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w 1. Introduction 

Denote by H~ the space of bounded analytic functions on a plane domain ~ and 

give functions in H*~ the supremum norm 

Ilfll = sup If(z) I. 
zE~ 

A Denjoy domain is a connected open subset fl of the extended complex plane C* such 

that the complement E = C * \ ~  is a subset of the real axis R. 

THEOREM. I f  ~ is any Denjoy domain and if fl  . . . . .  fNEH| satisfy 

0 < ,7 ~< max Ifj(z)l ~< 1 (1  1) 
J 

for all zE ~, then there exist gl . . . . .  g N E H ~ 1 7 6  such that 

Efj(z)gj(z) = 1, zErO. (1.2) 

Such a theorem is called a corona theorem (had the theorem been false for if2 the 

unit disc, there would have been a set of maximal ideals suggestive of the sun's 

corona), and the g1 are called corona solutions. It follows from the methods in Gamelin 

[6] that the theorem is equivalent to itself plus the further conclusion 

IlgJll < C(N, ~), 

(t) Partially supported by NSF grants MCS-8002955 and MCS-8311513. 
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where C(N, rl) does not depend on f~, and the proof below gives such bounds on the 

solutions. Thus, by normal families, the reader can make the simplifying but unused 

assumption that E is a finite union of intervals. 

For f~ a Denjoy domain, H~(Q) consists only of constants if and only if E has 

Lebesgue measure zero, IEI=0, (see [1]). We will not need that result, but we will 

repeatedly use the idea of its proof: if 

f ( z )= lx ,  fe t-zd-----~t ' z692 

then ef6 H~176 Our proof depends expressly on the symmetry of Denjoy domains 

and implicitly on the fact that for linear sets there are simple relations between length, 

harmonic measure relative to the upper half plane, and analytic capacity [8]. 

The first corona theorem, for g2 simply connected, is due to Lennart Carleson [3]. 

Several authors have extended his theorem to other types of domains; see [15] for a 

historical discussion. The deepest extension is also due to Carleson [4], who proved the 

theorem when f2 is a Denjoy domain for which E is uniformly thick: 

IEf) (x-t, x+t)[/> ct 

for all xEE and all t>0. (See [15] for another proof of that result and [14] for a 

generalization to non-Denjoy domains.) Similarily, here the construction will take place 

inside a set Ql(e) where E is thick in the sense that 

dt>e. 
--x .]E Y +(x-t) 

We also use Carleson's first theorem and the construction from its proof. In fact, our 

proof is quite close to his original argument. The differences are that instead of 

estimating norms by duality, we solve the corresponding a problem constructively, as 

originated in [12] and [13] and as used in [4], and that our contour can be taken in Ql(e), 

because fl is a Denjoy domain. 

In section 2 we solve an interpolation problem needed for the theorem and in 

section 3 we prove the theorem. Section 4 has further remarks and complementary 

results. 

We thank Michael Benedicks and Lennart Carleson for several helpful conversa- 

tions. The authors also thank Professor Carleson and the Institut Mittag-Leffler for 

twelve and four years of intermittent education. 
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w 2. Some interpolating sequences 

Write U for the upper half plane. Fix a Denjoy domain f 2 = C * \ E ,  let e>0, and define 

and 

f ~ ( e )  = u n  f2~(e). 

The harmonic function 

=• fe ydt  to(Z, E )  ~r yE + ( x - t ) 2  ' z = x + i y 6 U ,  

is by definition the harmonic measure of E in U, and Q~{(e)={z: to(z, E)>e}. 

Let {z.} be a sequence of points in some plane domain ~. Then {z.} is called an 

interpolating sequence for H~(~)  if, whenever [w.l<~l, there exists fE H |  such 

that 

The bound 

f ( z . ) = w . ,  n= 1,2 . . . . .  (2.1) 

M({z.},  5~)= sup inf{llfll: f E  H| and (2.1) holds} 
Iwil~l 

then is finite. Carleson's interpolation theorem [2], [9 p. 287] asserts that (Zn}C U is an 

interpolating sequence for H~(U) if and only if 

6({z.}) = inf ]-[  Z.--Zk > O. 
n k,k=kn Zn--Z k 

We need a similar result for Denjoy domains. 

