Rigidity of time changes for horocycle flows

by
MARINA RATNER $\left({ }^{1}\right)$

University of California
Berkeley, CA, U.S.A.

Let T_{t} be a measure preserving (m.p.) flow on a probability space (X, μ) and let τ be a positive integrable function on $X, \int_{X} \tau d \mu=\tau$. We say that a flow T_{t}^{τ} is obtained from T_{t} by the time change τ if

$$
T_{t}^{\tau}(x)=T_{w(x, t)}(x)
$$

for μ-almost every (a.e.) $x \in X$ and all $t \in R$, where $w(x, t)$ is defined by

$$
\int_{0}^{w(x, t)} \tau\left(T_{u} x\right) d u=t
$$

The flow T_{t}^{τ} preserves the probability measure μ_{τ} on X defined by

$$
d \mu_{\tau}(x)=(\tau / \bar{\tau}) d \mu(x), \quad x \in X .
$$

We say that two integrable functions $\tau_{1}, \tau_{2}:(X, \mu) \rightarrow \mathbf{R}$ are homologous along T_{t} if there is a measurable $v: X \rightarrow \mathbf{R}$ such that

$$
\int_{0}^{t}\left(\tau_{1}-\tau_{2}\right)\left(T_{u} x\right) d u=v\left(T_{t} x\right)-v(x)
$$

for μ-a.e. $x \in X$ and all $t \in R$. One can check that two time changes τ_{1} and τ_{2} are homologous via v if and only if (iff) the map $\psi_{v}: X \rightarrow X$ defined by

$$
\psi_{v}(x)=T_{\sigma(x)} x
$$

[^0]where $\int_{0}^{\sigma(x)} \tau_{2}\left(T_{u} x\right) d u=v(x)$, is an invertible conjugacy between $T_{t}^{\tau_{1}}$ and $T_{t}^{\tau_{2}}$, i.e.
$$
\psi_{v} T_{t}^{\tau_{1}}(x)=T_{t}^{\tau_{2}} \psi_{v}(x)
$$
for a.e. $x \in X$ and all $t \in \mathbf{R}$. If T_{t} is ergodic and τ_{1}, τ_{2} are homologous along T_{t} via some measurable functions v_{1} and v_{2} then $v_{2}-v_{1}$ is equal to a constant a.e.

Let G denote the group $S L(2, \mathbf{R})$ equipped with a left invariant Riemannian metric and let T be the set of all discrete subgroups Γ of G such that the quotient space $M=\Gamma \mid G=\{\Gamma g: g \in G\}$ has finite volume. The horocycle flow h_{t} and the geodesic flow g_{t} on M are defined by

$$
\begin{aligned}
& h_{t}(\Gamma g)=\Gamma g\left(\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right) \\
& g_{t}(\Gamma g)=\Gamma g\left(\begin{array}{ll}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right)
\end{aligned}
$$

$g \in G, t \in \mathbf{R}$. The flows h_{t} and g_{t} preserve the normalized volume measure μ on M, are ergodic and mixing on (M, μ) and

$$
\begin{equation*}
g_{t} \circ h_{s}=h_{s e^{2 t}} \circ g_{t} \tag{*}
\end{equation*}
$$

for all $s, t \in \mathbf{R}$.
In order to state our main theorem we shall need the following notations. Let

$$
K=\left\{K_{\theta}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right): \theta \in(-\pi, \pi]\right\}
$$

be the rotation subgroup of G. We say that a real valued function φ on $M=\Gamma \mid G, \Gamma \in T$ is Hölder continuous in the direction of K with the Hölder exponent $\delta>0$ if

$$
|\varphi(x)-\varphi(y)| \leqslant C_{\varphi}|\theta|^{\delta}
$$

for some $C_{\varphi}>0$ and all $x, y \in M$ with $y=R_{\theta}(x)$, where $R_{\theta}(\Gamma g)=\Gamma g K_{\theta}, g \in G$. It was shown in [2] that if $\varphi \in L_{2}(M, \mu)$ is Hölder continuous in the direction of K with $\delta>\frac{1}{2}$ and $\bar{\varphi}=0$ then

$$
\begin{equation*}
\left|\int_{M} \varphi(x) \varphi\left(h_{t} x\right) d \mu(x)\right| \leqslant D_{\varphi}|t|^{-\alpha_{\varphi}} \tag{**}
\end{equation*}
$$

for some $D_{\varphi}, \alpha_{\varphi}>0$ and all $t \neq 0$. We shall denote by $\mathbf{K}(M)$ the set of all positive integrable functions τ on M such that τ and τ^{-1} are bounded and $\tau-\bar{\tau}$ satisfies $\left({ }^{* *}\right)$ for some $D_{\tau}, \alpha_{\tau}>0$.

THEOREM 1. Let $h_{t}^{(1)}$ be the horocycle flow on ($M_{i}=\Gamma_{i} \mid G, \mu_{i}$), $\Gamma_{i} \in \mathbf{T}, i=1,2$ and let $h_{t}^{\tau_{i}}$ be obtained from $h_{t}^{(i)}$ by a time change $\tau_{i} \in K\left(M_{i}\right), i=1,2$, with $\bar{\tau}_{1}=\bar{\tau}_{2}$. Suppose that there is a measure preserving $\psi:\left(M_{1}, \mu_{\tau_{1}}\right) \rightarrow\left(M_{2}, \mu_{\tau_{2}}\right)$ such that

$$
\psi h_{t}^{\tau_{1}}(x)=h_{t}^{\tau_{2}} \psi(x)
$$

for $\mu_{\tau_{1}}$-a.e. $x \in M_{1}$ and all $t \in \mathbf{R}$. Then there are $C \in G$ and a measurable $\sigma: M_{2} \rightarrow \mathbf{R}$ such that

$$
C \Gamma_{1} C^{-1} \subset \Gamma_{2} \text { and } \psi(x)=h_{\sigma\left(\psi_{C}(x)\right)}^{(2)}\left(\psi_{c}(x)\right)
$$

for μ_{1}-a.e. $x \in M_{1}$, where $\psi_{C}\left(\Gamma_{1} g\right)=\Gamma_{2} C g, g \in G$.
The second conclusion of Theorem 1 says that τ_{1} and τ_{C} defined by $\tau_{c}(x)=\tau_{2}\left(\psi_{C}(x)\right), x \in M_{1}$ are homologous along $h_{t}^{(1)}$ via v_{C} defined by

$$
v_{c}(x)=\int_{0}^{\alpha\left(w_{C}(x)\right)} \tau_{C}\left(h_{u}^{(1)} x\right) d u, \quad x \in M_{1} .
$$

Let us note that it follows from [1] that if $\psi:\left(M_{1}, \mu_{\tau_{1}}\right) \rightarrow\left(M_{2}, \mu_{\tau_{2}}\right)$ is an invertible measurable conjugacy between $h_{t}^{\tau_{1}}$ and $h_{t}^{\tau_{2}}$ then ψ is in fact measure preserving. The same is true when ψ is not invertible and M_{2} is compact.

We assumed in Theorem 1 that $\bar{\tau}_{1}=\bar{\tau}_{2}$. Suppose now that $a=\tilde{\tau}_{1} \neq \tilde{\tau}_{2}=b$ and let

$$
\tilde{\tau}_{1}(x)=\frac{b}{a} \tau_{1}\left(g_{-s} x\right), s=\frac{1}{2} \log \frac{a}{b}, \quad x \in M_{1}, \overline{\bar{\tau}}_{1}=b .
$$

The commutation relation (${ }^{*}$) shows that $h_{t}^{\tau_{1}}$ and $h_{t}^{\bar{\xi}_{1}}$ are isomorphic via g_{s}, i.e. $g_{s} \circ h_{t}^{\tau_{1}}=h_{t}^{i_{1}} \circ g_{s}, t \in \mathbf{R}$. We get the following:

Corollary 1. Let $\tau_{i} \in \mathbf{K}\left(M_{i}\right), i=1,2$ and $\tilde{\tau}_{1}=a, \tilde{\tau}_{2}=b$. Suppose that $h_{t}^{\tau_{1}}$ is conjugate to $h_{t}^{\tau_{2}}$ via a measure preserving $\psi:\left(M_{1}, \mu_{\tau_{1}}\right) \rightarrow\left(M_{2}, \mu_{\tau_{2}}\right)$. Then there are $C \in G$ and a measurable $\sigma: M_{2} \rightarrow R$ such that $C \Gamma_{1} C^{-1} \subset \Gamma_{2}$ and $\psi(x)=h_{\sigma\left(\psi_{C}\left(g_{s} x\right)\right)}^{(2)} \psi_{C}\left(g_{s} x\right)$ for μ_{1}-a.e. $x \in M_{1}$, where ψ_{C} is as in Theorem 1 and $s=\frac{1}{2} \log (a / b)$.

Corollary 2. Let $\tau_{i} \in \mathbf{K}\left(M_{i}\right), i=1,2, \bar{\tau}_{1}=a, \tilde{\tau}_{2}=b$. Then $h_{t}^{\tau_{1}}$ is isomorphic to $h_{t}^{\tau_{2}}$ if and only if there is $C \in G$ such that $C \Gamma_{1} C^{-1}=\Gamma_{2}$ and $\tau_{1}(x)$ and $(a / b) \tau_{2}\left(\psi_{C}\left(g_{s} x\right)\right)$, $x \in M_{1}$ are homologous along $h_{t}^{(1)}$, where $s=\frac{1}{2} \log (\alpha / b)$. Every isomorphism between $h_{t}^{\tau_{1}}$ and $h_{t}^{\tau_{2}}$ has the form as in Corollary 1.

THEOREM 2. Let $h_{t}^{(i)}$ be the horocycle flow on $\left(M_{i}=\Gamma_{i} \mid G, \mu_{i}\right), \Gamma_{i} \in \mathbf{T}$ and let $h_{t}^{t_{i}}$ be obtained from $h_{t}^{(i)}$ by a time change $\tau_{i} \in \mathbf{K}\left(M_{i}\right), i=1,2$. Suppose that $h_{p}^{\tau_{i}}$ is ergodic for some $p \neq 0, i=1,2$ and there is a measure preserving $\psi:\left(M_{1}, \mu_{\tau_{1}}\right) \rightarrow\left(M_{2}, \mu_{\tau_{2}}\right)$ such that

$$
\psi h_{p}^{\tau_{1}}(x)=h_{\rho}^{\tau_{2}} \psi(x)
$$

for $\mu_{\tau_{1}}$-a.e. $x \in M_{1}$. Then ψ is a conjugacy of the flows $h_{t}^{\tau_{1}}$ and $h_{t}^{\tau_{2}}$, i.e.

$$
\psi h_{t}^{\tau_{1}}(x)=h_{t}^{\tau_{2}} \psi(x)
$$

for $\mu_{\tau_{1}}$-a.e. $x \in M_{1}$ and all $t \in \mathbf{R}$.
For $\Gamma \in T$ let $\Gamma=\left\{C \in G: C \Gamma C^{-1}=\Gamma\right\} \in T$ be the normalizer of Γ in G. Let $K_{1}(M)$ be the set of all $\tau \in K(M)$ with $\bar{\tau}=1, M=\Gamma \mid G$. We say that $\tau_{1}, \tau_{2} \in K_{1}(M)$ are homologous modulo $\tilde{\Gamma}$ if there is $C \in \tilde{\Gamma}$ such that τ_{1} and $\tau_{C}=\tau_{2} \circ \psi_{C}$ are homologous along h_{t}. Corollary 2 says that there is a one-to-one correspondence between the isomorphism classes of $h_{t}^{\tau}, \tau \in \mathbf{K}_{1}(M)$ and the homology classes of $\tau \in \mathbf{K}_{1}(M) \bmod \tilde{\Gamma}$.

Let f_{t} be a m.p. flow on a probability space (X, μ) and let $\Psi\left(f_{t}\right)$ be the set of all isomorphisms $\psi: X \rightarrow X$ such that $\psi f_{t}(x)=f_{t} \psi(x)$ for μ-a.e. $x \in X$ and all $t \in R$, i.e. ψ commutes with every $f_{t}, t \in \mathbf{R}$. We say that $\psi_{1}, \psi_{2} \in \Psi\left(f_{t}\right)$ are equivalent if $\psi_{2}=f_{p} \circ \psi_{1}$ a.e. for some $p \in R$. Let $\varkappa\left(f_{t}\right)$ denote the set of equivalence classes in $\Psi\left(f_{t}\right)$. We define a group operation in $\chi\left(f_{t}\right)$ by $\left[\psi_{1}\right] \cdot\left[\psi_{2}\right]=\left[\psi_{1} \circ \psi_{2}\right]$, where $[\psi]$ denotes the equivalence class of ψ. The group $x\left(f_{t}\right)$ is called the commutant of f_{t} (see [6]).

