Deduction of  Theorems II and III 

The corollaries of Propositions II and III, together with 

( d -  1) (1 +21-d) -! 23d-SrakR+(d - 1) rd(r d -  1) < ( d -  1) 23d-SrdkR 

show that Theorem II is indeed true with 

~((d) = ( d -  1) 23d-Sqg(d). 

We have ~f(2)=2, Z(3)=32, X(4)= 1152, and in general x(d)<24d.d! The Supplement to 

Theorem II follows in the same way. 

As for Theorem III, we had seen in Proposition IIo that ~ satisfies the Hypothesis 

with every Q<g/(2d-I(d--1)) ,  and hence it satisfies the Hypothesis with f~<h/r(d), 

where r (d )= (d - l )  2d-I~(d). Here r(2)=2, r(3)=8, r(4)=72, and in general l~(d)<22d" d! 

19. Simple points 

Let 

s = e+t ,  (19.1) 

and let V be an irreducible algebraic variety of dimension e embedded in C s. Let ~(V) 

be the ideal of polynomials f(_X)E C[_X]=C[Xt ... . .  Xs] which vanish on V. We will write 

19-858286 Acta Mathematica 154. Imprim~ le 15 mai 1985 
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OflOXi for the partial derivatives, and aJ7ax i for the partial derivatives evaluated at a 

particular point _x. Given _x E V, let G(x_) be the set of vectors 

grad f (_x )  = ( a f / a x ~  . . . .  , a f l a x , )  

w h e r e f r u n s  through ~(V). Then G(x_) is a vector space (over C). It is well known (see 

e.g. Lang [7], Chapter  VIII.2) that 

dim G(_x) ~< t. (19.2) 

Points with dim G(x_)=t are called simple or non-singular, points with dim G(x)<t are 

called singular. Again, it is well known that the singular points form a proper algebraic 

subset Vsing of  V. 

Let  _C=(CI . . . . .  Cs) be a new vector of  variables. For  _xE V, let H(x_) be the set of  
linear forms 

f(I)(~v) = ~ (aj7axi) Ci" 
iffil 

Then H(x) is a vector space isomorphic to G(x_), and thus dim H(x_)<.t. This means that 

there are t linear forms (which depend on _x), say 

k~ (C) . . . . .  k,(_C), 

which generate H(x_). In section 20 we will generalize this fact to higher derivatives. 

LEMMA 19.1. Suppose that x_ is a simple point on V. Suppose that, say, the vectors 

(Oflaxl . . . . .  OflOxt) where f ranges over ~(V), contain t independent ones. Write 

x_=(xl . . . . .  xt, Yl . . . . .  ye). Then there exist unique formal power series 

3Ei E C[[ Yl . . . . .  Ye]] (i = 1 . . . . .  t) 

with constant term zero such that 

f(xl  +~ 1(-Y) . . . . .  xt+3Et(_Y), Y t + YI ... . .  Ye+ Ye) = 0 (19.3) 

for each f E  ~(V). 

Moreover, i f  V is defined over the rationals (i.e. i f  it is definable by polynomial 

equations with rational coefficients), and if  x. has rational components, then the series 
~i have rational coefficients. 
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Proof. Except possibly for the last assertion, this is well known (Lang [7], Chapter 

VIII.4). The uniqueness part of  the lemma is obtained by a quite simple argument, 

which also gives the last assertion (about rational coefficients) without extra effort. 

20. Higher derivatives 

Again let V~C * be an irreducible variety of dimension e and of codimension t. Let 

_xE V. GivenfE~(V)  and given n>0, write 

1E...E c,...r 
f (n ) ( -C)  = II ! i1=1 in~l Oxi... axe ' 

so that f(n) is a form of degree n. 

