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Let P be a partially ordered set. If r<to, then [p]r denotes the set of all sequences 

(al . . . . .  ar) such that al . . . . .  arEP and al<e. . .  <par. If ~' is an ordinal and if ai, i<y 
r are order types (isomorphism types of linearly ordered sets), then the symbol P (ai)i< r 

means that for any partition [P]r=oi<rKi there exists an i<y and a chain A~_P such 

that t pA=a ;  and [A]r~K~. The negation of the partition symbol is written with -~ 

instead of---~. Note that if P is a linearly ordered set, then [p]r and P---~(ai)i~<r have the 

usual meanings. If cti=ct for all i<y, then we write P-~(a)~ instead of P--~(oti)i<y. 
r This paper is a study of the partition symbol P (a;);<r for partially ordered sets P 

such that P--~(~)~ for some infinite cardinal ~. Our main result for the case x--t0 is the 

following theorem which proves a conjecture of Galvin [10; p. 718]. 

THEOREM 1. Let  P be a partially ordered set such that P--~(to)~. Then 

P-- , (a)  2 for all a< to  1 and k<to.  

This theorem completes a rather long list of weaker results: Erd6s-Rado [7], [8], 

Hajnal [11], Galvin [9], Prikry [21], Baumgartner-Hajnal [1] and Galvin [10]. The 

history of the problem is discussed in [1; pp. 193-194], [4; pp. 271-272] and [10; pp. 

711-712]. The most general results previously obtained in the direction of Theorem I 

are a result of Baumgartner and Hajnal [I] who proved Theorem 1 for the case when P 

is a linearly ordered set, and a result of Galvin [10; p. 714] who proved Theorem 1 

under the stronger hypothesis P---~(q)~. The hypothesis p___~(to)l in Theorem 1 is 

known to be necessary since P---~(to, to+ 1) 2 implies P---~(to)~ (see [10; p. 718]). 

Let us now consider a generalization of Theorem 1 to higher cardinals x. Unfortu- 
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nately, there is a restriction to any such generalization since 0.)2-+'>(0) 1 +(.O)~ is known to 

be consistent with GCH ([4, p. 272]). On the other hand, Erd/Ss and Hajnal proved ([4; 

p. 273]) that o92---~(oJl+n) ~ for all finite n assuming CH. This was later generalized by 

Shelah [22] to all higher regular cardinals. In [4; p. 282] it is asked whether this result 

holds for all order types; i.e., whether q0---}(o~l)~R 0 implies q0---~(~ol+n) ~ for all order types 

q0 and all k, n<r In a subsequent note we shall answer this question positively, but in 

this paper we present the following general answer in the case k=2. 

THEOREM 2. Suppose x is a regular cardinal and 3.~-<x. Let P be a partially 

ordered set such that P---~(x)12~. Then 

P---~(x+~)~ for  all ~<A. 

The next result is an analogue for partially ordered sets of a well-known partition 

relation for cardinals (see [5; w 17]). 

THEOREM 3. Assume 2~>1~ 0 and 0>t2. Let x = #  and let P be a partially ordered set 

such that P--->(x)l,. Then 

P---> (a, (cf2+l)e) 2 for  all a < x  + and y < c f 2 .  

Let P be a partially ordered set, let [P]<O=tJr<o,[P] r, and let f:  [P]<~'---~y be a 

given colouring. We say that a chain A _ P  is end-homogeneous with respect to f if for 

every s E [A]<'~ and for every a, b E A with max (s) < e  a, b, we have f ( s  r~a) =f(s r~b): If 

y is an ordinal and if a is an order type, then the symbol P--->(a)~ ~ means that for 

every partition f :  [p]<o,__>y there is an end-homogeneous chain of type a. The end- 

homogeneous chains are very useful in proving partition relations of the form 

P--->(a~)~<~, where r>2. But the partition relations of the of the form P---~(a)~ ~ have 

their own interest independent of this, and they are also very useful in many other 

combinatorial problem concerning partially ordered sets. The case P = x  + of the 

following result is the well-known partition relation for cardinals (see [5; w 15]). 

THEOREM 4. Assume A ~ t  o and 0>t2. Let x = #  and let P be a partially ordered set 

such that P-->(x)l~. Then 

P - - ,  . 

One of the main points of our proof of the above theorems is the fact that we may 
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restrict ourselves to trees. This fact is proved in w 1 by using the operation trP defined 

there and a result from [25]. 

In w 2 we prove Theorem 1 for partially ordered sets of bounded cardinality. In w 3 

we eliminate this hypothesis using a forcing argument. 

In w 4 we develop a technique for proving partition relations for trees which are 

now of great interest owing to the results of w 1. But these partition relations have their 

own interest which is independent of w 1. An example is the following relation which is 

a corollary of a result proved in w 4. 

nonspecial tree ~ (nonspecial tree, to+ 1) 2. 

This relation means: If T is a tree which is not the union of countably many antichains 

and if [T]2=Ko U K~ is a given partition, then either there exists a set Xc_ T which is not 

the union of countably many antichains with [X]2~_K0, or else there is a chain A~T of 

type to+l with [A]2c_K~. Note that since to! is a nonspecial tree, this result has as an 

immediate consequence the well-known relation tol-~(tol, t o +  1) 2 proved by Erdfs  and 

Rado [8; p. 459]. In w 4 we also give the proof of Theorem 3. 

The proof of Theorem 2 is given in w 5. 

The proof of Theorem 4 is given in w 6. In w 6 we also prove the Stepping-up 

Lemma for partially ordered sets and deduce several corollaries. 

The technique developed in w167 1 and 4 can also be used in several other combina- 

torial problems about partially ordered sets, e.g., set-mapping problems on partially 

ordered sets, etc. This approach will be discussed elsewhere. 

We conclude the introduction with a few words about the notation. All undefined 

terms can be found in any standard text on set theory (e.g., [5]). The letters 

a, fl, 7, 6, ~ . . . .  are reserved for ordinals, and ~r 2, 0 . . . .  for infinite cardinals. ~(A) is the 

set of all subsets of A considered as a partially ordered set ordered by _~. 

If P is a partially ordered set and if A and B are subsets of P, then A<eB means 

that a<eb for every a EA and b EB. If K ~ [ P ]  2 and if a EP, then K(a) denotes the set 

{bEP: (a,b) EKor (b,a)EK}. 
A tree is a partially ordered set T such that t~={s E T: s<r t}  is well-ordered by < r  

for every t E T. The order type of t ~ is called the height of t in T, htr(t). The ath level of 

Tis the set Ta={tE T: htr( t)=a},  and ht (T)=min {a: Ta=~} is the height of T. f fA is a 

set of ordinals, then TIA=Ua~aT~. ff tET, then Tt={sET:t<-rs}. For technical 

reasons, we shall assume that every tree has a minimal element denoted by ~.  If U is a 

subset of T then we say that f: U---~ T is regressive if for every t E U",, { ~ }, f(t)< r t. 
Note that if T is a tree, then T-~(x)~ is equivalent to saying that T is the union of 
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~<x antichains. In this case we call T a u-special tree. A special tree is an R0-special 

tree. 