It follows from Corollary 2 that if $\tau \in \mathbf{K}(M)$ and $\psi \in \Psi\left(h_{t}\right)$ then there are $C \in \tilde{\Gamma}$ and a measurable $\sigma_{C}: M \rightarrow M$ unique up to an additive constant such that τ and $\tau_{C}=\tau \circ \psi_{C}$ are homologous along h_{t} and $\psi=h_{\sigma_{c}}^{\tau} \circ \psi_{C}$ a.e. This implies that

$$
x\left(h_{t}^{\tau}\right)=\left\{\left[h_{\sigma_{c}}^{\tau} \psi_{C}\right]: C \in \bar{\Gamma}\right\}
$$

The map $\pi: x\left(h_{t}^{\tau}\right) \rightarrow \Gamma \backslash \bar{\Gamma}$ defined by $\pi\left[h_{\sigma_{c}}^{\tau} \psi_{c}\right]=\Gamma C, C \in \bar{\Gamma}$ is a group isomorphism from $\chi\left(h_{t}^{\tau}\right)$ onto a subgroup of $\Gamma \backslash \tilde{\Gamma}$. The group $\Gamma \backslash \tilde{\Gamma}$ is finite, since $\Gamma \in T$. We get the following:

COROLLARY 3. If $\tau \in \mathbf{K}(M)$ then the commutant $\boldsymbol{x}\left(h_{t}^{\tau}\right)$ is finite and is isomorphic to a subgroup of $\Gamma \backslash \tilde{\Gamma}$. If $\Gamma=\tilde{\Gamma}$ or τ is not homologous to τ_{C} for any $C \in \tilde{\Gamma}$ different from the identity then the commutant $x\left(h_{t}^{\tau}\right)$ is trivial.

In view of [2] we get:

Corollary 4. All the above results hold for time changes Hölder continuous in the direction of K with the Hölder exponent greater than $\frac{1}{2}$ (in particular, C^{1}-functions in the direction of K) and bounded together with their reciprocals.

Summarizing, we conclude that if $\tau \in \mathbf{K}(M)$ then h_{t}^{τ} inherits all the rigid properties of h_{t} found in [6].

Finally, let us note that for any $\Gamma_{1}, \Gamma_{2} \in \mathbf{T}$ the horocycle flows $h_{t}^{(1)}$ and $h_{t}^{(2)}$ are Kakutani equivalent (see [4,7]). This means that there is a time change $\tau_{1}: M_{1} \rightarrow \mathbf{R}^{+}$such that $h_{t}^{(2)}$ is isomorphic to $h_{t}^{\tau_{1}}$. It follows from [3] that τ_{1} can be assumed differentiable and bounded on M_{1}, but some partial derivatives of τ_{1} may be unbounded. Our Corollary 4 shows that there is no such a τ_{1} with bounded τ_{l}^{-1} and bounded partial derivatives unless Γ_{1} and Γ_{2} are conjugate in G.

I am grateful to C . Moore for proving [2] at my request.

1. Preliminaries

Let $p: G \rightarrow M=\Gamma \backslash G, \Gamma \in \mathbf{T}$ be the covering projection $p(g)=\Gamma g, g \in G$. Let

$$
G_{t} g=g \cdot\left(\begin{array}{ll}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right) \text { and } H_{t} g=g \cdot\left(\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right), g \in G, t \in \mathbf{R}
$$

be the geodesic and the horocycle flows on G, covering g_{t} and h_{t} on M respectively. We shall also consider the flow $H_{i}^{*} g=g \cdot\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)$ on G, covering the flow $h_{t}^{*}(\Gamma g)=\Gamma H_{i}^{*} g$ on M. We have

$$
\begin{align*}
G_{t} \circ H_{s} & =H_{s e^{2}} \circ G_{t} \\
G_{t} \circ H_{s}^{*} & =H_{s e^{-2 t}}^{*} \circ G_{t} \tag{1.1}
\end{align*}
$$

$t, s \in \mathbf{R}$. We shall assume without loss of generality that the Riemannian metric in G is such that the length of the orbit intervals $\left[g, G_{t} g\right],\left[g, H_{t} g\right]$ and $\left[g, H_{t}^{*} g\right]$ is $t, g \in G$. We shall denote by d the metric on G (or on M) induced by this Riemannian metric.

For $g \in G$ and $a, b, c>0$ denote

$$
\begin{gathered}
U(g ; a, b, c)=\left\{\bar{g} \in G: \bar{g}=H_{r} H_{z}^{*} G_{p} g \text { for some }|p| \leqslant a,|z| \leqslant b,|r| \leqslant c\right\} \\
U(g ; \varepsilon)=U(g ; \varepsilon, \varepsilon, \varepsilon) .
\end{gathered}
$$

We have

$$
U(g ; a, b, c)=g \cdot U(e ; a, b, c)
$$

where \mathbf{e} denotes the identity element of \mathbf{G}. It follows from (1.1) that

$$
G_{\tau} U(g ; a, b, c)=U\left(G_{\tau} g ; a, b e^{-2 \tau}, c e^{2 \tau}\right), \quad \tau \in \mathbf{R} .
$$

Denote $W(g)=\left\{H_{s}^{*} G_{t} g: t, s \in \mathbf{R}\right\}$. The set $W(g)$ is called the stable leaf of g for the geodesic flow $\boldsymbol{G}_{\boldsymbol{t}}$. Let

$$
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in U(\mathbf{e} ; \varepsilon), \quad \varepsilon>0 .
$$

Suppose that for $s>0$ there is $q(s)>0$ such that

$$
H_{q(s)} g \in W\left(H_{s} \mathbf{e}\right)
$$

The function $q(s)$ is uniquely defined by s and g and

$$
\begin{gathered}
H_{s} g=H_{r(s)} H_{Z(s)}^{*} G_{p(s)}\left(H_{s} \mathrm{e}\right) \\
q(s)=s+r(s)
\end{gathered}
$$

where

$$
\begin{gather*}
\mathrm{e}^{p(s)}=(d-b s)^{-1} \\
z(s)=b e^{p(s)} \\
r(s)=-e^{p(s)}\left(b s^{2}+L s-c\right) \tag{1.2}\\
L=a-d .
\end{gather*}
$$

One can compute that if

$$
g=G_{p} H_{z}^{*} \mathbf{e}
$$

then

$$
H_{q(s)} g=G_{\alpha} H_{\beta}^{*}\left(G_{\rho} H_{z}^{*} H_{s} \mathbf{e}\right)
$$

where

$$
\begin{equation*}
|\alpha| \leqslant L_{1}|q(s) z|, \quad|\beta| \leqslant L_{2}|z \alpha| \tag{1.3}
\end{equation*}
$$

for some $0<L_{1}, L_{2} \leqslant 2$, if z and p are sufficiently small.
For $0<\eta<1$ and

$$
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in U(\mathbf{e} ; \varepsilon)
$$

denote

$$
E=E(\mathbf{e}, g, \eta)=\left\{s \in \mathbf{R}^{+}:\left|b s^{2}+L s\right| \leqslant 4 s^{1-\eta}\right\}
$$

The set E consists of at most two connected components $E_{0}=E_{0}(e, g, \eta)=\left[0, l_{0}\right]$ and $E_{1}=E_{1}(\mathrm{e}, g, \eta)=\left[l_{1}, l_{2}\right]$ for some $l_{i}=l_{i}(\mathrm{e}, g, \eta)>0 i=0,1,2$ and $l_{0} \leqslant l_{1} \leqslant l_{2}$, where E_{1} might be empty. One can compute that

$$
|b| \leqslant \frac{\tilde{D}}{l_{0}^{1+\eta}}, \quad|L| \leqslant \frac{\tilde{D}}{l_{0}^{\eta}}
$$

for some $\tilde{D}>0$. This implies via (1.2) that

$$
\begin{equation*}
|z(s)| \leqslant \frac{D}{l_{0}^{1+\eta}}, \quad|p(s)| \leqslant \frac{D}{l_{0}^{\eta}} \tag{1.4}
\end{equation*}
$$

for some $0<D<100$ and all $0 \leqslant s \leqslant l_{0}$, if $\varepsilon>0$ is sufficiently small.
For $x, y \in G, y \in U(x ; \varepsilon)$ denote $l_{0}(x, y, \eta)=l_{0}\left(e, x^{-1} y, \eta\right)$ and for $0<r \leqslant l_{0}(x, y, \eta)$ denote

$$
\begin{equation*}
B(x, y, \eta)=\left\{\left(H_{s} x, H_{q(s)} y\right): 0 \leqslant s \leqslant r\right\} \tag{1.5}
\end{equation*}
$$

The set $B(x, y, \eta)$ will be called the (ε, η)-block of x, y of length r. Expression (1.4) shows that

$$
H_{q(s)} y \in U\left(H_{s} x ; \frac{D}{l_{0}^{\eta}}, \frac{D}{l_{0}^{1+\eta}}, 0\right)
$$

for all $0 \leqslant s \leqslant r$.

2. Dynamical properties of $\boldsymbol{h}_{\boldsymbol{t}}$

In this section we shall prove the following
Lemma 2.1 (Basic). Let h_{t} be the horocycle flow on $(M=\Gamma \mid G, \mu), \Gamma \in \mathbf{T}$. Given $0<\eta<1,0<\omega<1$ and $m>1$, there are $\gamma=\gamma(\eta)>0,0<\theta=\theta(\gamma)<1$, a compact $Y=$ $Y(\gamma, \omega) \subset M$ with $\mu(Y)>1-\omega$ and $0<\varepsilon=\varepsilon(Y, m)<1$ possessing the following property. Let $u \in Y, v \in U(u ; \varepsilon)$, and a subset $A \subset \mathbf{R}^{+}$satisfy the following conditions (i) $0 \in A$, (ii) if $s \in A$ then $h_{s} u \in Y$ and there is $t(s)>0$ increasing in s such that $h_{t(s)} v \in U\left(h_{s} u ; \varepsilon\right)$, (iii)
$\left|\left(t\left(s^{\prime}\right)-t(s)\right)-\left(s^{\prime}-s\right)\right| \leqslant\left(s^{\prime}-s\right)^{1-\eta}$ for all $s, s^{\prime} \in A$ with $\max \left\{\left(s^{\prime}-s\right), \quad\left(t\left(s^{\prime}\right)-t(s)\right)\right\} \geqslant m$. Then
(1) if $\lambda \in A$ and $l(A \cap[0, \lambda]) / \lambda>1-\theta / 8$ then there is $s_{\lambda} \in A \cap[0, \lambda]$ such that

$$
h_{t\left(s_{\lambda}\right)} v \in U\left(h_{s_{\lambda}} u ; \frac{D}{\lambda^{2 \gamma}}, \frac{D}{\lambda^{1+2 \gamma}}, \varepsilon\right)
$$

for some $D>0$, where $l(C)$ denotes the length measure of C,
(2) if $A \cap[0, \lambda] \neq \varnothing$ for all $\lambda \geqslant \lambda_{0}$ and $l(A \cap[0, \lambda]) / \lambda>1-\theta / 8$ for all $\lambda \in A$ with $\lambda \geqslant \lambda_{0}$ then $v=h_{p} u$ for some $p \in \mathbf{R}$.

Let us introduce some notations. Let I be an interval in \mathbf{R} and let $\boldsymbol{J}_{i}, J_{j}$ be disjoint subintervals of $I, J_{i}=\left[x_{i}, y_{i}\right], y_{i}<x_{j}$ if $i<j$. Denote $d\left(J_{i}, J_{j}\right)=l\left[y_{i}, x_{j}\right]=x_{j}-y_{i}$.

We shall use the following lemma whose proof in [5] is due to R. Solovay.
Lemma 2.2. Given $\gamma>0$, there is $0<\theta=\theta(\gamma)<1$ such that if I is an interval of length $t\left(t\right.$ is big) and $\alpha=\left\{J_{1}, \ldots, J_{n}\right\}$ is a partition of I into black and white intervals such that
(1) $d\left(J_{i}, J_{j}\right) \geqslant\left[\min \left\{l\left(J_{i}\right), l\left(J_{j}\right)\right\}\right]^{1+\gamma}$ for any two black $J_{i}, J_{j} \in \alpha$
(2) $l(J) \leqslant 3 t / 4$ for any black $J \in a$
(3) $l(J) \geqslant 1$ for any white $J \in \alpha$
then $m_{w}(t, \alpha) \geqslant \theta$, where $m_{w}(t, \alpha)$ denotes the total relative measure of white intervals of α on I.

For given $0<\eta<1,0<\omega<1$ and $m>1$ we shall now specify the choice of γ, θ, Y and ε in Lemma 2.1.