LEMMA 20. I. Suppose x_ is a simple point of  V. Then there are forms 

�9 ~,~(_63 . . . . .  k,~)(c3 (0 = 1 ,z  . . . .  ) 

which depend on x_, and where kF ) is o f  degree p, such that for f E  ~(V) and for 

n = 1,2 .. . .  we have 

,,q ,~, ~q ,_,,,, (20.2) 
pffil qffii 

where h in-p) is a form of  degree n - p  which depends on f, as well as on n - p  and q. - - q  

Moreover, when V is defined over the rationals and when x_ is rational, then the k~q ) 

have rational coefficients. When further f has rational coefficients, then so do the 
h ( n - p )  q �9 

Proof. We make the same conventions as in Lemma 19.1. In particular, 3El . . . . .  •t 

will be the formal series of that lemma. We may suppose that x_=_0. Let ff~ be the ring 

9~ = C[_X] [[_Y]] = C[X~ . . . . .  Xt] [[Y~ ... . .  Y,]], 

consisting of formal series in _Y whose coefficients are polynomials in _X. For 

f=f(X_ , _Y) E fit we have 

f(X, D- f (XI (D ,X2 ,  ...,X,, D = ( x i - X l ( D ) h l ( X ,  D 

with h~ 6 9t. Similarly, 

f ( ; ~ ( D , X z  . . . . .  x, ,  D- f (X~(D,  X2(D,X3 . . . . .  X,,  D = ( X 2 - X e ( D ) h 2 ( X ,  D 
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with h2 E ~ .  Continuing in this manner we get 

f(_X, D = (Xi -- X l( _I")) h l( _X, _Y)+...+(Xt-~.t(_Y))ht(X_, _Y)+f(~_ (_F), _Y)). 

In the case w h e n f E  ~(V), this becomes 
t 

f(X_, _Y) = ~ (Xq-~.q(_Y))hq(X_, _Y). (20.3) 
q = l  

Now when _x=_0, then foo  of (20.1) is just the form of degree n in the Taylor 

expansion 

f ( ~  = f ( _ 0 ) + f " ) ( ~ + . . .  +f~n)(_c) + . . . .  

Clearly in this way f~n) may be defined for fEg t ,  and not just for polynomials 

fEC[X~ ..... Xs]=C[_X, _Y]. Further it is clear that whenf=uv with u, vEeR, then 

fin) = ~ u~)vtn-p), 
p=0  

where u<~ v<~ Applying this remark to (20.3) we get 

f ( n ) ~  ~kr)htq-p) 
q=l p=O 

where kq(X_, _Y)=Xq-~q(_~. Note that kq (q=l ..... t) is independent o f f .  Since k~q~ 
formula (20.2) follows. 

In the case when V is defined over the rationals and when x_ is rational, the series 

3Ei will have rational coefficients by Lemma 19.1, and hence so will the kq ~ In the case 

whenfhas  rational coefficients, we may work in the ring ~Q=Q[ _X] [[ _Y]], and the series 

hq will have rational coefficients. 

Remark. The case n= 1 of Lemma 20.1 is true for any _x E V, simple or not, since 

(19.2) did not depend on the simplicity of x_. The general case, or at least the first 

assertion of the general case, is probably also true for any x_ E V. But this is not essential 

for the present paper. 

21. Operators ~ f  

Given a multilinear form h(_C1 .. . . .  Cq), and given a set Q={ul<...<Uq} of positive 

integers, put 

h(CQ) = h(_C~,, ..., C~q), 
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so that h(Ca) becomes a multilinear form in vectors Cut . . . . .  Cu. Given a form f<')(C) of  

degree n, define the multilinear form f~n)(_Cll...Ir as in w When 

f<')(_C)=h~176 with forms of respective degrees n - p , p ,  then it is easily 

seen that 

f('~(_c,I ... I_c.) -- ~ h('-P)( 0 k~')(C_9 
Q,O" 

(21.1) 

where the sum is over the partitions of {1 . . . . .  n} into subsets e, e with respective 

cardinalities n - p , p .  (This fact was used in the proof of Lemma 16.1.) In particular it 

follows from (20.2) that 

• ' 
5". " - "  = h a (CQ) kq (r (21.2) 

p = l  Q,a q= l  

Now suppose that 

S = w s  (21.3) 

and that V is an irreducible variety of codimension t in C s. We consider polynomials 

f ( 3 0 = f ( X i  . . . . .  X_w) where each X_i has s components. Given a simple point 

g=(x_~ ... . .  x_w) of V, we may apply everyting we said above. We obtain forms f<')(~) 

(as in (20.1)) with ~=(Ct  . . . . .  Cw), and multilinear forms f~ d ... I~,). 

Given a subset 

r~_(1 . . . . .  w) 

we introduce an operator ~,~(C,) as follows. The operator acts on polynomials f(30. 