If a is an ordinal, then by a + we denote the minimal infinite cardinal above a, i.e., 

a+=~o+laI +. 
The result of Theorem 1 was announced in [26]. We would like to thank Professor 

Fred Galvin for many valuable communications concerning the problems considered in 

this paper. 

w 1. On the operation oP 

Suppose that ( A , R )  and (B ,S )  are two given structures where R and S are binary 

relations. Then we say that (A, R) is (B, S)-embeddable if there is a mapping f." A---~B 

such t h a t f ( a ) S . f ( b )  for all a, b E A  with a R . b .  Note that f n e e d  not be one-to-one. 

The following simple fact about this notion will be used quite often in this paper. 

LEMMA 1. Suppose P and Q are partially ordered sets such that P is Q-embed- 

dable. Let r be a positive integer, and let ~ and ai, i<7 be ordinals. Then 

P--~ (ai)i< ~ implies Q-*  (ai)i< ~. 

If M= (A, R) is a structure with one binary relation R, then by aM we denote the 

structure (o,4, ~_ ) where o.4 is the set of all one-to-one mappings s with domain a E Ord 

such that ~ < q < a  implies s(~)Rs(rl). Let o'M denote the structure (o'A, ~_) where o'A 

is the set of all s in oA with domain a successor ordinal. Note that o'M is M- 

embeddable. The following basic fact about aM is proved in ZF alone. 

THEOREM 5. For any structure M with one binary relation, oM is not M-embed- 

dable. 

Proof. Otherwise, let f :oA-- ,A  be an embedding. Define s:Ord--,A by 

s(a)=f(s Ia). Then s is well-defined and one-to-one, a contradiction. 

Let 5e(A) denote the set of all one-to-one mappings from ordinals into A, and let 

~/'(A) denote the set of all well-orderable subsets of A. We consider Se(A) and ~ff(A) as 

partially ordered sets under the ordering ~_. It is clear that 5e(A) is ~f'(A)-embeddable 

via the mapping s~range(s) ,  and that (SP(A),~_)=o(A, A2). So the following ZF- 

results are all consequences of Theorem 5. 

COROLLARY 6. There is no f: ~ such that f (C)*f(D) for all CoD in ~ 



PARTITION RELATIONS FOR PARTIALLY ORDERED SETS 

COROLLARY 7 (Galvin, Laver). [T(u)--*(a)l~for all u~to and a<u +. 

C O R O L L A R Y  8 (Galvin). ~(u)---~(a)l~for all u>~to and a < x  +. 

A structure related to 6e(A) and ~/4ffA) seems to have been first considered by F. 

Hartogs [12] who, via a similar argument, proved the weaker result that there is no one- 

to-one mapping from the height of SO(A) into A. Corollary 6 improves a result of A. 

Tarski [23] to the effect that there is no one-to-one f: ~(A)-->A. The case u=to of 

Corollary 7 was first proved by R. Laver (unpublished) answering a question of Galvin. 

The general result was since then proved by Galvin (unpublished). These results are 

included here with their kind permission. Let us note that Galvin's original proofs of 

Corollaries 7 and 8 used the Axiom of choice which from now on will be assumed in 

this paper. 

If P is a partially ordered set then an element s of oP is uniquely determined by its 

range. So in this case we may and will consider crP to be the set of all well-ordered 

chains of P. The ordering on aP will be denoted by <~. where s~  <. t means that s is an 

initial part of t. The operation aP for P a partially ordered set was first considered by D. 

Kurepa ([13], [15]) who proved Theorem 5 for M a partially ordered set ([14]; see also 

the paper of S. Ginsburg referred to in [15]). He also proved that oQ is a nonspecial tree 

([15]). Note that this is an immediate consequence of the fact that oQ is not Q- 

embeddable since Q-embeddability for partially ordered sets is the same as being the 

union of ~<lt0 antichains which is again an old result of Kurepa ([15]; see also [25]). The 

next result from [25; Theorem 5] is one of the key tools in our proofs of Theorems 1--4. 

Since [25] contains only the proof of the countable case of this result, for the conve- 

nience of the reader we sketch the proof of the general theorem. 

THEOREM 9. The following are equivalent for eoery partially ordered set P. 

(1) e-+-> (~)~. 

(2) oP is ~(~)-embeddable. 

(3) a'P is the union o f  <<.x antichains. 

Proof. Only the implication (3)=~(1) requires a proof (see [25]). Suppose 

o'P=Ua<~Aa where each Aa is an antichain of tr'P. For a<u, let 

Ba = {sEe 'P:  t~A~ for all tEo'P with s<.t}. 

Note that A~cB~ for all a. Let << be a fixed well-ordering of o'P. Now for each a E P 

we define ta(a)E o'P by induction on a < x  as follows. Suppose t#(a) has been defined 
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for all fl<a such that t~,(a)<~, ta(a) and max ta(a)<.va for all y<~fl<a. Define 

T~(a) = ( t  E a 'P:  max t ~<v a and ta(a) <~. t for all fl < a}. 

Then T~(a)~=f~ since (Lla<a ta(a))tJ {a)E T~(a). Let t~(a) be the <<-least member of 

Ta(a) flB~ if this set is nonempty; otherwise let ta(a) be the <<-least element of Ta(a). 
This finishes the induction step. 

For a EP, let 

t(a)= ( tJ< ta(a))U{a}. 

Then t(a)Ea'P, max t(a)=a and t~(a)<~, t(a)for all a<x .  

Claim 1. If  t(a)EAa, then t(a)=t~(a). 

Proof. Note that t(a)EA,~=_B~ and t(a)ET~(a). Hence Ta(a)NB~4=~, and so 

t~(a)EBa. Since t~(a)EBa and ta(a)<<..t(a)EAa, we must have t(a)=t~(a) by the 

definition of Ba. 

In proving P--~(x)~ it suffices to show that for all a<x ,  the set {aEP: t(a)EA~} 
contains no chain of type u. So by Claim 1 it suffices to show the following: 

I 

Claim 2. For a<u, let P~={a EP: t(a)=ta(a)}. Then P,~ contains no chain of order 

type a +. 

Proof. Otherwise, let A=a + and let {ag: ~<;t} be the increasing enumeration of a 

chain from Pa. 

Note that To(ag)~_To(a~) for ~<~/<2. Thus to(a,)<<to(ag). So there is a ~0<2 and 

toEo'P such that to(ae)=to for all ~o~<~<;t. Now ~o~<~<~/<;t implies Tl(ae)~_Tl(a, 7) 
and tl(a~)<<tl(ag). So we can find ~0~<~l<;t and tl Eo'P such that tl(ag)=tl for all 

~1~<~<2. Continuing in this way, we obtain sequences (~a:fl~<a) and (t/3:fl<.a) such 

that t#(a~)=ta for all ~ < ~ < 2 .  Let ~=sup{~#:fl~<a}. Then ~<2 and t(ag)=ta(ae)=t~ 
for all ~<~<;t. But this contradicts the fact that max t(q)=a for all a EP. This finishes 

the proof of Claim 2 and also the proof of Theorem 9. 

