Rigidity of time changes for horocycle flows

by

MARINA RATNER⁽¹⁾

University of California Berkeley, CA, U.S.A.

Let T_t be a measure preserving (m.p.) flow on a probability space (X, μ) and let τ be a positive integrable function on X, $\int_X \tau d\mu = \bar{\tau}$. We say that a flow T_t^{τ} is obtained from T_t by the time change τ if

$$T_t^{\tau}(x) = T_{w(x,t)}(x)$$

for μ -almost every (a.e.) $x \in X$ and all $t \in \mathbb{R}$, where w(x, t) is defined by

$$\int_0^{w(x,t)} \tau(T_u x) \, du = t.$$

The flow T_t^{τ} preserves the probability measure μ_{τ} on X defined by

$$d\mu_{\tau}(x) = (\tau/\bar{\tau}) d\mu(x), \quad x \in X.$$

We say that two integrable functions $\tau_1, \tau_2: (X, \mu) \rightarrow \mathbb{R}$ are homologous along T_t if there is a measurable $v: X \rightarrow \mathbb{R}$ such that

$$\int_0^t (\tau_1 - \tau_2) (T_u x) \, du = v(T_t x) - v(x)$$

for μ -a.e. $x \in X$ and all $t \in \mathbb{R}$. One can check that two time changes τ_1 and τ_2 are homologous via v if and only if (iff) the map $\psi_v: X \to X$ defined by

$$\psi_v(x)=T_{\sigma(x)}x,$$

^{(&}lt;sup>1</sup>) Partially supported by NSF grant MCS 81-02262.

¹⁻⁸⁶⁸²⁸² Acta Mathematica 156. Imprimé le 10 mars 1986

where $\int_0^{\sigma(x)} \tau_2(T_u x) du = v(x)$, is an invertible conjugacy between $T_t^{\tau_1}$ and $T_t^{\tau_2}$, i.e.

$$\psi_v T_t^{\tau_1}(x) = T_t^{\tau_2} \psi_v(x)$$

for a.e. $x \in X$ and all $t \in \mathbb{R}$. If T_t is ergodic and τ_1, τ_2 are homologous along T_t via some measurable functions v_1 and v_2 then $v_2 - v_1$ is equal to a constant a.e.

Let G denote the group $SL(2, \mathbb{R})$ equipped with a left invariant Riemannian metric and let T be the set of all discrete subgroups Γ of G such that the quotient space $M=\Gamma|G=\{\Gamma g: g\in G\}$ has finite volume. The horocycle flow h_t and the geodesic flow g_t on M are defined by

$$h_t(\Gamma g) = \Gamma g \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix}$$
$$g_t(\Gamma g) = \Gamma g \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}$$

 $g \in G$, $t \in \mathbf{R}$. The flows h_t and g_t preserve the normalized volume measure μ on M, are ergodic and mixing on (M, μ) and

$$g_t \circ h_s = h_{s e^{2t}} \circ g_t \tag{(*)}$$

for all $s, t \in \mathbf{R}$.

In order to state our main theorem we shall need the following notations. Let

$$K = \left\{ K_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} : \theta \in (-\pi, \pi] \right\}$$

be the rotation subgroup of G. We say that a real valued function φ on $M=\Gamma|G, \Gamma \in \mathbf{T}$ is Hölder continuous in the direction of K with the Hölder exponent $\delta > 0$ if

$$|\varphi(x) - \varphi(y)| \leq C_{\varphi}|\theta|^{\delta}$$

for some $C_{\varphi}>0$ and all $x, y \in M$ with $y = R_{\theta}(x)$, where $R_{\theta}(\Gamma g) = \Gamma g K_{\theta}$, $g \in G$. It was shown in [2] that if $\varphi \in L_2(M, \mu)$ is Hölder continuous in the direction of K with $\delta > \frac{1}{2}$ and $\bar{\varphi}=0$ then

$$\left| \int_{M} \varphi(x) \, \varphi(h_t x) \, d\mu(x) \right| \leq D_{\varphi} |t|^{-a_{\varphi}} \tag{**}$$

for some D_{φ} , $\alpha_{\varphi} > 0$ and all $t \neq 0$. We shall denote by $\mathbf{K}(M)$ the set of all positive integrable functions τ on M such that τ and τ^{-1} are bounded and $\tau - \overline{\tau}$ satisfies (**) for some D_{τ} , $\alpha_{\tau} > 0$.

THEOREM 1. Let $h_i^{(i)}$ be the horocycle flow on $(M_i = \Gamma_i | G, \mu_i), \Gamma_i \in \mathbb{T}, i = 1, 2$ and let $h_i^{\tau_i}$ be obtained from $h_i^{(i)}$ by a time change $\tau_i \in K(M_i)$, i = 1, 2, with $\bar{\tau}_1 = \bar{\tau}_2$. Suppose that there is a measure preserving $\psi: (M_1, \mu_{\tau_1}) \rightarrow (M_2, \mu_{\tau_2})$ such that

$$\psi h_t^{\tau_1}(x) = h_t^{\tau_2} \psi(x)$$

for μ_{τ_1} -a.e. $x \in M_1$ and all $t \in \mathbb{R}$. Then there are $C \in G$ and a measurable $\sigma: M_2 \to \mathbb{R}$ such that

$$C\Gamma_1 C^{-1} \subset \Gamma_2$$
 and $\psi(x) = h_{\sigma(\psi_C(x))}^{(2)}(\psi_C(x))$

for μ_1 -a.e. $x \in M_1$, where $\psi_C(\Gamma_1 g) = \Gamma_2 Cg$, $g \in G$.