First we choose $0<\gamma<\eta / 2$ satisfying

$$
\begin{equation*}
\frac{2}{1+\gamma}-1+\eta>1+2 \gamma \tag{2.1}
\end{equation*}
$$

The reason for this choice will be clear later.
Let $\theta=\theta(\gamma)$ be as in Lemma 2.2.
Since Γ is discrete, there are a compact $K \subset M, \mu(K)>1-0.1 \mathrm{~min}\{\gamma, \omega\}$ and $0<\Delta<1$ such that

$$
\begin{gather*}
\text { if } x \in p^{-1}(K)=\tilde{K}, d(x, y)<\Delta \text { and } \\
d\left(H_{t} x, \mathrm{D} H_{s} y\right)<\Delta \text { for some } \mathbf{e} \neq \mathrm{D} \in \Gamma \tag{2.2}\\
\text { then } \max \{|t|,|s|\} \geqslant m .
\end{gather*}
$$

This implies that

$$
\begin{gather*}
\text { if } x \in \tilde{K}, d(x, y)<\Delta \text { and } d(x, \mathbf{D} \cdot y)<\Delta \\
\text { for some } \mathbf{D} \in \Gamma, \text { then } \mathbf{D}=\mathbf{e} . \tag{2.3}
\end{gather*}
$$

Since the geodesic flow g_{t} is ergodic on (M, μ), given $\omega>0$ there are a compact $\bar{Y}=\bar{Y}(\omega) \subset M, \mu(\bar{Y})>1-0.1 \omega$ and $t_{0}=t_{0}(\bar{Y})>1$ such that
if $w \in \bar{Y}, t \geqslant t_{0}$ then the relative length measure
of K on $\left[w, g_{-t} w\right]$ is greater than $1-0.2 \gamma$.
Set $Y=K \cap \bar{Y}, \mu(Y)>1-0.2 \omega$.
Let $\varrho>1$ be such that

$$
\begin{equation*}
\frac{1}{2} \log \varrho>t_{0} \quad \text { and } \quad 100 \varrho^{-0.1 \gamma}<\Delta / 6 \tag{2.5}
\end{equation*}
$$

Now we choose $0<\varepsilon<\Delta$ so small that if $g \in W_{\varepsilon}(\mathbf{e}), g \in G$, then

$$
\begin{equation*}
l_{0}(e, g, \eta)>\max \{\varrho, m\} \tag{2.6}
\end{equation*}
$$

(See (1.4).)
Thus $0<\gamma, \theta, \varepsilon<1$ and $Y \subset M$ have been chosen. The reason for these choices will become clear later.

Now let us describe a construction used in the proof of Lemma 2.3 below.
Let $u \in Y, v \in W_{\varepsilon}(u)$. We say that $(x, y) \in G \times G \operatorname{cover}(u, v)$ if $y \in W_{\varepsilon}(x)$ and $p(x)=u$, $p(y)=v$. Let $B(x, y, \eta)$ be the (ε, η)-block of x, y of length r defined in (1.5). The set

$$
B(u, v, \eta)=p B(x, y, \eta)=\left\{\left(h_{s} u, h_{q(s)} v\right): 0 \leqslant s \leqslant r\right\}
$$

will be called the (ε, η)-block of u, v of length $r \leqslant l_{0}(x, y, \eta)=l_{0}(u, v, \eta)$. We shall write

$$
B(u, v, \eta)=\left\{(u, v),\left(h_{r} u, h_{q(r)} v\right)\right\}=\{(u, v),(\bar{u}, \bar{v})\}
$$

emphasizing that (u, v) is the first and (\bar{u}, \bar{v}) is the last pair of the block $B(u, v, \eta)$. It follows from (1.4) that $h_{q(s)} v=h_{Z(s)}^{*} g_{p(s)}\left(h_{s} u\right)$ where

$$
\begin{equation*}
|p(s)| \leqslant \frac{D}{l_{0}^{\eta}}, \quad|z(s)| \leqslant \frac{D}{l_{0}^{1+\eta}} \tag{2.7}
\end{equation*}
$$

for all $s \in[0, r]$, where $l_{0}=l_{0}(u, v, \eta)$.
Henceforth the symbol D will always mean a positive constant which can be chosen less than 100 if $\varepsilon>0$ is sufficiently small.

Let $\beta=\left\{B_{1}, \ldots, B_{n}\right\}, B_{i}=\left\{\left(u_{i}, v_{i}\right),\left(\bar{u}_{i}, \bar{v}_{i}\right)\right\} \quad i=1, \ldots, n$ be a collection of pairwise disjoint (ε, η)-blocks on the orbit intervals $\left[u_{1}, h_{\lambda} u_{1}\right],\left[v_{1}, h_{t(\lambda)} v_{1}\right]$ for some large $\lambda, t(\lambda)>0$, such that

$$
\begin{gathered}
\bar{u}_{n}=h_{\lambda} u_{1}, \quad \bar{v}_{n}=h_{t}(\lambda) v_{1} \\
u_{i}, \bar{u}_{i} \in Y, \quad v_{i} \in W_{\varepsilon}\left(u_{i}\right), \quad \bar{v}_{i} \in W_{\varepsilon}\left(\bar{u}_{i}\right) \\
u_{i}=h_{s_{i}} u_{1}, \quad v_{i}=h_{t_{i}}, v_{1}, \quad \bar{u}_{i}=h_{s_{i}} u_{1}, \quad \bar{v}_{i}=h_{i_{i}} v_{1}
\end{gathered}
$$

for some $s_{i}, t_{i}, \bar{s}_{i}, \bar{i}_{i}>0, \bar{s}_{i}<s_{j} \leqslant \lambda, \bar{t}_{i}<t_{j} \leqslant t(\lambda)$ if $i<j, i, j=1, \ldots, n$.
Let $\left(x_{i}, y_{i}\right) \in G \times G, y_{i} \in W_{\varepsilon}\left(x_{i}\right)$ cover $\left(u_{i}, v_{i}\right)$. Although $v_{j} \in W_{\varepsilon}\left(u_{j}\right)$ it is not necessarily true that $\boldsymbol{H}_{t_{j}-t_{i}} y_{i} \in W_{\varepsilon}\left(H_{s_{j}-s_{i}} x_{i}\right)$, but there is a unique $\mathrm{D} \in \Gamma$ such that

$$
\begin{equation*}
\mathbf{D} \cdot y_{j} \in W_{\varepsilon}\left(x_{j}\right) \tag{2.8}
\end{equation*}
$$

where $y_{j}=H_{t_{j}-t_{i}} y_{i}, x_{j}=H_{s_{j}-s_{i}} x_{i}$. We shall write

$$
\begin{aligned}
& \left(u_{i}, v_{i}\right) \stackrel{\mathrm{F}}{\sim}\left(u_{j}, v_{j}\right) \text { if } \quad \mathrm{D} \neq \mathrm{e} \text { in }(2.8) \\
& \left(u_{i}, v_{i}\right) \stackrel{e}{\sim}\left(u_{j}, v_{j}\right) \quad \text { if } \quad \mathrm{D}=\mathrm{e} \text { in }(2.8) .
\end{aligned}
$$

This definition does not depend on the choice of $\left(x_{i}, y_{i}\right) \in G \times G$ covering $\left(u_{i}, v_{i}\right)$. For B_{i}, $B_{j} \in \beta, i<j$ we write

$$
\begin{gathered}
d\left(B_{i}, B_{j}\right)=s \quad \text { if } u_{j}=h_{s} \bar{u}_{i} \\
B_{i} \stackrel{\Gamma}{\sim} B_{j} \text { if }\left(u_{i}, v_{i}\right) \stackrel{\Gamma}{\sim}\left(u_{j}, v_{j}\right) \\
B_{i} \stackrel{e}{\sim} B_{j} \quad \text { if }\left(u_{i}, v_{i}\right) \stackrel{e}{\sim}\left(u_{j}, v_{j}\right) .
\end{gathered}
$$

We shall impose on β the following conditions

$$
\begin{gather*}
s_{j}-s_{i}>l_{0}\left(u_{i}, v_{i}, \eta\right) \\
\left|\left(t_{j}-t_{i}\right)-\left(s_{j}-s_{i}\right)\right| \leqslant 2\left(s_{j}-s_{i}\right)^{1-\eta} \\
\left|\left(\bar{t}_{j}-t_{i}\right)-\left(\bar{s}_{j}-s_{i}\right)\right| \leqslant 2\left(\bar{s}_{j}-s_{i}\right)^{1-\eta} \\
\text { if } i<j \text { and } B_{i} \stackrel{e}{\sim} B_{j}, \tag{2.9}\\
\left|\left(t_{j}-\bar{t}_{i}\right)-\left(s_{j}-\bar{s}_{i}\right)\right| \leqslant 2\left(s_{j}-\bar{s}_{i}\right)^{1-\eta} \\
\text { if } i<j \text { and } B_{i} \stackrel{\stackrel{\Gamma}{\sim}}{\sim} B_{j} .
\end{gather*}
$$

Now let us construct a new collection $\beta_{\gamma}=\left\{\bar{B}_{1}, \ldots, \bar{B}_{k}\right\}$ by the following procedure.
Take $B_{1} \in \beta$ and consider the following two cases. Case (i). There is no $j \in\{2, \ldots, n\}$ such that $\left(u_{1}, v_{1}\right) \mathcal{(}\left(u_{j}, v_{j}\right)$. In this case we set $\tilde{B}_{1}=B_{1}$. Case (ii). There is $j \in\{2, \ldots, n\}$ such that $\left(u_{1}, v_{1}\right) \stackrel{\mathscr{e}}{\sim}\left(u_{j}, v_{j}\right)$. Let $\left(x_{1}, y_{1}\right) \in G \times G$ cover $\left(u_{1}, v_{1}\right)$ and let $x_{j}=H_{s} x_{1}$, $y_{j}=H_{q(s)} y_{1}$, where $s=s_{j}-s_{1}$. We have $t_{j}-t_{1}=q(s)$ and $\left(x_{j}, y_{j}\right)$ cover $\left(u_{j}, v_{j}\right)$. Let

$$
E=E\left(x_{1}, y_{1}, \eta\right)=\left[0, l_{0}\right] \cup\left[l_{1}, l_{2}\right], \quad l_{i}=l_{i}\left(x_{1}, y_{1}, \eta\right), \quad i=0,1,2
$$

be as in section 1. Expression (2.9) shows that $s \in\left[l_{1}, l_{2}\right]$. Denote

$$
F\left(x_{1}, y_{1}, \eta\right)=\left\{s \in \mathbf{R}^{+}:\left|b s^{2}+L s\right| \leqslant 4 l_{2}^{1-\eta}\right\}
$$

where

$$
g=x_{1}^{-1} y_{1}=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)
$$

and $L=a-d$ (see (1.2)). The set $F\left(x_{1}, y_{1}, \eta\right)$ consists of at most two connected components $F_{0}=[0, l]$ and $F_{1}=\left[l, l_{2}\right]$ where $l>l_{0}\left(x_{1}, y_{1}, \eta\right), l<l_{1}$ and $l_{2}-\left[=l\right.$ if $F_{1} \neq \varnothing$.

One can compute as in section 1 that if $H_{q(s)} y_{1}=H_{z(s)}^{*} G_{p(s)}\left(H_{s} x_{1}\right)$ then

$$
\begin{equation*}
|z(s)| \leqslant \frac{D l_{2}^{1-\eta}}{l^{2}}, \quad|p(s)| \leqslant \frac{D l_{2}^{1-\eta}}{l} \tag{2.10}
\end{equation*}
$$

for all $s \in[0, l]$. To define \tilde{B}_{1} for the case (ii) we consider the following two possibilities: (a) $l-l>l^{1+\gamma}$. In this case we set $\tilde{B}_{1}=B_{1}$. (b) $l-l \leqslant l^{1+\gamma}$. Then

$$
l \leqslant l_{2} \leqslant 3 l^{1+\gamma} .
$$

This implies via (2.1), (2.10) and (1.2) that

$$
\begin{equation*}
|z(s)| \leqslant \frac{D}{l_{2}^{1+2 \gamma}}, \quad|p(s)| \leqslant \frac{D}{l_{2}^{2 \gamma}} \tag{2.11}
\end{equation*}
$$

for all $s \in\left[0, l_{2}\right]$. We set in this case $\tilde{B}_{1}=\left\{\left(u_{1}, v_{1}\right),\left(\bar{u}_{j^{\prime}}, \bar{v}_{j_{1}}\right)\right\}$, where

$$
j_{1}=\max \left\{j \in\{2, \ldots, n\}: B_{1} \stackrel{\mathscr{e}}{\sim} B_{j}\right\} .
$$