Theorem 9 is saying that P---~(x)~, is equivalent to o'P--->(u)~ for any partially 

ordered set P. Since o'P is P-embeddable this shows that in proving Theorems 1--4 we 

may restrict ourselves to trees. This will be an essential point in our proofs of these 

results. 

The next result shows that in considering partition relations for partially ordered 
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sets P with the property P---~(~)] we may restrict ourselves to the case 2~>~. The proof 

of this result is contained in the above proof of Theorem 9. 

THEOREM 10. P-->(u)~ iff  + 1 P---*(a )~<,,. 

THEOREM 11. P--->(~)~ /ff e"->(~c)~fx" 

Let us also mention the following unpublished result of Galvin which is included 

here with his kind permission and which is an immediate consequence of Theorem 9. 

THEOREM 12 (Galvin). I f  2>>-u>>-to and if P--->(u)~ then P-->(a)~ for all a<u +. 

Probably the most natural examples of partially ordered sets P such that p__>(to)l 

are to1, R, oQ, oR, etc. In general, the most natural examples of partially ordered sets P 

such that P--~(u)~ are u +, ~(x), and Aa(u). We shall see later that many partition 

relations for partially ordered sets P such that P--.(u) 1 follow from the corresponding 

partition relations for partially ordered sets P such that P--->(x) 1. 

w 2. Constructing large homogeneous chains 

Let 1o be the least cardinal x for which the following proposition does not hold: if 

(AG: a<x)  is a sequence of subsets of to such that NaeFA,, is infinite for every finite 

F~_x, then there exists an infinite set B~_to such that B \ A a  is finite for every a<u (see 

[17; p. 154]). In this section we shall prove the relation 

nonspecial tree --> (a)~ 

for nonspecial trees of cardinality <~0. 

The proof is given in a sequence of lemmas. Some of the lemmas are taken from 

[1], [10] and [16], but for the convenience of the reader we include proofs. 

For each nonzero ordinal a<tol we fix a sequence (a(n): n<to) of ordinals such 

that toG= E,,<o, to G(') and a(n)<~a(n+ 1) for n<to. If a >  1, then we choose a(0)~ > 1. Thus 

for every well-ordered set A of type tog we have fixed decomposition A=tJ,,<o,A,, 

such that Am<A,, for m<n, and tpA,,=to ar for n<to. Let A,,=tJ,,<_m<~oA,~ for 

n<to. 

Let ~ a fixed nonprincipal ultrafilter on to. By induction on a<tol,  we define a 

uniform ultrafilter ~G(A) on every well-ordered set A of type toa as follows. If a=0,  
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q/~(A) is the unique ultrafilter on A. Let l~<a<wl and let A be a well-ordered set of 

type to a. For B c A  we let 

BEql~(A) iff {n:BNAnE~ :. 

An easy induction on a<tol shows that tpB=to ~ for every BE ~ The following 

lemma is taken from [16; p. 1031]. It first appeared implicitly in [I; p. 197]. 

LEMMA 2. Assume x<p, a<tOl, and A is a well-ordered set of  type to a. Let 

(Be: ~<~) be a sequence of  elements of ql~(A). Then there is a B~A,  with tpB=to a 

such that B \ B g  is a bounded subset of  B for every ~<~. 

Proof. The proof is by induction on a. The case a=0  is trivial. Assume a>0  and 

that lemma holds for all fl<a. Thus for each n<to we can find Cn~_An with 

tpCn=to a~n) such that Cn\Be is bounded in Cn for every ~<x such that BgNAnE 

q/ao0(An). Since ~<la, we can find an infinite N~_to which is almost included in each 

Ne={n:BeNAnE alla(n)(An) } for ~<x. Now for ~<x we definef~E~~ by 

f~(n)={oin{m:CnN(An)m~_B,} if nEN~ 
otherwise. 

Since ~<Io, we can find g E ~ which eventually dominates each f~, for ~<~. Now for 

n E N  we define Bn=Cnf(An) g(n). Let B=UnENBn. The tpB=to a and B \ B ~  is 

bounded in B for every ~<~. 

Let T be a fixed nonspecial tree of cardinality <IJ, and let [T]2=KI U... U Kk be a 

fixed disjoint partition. We have to show that for every a<oJ there exist an iE {1 . . . . .  k} 

and a chain Ac_T such that tpA=to a and [A]2~_Ki. Instead of directly constructing 

arbitrarily large homogeneous chains in T we shall proceed as in [1] and [I0] and 

construct arbitrarily large chains with the following property which is somewhat 

weaker than being homogeneous. A chain A~_T is called almost homogeneous if 

whenever A ' ~ A  has type to a, then for all fl<a there are C, B~A'  and iE {1, ..., k} such 

that tpC=ofl ,  tpB=to ~, C<rB and CxB~Ki.  Let ~ denote the set of all almost 

homogeneous chains in T. The next lemma shows why it is more convenient to work 

with almost homogeneous chains. 

LEMMA 3 ([10; p. 720]). Suppose (An:n<to) is a sequence from ~' such that 

Am<rAn for m<n. Let A=t3n<,oAn. I f  for each m<w there exists an imE {1, ...,k} 

such that Am• for all n>m, then A E ~l(. 
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Proof. Let  f l < a < w l ,  A'c_A and tpA '=w a. I f  for some n<w, A'  ~_AoO ... UA, then 

tpA '  NAi=w a for  some i<~n, so we can use the fact that AiE ~.  So assume A'  is cofinal 

in A. Choose C~_A' so that t pC=oy  ~ and C~_Am for  some m<w.  Le t  B = A ' \  

(A0U... UAm). Then  tpB=co '~ and CxB~_Kim. 

The next  lemma shows that in order  to construct  arbitrarily long homogeneous  

chains in T it suffices to construct  arbitrarily long almost homogeneous  chains in T. 

LEMMA 4 ([10; p. 271]). For every a<wl there exists fl<tol such that for every 

B E ~ with tp B=ar a there is an A ~_B with tp A =to a and [A]2~_Kifor some i E { 1 ... . .  k}. 

Proof. For  fl, al . . . . .  ak<tol,  the symbol fl--*(al . . . . .  ak) g denotes the statement: 

for any B E ~ with tp B--  to p there exists i E { 1 . . . . .  k) and A_~B such that tp A-- co ~i and 

[A]2~_Kr For  the proof  of  L e m m a  4 it suffices to prove the following: if 

0 < a l  . . . . .  ak<col and fl<Wl, and if for  any iE {1 . . . . .  k) and any ~,<ai there exists a 

fli(y)<fl such that fli(y)--~(al . . . . .  c t i _ l , y ,  6ti+ 1 . . . . .  a k )  ~ ,  then fl--*(al . . . . .  Ctk) ~. The 

details of  the p roof  of  the latter s tatement  are left to the reader.  