The second conclusion of Theorem 1 says that τ_1 and τ_C defined by $\tau_C(x) = \tau_2(\psi_C(x)), x \in M_1$ are homologous along $h_t^{(1)}$ via v_C defined by

$$v_{C}(x) = \int_{0}^{\sigma(\psi_{C}(x))} \tau_{C}(h_{u}^{(1)}x) \, du, \quad x \in M_{1}.$$

Let us note that it follows from [1] that if $\psi:(M_1,\mu_{\tau_1})\to(M_2,\mu_{\tau_2})$ is an invertible measurable conjugacy between $h_t^{\tau_1}$ and $h_t^{\tau_2}$ then ψ is in fact measure preserving. The same is true when ψ is not invertible and M_2 is compact.

We assumed in Theorem 1 that $\bar{\tau}_1 = \bar{\tau}_2$. Suppose now that $a = \bar{\tau}_1 + \bar{\tau}_2 = b$ and let

$$\tilde{\tau}_1(x) = \frac{b}{a} \tau_1(g_{-s}x), \ s = \frac{1}{2} \log \frac{a}{b}, \quad x \in M_1, \ \tilde{\tau}_1 = b.$$

The commutation relation (*) shows that $h_t^{\tau_1}$ and $h_t^{\tau_1}$ are isomorphic via g_s , i.e. $g_s \circ h_t^{\tau_1} = h_t^{\tau_1} \circ g_s$, $t \in \mathbf{R}$. We get the following:

COROLLARY 1. Let $\tau_i \in \mathbf{K}(M_i)$, i=1, 2 and $\tilde{\tau}_1 = a$, $\tilde{\tau}_2 = b$. Suppose that $h_t^{\tau_1}$ is conjugate to $h_t^{\tau_2}$ via a measure preserving $\psi: (M_1, \mu_{\tau_1}) \rightarrow (M_2, \mu_{\tau_2})$. Then there are $C \in G$ and a measurable $\sigma: M_2 \rightarrow R$ such that $C \Gamma_1 C^{-1} \subset \Gamma_2$ and $\psi(x) = h_{\sigma(\psi_C(g_s x))}^{(2)} \psi_C(g_s x)$ for μ_1 -a.e. $x \in M_1$, where ψ_C is as in Theorem 1 and $s=\frac{1}{2}\log(a/b)$.

COROLLARY 2. Let $\tau_i \in \mathbf{K}(M_i)$, $i=1, 2, \ \bar{\tau}_1=a, \ \bar{\tau}_2=b$. Then $h_t^{\tau_1}$ is isomorphic to $h_t^{\tau_2}$ if and only if there is $C \in G$ such that $C\Gamma_1 C^{-1} = \Gamma_2$ and $\tau_1(x)$ and $(a/b)\tau_2(\psi_C(g_s x))$, $x \in M_1$ are homologous along $h_t^{(1)}$, where $s=\frac{1}{2}\log(\alpha/b)$. Every isomorphism between $h_t^{\tau_1}$ and $h_t^{\tau_2}$ has the form as in Corollary 1.

THEOREM 2. Let $h_t^{(i)}$ be the horocycle flow on $(M_i = \Gamma_i | G, \mu_i)$, $\Gamma_i \in \mathbf{T}$ and let $h_t^{\tau_i}$ be obtained from $h_t^{(i)}$ by a time change $\tau_i \in \mathbf{K}(M_i)$, i=1,2. Suppose that $h_p^{\tau_i}$ is ergodic for some $p \neq 0$, i=1,2 and there is a measure preserving $\psi: (M_1, \mu_{\tau_1}) \rightarrow (M_2, \mu_{\tau_2})$ such that

$$\psi h_p^{\tau_1}(x) = h_p^{\tau_2} \psi(x)$$

for μ_{τ_1} -a.e. $x \in M_1$. Then ψ is a conjugacy of the flows $h_t^{\tau_1}$ and $h_t^{\tau_2}$, i.e.

$$\psi h_t^{\tau_1}(x) = h_t^{\tau_2} \psi(x)$$

for μ_{τ_1} -a.e. $x \in M_1$ and all $t \in \mathbf{R}$.

For $\Gamma \in \mathbf{T}$ let $\tilde{\Gamma} = \{C \in G: C\Gamma C^{-1} = \Gamma\} \in \mathbf{T}$ be the normalizer of Γ in G. Let $\mathbf{K}_1(M)$ be the set of all $\tau \in \mathbf{K}(M)$ with $\bar{\tau} = 1$, $M = \Gamma | G$. We say that $\tau_1, \tau_2 \in \mathbf{K}_1(M)$ are homologous modulo $\tilde{\Gamma}$ if there is $C \in \tilde{\Gamma}$ such that τ_1 and $\tau_C = \tau_2 \circ \psi_C$ are homologous along h_t . Corollary 2 says that there is a one-to-one correspondence between the isomorphism classes of h_t^{τ} , $\tau \in \mathbf{K}_1(M)$ and the homology classes of $\tau \in \mathbf{K}_1(M) \mod \tilde{\Gamma}$.