Thus $\tilde{B}_{1} \in \beta_{\gamma}$ has been constructed. Suppose that $\tilde{B}_{m}=\left\{\left(u_{j_{m-1}+1}, v_{j_{m-1}+1}\right),\left(\bar{u}_{j_{m}}, \bar{v}_{j_{m}}\right)\right\}$, $j_{0}=0$ has been constructed. To define \dot{B}_{m+1} we apply the above construction to $B_{j_{m}+1} \in \beta$. Thus β_{γ} is completely defined. It follows from the construction that if $i<j$ and $\tilde{\boldsymbol{B}}_{i} \stackrel{\text { 关的 }}{j}, \bar{B}_{i}, \tilde{B}_{j} \in \beta_{\gamma}$ then

$$
\begin{equation*}
d\left(\tilde{B}_{i}, \tilde{B}_{j}\right)>\varrho>1 \quad \text { and } \quad d\left(\tilde{B}_{i}, \tilde{B}_{j}\right)>\left[l\left(\tilde{B}_{i}\right)\right]^{1+\gamma} . \tag{2.12}
\end{equation*}
$$

It follows from (2.7), (2.11) and (2.6) that if $\tilde{B}_{i}=\left\{\left(u_{i}^{\prime}, v_{i}^{\prime}\right),\left(\bar{u}_{i}^{\prime}, \bar{v}_{i}^{\prime}\right)\right\}$ then

$$
\begin{align*}
& v_{i}^{\prime} \in U\left(u_{i}^{\prime} ; \frac{D}{r_{i}^{2 \gamma}}, \frac{D}{r_{i}^{1+2 \gamma}}, 0\right) \tag{2.13}\\
& \bar{v}_{i}^{\prime} \in U\left(\bar{u}_{i}^{\prime} ; \frac{D}{r_{i}^{2 \gamma}}, \frac{D}{r_{i}^{1+2 \gamma}}, 0\right)
\end{align*}
$$

for some $r_{i} \geqslant \max \left\{\varrho, l\left(\tilde{B}_{i}\right)\right\}, i=1, \ldots, k$.
Let $u_{i}^{\prime}=h_{\tau_{i}} u_{i}, \bar{u}_{i}^{\prime}=h_{\bar{i}_{i}} u_{1}$. Denote $J_{i}=\left[\tau_{i}, \bar{v}_{i}\right] \subset[0, \lambda], i=1, \ldots, k$. We shall call J_{i} the black interval induced by \tilde{B}_{i}. The collection β_{γ} induces a partition α of $I=[0, \lambda]$ into black and white intervals. We shall denote

$$
m_{w}\left(\beta_{\gamma}\right)=m_{w}(\alpha, \lambda)
$$

LEMMA 2.3. Let $0<\eta<1,0<\omega<1$ and $m>1$ be given. Let $\gamma=\gamma(\eta)>0,0<\theta=\theta(\gamma)<1$, $Y=Y(\gamma, \omega) \subset M$ with $\mu(Y)>1-\omega$ and $0<\varepsilon=\varepsilon(Y, m)<1$ be chosen as above. Let $\beta=\left\{B_{1}, \ldots, B_{n}\right\}, B_{i}=\left\{\left(u_{i}, v_{i}\right),\left(\bar{u}_{i}, \bar{v}_{i}\right)\right\}, v_{i} \in W_{\varepsilon}\left(u_{i}\right), \bar{v}_{i} \in W_{\varepsilon}\left(\bar{u}_{i}\right), i=1, \ldots, n$ be a collection of pairwise disjoint (ε, η)-blocks on the orbit intervals $\left[u_{1}, h_{\lambda} u_{1}\right],\left[v_{1}, h_{t(\lambda)} v_{1}\right]$ such that $u_{i}, \bar{u}_{i} \in Y, i=1, \ldots, n$ and (2.9) holds for β. Suppose that $m_{w}(\beta)<\theta$. Then there is $B \in \beta_{\gamma}$ such that $l(B)>3 \lambda / 4$.

Proof. First let us show that

$$
\begin{equation*}
d\left(B^{\prime}, B^{\prime \prime}\right)>\left[\min \left\{l\left(B^{\prime}\right), l\left(B^{\prime \prime}\right)\right\}\right]^{1+\gamma} \tag{2.14}
\end{equation*}
$$

for any $B^{\prime} \neq B^{\prime \prime} \in \beta_{\gamma}$. Indeed, suppose on the contrary that there are $B^{\prime} \neq B^{\prime \prime} \in \beta_{\gamma}$ with $l\left(B^{\prime}\right) \leqslant l\left(B^{\prime \prime}\right)$ such that

$$
\begin{equation*}
d\left(\boldsymbol{B}^{\prime}, B^{\prime \prime}\right) \leqslant\left[l\left(\boldsymbol{B}^{\prime}\right)\right]^{1+\gamma} \tag{2.15}
\end{equation*}
$$

It follows then from (2.12) that $B^{\prime} \stackrel{\Gamma}{ } B^{\prime \prime}$. Let

$$
\begin{aligned}
& B^{\prime}=\left\{\left(u^{\prime}, v^{\prime}\right),\left(\bar{u}^{\prime}, \bar{v}^{\prime}\right)\right\} \\
& B^{\prime \prime}=\left\{\left(u^{\prime \prime}, v^{\prime \prime}\right),\left(\bar{u}^{\prime \prime}, \tilde{v}^{\prime \prime}\right)\right\} \\
& u^{\prime \prime}=h_{s} \bar{u}^{\prime}, \quad v^{\prime \prime}=h_{t} \bar{v}^{\prime} .
\end{aligned}
$$

We shall assume for simplicity that $s, t>0$. We have

$$
\begin{equation*}
s \leqslant\left[l\left(B^{\prime}\right)\right]^{1+\gamma}, \quad t \leqslant 3 s \tag{2.16}
\end{equation*}
$$

by (2.15) and (2.9).
Let $(x, y) \in G \times G$ cover $\left(u^{\prime \prime}, v^{\prime \prime}\right),(\bar{x}, \bar{y}) \in G \times G \operatorname{cover}\left(\bar{u}^{\prime}, \bar{v}^{\prime}\right)$ and $x=H_{s} \bar{x}$. We have

$$
\begin{equation*}
y=\mathrm{D} \cdot \boldsymbol{H}_{t} \bar{y} \quad \text { for some } \mathrm{e} \neq \mathrm{D} \in \Gamma \tag{2.17}
\end{equation*}
$$

since $B^{\prime} \stackrel{\mathrm{r}}{\sim} B^{\prime \prime}$. It follows from (2.13) that

$$
\begin{align*}
& x \in U\left(\bar{y} ; \frac{D}{r^{2 \gamma}}, \frac{D}{r^{1+2 \gamma}}, s\right) \text { and } \tag{2.18}\\
& \mathbf{D} \cdot \bar{y} \in U\left(x ; \frac{D}{r^{2 \gamma}}, \frac{D}{r^{1+2 \gamma}},-t\right)
\end{align*}
$$

for some $r \geqslant \max \left\{\varrho, l\left(B^{\prime}\right)\right\}$. Also

$$
\begin{equation*}
0<s, t \leqslant 3 r^{1+\gamma} \quad \text { by }(2.16) \tag{2.19}
\end{equation*}
$$

Let $\tau_{0}=\frac{1}{2} \log r^{1+1.5 y}, \tau_{0}>t_{0}$ by (2.5). Since $u^{\prime \prime} \in Y \subset \bar{Y}$ it follows from the definition of \bar{Y} and t_{0} in (2.4) that the relative length measure of K on $\left[u^{\prime \prime}, g_{-\tau_{0}} u^{\prime \prime}\right]$ is greater than $1-0.2 \gamma$. This implies that there is τ satisfying

$$
(1-0.2 \gamma) \tau_{0}<\tau \leqslant \tau_{0}
$$

such that $g_{-\tau} u^{\prime \prime} \in K$ and therefore

$$
\begin{equation*}
z=G_{-\tau} x \in p^{-1}(K)=\tilde{K} \tag{2.20}
\end{equation*}
$$

We have using (2.18) and (1.1)

$$
\begin{align*}
& z \in U\left(G_{-\tau} \tilde{y} ; \frac{D}{r^{2 \gamma}}, \frac{D e^{2 \tau}}{r^{1+2 \gamma}}, \frac{s}{e^{2 \tau}}\right) \tag{2.21}\\
& \mathbf{D} \cdot G_{-\tau} \bar{y} \in U\left(z ; \frac{D}{r^{2 \gamma}}, \frac{D e^{2 \tau}}{r^{1+2 \gamma}}, \frac{-t}{e^{2 \tau}}\right)
\end{align*}
$$

where

$$
r^{1+1.1 \gamma}<r^{(1+1.5 \gamma)(1-0.2 \gamma)}<e^{2 \tau} \leqslant e^{2 \tau_{0}}=r^{1+1.5 \gamma} .
$$

This implies via (2.21), (2.19) and (2.5) that

$$
d\left(G_{-\tau} \bar{y}, z\right)<\Delta \quad \text { and } \quad d\left(D \cdot G_{-\tau} \bar{y}, z\right)<\Delta
$$

and that

$$
\mathbf{D}=\mathbf{e} \quad \text { by (2.3) and (2.20) }
$$

which contradicts (2.17). Thus we proved (2.14). It also follows from the proof that if $B^{\prime} \stackrel{\Gamma}{\sim} \boldsymbol{B}^{\prime \prime}, \boldsymbol{B}^{\prime}, B^{\prime \prime} \in \beta_{\gamma}$, then

$$
d\left(B^{\prime}, B^{\prime \prime}\right)>\varrho>1
$$

This and (2.12) imply that

$$
d\left(B^{\prime}, B^{\prime \prime}\right)>\varrho>1
$$

for all $B^{\prime} \neq B^{\prime \prime} \in \beta_{\gamma}$.
Now let α be the partition of $I=[0, \lambda]$ into black and white intervals induced by β_{γ}. We have using (2.12) and (2.14)
$l(J)>1$ for every white $J \in \alpha$

$$
\begin{aligned}
& d\left(J_{i}, J_{j}\right)>\left[\min \left\{l\left(J_{i}\right), l\left(J_{j}\right)\right\}\right]^{1+\gamma} \\
& \text { for any two black } J_{i}, J_{j} \in \alpha .
\end{aligned}
$$

Also

$$
m_{w}(\alpha, \lambda) \leqslant m_{w}(\beta)<\theta
$$

by the condition of the lemma. It follows then from Lemma 2.2 that there is a black $J \in \alpha$ with $l(J)>3 \lambda / 4$. This says that there is $B \in \beta_{\gamma}$ such that $l(B)>3 \lambda / 4$. This completes the proof.
Q.E.D.

Proof of basic Lemma 2.1. For given $0<\eta<1,0<\omega<1$ and $m>1$ we choose $\gamma=\gamma(\eta)>0,0<\theta=\theta(\gamma)<1$, a compact $Y=Y(\gamma, \omega) \subset M, \mu(Y)>1-\omega$ and $0<\varepsilon=\varepsilon(Y, m)<1$ as above.

Let $u \in Y, v \in U(u ; \varepsilon)$ and let $A \subset \mathbf{R}^{+}$satisfy (i)-(iii). For $\lambda \in A$ denote

$$
A_{\lambda}=A \cap[0, \lambda]
$$

and assume that

$$
\begin{equation*}
l\left(A_{\lambda}\right) / \lambda>1-\frac{\theta}{8} \tag{2.22}
\end{equation*}
$$

Let us construct a collection $\beta(\lambda)$ of pairwise disjoint (ε, η)-blocks as in Lemma 2.3. To do this take u, v and set $u_{1}=u, v_{1}=v$. Let $\left(x_{1}, y_{1}\right) \in G \times G$ cover $\left(u_{1}, v_{1}\right)$ and let

$$
\bar{s}_{1}=\sup \left\{s \in A_{\lambda} \cap\left[0, l_{0}\left(x_{1}, y_{1}, \eta\right)\right]: H_{t(s)} y_{1} \in U\left(H_{s} x_{1}, \varepsilon\right)\right\} .
$$

Let B_{1} be the (ε, η)-block of u_{1}, v_{1} of length $\bar{s}_{1}, B_{1}=\left\{\left(u_{1}, v_{1}\right)\right.$, $\left.\left(\bar{u}_{1}, \bar{v}_{1}\right)\right\}$, where $\bar{u}_{1}=h_{s_{1}} u_{1} \in Y$, since Y is compact.