Le t  Y. denote  the set of  all nonspecial  subtrees of  T. For  X E  57 let 57[X denote  the 

set Y N ~9(X). Then  for every XE57 and every fl<tOl we need to construct  an almost 

homogeneous  chain B~_X of  type ar 8 which is bounded in X. The boundedness  is 

needed for the purpose  of  induction, and it is the new and essential difficulty which 

does not occur  in the proofs  f rom [l] and [10]. More  particularly, fix X E Y  and fl<col 

and suppose we have proved that for  every YE~,[X and every 7<fl  we can find a 

bounded almost homogeneous  chain in Y of  type col Using the induction hypothesis  

and some additional arguments we construct  a sequence (Bn: n<to)  of  members  of  

such that Bn~_X, tpBn=ay a(~), Bm<rB ~ and BmXBn~_Kim for  n>m. The new difficulty is 

that we must const ruct  the sequence (Bn: n<co) in such a way that B=U,<~Bn is a 

bounded subset of  X. At first sight this constraint  seems to require some distributivity 

assumption on the tree T which rules out many examples of  nonspecial  trees. However,  

we shall show that such a sequence can be constructed without any additional assump- 

tion on T. 

LEMMA 5. Let X E Z  and let f:X---~Ord be such that s<~rt implies f(s)~f(t) .  Then f 

is constant on some Y E ZIX. 

Proof. Let  X '={ tEX:  TtNX is a special t ree) .  Then X' is a special tree and 

X o = X \ X '  has the proper ty  that for  every tEXo, Ttf lXo is a nonspecial  tree.  There  
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must be a tEXo such that f i s  constant  on y=TtNXo, since otherwise we would get a 

decreasing to-sequence of  ordinals. 

The next lemma is the main result of this section. It completes the proof  of  

T--*(a) 2 for all a<to!  and k<to. 

LEMMA 6. For every fl<tol and X E Z  there exists a bounded subset B of  X such 
that BE Y( and tp B=ar a. 

Proof. The proof  is by induction on ft. The case fl=O is trivial; so we assume fl>0. 

Le t  < be a fixed well-ordering of  Y(. 

Fix tEX. By induction on n<to we construct,  if possible, sequences 

(Bn(t): n < t o ) E  o ,~ and (in(t): n < t o ) E  ~ . . . . .  k} as follows. Let  n<to and assume that 

Bin(t) and im(t) are defined for every m<n. Let  

~Ign(t) = {A E ~:  A ~ X N t ~ and tpA = aft ~") and (Vm < n)(Bin(t)XA ~_ Kim<t)) }. 

If  Y(n(t)=~, we stop the induction. So assume ~n( t )+~ .  Let  An(t) be the <-least  

element of ~n(t) and let 

Xn(t) = {s EX: s>rAn(t)}, 

For sEXn(O we let is be the unique iE{1 . . . . .  k} such that Ki(s) NAn(t)Eall#(n)(An(t)). 
By Lemma 2, there exists a C~A,(t) such that tp C=ef l  <") and such that C\Ki ( s )  is 

bounded in C for every s E Xn(t). Let  Cn(t) be the <-least such C. Let  ln(t) be the least 

l<w such that (Cn(t))t~_Ki(t). (Note that t E X,(t).) Le t  B,(t)=(C,(t)) t"<~ and let i,(t)=i r 

This completes the inductive definition. 

Claim. For  some tEX,  Bn(t) and in(t) are defined for every n<to. 

Proof. Assume the contrary,  i.e., that for every t E X  there exists an n(t)<w such 

that Bin(t) and ira(t) are defined for every m<n(t), but ~n(t)(t)=~. Since X E Z  we can 

find YEZ[X and n<to such that n(t)=n for every tE Y. 

By induction on m<~n we define a decreasing sequence (Ym: m<<-n) of members of  

Z[ Y and sequences 

(Bm:m<n)En~(  and ( im:m<n)  En{1 ..... k} 

such that 

Bm(t)=Bm and im(t)=im for all m < n  and tE Ym+l. 
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Let Yo = Y. Assume m<n and Ym is defined. Then for every t E Y,~ we have that 

~m(t) = {A E ~: A ~_ X fl i and tp A = a~ ~m) and (Vj < m) (B~ x A ~_ K/~) }, 

since Bj(t)=Bj for every j<m.  Thus we have that ~(m(t)~gm(U) for t<~rU in Ym. Hence 

Am(t)~Am(u) for t<~ru in Ym. By Lemma 5, there exist Ym+~EZIYm and AmE~( 

such that Am(O--A m for every tEYm+l. Furthermore we assume that for some 

imE{1 . . . . .  k} and Ira<to we have im(t)=im and lm(t)=l m for every tE Ym+l. Note that 

Xm(t)={$EX:s>TAm} for every tEYm+l. Hence for some C,~E~, Cm(t)=Cm for 

every tE Ym+r Hence Bm(t)=Bm=(C,j" for every tE Ym+r This completes the induc- 

tive definition of (Ym: m<~n), (Bin: m<n) and (im:m<n). Thus in particular Yn is 

defined and 

nm• forevery m<n.  

By the induction hypothesis, we can find a bounded subset A of Yn such that A E ~ a n d  

tpA=to ~tn). Let to E Y~ be a bound of A. Then A~_XN io and Bm(to)XA~_K~,%)for every 

re<n, since Bm(to)=Bm and i,~(to)=i m for every m<n. Hence A E ~(t0). But this 

contradicts the fact that ~n( t )=~ for every t E Y. 

Fix a tEX  for which Bn(t) and in(t) are defined for every n<to. Let 

B=lJn<o,B~(t). Then tpB=ofl  and by the construction Bm(t)XBn(t)~Ki,(t ) for every 

n>m. Hence by Lemma 3 we know that B E ~.  Since B is bounded by t in X this 

completes the proof of Lemma 6. 

w 3. Proof of Theorem 1 

In this section we finish the proof of Theorem 1 by eliminating the assumption [T[<~ 

from w 2. 

We say that a partially ordered set ~ satisfies the o-finite chain condition if there is 

a partition ~=  Un<o, ~n such that for every n, ~n contains no infinite set of pairwise 

incompatible (in %~) elements. The following lemma is well-known. 

LEMMA 7. For every cardinal x there is a o-finite chain condition poset ~ which 
forces x<~3. 

Proof Let A=(Aa:a<~) be a sequence of subsets of to such that AF=f3aeFAa 
is infinite for every finite Fc_x. Let ~A denote the set of all pairs p =  (Ap, Fp) where Ap 

and Fp are finite subsets of o~ and x, respectively. For p, q E ~ define 
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p ~< q iff Ap ~_ Aq, Fp D F 2 and A p ~ A q  c AFq. 

Then ~ga is the standard a-centered poset which forces an infinite subset of to almost 

included in any Aa ([17; p. 154]). 

Choose a cardinal 0 such that /9 '=0.  Let (~a: a<~O) be a finite support interation 

of posets ~a such that ~0 forces x<t~ ([17]). A simple and standard argument shows 

that ~o satisfies the a-finite chain condition. 

LEMMA 8. Let qr be a partially ordered set satisfying the a-finite chain condition, 

and let P be a partially ordered set such that p___~(to)l. Then P has the property 

P---~(to)~ in any forcing extension by ~. 