LEMMA 2.1. L e t  e>0 and let {z.} be a sequence in t)~(e). There are positive 

constants y=y(e) and M=M(e) such that i f  

6((z.}) > 1 - y  (2.2) 

then (z.) is an interpolating sequence for  H~(~2) and 

M({z,},  Q)<~M. (2.3) 
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The constants 7'(e) and M(e) do not depend on f~. But if IN=0, so that H~176 is 

trivial, then f~i~(e)=~ and the lemma is vacuous. It is also true that if {z~}cf~-(e) and 

if 6({z,,})>0, then {zn} is an interpolating sequence for H| and a proof will be 

given in section 4. However, we need only Lemma 2.1 for the corona theorem. 

Proof. By normal families it is sufficient to prove the lemma with (2.3) when 

{z,} = {zl .. . . .  z,0 } is a finite sequence. We may also reorder the points so that 

where zn=xn+iy~. Fix 

so that 

Yl >~ Y2 >~ ""  >~ Yn o' 

In = {tER: [t-x,, I < 3e-iyn} 

co(z"'I")= 1 13~-'y. y, dt 
a_3e- ty ,  t2 + yZn 

For fl=fl(e)<e/3 to be determined later, also fix 

so that 

The inequality 

> l - e / 3 .  

Jn = {tER: [t-x,I <fl-lyn} 

(2.4) 

4ykyn <~-log U Zn-Zk 2 
Iz.-  l z.- k k, k~n k, k~n 

which can be found on page 288 of [9], shows that 

Yk Yn ~ Y 
Z ]Zn_~kl2 k, k~n 

if (2.2) holds and ~<1/2. For yk~<yn, elementary estimates on the Poisson kernel yield 

YkYn 
co(Zn, Jk) ~< C(fl) ] I'Z,--Zk 'z" 

co(z,, Jn) > 1 -ft .  (2.5) 
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Consequently there is y(e) such that (2.2) implies 

o 

Now set 

31 

(2.6) 

Ilu.lloo ~< c(E). (2.12) 

and 

E. = ( E n / . ) \  u Jk. 
k>n 

Then EncE and E,,AEk=f~, kaFn. By (2.5) and (2.6), 

Since znE~-~(e), (2.4) and (2.6) also give 

o~z~,~,~o,z~,~-~l-o~z~,,~,,-o(z~, ,>~ o ~ , ) ~ , 3 .  ~.8, 

For a general function v E L| we denote by 

1 f yv(t) dt 
u(z) ~ jRy2+(x-t) 2 

the harmonic extension of v to U and by 

= I r (x-t)  v(t) dt o(z) 
~Z JR Y2+(X--t) 2 

its harmonic conjugate in U. It follows from (2.8) that there exists un(t) supported on 

En such that 

u,(z,,) = 0 (2.9) 

a.(z.) = :r (2.10) 

feud(t) dt = 0 1 (2. 1) 
n 
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Indeed, by a change of scale we may assume xn=O, yn = 1. Then failure of (2.9)-(2.12) 

would mean 

lim f a4 b t inf  dt = 0 
j--,~a,b Jt~ l+t2 l+t2 

for some sequence {Lj} of subsets of [-3/e, 3/e] with inflLj[>0, and that is impossible. 

We also have 

la~(z~)l ~< c~(t)~ (2.13) 
k>n 

w h e r e  C 1 depends only on e. To prove (2.13) again take x~=0, y~=l  and recall that 

yk<~l if  k>n.  Then by (2.11) and (2.12), 

k>n 7f k>n JEk 

t Xk 

l + t  2 l+x~ 
dt. 

But since E k c l k ,  we have 

I t xk I -< 3e-I tEEk '  
l + t  ~ 1 + ~  "~ l + t  ~' 

so that by (2.7) and the disjointness of the Ek, 

lak(zn)l <~ 6t-~C(t ) /~  = c~(t) /3.  
k>n 

For the interpolation we first assume ]w,,[ = 1. Set 

n o 

V = 2 C n U n ,  --l~<Cn~< 1, 
n = l  

and choose the c,, inductively so that 

l < .n<.n  o. 

This is possible because of (2.10). Set 

F(z) = exp (v(z)+iO(z)), z E U. 
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Since the E~ are disjoint, e-Cr cr z E U, and since v is supported on E, F 

reflects to be analytic on Q and ]F(z)i<-e cr z G Q. Furthermore,  

IF(z.)-Wn[ = 1--expv(zn)exp (ik>~ Ckflk(Zn) ) 

~< I I - e x p  v(z,)l e 1 - e x p  

By (2.9), (2.12) and (2.7), 

[1 -exp  v(z,)[ ~<l l-e2cr200 < 1/5 

iffl  is small, and by (2.13), 

1--exp (i 2 k>n 

if fl is small. Hence  we can fix fl=fl(e) so that 

tV(zn)-W.I <<- 1/2, 

can be solved with FEH=(f2) and 

Ilfll ~ eCr 

< Jl-eC'r < 1/5 

n = l , 2  . . . .  (2.14) 

(2.15) 

whenever Iw.l= 1. 