To define B_{2} we take

$$
\begin{gathered}
s_{2}=\inf \left\{s \in A_{\lambda}: s>\bar{s}_{1}\right\} \\
t\left(s_{2}\right)=\inf \left\{t(s): s \in A_{\lambda}, s>\bar{s}_{1}\right\}
\end{gathered}
$$

and apply the above procedure to

$$
u_{2}=h_{s_{2}} u_{1}, \quad v_{2}=h_{t\left(s_{2}\right)} v_{1} .
$$

It is clear that $u_{2} \in Y$, since Y is compact. This process defines a collection $\beta(\lambda)=\left\{B_{1}, \ldots, B_{n}\right\}$ of (ε, η)-blocks on the orbit intervals $\left[u_{1}, h_{\lambda} u_{1}\right],\left[v_{1}, h_{t(\lambda)} v_{1}\right], B_{i}=$ $\left\{\left(u_{i}, v_{i}\right),\left(\bar{u}_{i}, \bar{v}_{i}\right)\right\}, u_{i}, \bar{u}_{i} \in Y, i=1, \ldots, n$. Let

$$
\begin{gathered}
u_{i}=h_{s_{i}} u_{1}, \quad \bar{u}_{i}=h_{s_{i}} u_{1} \\
v_{i}=h_{t_{i}} v_{1}, \quad \bar{v}_{i}=h_{i_{i}} v_{1}, \quad i=1,2, \ldots, n
\end{gathered}
$$

Suppose that $B_{i} \stackrel{\perp}{B_{j}}, i<j$. Then

$$
\max \left\{s_{j}-\bar{s}_{i}, t_{j}-\bar{t}_{i}\right\} \geqslant m
$$

by (2.2) and our choice of ε. This implies via (iii) that

$$
\left|\left(t_{j}-\bar{t}_{i}\right)-\left(s_{j}-\bar{s}_{i}\right)\right| \leqslant\left(s_{j}-\bar{s}_{i}\right)^{1-\eta} .
$$

Suppose that $\boldsymbol{B}_{i}{ }^{\mathfrak{£}} \boldsymbol{B}_{j}, \boldsymbol{i}<j$. It follows from the construction of $\boldsymbol{B}_{i}, \boldsymbol{B}_{\boldsymbol{j}}$ that

$$
s_{j}-s_{i} \geqslant l_{0}\left(u_{i}, v_{i}, \eta\right)>m
$$

and therefore

$$
\begin{aligned}
& \left|\left(t_{j}-t_{i}\right)-\left(s_{j}-s_{i}\right)\right| \leqslant\left(s_{j}-s_{i}\right)^{1-\eta} \\
& \left|\left(\bar{t}_{j}-t_{i}\right)-\left(\bar{s}_{j}-s_{i}\right)\right| \leqslant\left(\bar{s}_{j}-s_{i}\right)^{1-\eta}
\end{aligned}
$$

by (iii). This implies that

$$
s_{j}-s_{i}>l_{0}\left(u_{i}, v_{i}, \eta\right)
$$

and that B_{i} and B_{j} are disjoint.

Thus $\beta(\lambda)$ satisfies all conditions of Lemma 2.4. We have

$$
\boldsymbol{m}_{w}(\beta(\lambda))<\theta
$$

by (2.22), since each $s \in A_{\lambda}$ belongs to a black interval induced by $\beta(\lambda)$. This implies by Lemma 2.3 that there is $B_{\lambda} \in \beta_{\gamma}(\lambda), B_{\lambda}=\left\{\left(u_{\lambda}, v_{\lambda}\right),\left(\bar{u}_{\lambda}, \bar{v}_{\lambda}\right)\right\}$ such that

$$
l\left(B_{\lambda}\right)>3 \lambda / 4
$$

It follows then from (2.13) that

$$
\begin{equation*}
v_{\lambda} \in U\left(u_{\lambda} ; \frac{D}{\lambda^{2 \gamma}}, \frac{D}{\lambda^{1+2 \gamma}}, 0\right) \tag{2.23}
\end{equation*}
$$

This proves (1) with s_{λ} such that $h_{s_{\lambda}} u=u_{\lambda}$.
Now let $A_{\lambda} \neq \varnothing$ for all $\lambda \geqslant \lambda_{0}$ and let

$$
\begin{equation*}
l\left(A_{\lambda}\right) / \lambda>1-\frac{\theta}{8} \tag{2.24}
\end{equation*}
$$

for all $\lambda \in A$ with $\lambda \geqslant \lambda_{0}$. It follows from (2.24) that there are $\lambda_{n} \in A, \lambda_{n} \geqslant \lambda_{0}, n=1,2, \ldots$, $\lambda_{n} \rightarrow \infty, n \rightarrow \infty$ such that

$$
\begin{equation*}
\lambda_{n}<\lambda_{n+1}<\frac{9}{8} \lambda_{n}, \quad n=1,2, \ldots . \tag{2.25}
\end{equation*}
$$

Let $\boldsymbol{B}_{\lambda_{n}} \in \beta_{\gamma}\left(\lambda_{n}\right)$ be as above. We have

$$
l\left(B_{\lambda_{n}}\right)>3 \lambda_{n} / 4
$$

This and (2.25) imply that

$$
B_{\lambda_{n}} \cap B_{\lambda_{n+1}} \neq \varnothing, \quad n=1,2, \ldots
$$

and therefore

$$
B_{\lambda_{n}} \subset B_{\lambda_{n+1}}, \quad n=1,2, \ldots
$$

This implies via (2.23) that

$$
v_{\lambda_{1}} \in U\left(u_{\lambda_{1}} ; \frac{D}{\lambda_{n}^{2 \gamma}}, \frac{D}{\lambda_{n}^{1+2 \gamma}}, 0\right)
$$

for all $\lambda_{n}, n=1,2, \ldots$ This says that $v_{\lambda_{1}}=u_{\lambda_{1}}$ and therefore $v=h_{p} u$ for some $p \in \mathbf{R}$.
Q.E.D.

3. The class $K(M)$

Let us recall that a positive measurable function τ on $M=\Gamma \backslash G, \Gamma \in T$ belongs to $K(M)$, if τ and τ^{-1} are bounded and

$$
\begin{equation*}
\left|\int_{M} \varphi(x) \varphi\left(h_{t} x\right) d \mu\right| \leqslant D|t|^{-\alpha} \tag{3.1}
\end{equation*}
$$

for some $D=D(\tau)>0,0<\alpha=\alpha(\tau)<1$ and all $t \neq 0$, where $\varphi=\tau-\bar{\tau}$.
Lemma 3.1. Let $\varphi: M \rightarrow \mathbf{R}$ be measurable, bounded, $\bar{\varphi}=0$ and let (3.1) hold for φ with some $D(\varphi), \alpha(\varphi)>0$. Then given $\omega>0$ there are $P=P(\omega) \subset M$ with $\mu(P)>1-\omega$ and $m=m(P)>0$ such that if $x \in P$ then

$$
\left|\int_{0}^{t} \varphi\left(h_{u} x\right) d u\right| \leqslant t^{1-a^{\prime}}
$$

for all $t \geqslant m$, where $\alpha^{\prime}=\alpha^{\prime}(\varphi)=\alpha(\varphi) / 8$.
Proof. Denote

$$
\begin{gathered}
s_{t}(x)=\int_{0}^{t} \varphi\left(h_{u} x\right) d u \\
C(t)=\int_{M} \varphi(x) \varphi\left(h_{t} x\right) d \mu
\end{gathered}
$$

We claim that

$$
\begin{equation*}
\int_{M}\left[s_{t}(x)\right]^{2} d \mu \leqslant \bar{D} t^{2-\alpha} \tag{3.2}
\end{equation*}
$$

for some $\bar{D}>0$ and all $t>0$, where $\alpha=\alpha(\varphi)$ is as in (3.1). Indeed, we have using (3.1)

$$
\begin{aligned}
\int_{M}\left[s_{t}(x)\right]^{2} d \mu & =\int_{M}\left(\int_{0}^{t} \int_{0}^{t} \varphi\left(h_{s} x\right) \varphi\left(h_{u} x\right) d s d u\right) d \mu \\
& =\int_{0}^{t} \int_{0}^{t} C(u-s) d s d u \leqslant 2 \int_{0}^{t}\left(\int_{0}^{t}|C(v)| d v\right) d s \\
& \leqslant \frac{2 D}{1-\alpha} t^{2-a}=\bar{D} t^{2-a}
\end{aligned}
$$

It follows from (3.2) that

$$
\begin{equation*}
\mu\left\{x \in M:\left|s_{t}(x)\right| \geqslant t^{1-\alpha / 4}\right\} \leqslant \bar{D} t^{-\alpha / 2} \tag{3.3}
\end{equation*}
$$

Denote

$$
\begin{aligned}
A_{t}= & \left\{x \in M:\left|s_{t}(x)\right|<t^{1-\alpha / 4}\right\}, \quad t>0 \\
& p_{n}=n^{4 / \alpha}, \quad n=1,2, \ldots
\end{aligned}
$$

We have using (3.3)

$$
\mu\left(A_{p_{n}}\right) \geqslant 1-\frac{\bar{D}}{n^{2}}, \quad n=1,2, \ldots
$$

Given $\omega>0$, let $k_{0}=k_{0}(\omega)$ be such that

$$
\bar{D} \sum_{k \geqslant k_{0}} \frac{1}{k^{2}}<\omega
$$

and let $P=P(\omega)=\cap_{k \geq k_{0}} A_{p_{k}}$. We have

$$
\mu(P)>1-\omega
$$

and if $x \in P$ then

$$
\left|s_{p_{k}}(x)\right|<p_{k}^{1-a / 4}
$$

for all $k \geqslant k_{0}$.
Now let $t \geqslant p_{k_{0}}$ and let $k \geqslant k_{0}$ be such that

$$
p_{k}<t \leqslant p_{k+1}
$$

One can compute that

$$
p_{k+1}-p_{k}=Q p_{k}^{1-a / 4}
$$

for some $Q>0$ and all $k=1,2, \ldots$. This implies that

$$
t=p_{k}+q
$$

where $0<q \leqslant Q p_{k}^{1-\alpha / 4}$. For $x \in P$ we have using (3.2)

$$
\left|s_{t}(x)\right| \leqslant\left|s_{p_{k}}(x)\right|+\left|\int_{p_{k}}^{p_{k}+q} \varphi\left(h_{u} x\right) d u\right| \leqslant \bar{Q} p_{k}^{1-\alpha / 4}<\bar{Q} t^{1-\alpha / 4}
$$

for some $\bar{Q}>0$, since φ is bounded. This completes the proof.
Q.E.D.

4. Time changes and a conjugacy ψ

In this section we shall prove Theorem 1.
Let $M_{i}=\Gamma_{i} \mid G, \Gamma_{i} \in \mathbf{T}$ and let $\tau_{i}: M_{i} \rightarrow \mathbf{R}^{+}$be a time change for the horocycle flow $h_{i}^{(i)}$ on $\left(M_{i}, \mu_{i}\right), i=1,2$. Suppose that $\tau_{i} \in \mathbf{K}\left(M_{i}\right)$ and let

$$
\begin{gather*}
\int_{M_{i}} \tau_{i} d \mu_{i}=a>0 \\
\varphi_{i}=\tau_{i}-a \\
\sup _{x \in M_{i}}\left\{\tau_{i}(x), \tau_{i}^{-1}(x)\right\} \leqslant K \tag{4.1}
\end{gather*}
$$

for some $K>1, i=1,2$.
We shall assume without loss of generality that $a=1$. Let $h_{t}^{\tau_{i}}$ be obtained from $h_{t}^{(i)}$ by the time change τ_{i} and let $\psi:\left(M_{1}, \mu_{\tau_{1}}\right) \rightarrow\left(M_{2}, \mu_{\tau_{2}}\right)$ be measure preserving and

$$
\begin{equation*}
\psi h_{t}^{\tau_{1}}(x)=h_{t}^{\tau_{2}} \psi(x) \tag{4.2}
\end{equation*}
$$

for $\mu_{\tau_{1}}$-a.e. $x \in M_{1}$ and all $t \in \mathbf{R}$, where $d \mu_{\tau_{i}}(x)=\tau_{i}(x) d \mu_{i}(x), i=1,2$.
Let $0<\alpha_{i}^{\prime}=\alpha^{\prime}\left(\varphi_{i}\right)<1$ be as in Lemma 3.1 for $\varphi_{i}=\tau_{i}-1, i=1,2$ and let

$$
\eta=\frac{1}{2} \min \left\{\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right\}
$$

Let $\gamma=\gamma(\eta)>0$ and $0<\theta=\theta(\gamma)<1$ be chosen as in Lemma 2.1.
Since ψ is measure preserving and $\mu_{\tau_{i}}$ is equivalent to $\mu_{i}, i=1,2$, there is $0<\omega<\theta /\left(200 K^{4}\right)$ such that

$$
\mu_{1}\left(\psi^{-1}(A)\right)<\frac{\theta}{200 K^{4}}
$$

whenever $\mu_{2}(A)<\omega$.
Let $P_{i}=P_{i}(\omega) \subset M_{i}, \mu_{i}\left(P_{i}\right)>1-\omega$ and $m_{i}=m_{i}\left(P_{i}\right)>0$ be as in Lemma 3.1 for φ_{i}, $i=1,2$. If $x \in P_{i}$ then

$$
\left|\int_{0}^{t} \varphi_{i}\left(h_{u}^{(i)} x\right) d u\right| \leqslant t^{1-2 \eta}
$$

for all $t \geqslant \max \left\{m_{1}, m_{2}\right\}, i=1,2$. This implies that there is $m_{0} \geqslant \max \left\{m_{1}, m_{2}\right\}$ such that

$$
\begin{equation*}
\left|\int_{0}^{t} \varphi_{i}\left(h_{u}^{(i)} x\right) d u\right| \leqslant \frac{1}{200 K^{4}} t^{1-\eta} \tag{4.3}
\end{equation*}
$$

for all $x \in P_{i}$ and all $t \geqslant m_{0}, i=1,2$.
Set $m=2 K^{4} m_{0}$ and let $Y=Y(\gamma, \omega) \subset M_{2}, \mu_{2}(Y)>1-\omega$ and $0<\varepsilon=\varepsilon(Y, m)<1$ be as in Lemma 2.1 for $h_{t}^{(2)}$ on (M_{2}, μ_{2}).