Let f_t be a m.p. flow on a probability space (X, μ) and let $\Psi(f_t)$ be the set of all isomorphisms $\psi: X \to X$ such that $\psi f_t(x) = f_t \psi(x)$ for μ -a.e. $x \in X$ and all $t \in \mathbb{R}$, i.e. ψ commutes with every f_t , $t \in \mathbb{R}$. We say that $\psi_1, \psi_2 \in \Psi(f_t)$ are equivalent if $\psi_2 = f_p \circ \psi_1$ a.e. for some $p \in \mathbb{R}$. Let $\varkappa(f_t)$ denote the set of equivalence classes in $\Psi(f_t)$. We define a group operation in $\varkappa(f_t)$ by $[\psi_1] \cdot [\psi_2] = [\psi_1 \circ \psi_2]$, where $[\psi]$ denotes the equivalence class of ψ . The group $\varkappa(f_t)$ is called the commutant of f_t (see [6]).

It follows from Corollary 2 that if $\tau \in \mathbf{K}(M)$ and $\psi \in \Psi(h_i^{\tau})$ then there are $C \in \tilde{\Gamma}$ and a measurable $\sigma_C: M \to M$ unique up to an additive constant such that τ and $\tau_C = \tau \circ \psi_C$ are homologous along h_i and $\psi = h_{\sigma_C}^{\tau} \circ \psi_C$ a.e. This implies that

$$\varkappa(h_i^{\mathsf{r}}) = \{ [h_{\sigma_c}^{\mathsf{r}} \psi_C] : C \in \widehat{\Gamma} \}.$$

The map $\pi: \varkappa(h_t^r) \to \Gamma \setminus \overline{\Gamma}$ defined by $\pi[h_{\sigma_c}^r \psi_c] = \Gamma C$, $C \in \overline{\Gamma}$ is a group isomorphism from $\varkappa(h_t^r)$ onto a subgroup of $\Gamma \setminus \overline{\Gamma}$. The group $\Gamma \setminus \overline{\Gamma}$ is finite, since $\Gamma \in T$. We get the following:

COROLLARY 3. If $\tau \in \mathbf{K}(M)$ then the commutant $\varkappa(h_t^r)$ is finite and is isomorphic to a subgroup of $\Gamma \setminus \tilde{\Gamma}$. If $\Gamma = \tilde{\Gamma}$ or τ is not homologous to τ_C for any $C \in \tilde{\Gamma}$ different from the identity then the commutant $\varkappa(h_t^r)$ is trivial.

In view of [2] we get:

COROLLARY 4. All the above results hold for time changes Hölder continuous in the direction of K with the Hölder exponent greater than $\frac{1}{2}$ (in particular, C^1 -functions in the direction of K) and bounded together with their reciprocals.

Summarizing, we conclude that if $\tau \in \mathbf{K}(M)$ then h_t^{τ} inherits all the rigid properties of h_t found in [6].

Finally, let us note that for any $\Gamma_1, \Gamma_2 \in \mathbf{T}$ the horocycle flows $h_t^{(1)}$ and $h_t^{(2)}$ are Kakutani equivalent (see [4, 7]). This means that there is a time change $\tau_1: M_1 \rightarrow \mathbf{R}^+$ such that $h_t^{(2)}$ is isomorphic to $h_t^{\tau_1}$. It follows from [3] that τ_1 can be assumed differentiable and bounded on M_1 , but some partial derivatives of τ_1 may be unbounded. Our Corollary 4 shows that there is no such a τ_1 with bounded τ_l^{-1} and bounded partial derivatives unless Γ_1 and Γ_2 are conjugate in G.

I am grateful to C. Moore for proving [2] at my request.

1. Preliminaries

Let $p: G \rightarrow M = \Gamma \setminus G$, $\Gamma \in \mathbf{T}$ be the covering projection $p(g) = \Gamma g$, $g \in G$. Let

$$G_t g = g \cdot \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}$$
 and $H_t g = g \cdot \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix}$, $g \in G, t \in \mathbb{R}$

be the geodesic and the horocycle flows on G, covering g_t and h_t on M respectively. We shall also consider the flow $H_t^*g = g \cdot \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ on G, covering the flow $h_t^*(\Gamma g) = \Gamma H_t^*g$ on M. We have

$$G_t \circ H_s = H_{se^{2t}} \circ G_t$$

$$G_t \circ H_s^* = H_{se^{-2t}}^* \circ G_t$$
(1.1)

 $t, s \in \mathbb{R}$. We shall assume without loss of generality that the Riemannian metric in G is such that the length of the orbit intervals $[g, G_t g], [g, H_t g]$ and $[g, H_t^* g]$ is $t, g \in G$. We shall denote by d the metric on G (or on M) induced by this Riemannian metric.

