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1. Introduction 

Relatively little is known about boundary behavior of solutions of quasilinear elliptic 

partial differential equations as compared to that of harmonic functions. In this paper 

two results, which in the harmonic case are due to N. Wiener, are generalized to a non- 

linear situation. Suppose that G is a bounded domain in R n. We consider functions 

u: G--~R which are free extremals of the variational integral 

f F(x, Vu(x)) din(x) 

in the conformally invariant or borderline case F(x, h)~-Ihl n. For the precise assump- 

tions on the kernel F: GxR"---~R see Section 2. Equivalently, the F-extremality of u 

means that u is a weak solution of the corresponding Euler equation 

V" V h F(x, Vu(x)) = 0 (1.1) 

with measurable coefficients. Solutions u, F-extremals, of the equation (1.1) form a 

similar basis for a non-linear potential theory as harmonic functions do for the classical 

potential theory. Especially, the Perron-Wiener-Brelot method can be applied, see 

Section 2.10. For each bounded function f: aG--.R there exist two F-extremals, the 

upper Perron solution 1Sly and the lower Perron solution _Hfwith "boundary values" f i n  

G. These functions are defined via sub- and super-solutions as in the classical harmonic 

case. In 1970, W. Mazja [M] proved, although his formulation was slightly less general, 

that i f f  is continuous and if the Wiener condition 
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9(t) =cap.  (B"(xo, 2t), 

L tp(t)v("-l) dt 
t 

C GaB"(xo, t)), holds at XoEaG, i.e. 

(1.2) 

C G is not thin at x0, then 

lim H_f(x) =f(Xo) = lim [If(x). (1.3) 
X--~X 0 X-~X 0 

We call the point Xo F-regular if the condition (1.3) holds for each continuous f: a G---~R. 

Our first theorem, proved in Section 3, shows that Mazja's result has a converse. 

THEOREM 1.4. I f  xoEaG is F-regular, then [ G is not thin at Xo. 

The proof for Theorem 1.4 shows that the F-regularity can be studied via restric- 

tions of C=(R")-functions to the boundary. 

The result of Mazja and Theorem 1.4 were proved by N. Wiener [W2] in the 

classical harmonic case in R", n~>2. His proof strongly employed linearity. Our proof is 

based on sharp F-capacity estimates and hence in the classical plane harmonic case our 

version gives a new and geometric proof for Theorem 1.4 based on energy consider- 
ations. 

The variational interpretation of Mazja's result and Theorem 1.4 is the following. 

For a function f.- G--~R in the Sobolev class WI,(G), let u=ufbe the unique F-extremal 

with Sobolev boundary values f ,  i.e. u - f E  Wl,,o(G). Then 

lim u(x) = f(x0) 
x---~x 0 

for all continuous functions f if and only if the condition (1.2) holds at Xo. 

Theorem 1.4 implies the following result, which in the linear case is due to W. 

Littman, G. Stampacchia and H. F. Weinberger [LSW], see also [P]. 

COROLLARY 1.5. F-regularity is independent of  the variational kernel F. 

To formulate our second result we call a function f: aG--~R U {-cr ~ ) F-resolutive, 

if the corresponding upper and lower Perron solutions Hf  and _//f are F-extremals in G 

and I:If=Hf there. In Section 4 we extend the well-known potential theoretic theorem 
of N. Wiener [W3]. 

THEOREM 1.6. All continuous functions f: aG---~R are F-resolutive. 

Proofs for Wiener's result are usually based on approximation of a continuous 

function by a difference of two subharmonic functions. Our proof for Theorem 1.6 rests 
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on an important obstacle method, which for n=2 gives a new and direct proof for 

Wiener's result. 

The results in Theorems 1.4 and 1.6 can be extended considerably. For instance, it 

is possible to consider solutions u of an elliptic quasilinear differential equation 

V .A(x, Vu(x)) = 0 

in divergence form where for a.e. x E G, ~A(x, h)[<<.ylh~'-I and p > n - 1  (for the precise 

assumption on A see Remark 2.3 in Section 2). The assumption p > n - 1  is needed in the 

proof for Theorem 1.4 to guarantee that the p-capacity between two non-degenerate 

continua in R ~ is positive. However, we restrict our considerations to the case p=n. 

2. Perron's method 

In this section we first present the basic assumptions on variational kernels F and recall 

some properties of the corresponding F-extremals. The rest of the section is devoted to 

the Perron-Wiener-Brelot method in a non-linear situation. 

2.1. Variational integrals. Let G be a bounded domain in R". We consider weak 

solutions, called F-extremals, of an Euler equation 

V. Vh F(x, Vu(x)) = 0 (2.2) 

where the variational kernel F: GxRn--~R satisfies the assumptions 

(a) For each e>0 there is a closed set K in G such that m ( G \ K ) < e  and the 

restriction FIKxR ~ is continuous. 