Proof. By Theorem 9, we may assume that P is a tree. So let T be a nonspecial tree 

and let (Tn:n<to) be a R-name for a decomposition of T. Let (~=Um<toC~m be a 

decomposition witnessing the a-finite chain condition of ~. For each t E T, we can fix 

m t, n t E to and Pt E ~mt such that Pt forces t E i"n. Since T is nonspecial we can find 

m,n<to and an infinite chain b~_T such that mt=m and nt=n for all tEb.  By the 

property of ~m there must be s<t in b such that p~ and Pt are compatible in ~r So any 

extension of Ps and Pt forces (Tn: n<to) not to be an antichain-decomposition of T. 

This completes the proof. 

Now we are ready to finish the proof of 

nonspecial tree ---> (a) 2 for all a < to1 and k <  to. 

So let T be a nonspecial tree, let [T]E=KI U... U Kk be a given disjoint partition, and let 

a be a fixed countable ordinal. By Lemmas 7 and 8 let cr be a a-finite chain condition 

poset which forces [T[<~ and T--~(to)~. By w 2 we can find iE {1 . . . . .  k}, p E ~, and a qg- 

name A for a chain of T such that p forces t p A = a  and [A]Ec_Ki. Let h be a C~-name for 

the unique isomorphism of a and A~, and let (an: n<to) be an enumeration of a. By 

induction on n<to, choose a decreasing sequence (p,,: n<to) of elements of ~ and a 

sequence (t~: n<to) of elements of T such that po=p and P,,+I forces I:t(a~)=tn. Then 

for each m, n<to, tm<rtn iff am<a~. Hence {tn: n<to} is a chain of T of order type a 

such that [{t,,: n<to}]2~_gi . 

w 4. Partition relations for trees 

The results of w 1 suggest a study of partition relations for trees in order to get 

corresponding partition relations for partially ordered sets in general. This section is 
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devoted for such a study. It turns out that partition relations for trees are very natural 

generalizations of partition relations for cardinals and that several well-known partition 

relations for cardinals are straightforward consequences of the corresponding relations 

for trees. 

Let T be a tree such that ht (T)=:r is a regular uncountable cardinal. We say that a 

set A~_~r is nonstationary with respect to T (see [24; p. 251]) iff there exists a regressive 

mapping f: TIA---~T such tha t f - l ( s )  is the union of <x  antichains for every s E T. Let 

NSr--- {A ~_ ~: A is nonstationary with respect to T}. 

Note that by the well-known theorem of Neumer [20], if T is a chain of length ~r then 

NSr=NS~. It is clear that NSr  is a x-complete ideal on n. Note also that if T' is an 

initial part of T then NSr~_NSr,. Hence if T has a chain of cardinality ~r then 

NSr=NS~ since clearly NS~_NSr .  

THEOREM 13 ([24; p. 251]). NSr  is a normal Meal on ~r 

The following result is the key in proving several partition relations for trees. 

THEOREM 14. Assume ~r Then the following are equivalent for every tree T of  
height ~r 

(1) ~r 
(2) {6<n: cfc$=cf2} ENST. 

(3) T is the union of  <,4 antichains. 

Proof. The implications (3)=>(1), (3)=>(2) and (1)=>(2) are trivial. So we have only 

to prove (2)=>(3). 

Let E={6<x:  c f6=cf2}  and let f: TIE---,T be a regressive mapping such that 

f - l ( s )  is the union of <~2 antichains for every s E T. For every s E T we fix a 

gs:f-l(s)---~2 such that g~-l(y) is an antichain of T for every y<2. Also for every 

T"x,(~} we fix an enumeration (s~(t):fl<2) of {sE T: s<_rt). Let j:2---~ftxftxft be a 

bijection such that j(~) = (a, fl, y) implies a~<~. 

Fix tE T'x,{~). By induction on ~<3, we define a sequence (ur ~<Z) of mem- 

bers of tU (t) as follows. Let u0(t)=~. If ~ is a limit ordinal let ue(t)=sup {ua(t): a<~}. 

Suppose u~(t) has been defined. If uc(t)=t, then let Ue+l(t)=u~(t). So assume 

uc(t)<rt. Let j (~)= (a, fl, y).  Then a~<~ and s=sa(ua(t)) is defined. If the set 

g-~l(~) N {v E T: u~(t) <r v <<,rt } 
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is nonempty, let ur be the unique element of this set. Otherwise let ur be the 

minimal element of {v E T: u,(O<rv<~rt }. 

Claim I. For every tE TN,{~} there exists ~<2 such that ur 

Proof. Otherwise, let tET",,{~} be such that ur for every ~<2. Then 

(ur ~<2) is a strictly increasing sequence from t ~. Let u=sup {u~(t): ~<2}, and let 

6=htr(u).  Then 6EE,  hence f(u)=s is defined and s<ru. Choose a<2 such that 

s<,rua(t). Choose 15<2 such that s=s#(ua(t)). Let y=gs(u) and ~=j- l (a ,~ ,  y). Then 

g-~l(7) N {v E T:u~(t) < r  v ~<r t} = {u}. 

Hence ue+~(t)=u contradicting the fact that u~+l(t)<ru. 

For tET",,{~}, let ~(t)=min{~<2:u~(t)=t}. By Claim 1, ~(t) exists for every 

tE T',,,{~}. Let X~={tE T",,{~}: ~(t)=~}. Then T",,{~3}=U~<~X~, so the following 

claim finishes the proof of Theorem 14. 

Claim 2. For each ~<2, X~ contains no chain of cardinality ~+. 

Proof. Assume the contrary and let ~0<2 be such that Xt0 contains a chain A of 

type 0-- o+1 ol +. Let (t~: 6<0)  be the increasing enumeration of A. 

By induction on ~<~0 we show that the sequence (ur is eventually 

constant. If ~=0 or if ~ is a limit ordinal, the proof of this fact is straightforward. So we 

assume (ue(to): 6<0)  is eventually constant and prove that (ur 6<0)  is eventu- 

ally constant. Let 6o and u be such that u~(t~)=u for every 60-.<6<0. Let 

(a, 8, y)- 

Case I. There is a 61<0 such that 6136o and 

g-~l(e) n {v E T: u<v<<.t~,} 4= f~, 

where s=s/3(u~(to)). Then the unique element of this interesection is equal to u~+l(to) 

for every 6 such that 61--<6<0. 

Case II. Otherwise. Then for every 6 with 60<<-6<0 we have either u~+~(to)= 
u~(to), or else u$+l(t~) is the minimal element of {vET:u<v<<.t~o }. Hence 

(U~+l(t6): 60---<6<0 } is constant. 

In particular, (ur 6<0)  is eventually constant. But this is a contradiction since 

U~o(t~)=t ~ for every 6<0. This contradiction completes the proof of Claim 2. 
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let 

THEOREM 15. Assume 2~>t~ 0, 01>2 and u=O ~. Then for all 7<cf2,  

non-u-special tree ---> (non-u-special tree, (cf2+ 1)~,) 2. 

Proof. Let T be a non-u-special tree. We may assume that ht (T)=u +. Let 7<~ and 

[T] 2 = Ko u U J, 
i<}, 

be a given partition. Let E={~<u§  cf~=cfu} .  Then by Theorem 14, E ~ N S T .  