When r=@, then ~ o f = f ( g ) ,  i.e. one substitutes g for 3L When r={ul  . . . . .  u,}, then 

where 

Thus 

(-1)" f~')(%l ... Ic.), ~ ' ( C O f =  n ! (21.4) 

c/=(0 . . . . .  Ct . . . . .  0) (1 ~<l<~w). 

*-- l ---* 

~'(r ax..," 
ilml in~l --" 

(21.5) 
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Substituting (21.2) we get ( fo r fE  ~(V) and ~ simple on V) that 

n ! 

(-1)~n !~),(-C, ) f =  E E ~,h~q~-")%)k~)(co ), 
p=l 0, o qffil 

where the sum is over partitions of �9 into subsets O, o of cardinalities Io l=n-p ,  [el--p. 

Put 

h ( n - p ) ( C  ~ = l,(n-P)r 

r 

so that --q0h("-P) and k~o ~ are multilinear forms in vectors C_ with s components. With this 

notation we finally get f o r f E  ~(V) that 

t 
(n - p )  (p) ( - 1 ) n n ! ~ ( C ~ ) f = ~  E E h , ~  ( G ) k , o ( r  �9 (21.6) 

p=l @,o q=l 

We recall that the k~qo ~ are independent o f fE~(V) ,  while the -qoh(n-P) depend on f. 

When ~ is rational and V is defined over the rationals, then the k's have rational 

coefficients. If further f E  ~(V) has rational coefficients, then so do the h's. 

22. Proof of Proposition IHc: Beginning 

The case d=2 is easy. Here ~ consists of x_ with ~(x_[_Z)=0, and hence ~ is a subspace 

of C s of codimension gc. Since neither gc nor hc are affected by a nonsingular linear 

transformation of the variables, we may suppose that ~[~ is the subspace x~ =...  =Xsc=O. 

Each _X may uniquely be written as X_=X_~+X_ • with _X~ES0?, and _X • in the 

orthogonal complement of ~ .  We have 

gc  

= = = % x ,  x j ,  
i, jffil 

with certain coefficients c o. Since X I . . . . .  Xg c are linear forms in _X, we have hc<~gc . 

We now commence with the proof for the case when d>2. Let M be an irreducible 

component of ~[l~, of codimension gc. Let K be a field of definition of M, containing the 

coefficients of 5. From now on, (x_l .. . . .  X_d-0 will be a fixed generic point of M with 

respect to K. In particular, it will be a simple point of M. Write 
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u = transc.deg.  K(x_ 1 . . . . .  X d - 2 ) / g  , 

v = transc.deg.  K(X_l . . . . .  X_a- l)/K(x_ 1 . . . .  , X_d-2), 

so that u + v = d i m M ,  and set 

Then 

287 

(22.1) 

(22.2) 

t = s ( d - 2 ) - u ,  a = s - v .  (22.3) 

a + t  = s ( d -  1 ) - d i m M  = gc. (22.4) 

Let  S be the subspace consisting of  vectors y such that ~(x_l[ ... I_Xd-2~[_Z)=0, i.e. 

such that (_x~ . . . . .  _Xd-2, Y)E~0r~. Since _Xd-~ lies in S and has v components  which are 

algebraically independent  over K(_xl . . . . .  X_d-2), it follows that dimS~>v. I f  we had 

d i m S > v ,  then some _x~-i in S would have more than v components  which are 

independent  over K(_xl . . . . .  _xa-2), and (_xl . . . . .  X_d-2,_X~-0 would have more than u + v  

independent  components  over K, contradicting the fact that dim ~ = d i m  M =  u + v. Thus 

dim S=  v and 

codim S = a. (22.5) 

In what follows write ff=(X_ t . . . . .  _Xd-2) for vectors of  variables and 

= (Xl  . . . . .  X d - 2 )  (22.6) 

where x_~ . . . . .  X_d_ 2 are the given vectors.  Fur ther  introduce the matrix 

A(X): ~(X_ II...   -zl_e:l_es) (1 <<.i,j<<.s), 

where r . . . . .  _es are the basis vectors.  A vector_y=y~ e_~+...+yse_~ lies in S precisely if 

~"~ ~(Xll... I_xa_21_eil_e)yi---0 (1 <~j<~s). 
i=1 

In view of  (22.5) the matrix A(g) has 

rankA(g) = a. (22.7) 

We may suppose without loss of  generality that the submatrix 1 <.i, j<~a is nonsingular. 