(b) For a.e. x E G the mapping h~F(x,  h) is strictly convex and differentiable in 

R~; for a fixed x the gradient of F with respect to h is denoted by VhF. 
(c) There are constants 0<a~<fl<~ such that for a.e, xE G 

alh[ n <. F(x, h) <. fl[hl ~, 

whenever h E R ~. 

" (d) For a.e. x E G 

when h E R n and 2 E R. 

F(x, 2h) = IXlnF(x, h), 

A typical example is the n-Dirichlet kernel F(x, h)=lhl n. For a thorough analysis of the 

above assumptions see [GLM1]. If the exponent n in (c) and (d) is replaced by an 
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exponent p > l ,  most of our theory still holds; in the cases l<p~<n-1 the method in 

Section 3 breaks down. 
A function u in C(G) N loc WI~(G), i.e. u is ACL", is called an F-extremal in G, if for 

all domains D c c G  

IF(u, D) = inf IF(V, D) 
v ~  u 

where 

IF(v, D) = fD F(x, Vv(x)) dm(x) 

is the variational integral with the kernel F and 

~u = {v E C(/)) n Win(D): v = u in aD). 

A function u in the class C(G) n loc W~n(G) is an F-extremal if and only if it is a weak 

solution of (2.2), i.e. 

6 Vh F(x, Vu(x))" Vr/(x) dm(x) = 0 

for all r/E Co(G). For this result see [GLM1, Theorem 3.18]. 

2.3 Remark. In [M], see also the remark [MH] due to L.-I. Hedberg, Mazja 

considered quasilinear second order elliptic equations in divergence form 

V.A(x, Vu(x)) = 0 (2.4) 

where the function A: GxR"-~R",  in addition to the usual measurability conditions, 

satisfies in the borderline case p=n the assumptions: 

(i) There are constants 0<7, a<oo such that for a.e. xEG, IA(x, h)l~<TIhl n-l, and 

h .A(x, h)~>alhl". 

(ii) For a.e. xEG, A(x,2h)=2n-lA(x, h), 2>0. 

(iii) For a.e. xE G, (A(x, h)-A(x, k)).(h-k)>O for h*k. 

It is easy to see, cf. [GLM1, pp. 48-49], that the function A(x,h)=VhF(x,h) 
satisfies (i)-(iii). Although it is not true that a vector function A satisfying (i)-(iii) is the 

gradient of a variational kernel F, it is possible in Section 3 to replace the concept o fF-  

capacity by the so called A-potential, see [M, p. 47]. Thus Theorems 1,4 and 1.6 hold 

for equations (2.4) as well. 
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2.5. Properties of  F-extremals. Although F-extremals do not in general form a 

linear space, ).u and u+2 are F-extremals whenever u is an F-extremal and 2 E R. 

Moreover, F-extremals satisfy the important F-comparison principle [GLM3, Lemma 

2.3]: If u and v are F-extremals in G, 

lim u(x) <~ lim o(x) 
x---)y x---~y 

for all y E aG and the left and right hand sides are neither oo nor - ~ at the same time, 

then u<.v in G. Also Harnack's prin'ciple is true for F-extremals [GLM1, Theorem 

4.22]: If ui is an increasing family of F-extremals in G then either ui--~Uo uniformly on 

compact subsets of G and Uo is an F-extremal in G or u,(x)--->oo at each point x E G. 

2.6. Sub-F-extremals. An upper semi-continuous function u: G---)[-~, oo) is called 

a sub-F-extremal in G if u satisfies the F-comparison principle in each domain D~:G,  
i.e. if h E C(/)) is an F-extremal in D and h>~u in aD, then h~u in D. 

A function v: G--->(-oo, oo] is called a super-F-extremal, if - v  is sub-F-extremal. 

For the properties of sub- and super-F-extremals see [GLM1] and [GLM3]. 

2.7. Existence of  F-extremals. Suppose that q0E C(G~)N Win(G) is given. Then it is 

well-known that there is a unique F-extremal u in C(G) N W~(G) with "Sobolev bound- 

ary values" q0, i,e. u-~0E WI~,o(G). Here Wl~,0(G) consists of all functions wE W~(G) 

which can be approximated in W~n(G)by Co(G)-functions. The existence is easily 

established via a minimizing sequence as in the proof of Theorem 2.9 and the unique- 

ness is a consequence of the strict convexity (b), cf. [GLM1, 4.17]. Especially, 

IF(u, 63 <<- IF(v, 63 

for all v with v -  9 E C(G) N Wl,, 0(G). 