Since $\psi: M_{1} \rightarrow M_{2}$ is measurable, there is a compact $\Lambda \subset M_{1}, \mu_{1}(\Lambda)>1-\omega$ such that ψ is uniformly continuous on Λ. Let $0<\delta<\varepsilon / 2$ be such that if $u, v \in \Lambda, d(u, v)<\delta$ then $d(\psi(u), \psi(v))<\varepsilon / 2$. Let now $0<\delta^{\prime}<\delta$ be so small that if $x \in G$ and $y \in W_{\delta^{\prime}}(x)$ then

$$
\begin{equation*}
H_{q(t)} y \in W_{\delta / 2}\left(H_{t} x\right) \quad \text { and } \quad|q(t)-t| \leqslant \delta t \tag{4.4}
\end{equation*}
$$

for all $0 \leqslant t \leqslant 2 K^{2}$ (see section 1 for the definition of $q(t)$ and W_{δ}).
Let $X=P_{1} \cap \Lambda \cap \psi^{-1}\left(P_{2} \cap Y\right)$. We have

$$
\mu_{1}(X)>1-\frac{\theta}{50 K^{4}}
$$

For $x \in M_{i}$ and $t \in \mathbf{R}$ denote

$$
\xi_{i}(x, t)=\int_{0}^{t} \tau_{i}\left(h_{u}^{(i)} x\right) d u, \quad i=1,2
$$

For $u \in M_{1}$ and $t \in \mathbf{R}$ let $z(u, t)$ be defined by

$$
\begin{equation*}
\xi_{1}(u, t)=\xi_{2}(\psi(u), z(u, t)) . \tag{4.5}
\end{equation*}
$$

It follows from (4.2) that

$$
\psi h_{t}^{(1)}(u)=h_{z(u, t)}^{(2)} \psi(u)
$$

for μ_{1}-a.e. $u \in M_{1}$ and all $t \in R$. Expression (4.1) implies that

$$
\begin{equation*}
\frac{1}{K^{2}} t \leqslant z(u, t) \leqslant K^{2} t \tag{4.6}
\end{equation*}
$$

for all $u \in M_{1}, t \geqslant 0$.
Since $h_{t}^{(1)}$ is ergodic, there are $V_{n} \subset M, \mu_{1}\left(V_{n}\right)>1-2^{-n}$ and $t_{n}>1, t_{n} \nearrow \infty, n \rightarrow \infty$ such that if $u \in V_{n}$ and $|t| \geqslant t_{n} / 2$ then

$$
\begin{equation*}
|z(u, t)-t| \leqslant|t| n^{-1} \tag{4.7}
\end{equation*}
$$

and

the relative length measure of X on $\left[u, h_{t}^{(1)} u\right]$ is at least $1-\frac{\theta}{40 K^{4}}$.

We shall use (4.7) in the proof of Lemma 4.2 below and (4.8) in the proof of Lemma 4.1.
Let $r_{n}=\frac{1}{2} \log t_{n}^{1+\gamma}$ and let $V=\bigcap_{n} g_{-r_{n}}^{(1)} V_{n}, \mu_{1}(V)>0$.
Lemma 4.1. Let $u, v \in V$ and $v=g_{\alpha}^{(1)} h_{\beta}^{*(1)} u$ for some $|\alpha|,|\beta|<\delta^{\prime}$. Then

$$
d\left(\bar{v}_{n}, g_{a}^{(2)} h_{\beta}^{*(2)} \bar{u}_{n}\right) \rightarrow 0, \quad n \rightarrow \infty
$$

where $\bar{u}_{n}=g_{-r_{n}}^{(2)} \psi g_{r_{n}}^{(1)} u, \bar{v}_{n}=g_{-r_{n}}^{(2)} \psi g_{r_{n}}^{(1)} v$.
Proof. Denote

$$
\begin{array}{cc}
u_{n}=g_{r_{n}^{(1)} u,} \quad v_{n}=g_{r_{n}^{(1)} v} v \\
u_{n}^{\prime}=\psi\left(u_{n}\right), & v_{n}^{\prime}=\psi\left(v_{n}\right) .
\end{array}
$$

We have using (4.4) and (1.3)

$$
\begin{gather*}
v_{n}=g_{\alpha}^{(1)} h_{\beta_{n}}^{*(1)} u_{n} \tag{4.9}\\
h_{t}^{(1)} u_{n} \in U\left(h_{-\beta_{n}}^{*}{ }^{(1)} g_{-a}^{(1)} h_{q(t)}^{(1)} v_{n} ; \frac{4}{t_{n}^{\gamma}}, \frac{4}{t_{n}^{1+2 \gamma}}, 0\right)
\end{gather*}
$$

for all $0 \leqslant t \leqslant 2 t_{n}$, where $\beta_{n}=\beta t_{n}^{-(1+\gamma)}, n=1,2, \ldots$.
For $p \in \mathbf{R}$ denote

$$
\begin{array}{cc}
u_{n}(p)=h_{p}^{(1)} u_{n}, & v_{n}(p)=h_{p}^{(1)} v_{n} \\
s(p)=z\left(u_{n}, p\right), & a(p)=z\left(v_{n}, p\right)
\end{array}
$$

We have

$$
\begin{gathered}
u_{n}^{\prime}(s(p))=h_{s(p)}^{(2)} u_{n}^{\prime}=\psi u_{n}(p) \\
v_{n}^{\prime}(a(p))=h_{a(p)}^{(2)} v_{n}^{\prime}=\psi v_{n}(p) .
\end{gathered}
$$

Let

$$
B_{n}=\left\{p \in\left[0, t_{n}\right]: u_{n}(p) \in X, v_{n}(q(p)) \in X\right\}, \quad n=1,2, \ldots
$$

It follows from (4.8) and (4.9) that

$$
\begin{equation*}
l\left(B_{n}\right) / t_{n}>1-\frac{\theta}{18 K^{4}}, \quad n=1,2, \ldots \tag{4.10}
\end{equation*}
$$

if $\delta^{\prime}>0$ is sufficiently small. It follows from the definition of X that if $p \in B_{n}$ then

$$
\begin{gathered}
u_{n}(p), v_{n}(q(p)) \in P_{1} \cap \Lambda \\
u_{n}^{\prime}(s(p)), v_{n}^{\prime}(a(q(p))) \in Y \cap P_{2}
\end{gathered}
$$

and

$$
\begin{equation*}
v_{n}^{\prime}(a(q(p))) \in U\left(u_{n}^{\prime}(s(p)) ; \varepsilon / 2\right), \quad n=1,2, \ldots \tag{4.11}
\end{equation*}
$$

Suppose that

$$
s\left(p^{\prime}\right)-s(p) \geqslant m
$$

for some $p, p^{\prime} \in B_{n}, p<p^{\prime}$. It follows then from (4.6) and (4.9) that

$$
\begin{gathered}
p^{\prime}-p \geqslant m / K^{2}=2 K^{2} m_{0} \\
q\left(p^{\prime}\right)-q(p) \geqslant K^{2} m_{0} \\
a\left(q\left(p^{\prime}\right)\right)-a(q(p)) \geqslant m_{0}
\end{gathered}
$$

and therefore

$$
\begin{gather*}
\left|\left(s\left(p^{\prime}\right)-s(p)\right)-\left(p^{\prime}-p\right)\right| \leqslant 0.01\left(s\left(p^{\prime}\right)-s(p)\right)^{1-\eta} / K^{2} \\
\left|\left(a\left(q\left(p^{\prime}\right)\right)-a(q(p))\right)-\left(q\left(p^{\prime}\right)-q(p)\right)\right| \leqslant 0.01\left(q\left(p^{\prime}\right)-q(p)\right)^{1-\eta / K^{2}} \tag{4.12}
\end{gather*}
$$

by (4.3) and (4.6), since $u_{n}(p), v_{n}(q(p)) \in P_{1}$ and $u_{n}^{\prime}(s(p)), v_{n}^{\prime}(a(q(p))) \in P_{2}$.
Denote

$$
\begin{gathered}
p_{0}=p_{0}(n)=\inf B_{n}, \quad \bar{p}=\bar{p}(n)=\sup B_{n} \\
s_{0}=s_{0}(n)=s\left(p_{0}\right), \quad \bar{s}=\bar{s}(n)=s(\bar{p}), \quad \bar{s}-s_{0}=\lambda_{n} \\
a_{0}=a_{0}(n)=a\left(q\left(p_{0}\right)\right), \quad \bar{a}=\bar{a}(n)=a(q(\bar{p})) \\
B_{n}^{\prime}=s\left(B_{n}\right) \subset\left[s_{0}, \bar{s}\right], \quad n=1,2, \ldots
\end{gathered}
$$

We can assume without loss of generality that $p_{0}, \bar{p} \in B_{n}$. We have using (4.10) and (4.6)

$$
\begin{gather*}
\left(1-\frac{\theta}{18 K^{4}}\right) t_{n} \leqslant \tilde{p}-p_{0} \leqslant t_{n} \\
\frac{\left(1-\frac{\theta}{18 K^{4}}\right)}{K^{2}} t_{n} \leqslant \lambda_{n} \leqslant K^{2} t_{n} \tag{4.13}\\
l\left(B_{n}^{\prime}\right) / \lambda_{n} \geqslant 1-\frac{\theta}{18}
\end{gather*}
$$

Let

$$
A_{n}^{\prime}=\left\{s_{0}\right\} \cup\left(B_{n}^{\prime} \cap\left[s_{0}+m, \bar{s}\right]\right) .
$$

We have

$$
\begin{equation*}
l\left(A_{n}^{\prime}\right) / \lambda_{n} \geqslant 1-\frac{\theta}{15} \tag{4.14}
\end{equation*}
$$

if n is sufficiently large. It follows from (4.12) that

$$
\left|\left(a(q(p))-a_{0}\right)-\left(q(p)-q\left(p_{0}\right)\right)\right| \leqslant 0.01\left(q(p)-q\left(p_{0}\right)\right)^{1-\eta / K^{2}}
$$

for all p with $s(p) \in A_{n}^{\prime}$.
Denote

$$
\begin{gather*}
x_{n}=u_{n}\left(p_{0}\right), \quad y_{n}=v_{n}\left(q\left(p_{0}\right)\right) \\
x_{n}^{\prime}=\psi\left(x_{n}\right)=u_{n}^{\prime}\left(s_{0}\right), \quad y_{n}^{\prime}=\psi\left(y_{n}\right)=v_{n}^{\prime}\left(a_{0}\right) \tag{4.15}\\
y_{n}^{\prime} \in U\left(x_{n}^{\prime} ; \varepsilon / 2\right)
\end{gather*}
$$

We have

$$
x_{n}=g_{c_{n}}^{(1)} h_{b_{n}}^{*(1)} y_{n}
$$

for some $b_{n}, c_{n} \in \mathbf{R}, n=1,2, \ldots$. Denote

$$
w_{n}=g_{c_{n}}^{(2)} h_{b_{n}}^{*(2)} y_{n}^{\prime} \in W_{\delta / 2}\left(y_{n}^{\prime}\right) .
$$

We have

$$
w_{n} \in U\left(x_{n}^{\prime} ; \varepsilon\right)
$$

by (4.15). Let

$$
A_{n}=\left\{s-s_{0}: s \in A_{n}^{\prime}\right\} \subset\left[0, \lambda_{n}\right] .
$$

We have

$$
\begin{equation*}
0, \lambda_{n} \in A_{n}, \quad l\left(A_{n}\right) / \lambda_{n}>1-\frac{\theta}{15} \quad \text { and if } s \in A_{n} \text { then } h_{s}^{(2)} x_{n}^{\prime} \in Y \tag{4.16}
\end{equation*}
$$