For every t E TIE and for every i<7, let S,(t) be a G-maximal subset of i such that 

[Si(t)O{t}]2~_Ji. If for some t E T I E  and i<y we have that ISi(t)l>-cf~., we are done, 

since tp (S,(t)O {t})~>cf2+ 1 and [S,(t)O {t}]2~_Ji. So we may assume that ISi(t)l<cf2 for 

every tE TIE  and every i<y. Since cfu_-->cf)., for every t E T I E  there exists f ( t )<r t  

such that 

[J Si(t) <Tf(t) .  
i<y 

By Theorem 14 we can find an s E T such that f - l ( s )  is not the union of <~u antichains. 

Since u(r we can find (Si: i<y)  and a non-u-special subtree X o f f - l ( s )  such that 

S,(t) = Si for all t E X and i < y. 

The following claim finishes the proof of Theorem 15. 

Claim. [X]2c_K0. 

Proof. Otherwise there exists u<r t  in X and i< 7 such that {u, t} EJi. Since 

S~(u)=S,(t)=Si, we have that u ~ Si(t ) and [Si(t) U {u} U {t}]2~_Ji, contradicting the ~_- 

maximality of Si(t). 

COROLLARY 16 (see [5; w 17]). Assume ~>~o, 0 >~2, and 7<cf2.  Then 

(0~) + ---> ((0~) + , (cf)~ + 1)v) 2. 

The following consequence of Theorem 14, which we mention without proof, 

generalizes the well-known A-system lemma for cardinals ([5]). 

THEOREM 17. Assume ~ = u .  Let  T be a non-u-special tree and let (Ft: tE T) be a 

sequence o f  sets such that IFtI<A for  all t E T. Then there exist a non-u-special subtree 

T' o f T  and a set F such that FsNFt=F for all s, tE T' with s<Tt. 
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It is clear that Theorem 4 follows directly from Theorem 15 using the results of w 1, 

so we shall now restrict our attention to some further applications of these two results. 

THEOREM 18. Le t  u be a regular cardinal and let P be a partially ordered set  such 

that e--->(x)12~. Then 

P---~ (a, (u+ 1)~,) 2 f o r  all a < u + and 7 < ~. 

Proof.  Let ;t=2 ~ and let cr be the standard u-closed poset which collapses 2 to x. 

Then 1~1=2, and so ~r forces u=2~=2 and P---~(u)l,. So by Theorem 4, cr forces 

P---~(a, (u+ 1)y) 2 for all a < u  + and 7<u. Since ~,,a is u-closed, an argument similar to 

that of w 3 shows that P--~(a, (u+ 1)~,) 2 is really true for all a < u  + and 7<u.  

COROLLARY 19. P---~(x+)~, implies P---~(a, (u++ 1),) 2 f o r  all a < u  ++. 

Theorem 15 is not the strongest result that can be proved using the same methods. 

Namely, a similar proof shows that we can also have an analogue of Theorem 17.1 from 

[5]. 
Let us now consider the following corollary of Theorem 15. 

COROLLARY 20. Nonspec ia l  tree---~(nonspecial tree, to+ 1) 2. 

Since to~ is a nonspecial tree, an immediate consequence of Corollary 20 is the 

well-known relation Wl---~(tOl,W+l) 2 proved by Erd6s and Rado in [8; p. 459]. Con- 

cerning this ErdOs-Rado result Hajnal [11; p. 283] showed that CH implies 

tOl-~(tOl, to+2) 2. On the other hand, the author [27] found a model of set theory in 

which tor--~(tol,a) 2 holds for all a<to~. Hence it is natural to ask the following 

question. 

Problem.  Is nonspecial tree--~(nonspecial tree, w+2) 2 consistent? 

The negative result of Hajnal has the following generalization. 

THEOREM 21. A s s u m e  MA. Suppose  T is a nonspecial  tree o f  cardinality 2 ~~ with 

no uncountable chains. Then there is a parti t ion [T]2=Ko U K1 so that 

(1) there is no nonspecial  tree X~_T with [X]2~Ko, 

(2) there are no sets A , B ~ _ T  so that A < r B ,  tpA=to, IBl=2, and AxB~_K1.  

COROLLARY 22. A s s u m e  MA. Then 

nonspecial  t ree -~  (nonspecial  tree, 09+2) 2. 
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Proof of Theorem 21. Let T be a nonspecial tree of cardinality x=2 ~~ with no 

uncountable chains. We may assume that the underlying set of T is ~r and that a<Tfl 
implies a<fl. Let (Ag: ~<x)  be a fixed enumeration of [~r 

Using MA and induction on a < n  we construct sets Sa~_dt={fl:fl<Ta) such that: 

(i) San S a is finite for a*fl. 
(ii) If ~<a  and if Ae N t~ is not covered by finitely many S/~ with fl<a, then 

San A~*~.  

Since ci is countable, MA applied to a standard a-centered poset (see [17; p. 154]) will 

give us Sa___ti satisfying the <x  requirements of (i) and (ii). 

Define [T]2=Ko U KI by 

(fl, a)EK, iff flESa. 

For the proof of Theorem 21 it suffices to prove the following Claim. 

Claim. There is no nonspecial subtree Xc_T with [X]2~_Ko. 

Proof. Suppose to the contrary that X~_T is a nonspecial tree such that [X]2~_Ko. 

We may assume that TanX is a nonspecial tree for every aEX. (Here 

For fl E X, we define 

c a = {ae  T: Sa n /~nx is infinite}. 

Fact 1. C a is finite for every fl EX. 

Proof. Otherwise, let f lEX be such that C a is infinite. Choose ~<~ such that 

A~=flNX. Since MA holds and since TaNX is a nonspecial tree, it has cardinality x 

(see [2]). So we can find a E T a NX such that ~<a.  By (i) and by the fact that C a is 

infinite, it follows that ASN ~ is not covered by finitely many S r with 7<a .  Hence by 

(ii), Sa NA~*~. This contradicts the fact that [X]2_Ko. 

For n<co, let X,,={flEX: ]Cal=n }. Then by the Fact 1, S = U n < t o X n  �9 The next 

fact finishes the proof of the claim, since we are assuming that X is a nonspecial tree. 

Fact 2, For each n, Xn is a special tree. 

Proof. Suppose to the contrary that for some n, Xn is not a special tree. Pick 

aEX~ such that TaNX. is a nonspecial tree. Let (~1 . . . . .  ~n) be the increasing 

enumeration of Ca. Choose a'ETaNX~ such that Ta'NX~ is a nonspecial tree and 

2-858288 Acta Mathematica 155. Imprim6 le 28 aoOt 1985 
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such that A={TEXn:fln<y<ra'} is infinite. Choose a ~<~ such that A~=A. Since 

T a' flXn is nonspecial, it has cardinality u (see [2]). Hence we can find a"E T ~' NXn 
such that ~<a". Note that C~,,={fll . . . . .  fin}, hence SanAg is finite for every fl<a". By 

(ii), this means that S~.nAe~=~ contradicting the fact that [Xn]2~_Ko. This completes 

the proof. 