If G is a regular domain, i.e. OG contains no point components, and if 

q? E C(r N WIn(G), then there is a unique F-extremal h in G such that h E C(r N Win(G) 

and hlOG=q~lOG. Especially, 

IAh, G) <~I~v, G) 

for all similar v and h =  u w h e r e  u is the F-extremal with Sobolev boundary values r 

See [GLM1, Theorem 3.24 and Remark 3.21] for these results. 
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2.8. Obstacles. A constructive approach to the theory of sub-F-extremals 

provided by a variational obstacle consideration. Let 9 E C| ") and set 

_~, = (u r C(G) n w~n(63: u -< 9,  u - 9  ~ Win, 0(~)}. 

is 

THEOREM 2.9. There is a unique u ,  in ~q~ such that 

Ie(u,, 6") ~ Ie(u, G) 

for  all u E _~. Moreover, u~o is a sub-F-extremal. 

Proof. Choose a minimizing sequence ui in _~. Using [GLM1, Lemma 5.9] in each 

subdomain D of G we may assume that every ui satisfies 

w(ui, D) <<- max (0(9, aD), o(ui, aD)) 

where w(v, A)=supa v--infA V denotes the oscillation of a function v on a set A. From 

the proof of [GLM1, Lemma 2.10] it follows that the family ui is equicontinuous in G 

and passing to a subsequence, if necessary, it is easy to see that ui---~u~o uniformly in 

compact subsets of G, where u,  EC(G)N WIn(G) minimizes I F in -~0, cf. [GLM1, p. 53 

and p. 62]. Since Wln,0(G) is weakly closed in W~n(G), u~o-gE W~n,o(G) and thus u~0E _~,. 

The uniqueness of u ,  follows from the strict convexity of F, the assumption (b) in 

Section 2. I. Finally, the sub-F-extremality of u ,  follows from [GLM1, Theorem 5.17 

(ii)]. 

2.10. Perron's method. Let f." 0G---~[-oo, oo] be any function. The lower class Lf  

consists of all functions u: G---~[-oo, oo) for which 

(i) u is a sub-F-extremal, 

(ii) u is bounded above and 

(iii) limx__,yU(X)~f(y ) for every y E aG. 

The upper class Uf is defined analogously via super-F-extremals. The lower and upper 

solutions 

_Hs=supu, / t f=  i n f u  
u~L s u~v s 

are the main objects in Perron's method. Note that _H~Hf, see [GLM3, Lemma 2.5], 

and that f<~g implies He~Hg and H/'~He. 
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THEOREM 2.11 [GLM3, Theorem 2.2]. The lower solution H_y is either an F- 

extremal, or identically oo, or identically -oo in G. One of these three alternatives is 

also true for the upper solution fly. 

The proof for Theorem 2.11 is based on the Poisson-modification of sub-F- 

extremals, which will be employed in Section 4 in a special case. Suppose that 

u EC(G)NWIn(G) is sub-F-extremal and that D c c G  is a regular domain. Let 

h E C(19) N W1n(D) denote the unique F-extremal in D with boundary values hlaD=ulaD, 

cf. Section 2.7. Then the Poisson-modification 

p (u ,D)={h  u i n D  
in G \ D  

of u is a sub-F-extremal in G, see [GLM3, Lemma 2.9]. Especially, P(u, D)~u by the F- 

comparison principle. 

3. Wiener's criterion and boundary regularity 

3.1. Condensers and F-capacity. Let F: GxR~-->R be a variational kernel satisfying 

the assumptions (a)-(d) of Section 2.1. If we set F(x, h)=lhl ~ for x E R n \ G ,  then F is 

defined in R~xR n and satisfies the same assumptions in any bounded domain of R ~ as 

F in G possibly with different a and fl but with the same fl/a. Hence we may assume 

that F is defined everywhere. 

Let E=(A, C) be a condenser in R ~, i.e. A is open in R ~ and C is a compact subset 

of A. The F-capacity of the condenser E is 

capFE= inf IF(u,A) 
u E W(E) 

where W(E) is the set of all continuous ACL-functions u: A--->R such that 

lim u(x) <~ 0 
X----)y 

for all yEaA and ulC>.l. It is well-known that W(E) can be replaced by 

W~(E) = Co(A)N W(E) in the definition for caprE. In the case F(x, h)= I hl n for all x E R n 

we write capFE=capE and call capE the (n-)capacity of the condenser E. I f A \ C  is a 

regular open set, i.e. each component of A \ C  is a regular domain, see Section 2.7, 

then the condenser E=(A, C) is called regular. Let E=(A, C) be a regular condenser and 

fix a variational kernel F. By Section 2.7 there exists a unique u=ue E W(E) such that 
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(i) u has a continuous extension to ,,~ and ulaA=0. 