Let $\chi:\left[0,2 K^{2} t_{n}\right] \rightarrow \mathbf{R}$ be defined by

$$
H_{\chi(p)} \bar{w}_{n} \in W_{\delta / 2}\left(H_{p} \bar{y}_{n}^{\prime}\right)
$$

where $\left(\bar{w}_{n}, \bar{y}_{n}^{\prime}\right) \in G \times G$ cover $\left(w_{n}, y_{n}^{\prime}\right)$. The function χ for w_{n}, y_{n}^{\prime} is analogous to the function q for u_{n}, v_{n}. One can see that

$$
\chi\left(q\left(p^{\prime}\right)-q(p)\right)=p^{\prime}-p
$$

for every $p, p^{\prime} \geqslant p_{0}$. For $s=s(p)-s_{0} \in A_{n}$ let

$$
t(s)=\chi\left(a(q(p))-a_{0}\right)
$$

We have using (4.11)

$$
\begin{equation*}
h_{t(s)}^{(2)} w_{n} \in W_{\delta / 2}\left(h_{a(q(p))}^{(2)} y_{n}^{\prime}\right) \quad \text { and } \quad h_{t(s)}^{(2)} w_{n} \in U\left(h_{s}^{(2)} x_{n}^{\prime} ; \varepsilon\right) \tag{4.17}
\end{equation*}
$$

for all $s \in A_{n}$ with $s=s(p)-s_{0}$.
Expressions (4.16) and (4.17) show that the subset $A_{n} \subset\left[0, \lambda_{n}\right]$ satisfies conditions (i)-(ii) of Lemma 2.1 with x_{n}^{\prime}, w_{n} instead of u, v respectively. We claim that A_{n} satisfies (iii), too. Indeed, let us show that if $s, s^{\prime} \in A_{n}, s<s^{\prime}$ and

$$
\max \left\{\left(t\left(s^{\prime}\right)-t(s)\right),\left(s^{\prime}-s\right)\right\} \geqslant m
$$

then

$$
\begin{equation*}
\left|\left(t\left(s^{\prime}\right)-t(s)\right)-\left(s^{\prime}-s\right)\right| \leqslant\left(s^{\prime}-s\right)^{1-\eta} \tag{4.18}
\end{equation*}
$$

So let $s^{\prime}=s\left(p^{\prime}\right), s=s(p), s<s^{\prime}, s, s^{\prime} \in A_{n}$ and suppose that

$$
s^{\prime}-s \geqslant m
$$

Denote

$$
a^{\prime}=a\left(q\left(p^{\prime}\right)\right), \quad a=a(q(p))
$$

We have using (4.12)

$$
\begin{gather*}
\left|\left(s^{\prime}-s\right)-\left(p^{\prime}-p\right)\right| \leqslant 0.01\left(s^{\prime}-s\right)^{1-\eta} / K^{2} \\
\left|\left(a^{\prime}-a\right)-\left(q\left(p^{\prime}\right)-q(p)\right)\right| \leqslant 0.01\left(q\left(p^{\prime}\right)-q(p)\right)^{1-\eta} / K^{2} \tag{4.19}
\end{gather*}
$$

Also

$$
\begin{gathered}
t\left(s^{\prime}\right)-t(s)=\chi\left(a^{\prime}\right)-\chi(a) \\
\left|\left(a-a_{0}\right)-\left(q(p)-q\left(p_{0}\right)\right)\right| \leqslant 0.01\left(q(p)-q\left(p_{0}\right)\right)^{1-\eta} / K^{2}
\end{gathered}
$$

This implies that

$$
\begin{equation*}
\chi(a)=\left(p-p_{0}\right)+f \tag{4.20}
\end{equation*}
$$

where $|f| \leqslant 0.02 t_{n}^{1-\eta} / K^{2}$. Let

$$
h_{p-p_{0}}^{(1)} x_{n}=g_{c(p)}^{(1)} h_{b(p)}^{*(1)}\left(h_{q(p)-q\left(p_{0}\right)}^{(1)} y_{n}\right)
$$

It follows from (4.9), (1.3) and (4.20) that

$$
h_{\chi(a)}^{(2)} w_{n} \in U\left(g_{c(p)}^{(2)} h_{b(p)}^{*(2)}\left(h_{a}^{(2)} y_{n}^{\prime}\right) ; \frac{0.02 t_{n}^{-\eta}}{K^{2}} ; \frac{0.02 t_{n}^{1-\eta}}{K^{2}}, 0\right)
$$

This implies that

$$
\left|\left(\chi\left(a^{\prime}\right)-\chi(a)\right)-\left(p^{\prime}-p\right)\right| \leqslant 0.08\left(s^{\prime}-s\right)^{1-\eta}
$$

by (4.19), (1.2) and (4.6). This and (4.19) show that

$$
\left|\left(\chi\left(a^{\prime}\right)-\chi(a)\right)-\left(s^{\prime}-s\right)\right| \leqslant\left(s^{\prime}-s\right)^{1-\eta}
$$

or

$$
\left|\left(t\left(s^{\prime}\right)-t(s)\right)-\left(s^{\prime}-s\right)\right| \leqslant\left(s^{\prime}-s\right)^{1-\eta}
$$

Thus we have proved (4.18) assuming that $s^{\prime}-s \geqslant m$. Similarly, we can prove (4.18) assuming that $t\left(s^{\prime}\right)-t(s) \geqslant m$.

Thus $A_{n} \subset\left[0, \lambda_{n}\right]$ satisfies all conditions of Lemma 2.1. Using this lemma and (4.14) we conclude that there is $s_{n} \in A_{n}$ with

$$
\begin{equation*}
h_{t\left(s_{n}\right)}^{(2)} w_{n} \in U\left(h_{s_{n}}^{(2)} x_{n}^{\prime} ; \frac{D}{\lambda_{n}^{2 \gamma}}, \frac{D}{\lambda_{n}^{1+2 \gamma}}, \varepsilon\right) \tag{4.21}
\end{equation*}
$$

Let $s_{n}=s\left(p_{n}\right)-s_{0}, a_{n}=a\left(q\left(p_{n}\right)\right)-a_{0}$. We have via (4.9)

$$
h_{t\left(\sigma_{n}\right)}^{(2)} w_{n} \in U\left(h_{-\beta_{n}}^{*(2)} g_{-a}^{(2)} h_{a_{n}}^{(2)} y_{n}^{\prime} ; \frac{2 K^{2}}{t_{n}^{\gamma}}, \frac{2 K^{2}}{t_{n}^{1+2 \gamma}}, 0\right)
$$

This implies via (4.21) that if we denote $s\left(p_{n}\right)=\bar{s}_{n}, a\left(q\left(p_{n}\right)\right)=\bar{a}_{n}$ then

$$
\begin{equation*}
h_{\dot{\partial}_{n}}^{(2)} v_{n}^{\prime} \in U\left(g_{a}^{(2)} h_{\beta_{n}}^{*(2)} h_{\bar{s}_{n}}^{(2)} u_{n}^{\prime} ; \frac{D K^{2}}{\lambda_{n}^{\gamma}},-\frac{D K^{2}}{\lambda_{n}^{1+2 \gamma}}, \varepsilon\right) \tag{4.22}
\end{equation*}
$$

We have

$$
\bar{v}_{n}=g_{-r_{n}}^{(2)} v_{n}^{\prime}, \quad \bar{u}_{n}=g_{-r_{n}}^{(2)} u_{n}^{\prime}, \quad e^{2 r_{n}}=t_{n}^{1+\gamma}
$$

This implies that

$$
d\left(\bar{v}_{n}, g_{\alpha}^{(2)} h_{\beta}^{*(2)} \bar{u}_{n}\right) \rightarrow 0, \quad n \rightarrow \infty
$$

by (4.22), (4.13) and (1.1), since $0<\bar{a}_{n} \leqslant 2 K^{2} t_{n}$ and $0<\bar{s}_{n} \leqslant t_{n}$. This completes the proof.
Q.E.D.

Lemma 4.2. If $u \in V$ and $v=h_{p}^{(1)} u$ for some $p \in \mathbf{R}$ then $d\left(\bar{u}_{n}, h_{p}^{(2)} \bar{v}_{n}\right) \rightarrow 0$ when $n \rightarrow \infty$, where \bar{u}_{n}, \bar{v}_{n} are as in Lemma 4.1.

Proof. Let $p \neq 0$ and let $u_{n}, v_{n}, u_{n}^{\prime}, v_{n}^{\prime}$ and $s: \mathbf{R} \rightarrow \mathbf{R}$ be as in the proof of Lemma 4.1. We have

$$
\begin{gathered}
u_{n} \in V_{n} \\
v_{n}=h_{p t_{n}^{(+y}}^{(1)} u_{n} \\
v_{n}^{\prime}=h_{s\left(p I_{n}^{++y}\right)}^{(2)} u_{n}^{\prime} .
\end{gathered}
$$

It follows from (4.7) that

$$
\left|s\left(p t_{n}^{1+\gamma}\right)-p t_{n}^{1+\gamma}\right| \leqslant|p| t_{n}^{1+\gamma} n^{-1}
$$

if n is so big that $|p| t_{n}^{1+\gamma} \geqslant t_{n}$. This implies that

$$
d\left(\bar{v}_{n}, h_{p}^{(2)} \bar{u}_{n}\right) \leqslant|p| n^{-1}
$$

if n is sufficiently large. This completes the proof.
Q.E.D.

COROLLARY 4.1. There are an $h_{1}^{(1)}$-invariant subset $\Omega \subset M_{1}$ with $\mu_{1}(\Omega)=1$ and a subsequence $\left\{n_{k} ; k=1,2, \ldots\right\} \subset\{n: n=1,2, \ldots\}$ such that if $u \in \Omega$ then $\lim _{k \rightarrow \infty} \bar{u}_{n_{k}}=\zeta(u) \in M_{2}$ exists and $\zeta\left(h_{p}^{(1)} u\right)=h_{p}^{(2)} \zeta(u)$ for all $p \in \mathbf{R}, u \in \Omega$.

Proof. Let $M_{2}=\mathrm{U}_{n=1}^{\infty} K_{n}$, where K_{n} are compact and $\mu_{2}\left(M_{2}-K_{n}\right)<2^{-n}, n=1,2, \ldots$. Denote

$$
\begin{gathered}
\tilde{K}_{n}=M_{2}-K_{n} \\
F_{n}=g_{-r_{n}}^{(1)} \psi^{-1} g_{r_{n}}^{(2)} \tilde{K}_{n}, \quad n=1,2, \ldots
\end{gathered}
$$

We have

$$
\sum_{n=1}^{\infty} \mu_{1}\left(F_{n}\right)<\infty
$$

Let

$$
F=\left\{u \in M_{1}: u \text { belongs to finitely many } F_{n}\right\}
$$

By the Borel-Cantelli lemma

$$
\begin{equation*}
\mu(F)=1 \tag{4.23}
\end{equation*}
$$

If $u \in F$ then \bar{u}_{n} belongs to finitely many \tilde{K}_{n}. This implies that there is a subsequence $n_{k}(u), k=1,2, \ldots$ such that $\bar{u}_{n_{k}(u)}$ converges in M_{2}.

Let $V \subset M_{1}, \mu_{1}(V)>0$ be as in Lemmas 4.1 and 4.2. In view of (4.23) we can assume that $V \subset F$. Since $\mu_{1}(V)>0$, there is $u^{0} \in V$ such that

$$
v\left(V \cap W_{\delta^{\prime}}\left(u^{0}\right)\right)>0
$$

where v denotes the Riemannian volume on the stable leaf $W\left(u^{0}\right)$. Since $u^{0} \in F$, there is a subsequence $n_{k}=n_{k}\left(u^{0}\right)$ such that $\bar{u}_{n_{k}}^{0}$ converges in M_{2}. Let

$$
\Omega=\left\{h_{p}^{(1)} w: p \in \mathbf{R}, w \in V \cap W_{\delta^{\prime}}\left(u^{0}\right)\right\}
$$

The set Ω is $h_{t}^{(1)}$-invariant and $\mu_{1}(\Omega)>0$. Since $h_{t}^{(1)}$ is ergodic, $\mu_{1}(\Omega)=1$. It follows then from Lemmas 4.1 and 4.2 that $\lim _{k \rightarrow \infty} \bar{u}_{n_{k}}=\zeta(u)$ exists for every $u \in \Omega$ and $\zeta\left(h_{p}^{(1)} u\right)=h_{p}^{(2)} \zeta(u)$ for all $p \in \mathbf{R}, u \in \Omega$. This completes the proof.
Q.E.D.