In general denote  the subdeterminant  of  A(30 with l<. i , j<.a by A(3E), and let 

Aj(3E) ( l  < < . i < . s - a = v ,  l < . j< .a)  
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be the subdeterminant formed 

1 , 2 , . . . , j - l , a + i , j + l  . . . .  ,a .  Put 

Now 

from the first a rows, and from the columns 

_y' = y~(x)  = (4~1 . . . . .  41,, - 4 ,  0 . . . . .  0), 

y2 y2(X) = (4~,  2 = . . . ,  4 o ,  0 , - 4  . . . . .  0 ) ,  

yO = yO(3E) = o o 4~, 0, - 4). _ _ (At .. . . .  0 .. . . .  

~(_x,I... ~_k-2~vi(~)l_ej) (1 <<.i<~v) 

is identically zero (as a function of ~=(_Xl . . . . .  _Xk-2)) for l<~j<~a, while for a<j<~s it is 

an (a+ 1)x (a+ 1) subdeterminant of A(~). So if these (a+ 1)x(a+ 1) subdeterminants are 

DI(X) .. . . .  DN(X), in some order, and if D_(~)=(DI(3E) . . . . .  D ~ g ) ) ,  then 

~(Xl[ ... [Xd_2Lv(i)(x)IZ)----- ~i(D_ (X),Z) (1 ~< i<~ v), (22.8) 

where ~i  is a bilinear form, in the vector D_ with N components and the vector _Z with s 

components. 

In view of (22.7) we have D_ (~)=0, but A(~):~0 by our remarks above. The vectors 

y~(~),...,yo(~) 

are independent and lie in S, in fact they span S. Now if_yl(g) . . . . .  _yO(~) together with, 

say z ~ .. . . .  Z a, span C s, each X_ is uniquely 

_X = ~ ~( _X)y~(~)+ ... + ~o(_X)y~ + ~ ~(_X) Zl +.. .  + ~a(X) z~ (22.9) 

with linear forms ~ l  . . . . .  ~o, ~l . . . . .  ~ .  The space S is defined by 2 t = . . . = ~ = O .  

2 3 .  P r o o f  o f  Proposition IHc: E n d  

We will use the notation of w with w = d - 2 .  Let ~ be the set ~ = { I , 2  . . . . .  d -2} .  

Further let ~ and g=(x_t . . . . .  _Xd-2) be as in the last section. Let Vc_C s<d-2) be the 

variety with generic point g with respect to K; then codim V = s ( d - 2 ) - u = t  by (22.1), 

(22.3). Given o~_~ we put 
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w~ = f C i  for iEa, 
- x i for i~o. 

We are going to apply ~D~(_C~) with rc_~ to the identity (22.8). When r=~ we gel 

nothing interesting: both sides become zero. Suppose now that r consists of a single 

element u. In this case, applying ~,(C,) to (22.8) we obtain 

~(x_,l... Ir I_Xd_2b"(~)l_Z)+~(_xd ... I_Xd-2l~(_C~)_ytl_z) = ~ (~ (_c~)D ,  _Z) (1 ~< i ~  < v), 

where ~Dr applied to a vector acts componentwise.  The last relation may be rewritten 

as 

~(_c~, y~(~), _ z ) + ~ ( r  ~ ,( r  yi, _z) = ~ai( ~ ~( C~) D, Z) . 

More generally, using (21.5) one sees that for arbitrary rc_~ we have 

E ~o(C~, ~\o(CT\o)_Y i, _Z) = ~i(~T(_C~)_D, _Z) (1 ~< i<~ v) (23.1) 
t / G r  

We observe that 

~ ( t 7 ~ ,  -Y,_~(D) = ~(X_ll ... IX_d-21_Yl_~(D) --- 0 (1 ~<j~< v). 

Hence substituting _Z=_f(D into (23.1) we obtain 

E ~o (Co' ~)rko({~tko ) yi, yj(~)) = ~0.(~)r(Cr) D) (23.2) 

with certain linear forms ~u. This is an identity of  multilinear forms in vectors C,, with 

u E r .  