For $g \in G$ and a, b, c > 0 denote

$$U(g; a, b, c) = \{ \tilde{g} \in G : \tilde{g} = H_r H_z^* G_p g \text{ for some } |p| \le a, |z| \le b, |r| \le c \}$$

$$U(g;\varepsilon) = U(g;\varepsilon,\varepsilon,\varepsilon).$$

We have

$$U(g; a, b, c) = g \cdot U(\mathbf{e}; a, b, c)$$

where e denotes the identity element of G. It follows from (1.1) that

$$G_{\tau} U(g; a, b, c) = U(G_{\tau} g; a, b e^{-2\tau}, c e^{2\tau}), \quad \tau \in \mathbb{R}$$

Denote $W(g) = \{H_s^*G_t g: t, s \in \mathbb{R}\}$. The set W(g) is called the stable leaf of g for the geodesic flow G_t . Let

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in U(\mathbf{e}; \varepsilon), \quad \varepsilon > 0.$$

Suppose that for s>0 there is q(s)>0 such that

 $H_{q(s)}g \in W(H_s \mathbf{e}).$

The function q(s) is uniquely defined by s and g and

 $H_s g = H_{r(s)} H_{z(s)}^* G_{p(s)}(H_s \mathbf{e})$ q(s) = s + r(s)

where

$$e^{p(s)} = (d-bs)^{-1}$$

 $z(s) = b e^{p(s)}$
 $r(s) = -e^{p(s)}(bs^2 + Ls - c)$
 $L = a - d.$
(1.2)

One can compute that if

$$g = G_p H_z^* \mathbf{e}$$

then

where

$$H_{q(s)}g = G_{\alpha}H_{\beta}^*(G_pH_z^*H_s\mathbf{e})$$

(1.3)

for some $0 < L_1$, $L_2 \le 2$, if z and p are sufficiently small.

 $|\alpha| \leq L_1 |q(s) z|, \quad |\beta| \leq L_2 |z\alpha|$

For $0 < \eta < 1$ and

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in U(\mathbf{e}; \varepsilon)$$

denote

$$E = E(\mathbf{e}, g, \eta) = \{s \in \mathbf{R}^+ : |bs^2 + Ls| \le 4s^{1-\eta}\}.$$

The set *E* consists of at most two connected components $E_0=E_0(\mathbf{e}, g, \eta)=[0, l_0]$ and $E_1=E_1(\mathbf{e}, g, \eta)=[l_1, l_2]$ for some $l_i=l_i(\mathbf{e}, g, \eta)>0$ i=0, 1, 2 and $l_0 \leq l_1 \leq l_2$, where E_1 might be empty. One can compute that

$$|b| \leq \frac{\tilde{D}}{l_0^{1+\eta}}, \quad |L| \leq \frac{\tilde{D}}{l_0^{\eta}}$$

for some $\tilde{D} > 0$. This implies via (1.2) that

$$|z(s)| \le \frac{D}{l_0^{1+\eta}}, \quad |p(s)| \le \frac{D}{l_0^{\eta}}$$
 (1.4)

for some 0 < D < 100 and all $0 \le s \le l_0$, if $\varepsilon > 0$ is sufficiently small.

For $x, y \in G$, $y \in U(x; \varepsilon)$ denote $l_0(x, y, \eta) = l_0(e, x^{-1}y, \eta)$ and for $0 < r \le l_0(x, y, \eta)$ denote

$$B(x, y, \eta) = \{(H_s x, H_{q(s)} y): 0 \le s \le r\}.$$
(1.5)

The set $B(x, y, \eta)$ will be called the (ε, η) -block of x, y of length r. Expression (1.4) shows that

$$H_{q(s)} y \in U\left(H_s x; \frac{D}{l_0^{\eta}}, \frac{D}{l_0^{1+\eta}}, 0\right)$$

for all $0 \le s \le r$.

2. Dynamical properties of h_t

In this section we shall prove the following

LEMMA 2.1 (Basic). Let h_t be the horocycle flow on $(M=\Gamma|G,\mu)$, $\Gamma \in \mathbf{T}$. Given $0 < \eta < 1$, $0 < \omega < 1$ and m > 1, there are $\gamma = \gamma(\eta) > 0$, $0 < \theta = \theta(\gamma) < 1$, a compact $Y = Y(\gamma, \omega) \subset M$ with $\mu(Y) > 1 - \omega$ and $0 < \varepsilon = \varepsilon(Y, m) < 1$ possessing the following property. Let $u \in Y$, $v \in U(u; \varepsilon)$, and a subset $A \subset \mathbf{R}^+$ satisfy the following conditions (i) $0 \in A$, (ii) if $s \in A$ then $h_s u \in Y$ and there is t(s) > 0 increasing in s such that $h_{t(s)} v \in U(h_s u; \varepsilon)$, (iii)

 $|(t(s')-t(s))-(s'-s)| \le (s'-s)^{1-\eta}$ for all $s, s' \in A$ with $\max\{(s'-s), (t(s')-t(s))\} \ge m$. Then

(1) if $\lambda \in A$ and $l(A \cap [0, \lambda])/\lambda > 1 - \theta/8$ then there is $s_{\lambda} \in A \cap [0, \lambda]$ such that

$$h_{t(s_{\lambda})} v \in U\left(h_{s_{\lambda}}u; \frac{D}{\lambda^{2\gamma}}, \frac{D}{\lambda^{1+2\gamma}}, \varepsilon\right)$$

for some D>0, where l(C) denotes the length measure of C,

(2) if $A \cap [0, \lambda] \neq \emptyset$ for all $\lambda \ge \lambda_0$ and $l(A \cap [0, \lambda])/\lambda \ge 1 - \theta/8$ for all $\lambda \in A$ with $\lambda \ge \lambda_0$ then $v = h_p u$ for some $p \in \mathbf{R}$.

Let us introduce some notations. Let I be an interval in **R** and let J_i , J_j be disjoint subintervals of I, $J_i = [x_i, y_i]$, $y_i < x_j$ if i < j. Denote $d(J_i, J_j) = l[y_i, x_j] = x_j - y_i$.