It is well known that (2.14) and (2.15) imply interpolation. If IWnJ~< 1, pick l anl = 1/2, 

such that la,,-Wnl~l/2 and take F1 EH~~ IlFll[<~eCr such that 

Ja~-Fl(Z~)J < 1/4. 

Then Iw~-Fl(Zn)J<3/4. Repeating this with w~ replaced by 4(wn-Fl(Zn))/3 and iterat- 

ing, we obtain Fj.EH~([2) with IIFjlI~<(3/aw' eCr and 

o o  

Z FJ (zn) ~" Wn" 
j=l 

Thus (2.3) holds for M=2e c~). 

LEMMA 2.2. Suppose S={zn} is a sequence in f~(e) such that 

~({z.})  >>- ~ > o. 

3-858288 Acta Mathematica 155. Imprim6 le 28 ao0t 1985 
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Then there are funct ions h,  6 H=(Fd) such that 

h.(z.) = 1 

Ilh.ll ~< M2(e) 
and 

(2.16) 

(2.17) 

Ih.(z)l ~< K(e, 6), z fi ~ .  (2.18) 
n 

Proof. By a result due to Hoffman and Mills [10] (or [9] p. 407), S may be split into 

a disjoint union of  subsequences Sin, l<~m<~2 p, SO that 

6 ( S m )  ~ (6(S)) 2-p, 1 <. m <. 2 p. 

Thus we can take p=p(e,  6) such that 

6(Sin) >- 1-y(e),  1 <. m <~ 2 p. 

(With a different value of  2 p this can also be done by grouping the Zn into generations 

[5], [9] p. 416.) Then by Lemma 2.1 each Sm is an interpolating sequence for H~~ 

By a result of Varopoulos [16], [9] p. 298, there are hkEH~176 such that 

hk(Zn) = 6n,  k, Zn, Zk E S m 

and 

Ihk(z)l <~ M2(e), z E g2. 
z k 6 S m 

Indeed, suppose Sm={Z 1 . . . .  ,Z,0 } is finite, let co=e 2~i/"~ and take f j E H = ( ~ ) ,  

II~ll~<g=M(e), f~<zk)=od k, zk6Sm. Then 

j=l  

h a s  hk(Zn)=c~n, k a n d  

no n o 

Z Ihk(z)l = no 2 Z Z co-JkcoJ~(z) f~(z) 
k = l  k = l  j , l  

n o 

= no 2 Z nolfj(z)l z ~ ME. 
j = l  

Therefore for S = [ , J S m  w e  have (2.16), (2.17), and (2.18) with K(e, 6)=MZ.2 p. 
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w 3. Proof of theorem 

For a Denjoy domain Q = C * \ E  and for e>0 define 

Note that Q2(e) is symmetric about the axis R and that R n QCQE(e ). 

Assume fl  . . . . .  fN6H| satisfy (1.1). By the maximum principle applied to 

co(z, E), each component  of s is simply connected, so that by Carleson's theorem, 

there exist functions GI ,1  . . . . .  GN, 1EH~~ such that E fjGj, I=I  o n  ~'~I(E) and 
]IGj, IlI<~C(N, rl). We need solutions in the region ~2(e). Note that RE(e) may have 

infinitely many connected components,  and each of these components may be multiply 

connected. Now fix 

e = r//1VT6N. 

LEMMA 3.1. There exist G1,2 . . . . .  GN,2 6 H~(Q2(e)) such that for all z 6 fl2(e) 

and 

Proof. Write 

Iaj,2(z)l ~ 8,7 -=  

2 fj(z) Gj, E(Z) = 1. 
J 

Then fj• EH| and Ilfj~ll~l 
Poisson integral formula 

IXmfT+(z)] ~< e, 

Since fj= j~. + ~ - ,  we have Igl2+lg{2~>ll~.l 2, 
[zl2-2(Imz) 2 yields 

~ ((f/(z)Y+(f?(z)) 2 ) 

f ?  (z) = �89 +fj(~)), 

fj-(z) = I (fi(z)-Yj(~)). 

by (1.1). Also, Im(fT+)=0 on Rnff~, so that by the 

z 6 Qz(e). 

and with (1.1) the inequality Re(z2)~ > 

I> 2 Re {(f/(z))2+(fj- (z)) 2} 
J 

tl2/2-4Ne 2 

= t/2/4, Z 6 Q2(e) .  
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Set 

Then ]Gj, 2(z)i~<8r/-2 and Efj(z) Gi, 2(z) = 1 for z 6 f~2(e). 