For  a~_~, we define a linear transformation 92~(Co): C~-*C ~ as follows: 9~(C~)  

is the identity map, and for a * ~  we stipulate that 

9~o(r = ~o(r (1 ~< i ~  v). (23.3) 

This contains a certain arbitrariness, since the_y~(g) ( i =  1 . . . . .  v) do not form a basis of  C" 

(except when v=s). For  instance we may set ~o(Co)_y=0 for _y in the orthogonal 

complement  of_yl(D . . . . .  _f(g). At any rate we can make our choice so that 91o(C~) _Y is 

multilinear, i.e. linear in the ~'i (lEo) and in _Y. Let  ~1 . . . . .  ~,, be the linear forms of  

(22.9). 
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LEMMA 23. I. ~(_C~, _Y, _Z) (as a polynomial in C_~, Y, _Z) lies in the ideal generated 

by the forms 

by 

~i(_Z) (1 <~ i~<a), (A) 

Ei(9~a,(_Co,) ... 9~op(Cop) _Y) (1 ~< i ~  < a) (B) 

where ol .. . . .  Op are disjoint subsets o f  3 whose union has cardinality <}3[, and by 

k q2(Co), (C) 

where l~<p~<lrl, l<~q<~t, oc_r with Iol=p, and where the forms k~q)o come from (21.6). 

Proof. We proceed by induction on Irl, beginning with the case when r = ~ .  In this 

case 

y ,  _z3 = . . .  Ix_a-zl_ _z). (23.4) 

Writing _Y, _Z in the form (22.9), we see that (23.4) is a bilinear form in (2~(_Y) ... . .  ~a(_Y)) 

and (~I(_Z) ... . .  ~a(_Z)), hence lies in the ideal generated by (A). 

Next, let us consider the case when 131 = 1. Here (23.2) reduces to 

~(_C~,_yi(g),_yJ(~)) = ~0(~(_C0 _D) (1 ~< i , j  < - v). 

Again writing Y,_Z in the form (22.9), we find that ~(_C~, _Y, _Z) lies in the ideal 

generated by ~,(_Z) (l~<i~<a), by 52 ,{Y)=53 ,{~(C~)Y)  (l<~i~<a) of (B), and by 

~0(~(_C0 _D). Now each component of DI of _O vanishes on the variety V whose 

generic point was ~, i.e. each component lies in ~(V). So (21.6) may be applied, and 

~(_CODt lies in the ideal generated by the forms kq%)(_Co) with p=l=}3}, with l~q<~t 

and with o=r .  

Suppose now that Ir[> 1 and that the lemma has been shown for the proper subsets 

of r. We may rewrite (23.2) as 

~(_C~,_yi(s = :EO(~(_C~) D_)- Z ~o( -Co ' ~\e(-C~\o ) yi,_yj(g)). 
o 

Therefore ~(_C~, _Y, _Z) lies in the ideal generated by ~,(_F),~,(_Z) ( i=1 . . . . .  a), by the 

forms 

2o(~r(_C,)D_) (I <~i,j<~ v), (23.5) 
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plus forms 

~Q _CQ, 9~i(-Y) ~\0(-C~\e)Y i' E ~J(-Z)- yj(g) (23.6) 
i=1 j=l  

with ~ * ~ z .  We write _Z=E~= 1 92j(_Z)yJ(~), and note that _Z lies in S. We may replace 

(23.6) by 

~o(C_o, 9[,\e(C_~\e) Y_, ~Z), (23.7) 

since the difference lies in the ideal generated by the Ei(_Y). Again by (21.6), each 

~)~(_CODt, and hence each form (23.5), lies in the ideal generated by (C). By induction, 

~e(Ce, _Y, Z) with ~=l=o~r lies in the ideal generated by (A), by (B) with disjoint subsets 

a~, ..., op whose union is less than O, and by (C) with l<~p~<lO ] and oc_O. Since Ei(_Z)=0, 

the form (23.7) lies in the ideal generated by (C) and by 

Since or1 ... . .  ap, r \ O  are disjoint subsets of r whose union is less than r, this is of the 

type (B). 