Proof of Theorem 1. Let $\Omega \subset M_{1}, \mu_{1}(\Omega)=1$ and a subsequence $\left\{n_{k}\right\} \subset\{n\}$ be as in Corollary 4.1. We can assume without loss of generality that $\Omega=M_{1}$ and $\left\{n_{k}\right\}=\{n\}$. Thus

$$
\lim _{n \rightarrow \infty} \bar{u}_{n}=\zeta(u)
$$

exists for all $u \in M_{1}$ and

$$
\zeta\left(h_{p}^{(1)} u\right)=h_{p}^{(2)} \zeta(u)
$$

for all $p \in \mathbf{R}, u \in M_{1}$. This says that the map

$$
\zeta:\left(M_{1}, \mu_{1}\right) \rightarrow\left(M_{2}, \mu_{2}\right)
$$

is a measurable conjugacy between $h_{t}^{(1)}$ and $h_{t}^{(2)}$. In fact, ζ is measure preserving (see [6]). It follows from the rigidity theorem [6] that there are $C \in G, a \in \mathbf{R}$ such that

$$
\begin{equation*}
C \Gamma_{1} C^{-1} \subset \Gamma_{2} \quad \text { and } \quad \zeta(u)=h_{a}^{(2)} \psi_{c}(u) \tag{4.24}
\end{equation*}
$$

for μ_{1}-a.e. $u \in M_{1}$, where $\psi_{C}\left(\Gamma_{1} g\right)=\Gamma_{2} C g, g \in G$. It follows from Lemma 4.1 that if u, $v \in V, v=g_{a}^{(1)} h_{\beta}^{*(1)} u$ for some $|\alpha|,|\beta|<\delta^{\prime}$ then

$$
\zeta(v)=g_{\alpha}^{(2)} h_{\beta}^{*(2)} \zeta(u) .
$$

This implies that $a=0$ in (4.24) and therefore

$$
\zeta(u)=\psi c(u)
$$

for μ_{1}-a.e. $u \in M_{1}$.
Now we have to show that

$$
\psi(u)=h_{\sigma(u)}^{(2)} \psi_{c}(u)
$$

for some $\sigma(u) \in \mathbf{R}$ and μ_{1}-a.e. $u \in M_{1}$.
Let $0<\eta, \gamma, \theta, \omega, \varepsilon<1, m \geqslant 1, Y, P_{2} \subset M_{2}$ and P_{1} be chosen as above.
Let $S \subset M_{1}, \mu_{1}(S)>1-\omega$ and $n_{0} \geqslant 1$ be such that if $u \in S$ and $n \geqslant n_{0}$ then $d\left(\bar{u}_{n}, \zeta(u)\right)<\varepsilon$.

Let $n \geqslant n_{0}$ be fixed. Denote

$$
\bar{X}=g_{-r_{n}}^{(1)}\left(P_{1} \cap \psi^{-1} P_{2}\right) \cap S \cap \zeta^{-1}(Y)
$$

We have

$$
\mu_{1}(\bar{X})>1-\frac{\theta}{50} .
$$

Let $Q \subset M_{2}, \mu_{1}(Q)=1$ be the generic set of \tilde{X} for $h_{t}^{(1)}$. This means that if $u \in Q$ then the relative length measure of \bar{X} on $\left[u, h_{t}^{(1)} u\right]$ tends to $\mu_{1}(\bar{X})$ when $t \rightarrow \infty$. Denote $\bar{Q}=Q \cap \bar{X}, \mu_{1}(\bar{Q})>0$.

Let $u \in \bar{Q}$ and let

$$
A=A(u)=\left\{s \in \mathbf{R}^{+}: h_{s}^{(1)} u \in \bar{X}\right\}
$$

We have

$$
\begin{equation*}
l(A \cap[0, \lambda]) / \lambda \rightarrow 1-\frac{\theta}{50} \tag{4.25}
\end{equation*}
$$

when $\lambda \rightarrow \infty$. Denote

$$
v(u)=\bar{u}_{n} \in M_{2}
$$

For $s \in \mathbf{R}$ define $t(s)$ by

$$
h_{t(s)}^{(2)} v(u)=v\left(h_{s}^{(2)} u\right)
$$

We have

$$
\begin{gather*}
h_{s}^{(2)} \zeta(u) \in Y \\
h_{t(s)}^{(2)} v(u) \in U\left(h_{s}^{(2)} \zeta(u) ; \varepsilon\right) \tag{4.26}
\end{gather*}
$$

for all $s \in A$. Also $0 \in A$. This and (4.26) show that A satisfies conditions (i)-(ii) of Lemma 2.1 with $\zeta(u)$ and $v(u)$ instead of u and v respectively.

Let us show that A satisfies (iii), too. Indeed, let $s, s^{\prime} \in A, s<s^{\prime}$ and let

$$
\max \left\{s^{\prime}-s, t\left(s^{\prime}\right)-t(s)\right\} \geqslant m
$$

Suppose for definiteness that

$$
s^{\prime}-s \geqslant m
$$

and show that

$$
\begin{equation*}
\left|\left(t\left(s^{\prime}\right)-t(s)\right)-\left(s^{\prime}-s\right)\right| \leqslant\left(s^{\prime}-s\right)^{1-\eta} \tag{4.27}
\end{equation*}
$$

Let

$$
u_{n}(s)=g_{r_{n}}^{(1)}\left(h_{s}^{(1)} u\right)
$$

and let $z: \mathbf{R} \rightarrow \mathbf{R}$ be defined by

$$
z(p)=z\left(u_{n}(s), p\right)
$$

where $z(u, p)$ is defined in (4.5). We have

$$
\begin{gathered}
u_{n}(s) \in P_{1}, \quad \psi\left(u_{n}(s)\right) \in P_{2} \\
u_{n}\left(s^{\prime}\right)=h_{t_{n}^{1+\gamma}\left(s^{\prime}-s\right)}^{(1)} u_{n}(s) \\
\psi\left(u_{n}\left(s^{\prime}\right)\right)=h_{z\left(t_{n}^{1+\gamma}\left(s^{\prime}-s\right)\right)}^{(2)} \psi\left(u_{n}(s)\right) \\
t\left(s^{\prime}\right)-t(s)=t_{n}^{-(1+\gamma)} z\left(t_{n}^{1+\gamma}\left(s^{\prime}-s\right)\right)
\end{gathered}
$$

It follows from (4.3) that

$$
\left|z\left(t_{n}^{1+\gamma}\left(s^{\prime}-s\right)\right)-t_{n}^{1+\gamma}\left(s^{\prime}-s\right)\right| \leqslant\left[t_{n}^{1+\gamma}\left(s^{\prime}-s\right)\right]^{1-\eta}
$$

and therefore

$$
\left|\left(t\left(s^{\prime}\right)-t(s)\right)-\left(s^{\prime}-s\right)\right| \leqslant\left(s^{\prime}-s\right)^{1-\eta}
$$

This proves (4.27) when $s^{\prime}-s \geqslant m$. Similarly, we prove (4.27) when $t\left(s^{\prime}\right)-t(s) \geqslant m$.

Thus $A=A(u), u \in \bar{Q}$ satisfies all conditions of Lemma 2.1. Using this lemma and (4.25) we conclude that

$$
v(u)=\bar{u}_{n} \text { lies on the } h_{t}^{(1)} \text {-orbit of } \zeta(u) \text { for every } u \in \bar{Q}
$$

We have

$$
\zeta\left(g_{r_{n}}^{(1)} u\right)=g_{r_{n}}^{(2)} \zeta(u)
$$

for μ_{1}-a.e. $u \in M_{1}$. This implies that if we denote

$$
Q_{n}=g_{r_{n}}^{(1)} \bar{Q}, \quad \mu_{1}\left(Q_{n}\right)>0
$$

then

$$
\psi(u)=h_{\sigma(u)}^{(2)} \zeta(u)
$$

for some $\sigma(u) \in \mathbf{R}$ and all $u \in Q_{n}$. The set

$$
\bar{\Omega}=\left\{u \in M_{1}: \psi(u)=h_{\sigma(u)}^{(2)} \zeta(u) \text { for some } \sigma(u) \in \mathbf{R}\right\}
$$

is $h_{t}^{(1)}$-invariant and contains Q_{n}. This implies that

$$
\mu_{1}(\bar{\Omega})=1
$$

since $h_{t}^{(1)}$ is ergodic and $\mu_{1}\left(Q_{n}\right)>0$. This completes the proof.
Q.E.D.

Proof of Theorem 2. We can assume without loss of generality that $p=1$ in the theorem. So let $\tau_{i} \in K\left(M_{i}\right)$ and $h_{1}^{\tau_{i}}$ be ergodic, $i=1$, 2 . Let $\psi:\left(M_{1}, \mu_{\tau_{1}}\right) \rightarrow\left(M_{2}, \mu_{\tau_{2}}\right)$ be m.p. and

$$
\psi h_{1}^{\tau_{1}}(x)=h_{1}^{\tau_{2}} \psi(x)
$$

for $\mu_{\tau_{1}}$-a.e. $x \in M_{1}$.
Let $0<\eta, \gamma, \theta, \omega, \varepsilon<1, m>1, Y, P_{2} \subset M_{2}$ and $P_{1} \subset M_{1}$ be as above.
Since ψ is measurable, there is $\Lambda \subset M_{1}, \mu_{1}(\Lambda)>1-\omega$ such that ψ is uniformly continuous on Λ. Let $\delta>0$ be such that if $u, v \in \Lambda, d(u, v)<\delta$ then $d(\psi(u), \psi(v))<\varepsilon$. Let

$$
Z=\Lambda \cap P_{1} \cap \psi^{-1}\left(P_{2} \cap Y\right), \mu_{1}(Z)>1-\frac{\theta}{50 K^{2}}
$$

and let Q be the generic set of Z for $h_{1}^{\tau_{1}}, \mu_{1}(Q)=1$. Let $\bar{Q}=Q \cap Z, \mu_{1}(\bar{Q})>0$. We claim that

$$
\begin{gather*}
\text { if } u, v \in \bar{Q} \text { and } v=h_{p}^{(1)} u \text { for some }|p|<\delta \\
\text { then } \psi(v)=h_{q}^{(2)} \psi(u) \text { for some }|q|<\varepsilon . \tag{4.28}
\end{gather*}
$$

Indeed, let $\xi(p), r(p), p \in \mathbf{R}$ be defined by

$$
\int_{0}^{\xi(p)} r_{2}\left(h_{s}^{(2)} \psi(u)\right) d s=p=\int_{0}^{r(p)} \tau_{2}\left(h_{s}^{(2)} \psi(v)\right) d s
$$

and let

$$
\begin{gathered}
B=\left\{n \in \mathbf{Z}^{+}: h_{n}^{\tau_{1}} u, h_{n}^{\tau_{2}} v \in Z\right\} \\
A=\{\xi(n+p): n \in B, 0 \leqslant p \leqslant 1\} .
\end{gathered}
$$

We have

$$
\begin{equation*}
l(A \cap[0, \lambda]) / \lambda>1-\frac{\theta}{50} \tag{4.29}
\end{equation*}
$$

for all $\lambda \geqslant \lambda_{0}$. Also

$$
\begin{equation*}
h_{\xi(n)}^{(2)} \psi(u) \in Y \tag{4.30}
\end{equation*}
$$

for all $\xi(n) \in A$ with $n \in B$. For $\xi=\xi(n+p) \in A$ define

$$
t(\xi)=r(n+p)
$$

If $\xi=\xi(n)$ for some $n \in B$ then

$$
\begin{equation*}
h_{t(\xi)}^{(2)} \psi(v) \in U\left(h_{\xi}^{(2)} \psi(u) ; \varepsilon\right) \tag{4.31}
\end{equation*}
$$

As in the proof of Theorem 1 we show that if $\xi=\xi(n)<\xi^{\prime}=\xi\left(n^{\prime}\right), n, n^{\prime} \in B$ then

$$
\begin{equation*}
\left|\left(t\left(\xi^{\prime}\right)-t(\xi)\right)-\left(\xi^{\prime}-\xi\right)\right| \leqslant\left(\xi^{\prime}-\xi\right)^{1-\eta} \tag{4.32}
\end{equation*}
$$

whenever

$$
\max \left\{\left(t\left(\xi^{\prime}\right)-t(\xi)\right),\left(\xi^{\prime}-\xi\right)\right\} \geqslant m
$$

Arguing as in the proof of Lemma 2.1 we show that (4.29), (4.30), (4.31) and (4.32) imply that

$$
\psi(v)=h_{q}^{(2)} \psi(u)
$$

for some $|q|<\varepsilon$.

Thus we proved (4.28). We omit the rest of the proof, since it is completely similar to the proof of Theorem 3 in [6].
Q.E.D.

References

[1] Dani, S. G., Dynamics of the horospherical flow. Bull. Amer. Math. Soc., 3 (1980), 1037-1039.
[2] Moore, C., Exponential decay of matrix coefficients. To appear.
[3] Ornstein, D. \& Smorodinsky, M., Continuous speed changes for flows. Israel J. Math., 31 (1978), 161-168.
[4] Ratner, M., Horocycle flows are loosely Bernoulli. Israel J. Math., 31 (1978), 122-132.
[5] - The Cartesian square of the horocycle flow is not loosely Bernoulli. Israel J. Math., 34 (1979), 72-96.
[6] — Rigidity of horocycle flows. Ann. of Math., 115 (1982), 587-614.
[7] - Ergodic theory in hyperbolic space. Contemp. Math., 26.
Received March 26, 1984

[^0]: ${ }^{(1)}$ Partially supported by NSF grant MCS 81-02262.