We shall use the following lemma whose proof in [5] is due to R. Solovay.

LEMMA 2.2. Given $\gamma > 0$, there is $0 < \theta = \theta(\gamma) < 1$ such that if I is an interval of length t (t is big) and $\alpha = \{J_1, ..., J_n\}$ is a partition of I into black and white intervals such that

- (1) $d(J_i, J_j) \ge [\min \{l(J_i), l(J_j)\}]^{1+\gamma}$ for any two black $J_i, J_j \in \alpha$
- (2) $l(J) \leq 3t/4$ for any black $J \in a$
- (3) $l(J) \ge 1$ for any white $J \in \alpha$

then $m_w(t, \alpha) \ge \theta$, where $m_w(t, \alpha)$ denotes the total relative measure of white intervals of α on I.

For given $0 < \eta < 1$, $0 < \omega < 1$ and m > 1 we shall now specify the choice of γ , θ , Y and ε in Lemma 2.1.

First we choose $0 < \gamma < \eta/2$ satisfying

$$\frac{2}{1+\gamma} - 1 + \eta > 1 + 2\gamma. \tag{2.1}$$

The reason for this choice will be clear later.

Let $\theta = \theta(\gamma)$ be as in Lemma 2.2.

Since Γ is discrete, there are a compact $K \subset M$, $\mu(K) > 1 - 0.1 \min \{\gamma, \omega\}$ and $0 < \Delta < 1$ such that

if
$$x \in p^{-1}(K) = \tilde{K}$$
, $d(x, y) < \Delta$ and
 $d(H_t x, DH_s y) < \Delta$ for some $e \neq D \in \Gamma$ (2.2)
then max $\{|t|, |s|\} \ge m$.

8

This implies that

if
$$x \in \hat{K}$$
, $d(x, y) < \Delta$ and $d(x, \mathbf{D} \cdot y) < \Delta$
for some $\mathbf{D} \in \Gamma$, then $\mathbf{D} = \mathbf{e}$. (2.3)

Since the geodesic flow g_t is ergodic on (M, μ) , given $\omega > 0$ there are a compact $\bar{Y} = \bar{Y}(\omega) \subset M$, $\mu(\bar{Y}) > 1 - 0.1\omega$ and $t_0 = t_0(\bar{Y}) > 1$ such that

if
$$w \in \overline{Y}$$
, $t \ge t_0$ then the relative length measure
of K on $[w, g_{-t}w]$ is greater than $1-0.2\gamma$. (2.4)

Set $Y=K\cap \overline{Y}$, $\mu(Y)>1-0.2\omega$.

Let $\rho > 1$ be such that

$$\frac{1}{2}\log \varrho > t_0$$
 and $100\varrho^{-0.1\gamma} < \Delta/6.$ (2.5)

Now we choose $0 \le \varepsilon \le \Delta$ so small that if $g \in W_{\varepsilon}(\mathbf{e})$, $g \in G$, then

$$l_0(e, g, \eta) > \max\{\varrho, m\}.$$
 (2.6)

(See (1.4).)

Thus $0 < \gamma, \theta, \varepsilon < 1$ and $Y \subset M$ have been chosen. The reason for these choices will become clear later.

Now let us describe a construction used in the proof of Lemma 2.3 below.

Let $u \in Y$, $v \in W_{\varepsilon}(u)$. We say that $(x, y) \in G \times G$ cover (u, v) if $y \in W_{\varepsilon}(x)$ and p(x)=u, p(y)=v. Let $B(x, y, \eta)$ be the (ε, η) -block of x, y of length r defined in (1.5). The set

$$B(u, v, \eta) = pB(x, y, \eta) = \{(h_s u, h_{q(s)}v): 0 \le s \le r\}$$

will be called the (ε, η) -block of u, v of length $r \leq l_0(x, y, \eta) = l_0(u, v, \eta)$. We shall write

 $B(u, v, \eta) = \{(u, v), (h_r u, h_{q(r)} v)\} = \{(u, v), (\bar{u}, \bar{v})\}$

emphasizing that (u, v) is the first and (\bar{u}, \bar{v}) is the last pair of the block $B(u, v, \eta)$. It follows from (1.4) that $h_{q(s)}v=h_{z(s)}^*g_{p(s)}(h_s u)$ where

$$|p(s)| \le \frac{D}{l_0^{\eta}}, \quad |z(s)| \le \frac{D}{l_0^{1+\eta}}$$
 (2.7)

for all $s \in [0, r]$, where $l_0 = l_0(u, v, \eta)$.

Henceforth the symbol D will always mean a positive constant which can be chosen less than 100 if $\varepsilon > 0$ is sufficiently small.

Let $\beta = \{B_1, ..., B_n\}$, $B_i = \{(u_i, v_i), (\bar{u}_i, \bar{v}_i)\}$ i=1, ..., n be a collection of pairwise disjoint (ε, η) -blocks on the orbit intervals $[u_1, h_\lambda u_1]$, $[v_1, h_{t(\lambda)}v_1]$ for some large $\lambda, t(\lambda) > 0$, such that $\bar{u} = h_1 u_1$, $\bar{v} = h_1 v_2$, v_1

$$u_n = h_{\lambda} u_1, \quad v_n = h_{t_i} v_1,$$
$$u_i \in Y, \quad v_i \in W_{\varepsilon}(u_i), \quad \bar{v}_i \in W_{\varepsilon}(\bar{u}_i)$$
$$u_i = h_{s_i} u_1, \quad v_i = h_{t_i} v_1, \quad \bar{u}_i = h_{\bar{s}_i} u_1, \quad \bar{v}_i = h_{\bar{i}_i} v_1$$

for some s_i , t_i , \bar{s}_i , $\bar{t}_i > 0$, $\bar{s}_i < s_j \leq \lambda$, $\bar{t}_i < t_j \leq t(\lambda)$ if i < j, i, j = 1, ..., n.