(ii) ulC= 1 if C~:~. 

(iii) capFE=I~u, A)=le(u, A \ C ) .  

The function u is called the F-capacity function for E. 

The next four lemmata are needed for the proof of Theorem 1.4. The first lemma 

immediately follows from the assumption (c) in Section 2.1. 

LEMMA 3.2. I f  E is a condenser, then 

a cap E <~ capF E <~ fl cap E 

where a, fl are the structure constants for F. 

LEMMA 3.3. Let C be closed in R n and O<r<s<~t. I f  Cr=CnBn(r), then 

cap (Bn(t), Cr) <~ cap (Bn(s), Cr) ~ a n-1 cap (Bn(t), Cr) 

where a=(log t/r)/(log s/r). 

Proof. The left hand side inequality is trivial. To prove the right hand side 

inequality letf'.Bn(s)-~Bn(t) be the mapping 

~x, x E B'(r) 
f(x) = trg(x/r), x ~ Bn(s)\Bn(r) 

where g(z)=lzla-~z. Then f is a quasiconformal mapping and 

K(f)  = K(g) = a n-l. 

For the calculation of the dilatation K(g) see [V, 16.2]. Since the change of the n- 

capacity of a condenser under a quasiconformal mapping f is controlled by K(f),  we 

obtain 

cap (Bn(s), Cr) <~ K( f )  cap (f(B'(s)), f(C,)) 

= a n-l cap (B'(t), Cr) 

as desired. 

3.4 Remark. The second inequality of  Lemma 3.2 is sharp; to see this choose 

C=R n. The lemma holds as well for the F-capacity but this isnot  needed in the sequel. 
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The next lemma follows from the fact that each open set in R n can be approximat- 

ed from inside by regular open sets, cf. [S, Lemma 5.5]. 

LEMMA 3.5. Let E--(A, CO be a condenser such that A is a regular domain. Then 
for each e>0 there exists a compact set Ce in A such that CcC,, E~=(A, Ce) is a 
regular condenser and 

capFE, ~< capeE+e.  

Suppose that E=(A, CO is a regular condenser and let u be the F-capacity function 
for E. For 0<y~< 1 write 

E r = (,4, {xEa: u(x) ~>y}). 

The following lemma gives the basic estimate for the main result. 

LEMMA 3.6. l f  b=capvE, then 
nb 

caPFEy <~ yn-l" 

Proof. If y= 1, then the result follows immediately. Assume 0 < y <  1. The function 

min (u/y, 1) belongs to W(Ey). Hence 

capvE~<~ ~ Ie(u, {u < y} ) = -~ (b-Iv(u, {u > y} )). 

On the other hand 

IF(U, {U>Y})=(1--y)"IF(Ul----~y, {U>y})>-(1--y)"capFE'y 

where the assumption (d) of Section 2.1 has been used and E~ is the condenser 

((x ~a: u(x) > y}, CO. 

Since capFE~>~capFE=b, the above inequalities yield 

capF E~ <~-l,, (b-(1-y)"b ) = ~ (1-(1-y) ") 

and because (1 -y)".--> 1 - ny, we obtain the desired inequality. 

3.7 Remark. The upper bound of Lemma 3.6 for capvEy is essentially sharp, since 

b 
capvEy ~> (n/(n- 1))n-ly "-1 " (3.8) 
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To prove (3.8) first observe that if Ei=(Ai, Ci), i= 1,2, 3, are three condensers with 

A1 D A 2  ~ C 2 ~ A 3  ~ C3 ~ CI ,  

then 

capvE~ -l/~"-l) I> capeEzZ/~"-l)+capvE~ v<"-l). (3.9) 

This is a well known inequality for the usual n-capacity, see [G, Lemma 2], and the 

proof for the general case is similar: Choose any functions u;E W~ i=2,3, such 

that ui=O on R " \ A i  and ui= 1 in Ci. Set 

Ul = a2 u 2 + d 3  u3 

where a2, a3~>0 and aE+a3=l. Then ui E W(EO and hence 

capFE 1 ~< I~u 1, A1) = a~ IF(u2, A 2 \  C2)+a~ IF(u3, A3\C3). 

Taking infimums over all such u2, u3 yields 

n n capvE l .~ a 2 capeE2+a 3 capeE 3. (3.10) 

If capFE/>0 for i=2, 3, then set 

a i = capF E~- i/~,- i) (cap v E~ 1/~,- l) + cape E~ l(n- i))- l 

and (3.10) implies (3.9). If capeEi=O for i=2 or 3, then caprEx=0 and (3.9) again 

follows. 