The lemma will now be applied with r=  ~ = { 1 ... . .  d -2} .  The number of forms is as 

follows. The number of forms (A) is a. The number of forms (B) is 

a(l+Oa-2) 

where 0m is the number of disjoint nonempty subsets el ..... o~, of { 1 ... . .  in} whose 

union has cardinality less than m. Here the ordering of at .. . . .  ap matters, but each at 
itself is an unordered set. The number of forms (C) is 

t E = t(2 a-2-1). 
p~l P 

By the lemma, applied with r = ~ ,  the multilinear form ~(_Xll ... ~_a) lies in the ideal 

generated by the 

a+a(1 +Od_2)+t(2 a -2-  I) (23.8) 

forms (A), (B) and (C). 

Substituting _X~ =...  = _Xd= _X we see that ~(_X) lies in an ideal generated by forms of 

degrees between 1 and d - 1 ,  the number of these forms given by (23.8). Since ~,(_Xa-t) 

from (B) and 5d,(X_a) from (A) both become ~i(_X), we may in fact save the summand a in 
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(23.8). We remark that L e m m a  23.1 is not symmetric in _X~ . . . . .  *d,  and that a subtler 

argument probably would lead to further, substantial savings. At any rate, we may infer 

that 

so that by (22.4), 

he(~) ~< a(1 +Od-2)+t(2 d-2-1), 

hc(~) <~ gc max (1 + Od-2, 2 a - 2  I). 

Proposition IIIc is now an immediate consequence of 

(23.9) 

LEMMA 23.2. The quantity rlm=l+Om has r h = l ,  r/2=3, r13----13, and in general 

rim<(log2)-mm! 

Proof. Setting q=p+ 1 in the definition, we see that 0 m is the number of partitions 

of { 1 . . . . .  m} into nonempty subsets a~ . . . . .  aq where q~>2. Hence ~/,,, is the number of  

partitions into nonempty subsets an . . . . .  Oq where q~> 1. 

r h " c o u n t s "  only {1}, so that r h = l .  

r/2 counts {1,2}, {1}tJ{2}, {2}U{1}, so that ~/2=3. 

Similarly, r/3 = 13. In general, 

m! Y, r/m 
U I ! Uq ! 

t 

q=l ul+...+uqmm . . . . .  

ui>O 

Setting u~ +... +Uq_ 1 = u  and q -  1 =p, we obtain 

u,, u,, 
u=l p=l  Ul+...+up~u . . . . .  m(mu) "(m) 
U~I u~O 

if we put r/o=l. The quantities ~m=rlm(lOg2)m/m[ have 

m-! 
~m = Z (l~ 

u-0 ( m - u ) !  ~u' 

Hence when ~o,~1 . . . . .  ~,,,-1 are <~1, then ~m<el~ Therefore each of  

~1, ~2 . . . .  is < I ,  and the lemma follows. 
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24. Proof of Proposition III 

Let us look at the case d=2 first. When ~ has rational coefficients, then ~ is a 

subspace defined over the rationals. The number of integer points _x in ~ n (P~) is 

< <  edim ~0~, 

with a constant in << which depends only on s. Hence ifA in (17.3) is sufficiently large, 

we have s ( d - 1 ) - y - l < d i m ~ ,  so that codim~[R<~y. Since for d=2 we have h(~)~<co- 

dim~2, the estimate (17.4) follows. 

Before dealing with the case d>2,  we need some general facts. Suppose that V is 

an algebraic submanifold of C s. We will say that V belongs to the class ~(l) if it is the 

set of zeros of polynomials f~ . . . . .  j~, each of total degree ~<l. It is well known that 

V=V~ O ... O Vm, (24.1) 

where the V; are irreducible algebraic varieties, and this representation is unique if no 

Vi is redundant, i.e. if V~r Vj. for i*j. 

LEMMA 24.1. Suppose VE~(I). There is an l*=l*(l,S) such that in the unique 

representation (24.1) we have m<<.l *, and each Vi lies in ~(l*). 

Proof. See A. Seidenberg [13, w 

LEMMA 24.2. Suppose V E ~(l) contains integer points in a given bounded domain 

~3, and write z~(V) for the number o f  these integer points. There is a subset V'c_V 

such that 

(A) V' is an irreducible algebraic variety, 

(B) V' is defined over the rationals, 

(C) there is an integer point in V' f) ~ which is a simple point o f  V', 

(D) z~(V')>>-cl z~(V) where cl =cl(l, S)>0. 