Let $(x_i, y_i) \in G \times G$, $y_i \in W_{\varepsilon}(x_i)$ cover (u_i, v_i) . Although $v_j \in W_{\varepsilon}(u_j)$ it is not necessarily true that $H_{i_i-i_i}y_i \in W_{\varepsilon}(H_{s_i-s_i}x_i)$, but there is a unique $\mathbf{D} \in \Gamma$ such that

$$\mathbf{D} \cdot \mathbf{y}_j \in W_{\varepsilon}(\mathbf{x}_j) \tag{2.8}$$

where $y_j = H_{t_i - t_i} y_i$, $x_j = H_{s_i - s_i} x_i$. We shall write

$$(u_i, v_i) \stackrel{\Gamma}{\sim} (u_j, v_j)$$
 if $\mathbf{D} \neq \mathbf{e}$ in (2.8)
 $(u_i, v_i) \stackrel{\mathbf{e}}{\sim} (u_j, v_j)$ if $\mathbf{D} = \mathbf{e}$ in (2.8).

This definition does not depend on the choice of $(x_i, y_i) \in G \times G$ covering (u_i, v_i) . For B_i , $B_j \in \beta$, i < j we write

$$d(B_i, B_j) = s \quad \text{if} \quad u_j = h_s \bar{u}_i$$
$$B_i \stackrel{\Gamma}{\sim} B_j \quad \text{if} \quad (u_i, v_i) \stackrel{\Gamma}{\sim} (u_j, v_j)$$
$$B_i \stackrel{e}{\sim} B_j \quad \text{if} \quad (u_i, v_i) \stackrel{e}{\sim} (u_j, v_j).$$

We shall impose on β the following conditions

$$s_{j} - s_{i} > l_{0}(u_{i}, v_{i}, \eta)$$

$$|(t_{j} - t_{i}) - (s_{j} - s_{i})| \leq 2(s_{j} - s_{i})^{1 - \eta}$$

$$|(\tilde{t}_{j} - t_{i}) - (\tilde{s}_{j} - s_{i})| \leq 2(\tilde{s}_{j} - s_{i})^{1 - \eta}$$
if $i < j$ and $B_{i} \stackrel{e}{\sim} B_{j}$, (2.9)
$$|(t_{j} - \tilde{t}_{i}) - (s_{j} - \tilde{s}_{i})| \leq 2(s_{j} - \tilde{s}_{i})^{1 - \eta}$$
if $i < j$ and $B_{i} \stackrel{\Gamma}{\sim} B_{j}$.

10

Now let us construct a new collection $\beta_{\nu} = \{\tilde{B}_1, \dots, \tilde{B}_k\}$ by the following procedure.

Take $B_1 \in \beta$ and consider the following two cases. Case (i). There is no $j \in \{2, ..., n\}$ such that $(u_1, v_1) \stackrel{e}{\sim} (u_j, v_j)$. In this case we set $\tilde{B}_1 = B_1$. Case (ii). There is $j \in \{2, ..., n\}$ such that $(u_1, v_1) \stackrel{e}{\sim} (u_j, v_j)$. Let $(x_1, y_1) \in G \times G$ cover (u_1, v_1) and let $x_j = H_s x_1$, $y_j = H_{q(s)} y_1$, where $s = s_j - s_1$. We have $t_j - t_1 = q(s)$ and (x_j, y_j) cover (u_j, v_j) . Let

$$E = E(x_1, y_1, \eta) = [0, l_0] \cup [l_1, l_2], \quad l_i = l_i(x_1, y_1, \eta), \quad i = 0, 1, 2$$

be as in section 1. Expression (2.9) shows that $s \in [l_1, l_2]$. Denote

$$F(x_1, y_1, \eta) = \{s \in \mathbf{R}^+ : |bs^2 + Ls| \le 4l_2^{1-\eta}\}$$

where

$$g = x_1^{-1} y_1 = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$$

and L=a-d (see (1.2)). The set $F(x_1, y_1, \eta)$ consists of at most two connected components $F_0=[0, l]$ and $F_1=[l, l_2]$ where $l>l_0(x_1, y_1, \eta)$, $l< l_1$ and $l_2-l=l$ if $F_1\neq\emptyset$.