To complete the proof for (3.8) write for 0 < y < l  

E~=({xEA: u(x) > y}, C). 

The function (u-~) / (1-7)  belongs to W(E~,) and hence 

I 1 
caPFe'r ~< IF(u, {u>y})<~ (1 _~)n (1 -)')" 

By (3.9) 

and we obtain 

b. 

b-  Urn- 1) ~ cape E~- u(,- 1)+ cap~ E' r-l/("- 1), 

b 
capFE~ I> (I - (1  _ _ ~ ) n / ( n - l ) ) n - I  " (3.11) 
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The elementary inequality 

(1-y)n/(n-~) >I 1 -  n 
n - 1  

now shows that (3.8) follows from (3.11). 

3.12. Wiener's criterion. Suppose that G is a bounded domain in R n and 

F: R"XRn--->R is the continuation, see Section 3.1, of  a variational kernel F satisfying 

(a)--(d) in Section 2.1. A point Xo E OG is called F-regular if for all continuous functions 

f: OG--->R 

lim H_ y(x) = f(Xo) = lim/4y(x). (3.13) 
X--.-~X 0 X--~X 0 

For the definition of  _Hf and Hy see Section 2.10. Write C = R n \ G  and for t>0  let 

tp(t) = cap (B"(xo, 2t),/l"(x0, t) f) C). 

The point x0 satisfies Wiener's criterion if 

f f  = oo. 
qy( t) l/(n- l) 

W(x o, C) = t dt (3.14) 

If W(x0, C)<oo, then C is said to be thin at Xo. 

For  the proof  of  Theorem 1.4 we still need two lemmata. In the first lemma the 

Wiener integral W(xo, C) is simply estimated from below by a Wiener sum. 

LEMMA 3.15. Let  r l>0  and ri+l=ri/2, i=1 ,2  . . . . .  Then 

| 2 f ~(t) u(~-l) Z a~/("-l) <~ ~ jOrl dt 
i=2  t 

where ai=qg(ri), i=2, 3 , . . . .  

Proof. We may assume xo=O. For  t E [ri+l, ri] set Ct=C n Bn(t). Then Lemma 3.3 

yields 

9 (0  = cap (B"(2t), Ct) >- cap (B"(2ri), C,) 

n 1 n n 
I> cap (B (2ri), Cri+l ) ~ 2 - cap (B (2ri+l) , Cri+l) 

= 21-n~(ri+l) = 21-nai+l. 
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fo r. d t = 2 f  ~ dt 
qg(t)l/<n_l) r, cp(t)l/~n_l) 

t i=l ri+ 1 t 

~ ~'~ ~ l / ( n . I ) f r ' d t  
~i+1 / t 2 i=l Jri+ ! 

o o  

_ l o g 2  X~ allah-l) 
2 ~.~ i+l i=1 

as required. 

Let F0 be a closed set in a ball Bn(2r), r>0, and suppose that the condenser 

E=(Bn(2r),Fo) is regular, see Section 3.1. Let u be the F-capacity function for the 

condenser E. For y>0 let 

A r = {x EB"(2r): u(x) < ~}. 

LEMMA 3.16. There is a constant cl depending only on n and a such that the set 

A r contains some sphere Sn-l(t),  t E (r/4, r/2), whenever 

~' >i cl capE l/(n-l). 

Proof. For 0<~< 1 let E e be the condenser 

(Bn(2r), {x: u(x) >t ~) ). 

Suppose that Ae does not contain any S~-l(t), r/4<t<r/2. Then the set (x: u(x)~>y} 

meets S~-~(t) for all tE(r/4, r/2) and the spherical symmetrization yields, cf. [G, 

Theorem 1] or IS], 

where E' is the condenser 

cap E r >I cap E' = c(n) > 0 

E' = (Bn(2r), {s el: r/4 ~ s <~ r/2}) 

and c(n) depends only on n, see [L] for n=3 and [V, Theorem 11.9 and Remark 11.11] 

for n~>2. Observe that the borderline case p=n  has been used in the above estimate. 

For p < n - 1  the p-capacity of E' vanishes. Thus by Lemma 3.2 

capFE r I> a capE r ~> ac(n) 
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and Lemma 3.6 gives the estimate 
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and let ri+ 1 = r//2, i= 1,2 . . . . .  Set 

fo q dt <~ 
~(t) l/(n-l) 

t 

a i = cap (B"(2ri), Cr) 

where Ct=Bn(t)  fl C. Lemma 3.15 yields 

~=l/(n--l) ~ 2e 
i=2 ui log 2 

and hence 

for all i=2, 3 . . . . .  Next for each i choose a regular condenser Ei=(Bn(2ri),Fi) such that 

Fi=Cr, and 

cap E~/( "-1 ) ~< a~/(,-l)+e2 -i. 