Let us remark that the assumption that T has no uncountable chains cannot be 

dropped from Theorem 21, since in the model of wl-->(tol,a) 2 constructed in [27] 

Martin's axiom holds. 

w 5. Proof of Theorem 2 

Using the trick from the proof of Theorem 18 and results of w 1 it suffices to show under 

the assumption x~=x and 2~<x that 

non-x-special tree--> (~r for all ~ < 2. 

So let T be a fixed non-~c-special tree, let [T]2=g0 O Kl be a given partition, and 

be a given ordinal such that ~<2<~r We may assume that T contains no homogeneous 

non-x-special subtree, since otherwise we are done. 

LEMMA 9. Either T contains a homogeneous chain of type x+~ or else there is a 
sequence (Ai: i<~) of chains o fT  such that 

(1) tpAi=2 and [Ai]2~_Ko 
(2) Ai<rAj and AixAj~_KI for i<j. 

Proof. Let E={6<x+:cf6=x). Let < be a well-ordering of the set of all 0- 

homogeneous chains of T. 

Fix tE TIE. By induction on i<~ we define, if possible 0-homogeneous sets A~ct  

such that: 

(a) A~x{t}~_K1, and tpa~=2. 

(b) a[<rA ~ and A[xA~_K~ for i<j. 

Suppose j < ~  is such that A~ is defined for every i<j. Let A~ be the <-least 0- 

homogeneous chain A of type A such that A~_iNK1(t) and such that A[<rA and 

A~xA~_K~ for all i<j, if such a set exists; otherwise we stop the induction at stage j .  

If for some t E TIE the induction has never stopped, we are done. Otherwise, for 

every tE TIE there is a j ( t )<~  such that A~ was defined for every i<j(t) but A~(t) was 
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not. By Thoerem 14 and by the fact that ~ = x ,  we can find a non-u-special subtree 

Xc_TIE, j0<~ and (Ai: i<j0) so that j(t)=j o and A[=A i for all tEX and i<j o. Choose 

toEX such that Y=Tt~ is not u-special and there exists a 0-homogeneous set 

Bc_toNX such that tpB=u.  Such to and B exist by Theorem 15 and our assumption that 

T contains no homogeneous non-u-special subtree. 

Claim. tKI(t)NBI<2 for all tE Y. 

Proof. This claim follows from the fact that for every t E Y, At ~ was not defined. 

By ~ = u ,  we can find a non-x-special tree Z c Y  and C~_B such that KI(t)NB=C 
for all t E L  Let D=B\C.  Then tpD=x and D• By Theorem 15 there is a 0- 

homogeneous chain E~_Z of type ~. Then D U E is a 0-homogeneous chain of type u+~. 

This finishes the proof of  Lemma 9. 

For each tE TIE we fix, if possible, a sequence (B[: i<~) of chains from T t such 

that 

(c) tpB[=2 and [B[]Ec_K0, 

(d) B[<TB ~ and B[• I for i<j. 

By Lemma 9, we may assume that the set of all tE TIE for which (B[: i<~) does not 

exist is u-special. Now for every tE TIE for which (B[: i<~) exists, and for every i<~, 

we fix a ~_-maximal set SIc_t" such that: 

(e) [S[O{t}]Zc_Ko, 
(f) tp (Ko(s) nB[)~>~ for every s E S~. 

Assume first that there exist rETIE and i<~ such that [S[[>~u. Since ~ < u ,  we 

can find C~_S[ and D~_B[ such that tpC=u, tpD=~ and for every sEC, the inclusion 

D~_Ko(s)NB ~ holds. Hence COD is a 0-homogeneous chain of type u+~, so we are 

done. Thus we may assume [S[[<u for every tE TIE and i<~ for which S~ is defined. 

By Theorem 14 and by the fact that~as=u, we can find a non-u-special subtree X~_TIE 
and a sequence (Si: i<~) such that for every tEX, (B~: i<~) exists and 

S[ = S i for all t E X and i < ~. 

By Theorem 15, we can find a chain A~_X of type u such that [A]2~_KI and such that 

Y={tEX: t>TA} is not a u-special tree. Now we consider the following two cases. 
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Case I. For some tE Y, Ig0(t) nAl=u. Let sEKo(t)NA. Then for every i<~ the set 

S~U{s} satisfies the first requirement (e) from the definitions of S~, i.e., 

[S~U {s, t}]2_K0. By the maximality of S~ we have that s does not satisfy the condition 

(f), i.e., tp(Ko(s)nB~)< ~. Since 2~<u, we can find CcKo(t)nA with ICI--u and 

(Di: i<~) such that Ko(s)NB~=D i for every s E C and i<~. For each i<~, we choose 

t i E B~\D i arbitrarily. Then C U {ti: i<~} is a 1-homogeneous chain of type u+~. Hence 

we are done. 

Case II. For all t E Y, IK0(t)nAJ<u. Since u~-=u and since Y is a non-x-special tree, 

we can find a non-u-special subtree Z~_ Y and a set B~_A such that Ko(t) flA=B for all 

tEZ. Let C = A \ B .  Then tpC=u,  [C]2cK1 and CXZ~_K1. By Theorem 15, there is a 

chain D~_Z such that tpD=~ and [D]2_cK~. Then CUD is a 1-homogeneous chain of 

type u+~, so we are done also in this case. 

This completes the proof of Theorem 2. 

w 6. Constructing end-homogeneous chains 

In this section we give a proof of Theorem 4 and mention some applications of this 

theorem. So let 2~>g 0, 0~>g 0, u=0  ~, and let P be a partially ordered set such that 

P---,(u)~. We shall prove that P-->(A+I)~ ~ 

Let f: [P]<~~ be a given partition. We consider the following two cases 

Case I. For some A0<A, 0~~ Then u~=u. By results of w 1 we may assume that 

P=T, where T is a non-x-special tree of height u +. Let E={~<u+:  cf~=cfu}.  Then by 

Theorem 14, E~NST. For every tETIE we fix a ~_-maximal subset St~_t such that 

St U {t} is an end-homogeneous chain with respect to f ,  i.e., f(x"~s)=f(x~s ') for all 

x~ .[S tU{t}]  <to and s,s 'EStU{t} with max(x)<rS, S'. If [StI~,~ for some tETIE, we 

are done since tp(StU{t})>~2+l. So we may assume Is,l<A for all tETIE. Since 

cfu~>2, for every tE TIE we can find h(t)<rt such that St is bounded in t~by h(t). By 

Theorem 14 we can find an s E T  such that h-~(s) is not the union of ~<u antichains. 

Since ~ = u ,  we can find S~g and a non-x-special subtree Xc_h-~(s) such that 

St = S for all t E X. 

Furhermore, we may assume that 

f (x  ~ t) =f(x r~ t') for all xE [S] <~ and t, t' EX. 
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Pick U<rt in X. Then by the above properties of S and X we have that StO {u) tJ {t} is 

an end-homogeneous chain contradicting the maximality of  St. 