One can compute as in section 1 that if $H_{q(s)}y_1 = H^*_{z(s)}G_{p(s)}(H_sx_1)$ then

$$|z(s)| \leq \frac{Dl_2^{l-\eta}}{l^2}, \quad |p(s)| \leq \frac{Dl_2^{l-\eta}}{l}$$
 (2.10)

for all $s \in [0, l]$. To define \tilde{B}_1 for the case (ii) we consider the following two possibilities: (a) $\tilde{l}-l > l^{1+\gamma}$. In this case we set $\tilde{B}_1 = B_1$. (b) $\tilde{l}-l \le l^{1+\gamma}$. Then

$$l \leq l_2 \leq 3l^{1+\gamma}$$

This implies via (2.1), (2.10) and (1.2) that

$$|z(s)| \le \frac{D}{l_2^{1+2\gamma}}, \quad |p(s)| \le \frac{D}{l_2^{2\gamma}}$$
 (2.11)

for all $s \in [0, l_2]$. We set in this case $\tilde{B}_1 = \{(u_1, v_1), (\bar{u}_{j_1}, \bar{v}_{j_2})\}$, where

$$j_1 = \max \{ j \in \{2, ..., n\} : B_1 \sim B_i \}.$$

Thus $\tilde{B}_1 \in \beta_{\gamma}$ has been constructed. Suppose that $\tilde{B}_m = \{(u_{j_{m-1}+1}, v_{j_{m-1}+1}), (\bar{u}_{j_m}, \bar{v}_{j_m})\}, j_0=0$ has been constructed. To define \tilde{B}_{m+1} we apply the above construction to $B_{j_m+1} \in \beta$. Thus β_{γ} is completely defined. It follows from the construction that if i < j and $\tilde{B}_i \sim \tilde{B}_j$, \tilde{B}_i , $\tilde{B}_i \in \beta_{\gamma}$ then

$$d(\tilde{B}_i, \tilde{B}_j) > \varrho > 1 \quad \text{and} \quad d(\tilde{B}_i, \tilde{B}_j) > [l(\tilde{B}_i)]^{1+\gamma}.$$
(2.12)

It follows from (2.7), (2.11) and (2.6) that if $\tilde{B}_i = \{(u'_i, v'_i), (\bar{u}'_i, \bar{v}'_i)\}$ then

$$v_{i}' \in U\left(u_{i}'; \frac{D}{r_{i}^{2\gamma}}, \frac{D}{r_{i}^{1+2\gamma}}, 0\right)$$

$$\bar{v}_{i}' \in U\left(\bar{u}_{i}'; \frac{D}{r_{i}^{2\gamma}}, \frac{D}{r_{i}^{1+2\gamma}}, 0\right)$$

(2.13)

for some $r_i \ge \max\{\varrho, l(\tilde{B}_i)\}, i=1, ..., k$.

Let $u'_i = h_{\tau_i} u_1$, $\bar{u}'_i = h_{\bar{\tau}_i} u_1$. Denote $J_i = [\tau_i, \bar{\tau}_i] \subset [0, \lambda]$, i = 1, ..., k. We shall call J_i the black interval induced by \tilde{B}_i . The collection β_{γ} induces a partition α of $I = [0, \lambda]$ into black and white intervals. We shall denote

$$m_w(\beta_{\gamma}) = m_w(\alpha, \lambda).$$

LEMMA 2.3. Let $0 < \eta < 1$, $0 < \omega < 1$ and m > 1 be given. Let $\gamma = \gamma(\eta) > 0$, $0 < \theta = \theta(\gamma) < 1$, $Y = Y(\gamma, \omega) \subset M$ with $\mu(Y) > 1 - \omega$ and $0 < \varepsilon = \varepsilon(Y, m) < 1$ be chosen as above. Let $\beta = \{B_1, ..., B_n\}$, $B_i = \{(u_i, v_i), (\bar{u}_i, \bar{v}_i)\}$, $v_i \in W_{\varepsilon}(u_i)$, $\bar{v}_i \in W_{\varepsilon}(\bar{u}_i)$, i = 1, ..., n be a collection of pairwise disjoint (ε, η) -blocks on the orbit intervals $[u_1, h_\lambda u_1]$, $[v_1, h_{t(\lambda)}v_1]$ such that $u_i, \bar{u}_i \in Y, i = 1, ..., n$ and (2.9) holds for β . Suppose that $m_w(\beta) < \theta$. Then there is $B \in \beta_{\gamma}$ such that $l(B) > 3\lambda/4$.

Proof. First let us show that

$$d(B', B'') > [\min\{l(B'), l(B'')\}]^{1+\gamma}$$
(2.14)

for any $B' \neq B'' \in \beta_{\gamma}$. Indeed, suppose on the contrary that there are $B' \neq B'' \in \beta_{\gamma}$ with $l(B') \leq l(B'')$ such that

$$d(B', B'') \le [l(B')]^{1+\gamma}.$$
(2.15)

It follows then from (2.12) that $B' \stackrel{\Gamma}{\sim} B''$. Let

$$B' = \{(u', v'), (\bar{u}', \bar{v}')\}$$
$$B'' = \{(u'', v''), (\bar{u}'', \bar{v}'')\}$$
$$u'' = h_s \bar{u}', v'' = h_t \bar{v}'.$$

We shall assume for simplicity that s, t>0. We have

$$s \leq [l(B')]^{1+\gamma}, \quad t \leq 3s \tag{2.16}$$

13

by (2.15) and (2.9).