See Lemma 3.5. Set bi=capFEi and let u; be the F-capacity function for the condenser 

El, i=2,3 . . . . .  

By Lemma 3.16 for Yi=cl b~/~"-1) the set 

Ai = {x~.Bn(2ri): ux(x) < Yi} 

a] !~ ~< 2e/log 2 

nb 
capv Er ~< ~-1 

where b=capFE. The last two inequalities imply 

7<~bUO,-l)( n ~uo,-1) bU(._l)c ' \ a - - ~ /  = (3.17) 

and if we choose Cl = c ' +  1, then for ?~>c 1 b 1/("-~) the inequality (3.17) is a contradiction. 

Consequently Ay contains S"-l(t) for some t E (r/4, r/2) as desired. 

3.18. Proof for Theorem 1.4. We may assume Xo=0. Suppose that W(xo, C)<oo. 

Let e>0. We shall fix e later. Choose rl>0 such that 
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contains sn-l(ti) for some tie (ri/4, r//2). On the other hand 

b~/("-i)'flv("-l)~capE~/('-l) 
i=2 i=2 

, ~ l / ( n -  I) a / ( n -  l)"l- E 

\ i = 2  / 

.fill(n-l)( 2e +E) ~ 5~l/(n_l) E 
log 2 

and hence especially 

(3.19) 

b:/(~-!) < 5fll/("-l)e 

for all i=2,  3 . . . . .  If we now choose 

e = ~v("-'5Cl)-1, 

then yi<I for i=2,3 ..... In particular, S~-I(t2) does not meet F2 and hence not C. 
Thus S~-l(t2) is contained in G. 

Next let f: OG---~R be the continuous boundary function 

1, x~.B~(t2)ClOG, 
f(x) = 0, x E OG\B~(t2). 

Now _Hf~ 1, since G is bounded and hence there is r>0 such that G=Bn(r) and if we let 

f0(x)=0, xES"-l(r), andf0(x)=l , xEB"(t2)flOG , then the F-extremal u=H_fo in 

G' =Bn(r)\(B~(t2) fl G) takes the boundary values 0 in OB~(r), see e.g. [GLM2, Remark 

2.20], and thus u < l  in B~(r)\B~(t2). The F-comparison principle yields _H:~u in G and 

thus _Hy~I. On the other hand 

m a x  H_ f= M < 1 
S n - l(t2) 

since the Harnack's inequality [GLM1, Theorem 4.15] holds for the non-negative F- 

extremal 1-_H r. Set 
_Hf-M 

l - M "  

Then the F-extremal o is --0 in sn-l(t2) and we shall show that W(xo, C ) < ~  implies 

lim v(x) < 1. 
X---~X 0 

xEG 

(3.20) 
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This will complete the proof. 

To this end observe that l~n(r3)-asn-l(t2) and u3(x)=l for x in F3 implies via the 

F-comparison principle, see Section 2.5, that 

v(x) <. u3(x), xEB~(t3)\F3. 

Now u3(x)<~3 for xES~-l(t3) by the selection of e and hence the F-extremal u - y  3 

satisfies 

U--y340 

in sn-l(t3). But now t3<r3[2=r4 and the F-comparison principle again yields 

v--y3 <~ u4 

U4<~/4 in sn-l(t4) and t4<t3, and since 

we have 

k=3,4 .. . . .  and thus 

in Bn(t3)NF4 

we obtain v-y3<~'4 in Sn-l(t4). Continuing 

k 

v--~i<<.~k+l in sn-l(tk+l), 
i=3 

o~ 

v ~< E 7i (3.21) 
i=3 

on each sn-l(ti), i=3, 4 . . . . .  The definition of 7i and (3.19) yield 

o~ o~ 

E ~i= C1E b:l(n-')<5C'~'/(n-I)E-~" 1. 
i=3 i=3 

Hence (3.21) implies (3.20) and Xo=0 cannot be an F-regular point of 8G. 

3.22 Remark. From the proof for Theorem 1.4 it follows that if W(xo, C)<oo, then 

there exists a C%function J2 R"---~R such that 

lim _Hi(x) 4: f(Xo). 
X ~ X  0 

x6G 

Moreover, _He coincides with the F-extremal with "boundary values" f in Sobolev's 

sense; see Remark 4.6. 
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3.23. Corollaries to Theorem 1.4. As in the classical harmonic case a point Xo E aG 

is said to have an F-barrier if there exists a sub-F-extremal w: G--->R such that 

(a) limx~y w(x) < 0 for all y E aG, y �9 x 0, 

(b) limx_.x ~ w(x) = O. 