If IEI--0 then f~2(e)=f~ and our proof stops here. 

We have solutions in f~(e) and in Q2(e), but we must solve a ~ problem to get 

solutions which agree on Q Naf22(e ). First we perturb the level set {co(z,E)=e}= 

U N af22(e). Define a Carleson contour to be a countable union F of rectifiable arcs in U 

such that every interval I c R ,  

length (F N (Ix (0, III])) ~ c ( D  III. 

Thus arc length on F is a Carleson measure with constant C(F). 

LEMMA 3.2. Let  0<e~<l/4. There exists a constant  A > I ,  independent o f  E and e, 

and there exists a Carleson contour F such that 

C(F) <~ A, 

F c ~'~2(e) rl ~ ' ~ ( ~ / A ) ,  

and i f  f" is the closure o f  F U {z: Z 6 F} =F O f" then 

[" separates QE(e/A) f rom gEl(e). 

(3.1) 

(3.2) 

(3.3) 

The proof is well known. One applies the reasoning of section 3 of Carleson's 

original paper [3] to F 6 H ~ ( U )  with log IF(z)l=( - l/e)co(z, E). Or see pages 342-347 of 

[9]. We omit the details. 

Let ME(e/A) be the constant in (2.17) (with e replaced by e/A) and fix 

ct = (6ME(e/A)) - 1. 

Define d(z)=lY1-1 infCe t Iz-~I, z 6 Q, and set ~={z  6 f~E(e): d(z)<-a}. By (3.2) and Har- 

hack's inequality applied to co(z, E), 

c gEl(elEA). 

Standard arguments plus (3.3) show there is V6C~(~) ,  V-1  on ~2(e/EA), ~p==-O on 

f~l(e), gradient ~--0 on f ~ \ ~ ,  and lYl.igradV(z)l<.Ca -1. Let G~,I . . . . .  GN,1 be co- 
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rona solutions on Q~(e/2A), let G 1 , 2  . . . . .  GN,2 be the corona solutions of  Lemma 3.1, 

and set 

cpj = Gj, I( I -~/)+Gj,2  V/. 

Then q0j6 C| and Ej~tpj----1 on Q. The tp./are not analytic, but by the construction 

of ~p and the bounds on Gj, l and Gj, 2, 

a~0j(z) 
<- C(N, ~1) lYl-' x ~(z). (3.4) 

A well known argument due to Hf rmande r  [11] (see also [9], p. 325) allows one to 

reduce to solving a a problem. Suppose ~ ,  qJ are in Ll(loc) on f2. Then a O = W  in the 

sense of distributions on f l  if for all -= 6 C ~ with compact  support on Q, 

fud (z)-- z -(z)dxdy=-ftV(z)Z(z)dxdy. 
Weyl's lemma asserts that if �9 6 L 1 (loc) on f2 and a ~ - 0  there, �9 is almost everywhere 

equal to a function analytic on f~. Suppose we can solve for each j ,  k the problem 

aaj, k = 91a~ok, ai, keLoo(Q).  

S e t  gj=qgj+~kNl(aj, k--ak, j ) fk  . Then ~f2gj--1 on g2 and a g j - 0  on Q, i.e. gj6Hoo(g)). 

Because of  inequality (3.4), the theorem will thus be an immediate consequence of  

LEMMA 3.3. Let  B(z)EL~176 and set b(z )=y- lB(z) .  I f  b=-O on f ~ \ ~ ,  there is 

FEL~176 such that 

~F=b 

in the sense o f  distributions on f2, and 

Proof. Write b = b + + b  - where b - - 0  on U and b+=-0 on f 2 \ U .  By a repetition 

we may assume b =b  § and work only on the upper half-plane. Let  {Zn} be a collection 

of points on F satisfying 

[Zm--Znl ~ ayn, m �9 n, (3.5) 

inf Iz-zol <~3a, z 6 ~ n U .  (3.6) 
. Yn 
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The existence of such a sequence follows by taking a maximal sequence satisfying 

(3.5). It is well known (see section 6 of [17] or [9], p. 341) that if a sequence {zn} lies on 

a Carleson contour F and (3.5) holds, then 6({Zn})~>6(Ct, C(F))>0. By (3.1) our points Zn 
thus satisfy 

6((zn}) I> ~(~) > o. 