Proof. We will construct a sequence 

V= V~ VI= V2=...  

where V / is an algebraic manifold belonging to ~(li) with li=li(l,S); 

z~(Vi)>>-miz~(V) with mi=m,~l, S)>0. 

(24.2) 

and where 

Case (A). Suppose V ~ is not an irreducible variety. Then let V/+1 be the irreduci- 
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ble component  of  V / for which z~(V/+l) is largest possible. By Lemma 24.1 and by 

inductive hypothesis,  W +l will have the desired properties. 

Case (B). Suppose V / is an irreducible variety, but is not defined over the 

rationals. Let  f l  . . . . .  fn be n<~li polynomials of degree ~<l; defining V f. The total number 

of  coefficients of  f l  . . . . .  fn is bounded in terms of  S and li, and hence so is the 

dimension D of the Q-vector space spanned by these coefficients. I f  fll . . . . .  flo is a 

basis of this vector space, we may writefm=r.jfljfmj (l~<m~<n), where the polynomials 

f,,v have rational coefficients. Let  V/+1 be the algebraic set defined by f,,v=0 (l<.m<~n, 
I<.j<.D). Then V/+l is defined over the rationals and hence is a proper subset of  V/, so 

that d imV/+ l<d imV / (Lang [7, w Corollary 1]). FurtherVi+lE~(liD) and 
z~3(V/+ 1) =z~)(vi ) .  

Case (C). Suppose V / is an irreducible variety which is defined over Q, but all the 

integer points of V/n ~ are singular points of W. In this case let V '+1 be the set of 

singular points of  W. 

The chain (24.2) must end after a bounded number of  steps, since the case (A) 

cannot occur twice in a row, and since in the cases (B) and (C) the dimension is 

reduced. The last set of  the chain has the desired properties. 

Proof of Proposition III. We suppose that d>2.  For  given x_l . . . . .  X d_2, the _Xd-t 

with (x_l . . . . .  X d - 2 ,  X d - I )  E~f~ form a linear subspace S(x_l . . . . .  Xd-2)  , with a certain 

codimension a. Given _xt . . . . .  x d_2, the number of integer points X d_lEP@ with 

(_xl . . . . .  _xd-0E~R is then <~c2(s)P ~-a. Let  VacC s(d-2) be the algebraic set consist- 

ing of (_xl . . . . .  X d - 2 )  for which codim S(_xl . . . . .  X_d_2)~a. Then(I) 

$ 
ze(~)  -< c2(s) ~ ze(Va) t s-'. 

a=0 

By the hypothesis (17.3), there must be an a in O<~a<~s with 

ze(V.) > c3(s) aP ~-2~-~-I+'. 

Since ze(Va)<.c4(s,d)P ~td-2), it follows that for sufficiently large A we must have 

a - y - l < 0 ,  i.e. 

(t) Added in proof. Rather than ze(Va) and ze(V') below, we should count only points in Va but not in 
Va-I. 
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0 ~ a ~ y .  

Now Va~CS---C s(d-2) is in some class if(/) with l=l(s, d). Define V'~_V~ accord- 

ing to Lemma 24.2. Thus V' is an irreducible algebraic variety, and is defined over the 

rationals. We have ze(V')>~cl ze(Vo), hence 

Zp(V') >1 cs(s, d) AP s(d-2)-~'-l+a. 

Since V' E if(F) where l'=l'(s, d), 

dim V'>~s(d-2)+a-y, or that 

where t=codim V'. 

it follows for a sufficiently large value of  A that 

a+t ~ ~,, (24.3) 

Further  by part (C) of Lemma 24.2, there is an integer point ~--'(_X 1 . . . . .  _Xd-2) ~ V' 

which is simple on V'. The whole construction for the proof of Proposition IIIc can be 

carried over, but this time our point g has integer components.  All the polynomials 

occurring have rational coefficients. Whereas in w we used the fact that each 

component Dl of_D lay in ~(V), we now use the fact that DIE~(Va)~_~(V'). Thus (21.6) 

holds forf=Dt, where the forms k are defined in terms of V' and g. The inequality (24.3) 

takes the place of  (22.4). We may indeed conclude that h(~)~<~,q0(d). 
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