See [GLM3, Section 3]. 

THEOREM 3.24. Suppose that G is a bounded domain in R n, that F: GxRn-->R 

satisfies the assumptions (a)-(d) of  Section 2.1 and that XoEaG. Then the following 

conditions are equivalent: 

(i) Xo is F-regular. 

(ii) W(xo, R ~ G )  = ~ .  

(iii) Xo has an F-barrier. 

Proof. The equivalence (i)<:~(iii) follows from [GLM3, Theorem 3.7]. Theorem 1.4 

implies (i)=~(ii). Mazja [M, p. 51] proved (ii)=~(i), although his formulation was slightly 

less general; he assumed that the boundary function belongs to W1n(G)N C(t~). For the 

general case observe that i f f E  WIn(G) N C(G), then Remark 4.6 yields _Hf=/~f=u where 

u is the F-extremal with Sobolev-boundary values f, i.e. u - f E  W1~, o(G). The F-regular- 

ity of Xo now follows by a simple approximation method via the estimate [M, (26)*, p. 

51]. 

Theorem 3.24 immediately implies Corollary 1.5 and the variational interpretation 

of Theorem 3.24 presented in Introduction can now be handled as follows. If 

W(xo, R ~ \ G )  = ~ ,  then for all functions f." G--->R in the class C(G)N Win(G) the afore- 

mentioned result of Mazja implies limx_,x ~ u(x)=f(x o) where u is the F-extremal with 

Sobolev boundary values f,  i.e. u - f E  W1~,o(G). The converse follows from Remark 

3.22. 

4. Resolutivity 

4.1. Preliminaries. Let G be a bounded domain and let a variational kernel F satisfy the 

assumptions (a)-(d) in Section 2.1. Let f: aG---~[-oo, ~] be any function. We recall that 

the function f is F-resolutive if _Hf and Hf  are F-extremals and/- /f=/lf  in G. 

For the next lemma observe that if f is F-resolutive, then also Af+#, 2,/z E R, is F- 

resolutive. 
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LEMMA 4.2. Suppose that the functions fi: aG---~R, i= 1,2 .. . . .  are F-resolutive. I f  

l imf/=f uniformly on aG, then f is F-resolutive. 

Proof. Given any e>0, there is i, such that 

f / - e  < f < f / + E  

for i>ie. Thus 

for i>i~. This yields _Hf/-irf and since/-]rf is finite, it is also an F-extremal. 

4.3 Remark. Although the F-regularity of a boundary point x0 E aG is, by Corollary 

1.5, independent of F, this does not hold for the F-resolutivity even in the linear case. 

To see this let G be the unit disk B 2 in R 2 and let F(x, h)=lhl 2 be the classical Dirichlet 

kernel. Choose a homeomorphism h of/~2 onto itself such that hlB 2 is quasiconformal 

and hlaB 2 is not absolutely continuous, cf. [BA]. Let FI=h#F:B2xR2--.R be the 

kernel induced by the mapping h. For the construction of FI see [GLM1, 6.1]. In this 

case F-extremals are harmonic functions and since the Euler equation (1. I) for F1 is 

linear, Fl-extremals also form a linear space. The corresponding harmonic measures # 

and/~l on aB 2 are singular, see [GLM2, Remark 5.6(b)]. Choose a set C in aB 2 such 

that #(C)>0 but/~1(C)=0. Now C contains a subset E which is not #-measurable. By a 

theorem of M. Brelot [B 1, p. 152] the characteristic function Ze of E is not F-resolutive 

although, by the same theorem, it is Fl-resolutive. 

4.4. Proof for Theorem 1.6. Let f." aG---->R be continuous. By Section 2.10 
\ 

minf~< nf~ I'If~ max f, 
OG OG 

and hence, by Theorem 2.1 l, _Hf and Hf  are F-extremals. Approximating f with smooth 

functions we can, according to Lemma 4.2, reduce the proof to the following case: 

_H~o=/~r whenever q0 E C=(R"). Fix such a q0 and let v E C(G) n WI,(G) be the unique F- 

extremal with Sobolev boundary values v-q~ E WI,, 0(G), see Section 2.7. We claim that 

_H~>v and/~o~<v. 