Let hn be the functions guaranteed by Lemma 2.2, write ~N U as the disjoint union of 

sets ~,,c (z: [Z-Zn[<~3ay,,), and write 

F(~)= ~ l f f hn(~) b(z) dx dy. 
~ JJ~ h~(z) ~-z 

Then formally 8F=b, so we need only check the convergence of the sum. First notice 

that by (2.16), the definition of a, inequality (2.17), and Schwarz's lemma, 

Ihn(z)l ~> 1/2, Z E ~,,. 

Notice also that if we write F(r EnH~(r then 

In~(oI ~< 2 ih~(r I 1" Ib(z)l dx dy 
J~o Ir 

~<--2 Ih~(r Ilnll~ S~ -~z[dxdy 
n 

411Bll~ Ihn(r 

Consequently, (2.18) yields 

IF(~)l ~ ~ In.(~)l ~ 411BII= K(e/A, ~(~)). 
r /  

Let S be a 

S+ =S n U, S_ =S\S+.  The argument of section 2 yields: 

THEOREM. S is an interpolating sequence for H| if and only if 

6 = min (6(S+), 6(S_)) > 0 

where S_ is the reflection of S"_ into U. 

w Remarks 

sequence in ill(e) for some Denjoy domain f~ and some e>0. Write 

(4.1) 
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Proof. Clearly (4.1) is necessary because S+ and S_ must be interpolating 

sequences for H~176 

First assume that S=S+. Then the Hoffman-Mills lemma can be used to write 

S = S10 ... U S N with 6(Sj)>1-7,  S k n Sj= (~ and 

inf{ Zk--Zj :ZkESk  ' zjESj}~O>O (4.2) 
I zk-~j  

Fix SkU Sj, k:4=j. If 3,=3,(e, 6) is sufficiently small, then by (4.2) and the proof of Lemma 

2.1 we can find sets EncE such that w(zn, En}>-e/3 and such that if znESk and 

En N Em*f~, m4=n, then Zm E Sj and Zm is unique. Then un(E) can be chosen supported 

on En such that ifEnnEm4=f~, 

(un + ian) (zm) = 0 

and such that (2.9)-(2.13) hold with Ilunll| Hence each Sk U Sj is an interpolat- 

ing sequence for H| Now let Iw,l~<l and let a nN-1--wn. If Fk,jEH| satisfies 

Fk, j(zn) = an, zn E Sk, 

Fk, j(Zn) = O, zn e Sj, 

then F =  Ek IIj.k Fk, j E H~(f2) solves F(Zn) = wn, Zn E S. 
In the general case we now know that S+ and S_ are interpolating sequences for 

H~(f2) with constants M<.M(e, 6). Let 

G(z)=exp{ l~ }, zEU, 

and extend G to f~ by reflection. Let FEH| satisfy F(zn)=G(zn) -1, Z,,ES+, and 

IIFII~<I. Then f=FG satisfies 
1 

If(zn)l ~< ~-~, Zn~S- 

f(zn)= l, ZnES+, 

and this means S=S+ tJ S_ is an interpolating sequence. 

The above theorem can be used to give stronger versions of Lemma 3.3. For 

example, suppose B(z)EL~176 b(z)=y-lB(z), b=0 on Q2(e), and b(z)dxdy is a 

Carleson measure. Then there is FEL| such that aF=b. To see this, combine the 

last theorem with the argument of [12], [13] (see also [9] pp.  358-363). 

Critical to our proof is the reflection argument of Lemma 3.1. It would be 
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interesting to see some variant  o f  Q2(e) and L e m m a  3.1 for  general  domains.  In this 

connect ion we note that  the results  of  [14], which generalize [4], give some progress  on 

solutions of  a,  on something like f21(e), for general  domains.  However ,  a p roof  of  the 

corona  theorem for  all p lane domains  may require a be t ter  understanding of  analytic 

capaci ty  than we have today.  Brian Cole has an example  of  a Riemann surface,  

covering a Denjoy domain,  for  which the co rona  theorem fails (see [7]). I t  depends  on 

the fact  that  on a plane domain  the boundary  behavior  of  a bounded  harmonic  funct ion 

is restr icted only by  Wiener  series,  while H a functions must  satisfy much  more  

stringent condit ions.  On the o ther  hand,  a bounded  harmonic  function on f2 has the 

fo rm log Ifl where  f is analyt ic  on a covering surface of  f2. This permits  one to build 

unsolvable co rona  p rob lems  on the covering surface.  
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