Case II. 0x'<~r for all 2 '<2 .  Fix tEcrP. We shall define the standard tree ordering 

<t  on t induced by the partition f I [ t ]  <~ (see [5; w 18]). In what follows a, b, c . . . .  are 

elements of t and < is the restriction of  < e  to t. If  a E t, then d denotes the set 

{b E t: b<a}. For  every a E t we define ha: d---~2 by induction on b<a. Assume b<a and 

ha(c) has been defined for every c<b. Let  A~,b={C<b: ha(c)=l}.  Then we put 

ha(b) = 1 iff f ( x  r~ b) =f(x  ~ c) for all x E [Aa, b] <c~ 

Let  A a = ( b < a :  ha(b)=l}. NOW for a, b e t  we define 

b<ta iff b~_A a. 

Then < t  is a tree ordering on t since clearly bEAa implies Ab=AaNa=Aa,  b . M o r e -  

over, A a = ( b  ~. t: b<ta} .  The proofs of  the following facts are straightforward. 

Fact 1. Le t  tEoP  and let a and b have the same limit height in (t, < t ) .  Then 

{cEt:  c<ta}={cEt:  c<tb} implies a=b. 

Fact 2. If  t E a P  and if aEt  has height a in ( t , < t ) ,  then a has at most 0 I'~ 

immediate <t-successors.  

Fact 3. If s, tEaP  and if s<~.t, then < s = < t l s ,  and moreover (s, <s)  is an initial 

part of (t, < t ) .  

Claim. For some tEoP,  the height of  (t, <t)  is ~>;t+l. 

Proof. Suppose to the contrary that ht (t, <t)~<2 for every tEaP. For a < 2 ,  let 

Xa=(01~'+al). +. Then by the assumption, ~a~<~<x for f l < a < 2 .  Let  

W = {u E ~x: u(a) E x~ for all a E dom (u)). 

Then IW]=~. We shall consider W as a tree ordered by ~_. 

Fix t E crP. By induction on the levels we construct an isomorphical embedding 

gt: (t, <t)---~(W, c )  as follows. Let  a E t and a s s u m e  gt(b) is defined for every b<ta .  

Let  a < 2  be the height of  a in (t, < t ) .  I f  a is a limit ordinal we put gt(a) = Ub<,a g,(b). So 

assume now that a is a successor ordinal. Le t  f l=a-1  and let b be the immediate 

predecessor of a. Then the set of  all immediate successors of b in (t, < t )  is well- 
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ordered by <e,  hence by Fact 2, there is a ~<u/~ such that a is the ~th immediate 

successor of b in (t, <t ) .  Let gt (a)=gt (b)~ .  This completes the inductive definition. 

Fact 4. If  s, t E oP and s~  <.  t, then gs=gt It. 

Proof. Follows directly from Fact 3 and the definition of gt for t E oP. 

For tEP,  let H(t)={gt(a):aEt}. Then by Fact 4, we have that s<. t  implies 

H(s)cH(t )  for s, tEoP.  Thus H:oP--+9~(W) is a strictly increasing mapping which 

contradicts Theorem 9, since Iwl---x and P--+(u)~. This proves the Claim. 

Fix t E oP such that (t, <t)  has height >12 + 1. Let a E t has height it in (t, <t ) .  Then 

{b E t: b<t a} =Aa has order type it. By the definition of <t, it follows that Aa IJ {a} is an 

end-homogeneous chain with respect to f. Since tp (A,, U {a})=it+ I this completes the 

proof of Theorem 4. 

COROLLARY 22. Let P be a partially ordered set such that P--+(2~)~, then 

e - ,  ~ . 

COROLLARY 23. I f  P is a partially ordered set such that P---+(2~)12~, then 

P--+ ( x + l ) ~  ~ for a l l y < x .  

The following lemma is a generalization of the well-known Stepping-up Lemma for 

cardinals (see [5; w 16]). It is the main tool for proving positive partition relations for 

partially ordered sets for exponent r>2. 

THEOREM 24 (Stepping-up Lemma). Let ~t~l%, 2~<r<a~, and let ~ and a t, ~<~ be 

ordinals. Let  P be a partially ordered set such that P--+(2~)12,. Then 

r--I u--+ (ag)g<r implies P--+ (%+l)~<y. 

Proof. Let P be a partially ordered set such that P--+(2~12 .. and let f: [p]r__+y be a 

given partition. We may assume ae>>.r holds for all ~<~, in which case we must have 

~*<u by the assumption x--+ t-~u~)g<r.'~-~ By Corollary 23 there is a chain A~P,_ end- 

homogeneous with respect to f ,  such that t p A = x +  1. Let a be the maximal point of A. 

If {bl . . . . .  b~-l} E A \ { a }  we put 

g({b, . . . . .  br-l}) = f ( (  bl .. . . .  br-l,  a)).  

r - !  Since ~r (a~)~<r there exist ~<~, and B=_A such that tpB=a~ and g"[BY-l={~}. Since 
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A is an end-homogeneous chain, this implies f"[ao{a}]r={~}. This completes the 

proof since tp (B U {a})=ag+ 1. 

COROLLARY 25. I f  P is a partially ordered set such that P-->(2~)~, then 

P---~(x+l)2 r for y < c f x .  

Let u be a cardinal and let n<w. Then by induction on n we define expo0c)=x and 

expn + 1 (x) = expn (2~). 

COROLLARY 26. Assume 2~>1~o, 01>2 and 2<r<w.  Let  P be a partially ordered set 

such that P--->(x)l~, where x=eXPr_2(#). Then 

P--~ ((#)+, (cf2)ry for y < cf2. 

Proof. By Corollary 16, we have (#)+--->((#)+, (cf2+l)v)2. Now by induction on 

2<r<~o, using the Stepping-up Lemma, we actually get the stronger result 

P---~ ( ( # ) + + r - 2 ,  (cf2+r-1)y)  r. 

COROLLARY 27. Assume 2~>~to, and 2<r<w.  Let  P be a partially ordered set such 

that P---~(~)~, where x=expr-l(A). Then 

p_._> ((2)[) -t- ' (~+)2)  r. 

For a set A and n = l , 2  ....  we define ~ ( A ) = ~ ( A )  and ~/In+l(m)=~(~z~n(A)) .  We 

consider ~V'(A) as a partially ordered set under the ordering _~. The following result is 

an immediate consequence of Theorem 1 and the Stepping-up Lemma. 

COROLLARY 28. ~(o))---~(a)~ +l for  all a<w 1 and nonzero k, n<w. 

Using Ramsey 's  theorem and the Stepping-up Lemma we have also the following 

result of Galvin announced in [10; p. 718]. 

THEOREM 29 (Galvin). Let  P be a partially ordered set such that P--->(w)~. Then 

P---~(~o+l)~ for  all r , k < w .  

Galvin remarks that Theorem 29 is in a sense best possible since w~-~(w, 09+2) 3. 

He also remarks that by using Nash-Williams' generalization of Ramsey's theorem [19; 

p. 33] in the above proof of Theorem 29 one obtains the following stronger result. 
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THEOREM 30 (Galvin). Le t  P be a partially ordered s e t  such that P---~(to)~ and let 

be a collection o f  f ini te  chains in P such that no e lement  o f  ~ is an intitial s egmen t  o f  

another. Then f o r  every k<to and every func t ion  f: qC---~k there is a chain A ~ P  such that 

t p A = t o +  1 and f is constant  on ~f l  [A] <'~ 
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