To this end let u=u~o be the sub-F-extremal of Theorem 2.9. Especially, u~<q~ in G, 

u-q0 E Wl,,0(G) and 

Ze(u, G) <. IF(cp, G) = I. (4.5) 

12-858289 Acta Mathematica 155. Imprim~ le 20 Novembre 1985 
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Choose regular domains D l c c D 2 c c . . .  such that G=UD~ and consider the Poisson- 

modifications 

U i = P(u, Di), i = 1,2 .. . . .  

see Section 2.10. Clearly, Ui--u~Wln, o(G) and thus Ui--~lg~ Wln, o(G). Note also that 

uiEL~o , because ui<~q9 in G ~ D  i. NOW Ui+l=e(ui, Di+I)  yields 

U 1 ~ / /2  ~ ... 

and by Harnack's principle, see Section 2.5, h=limui is an F-extremal in G. Observe 

that the case h-oo is excluded by the bound ui~<supoGq~. 

By the construction I~ui, G)<~IF(u, G) and thus (4.5) yields 

G[Vuilndm<~fl l, i= 1,2 

This implies that h E Win(G) and h-q~ E W1,,o(G) since Wl,,o(G) is weakly closed. By 

uniqueness, v--h. On the other hand, the inequality ui<<,H_~ gives 

v = h = lim ui ~< _H~. 

A corresponding construction from above yields v~>/tr This implies the desired result 

4.6 Remark. Iff." (~-->R is sufficiently regular, i.e. fEC(G)n  WI,(G), then the F- 

extremal u with Sobolev boundary values f,  u - f E  Wl,,0(G), coincides with Perron's 

solution Hf=H_y=I:If. This result, mentioned by Brelot [B2, X.2] in the classical 

harmonic case, is a byproduct of the previous proof. 

[BAI 

[B1] 

[B2] 

[OZl 

[G] 

References 

BEURLING, A. & AHLFORS, L. V., The boundary correspondence under quasiconfor- 
mal mappings. Acta Math., 96 (1956), 125-142. 

BRELOT, M., Families de Perron et probl~me de Dirichlet. Acta Sci. Math. (Szeged), 9 
(1939), 133--153. 

- -  Elements de la th~orie classique du potentiel (2 eme 6dition). Centre de Documenta- 
tion Universitaire Paris, Paris 1961. 

GARIEPY, R. • ZIEMER, W. P., A regularity condition at the boundary for solutions of 
quasilinear elliptic equations. Arch. Rational Mech. Anal., 67 (1977), 25-39. 

GEHRING, F. W., Symmetrization of rings in space. Trans. Amer. Math. Soc., 101 
(1961), 499-519. 



QUASILINEAR ELLIPTIC EQUATIONS 171 

[GLM1] 

[GLM2] 

[GLM3] 
[LSW] 

[L] 
[MS] 

[M] 

[MH] 
[P] 

IS] 

IV] 

[Wl] 

[W2] 

[w3] 

GRANLUND, S., LINDQVIST, P. & MARTIO, O., Conformally invariant variational inte- 
grals. Trans. Amer. Math. Soc., 277 (1983), 43-73. 

- -  F-harmonic measure in space. Ann. Acad. Sci. Fenn. Set. A I Math., 7 (1982), 
233-247. 

- -  Note on the PWB-method in the non-linear case. To appear. 
LITTMAN, W., STAMPACCHIA, G. t~ WEINBERGER, H. F., Regular points for elliptic 

equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa Set. 3, 17 
(1963), 43-77. 

LOEWNER, C., On the conformal capacity in space. J. Math. Mech., 8 (1959), 411-414. 
MARTIO, O. • SARVAS, J., Density conditions in the n-capacity. Indiana Univ. Math. 

J., 26 (1977), 761-776. 
MAZJA, V., On the continuity at a boundary point of solutions of quasilinear elliptic 

equations (Russian). Vestnik Leningrad. Univ. Math., 13 (1970), 42-55. 
- -  A letter to the editor (Russian). Vestnik Leningrad. Univ. Math., 1 (1972), 160. 
POSCHEL, W., Die erste Randwertaufgabe der allgemeinen selbstadjungierten ellipti- 

schen Differentialgleichung zweiter Ordnung ftir beliebige Gebiete. Math. Z., 34 
(1931/32), 535-553. 

SARVAS, J., Symmetrization of condensers in n-space. Ann. Acad. Sci. Fenn. Ser. A I 
Math., 522 (1972), 1-44. 

VAISALA, J., Lectures on n-dimensional quasiconformal mappings. Lecture Notes in 
Math., 229. Springer-Verlag, Berlin and New York, 1971. 

WIENER, N., Certain notions in potential theory. Journal of  Math. and Phys., Massa- 
chusetts Institute of  Technology, 3 (1924), 24--51. 

- -  The Dirichlet problem. Journal of  Math. and Phys., Massachusetts Institute of  
Technology, 3 (1924), 127-146. 
Note on a paper of O. Perron. Journal o f  Math. and Phys., Massachusetts Institute 
of  Technology, 4 (1925), 21-32. 

Received April 18, 1984 