Let $(x, y) \in G \times G$ cover (u'', v'), $(\bar{x}, \bar{y}) \in G \times G$ cover (\bar{u}', \bar{v}') and $x = H_s \bar{x}$. We have

$$y = \mathbf{D} \cdot H_t \bar{y}$$
 for some $\mathbf{e} \neq \mathbf{D} \in \Gamma$ (2.17)

since $B' \stackrel{\Gamma}{\sim} B''$. It follows from (2.13) that

$$x \in U\left(\bar{y}; \frac{D}{r^{2\gamma}}, \frac{D}{r^{1+2\gamma}}, s\right) \quad \text{and}$$

$$\mathbf{D} \cdot \bar{y} \in U\left(x; \frac{D}{r^{2\gamma}}, \frac{D}{r^{1+2\gamma}}, -t\right)$$

(2.18)

for some $r \ge \max \{\varrho, l(B')\}$. Also

$$0 < s, t \le 3r^{1+\gamma}$$
 by (2.16) (2.19)

Let $\tau_0 = \frac{1}{2} \log r^{1+1.5\gamma}$, $\tau_0 > t_0$ by (2.5). Since $u'' \in Y \subset \hat{Y}$ it follows from the definition of \tilde{Y} and t_0 in (2.4) that the relative length measure of K on $[u'', g_{-\tau_0}u'']$ is greater than $1 - 0.2\gamma$. This implies that there is τ satisfying

$$(1-0.2\gamma)\tau_0 < \tau \le \tau_0$$

such that $g_{-\tau}u'' \in K$ and therefore

$$z = G_{-\tau} x \in p^{-1}(K) = \bar{K}.$$
 (2.20)

We have using (2.18) and (1.1)

$$z \in U\left(G_{-\tau}\bar{y}; \frac{D}{r^{2\gamma}}, \frac{De^{2\tau}}{r^{1+2\gamma}}, \frac{s}{e^{2\tau}}\right)$$

$$\mathbf{D} \cdot G_{-\tau}\bar{y} \in U\left(z; \frac{D}{r^{2\gamma}}, \frac{De^{2\tau}}{r^{1+2\gamma}}, \frac{-t}{e^{2\tau}}\right)$$
(2.21)

where

$$r^{1+1.1\gamma} < r^{(1+1.5\gamma)(1-0.2\gamma)} < e^{2\tau} \le e^{2\tau_0} = r^{1+1.5\gamma}$$

This implies via (2.21), (2.19) and (2.5) that

$$d(G_{-\tau}\bar{y},z) < \Delta$$
 and $d(\mathbf{D} \cdot G_{-\tau}\bar{y},z) < \Delta$

and that

$$D = e$$
 by (2.3) and (2.20)

which contradicts (2.17). Thus we proved (2.14). It also follows from the proof that if $B' \stackrel{\Gamma}{\sim} B'', B', B'' \in \beta_{\gamma}$, then

$$d(B', B'') > \varrho > 1.$$

This and (2.12) imply that

$$d(B',B'') > \varrho > 1$$

for all $B' \neq B'' \in \beta_{\gamma}$.

Now let α be the partition of $I=[0, \lambda]$ into black and white intervals induced by β_{γ} . We have using (2.12) and (2.14)

> l(J) > 1 for every white $J \in \alpha$ $d(J_i, J_j) > [\min \{l(J_i), l(J_j)\}]^{1+\gamma}$ for any two black $J_i, J_j \in \alpha$.

Also

$$m_w(\alpha,\lambda) \leq m_w(\beta) < \theta$$

by the condition of the lemma. It follows then from Lemma 2.2 that there is a black $J \in \alpha$ with $l(J) > 3\lambda/4$. This says that there is $B \in \beta_{\gamma}$ such that $l(B) > 3\lambda/4$. This completes the proof. Q.E.D.

Proof of basic Lemma 2.1. For given $0 < \eta < 1$, $0 < \omega < 1$ and m > 1 we choose $\gamma = \gamma(\eta) > 0$, $0 < \theta = \theta(\gamma) < 1$, a compact $Y = Y(\gamma, \omega) \subset M$, $\mu(Y) > 1 - \omega$ and $0 < \varepsilon = \varepsilon(Y, m) < 1$ as above.

Let $u \in Y$, $v \in U(u; \varepsilon)$ and let $A \subset \mathbb{R}^+$ satisfy (i)-(iii). For $\lambda \in A$ denote

$$A_{\lambda} = A \cap [0, \lambda]$$

and assume that

$$l(A_{\lambda})/\lambda > 1 - \frac{\theta}{8}.$$
 (2.22)

Let us construct a collection $\beta(\lambda)$ of pairwise disjoint (ε, η) -blocks as in Lemma 2.3. To do this take u, v and set $u_1=u, v_1=v$. Let $(x_1, y_1) \in G \times G$ cover (u_1, v_1) and let RIGIDITY OF TIME CHANGES FOR HOROCYCLE FLOWS

$$\bar{s}_1 = \sup \{ s \in A_\lambda \cap [0, l_0(x_1, y_1, \eta)] \colon H_{t(s)} y_1 \in U(H_s x_1, \varepsilon) \}.$$

Let B_1 be the (ε, η) -block of u_1, v_1 of length $\bar{s}_1, B_1 = \{(u_1, v_1), (\bar{u}_1, \bar{v}_1)\}$, where $\bar{u}_1 = h_{\bar{s}_1} u_1 \in Y$, since Y is compact.

To define B_2 we take

$$s_2 = \inf \{ s \in A_{\lambda} : s > \bar{s}_1 \}$$
$$t(s_2) = \inf \{ t(s) : s \in A_{\lambda}, s > \bar{s}_1 \}$$

and apply the above procedure to

$$u_2 = h_{s_2} u_1, \quad v_2 = h_{t(s_2)} v_1.$$

It is clear that $u_2 \in Y$, since Y is compact. This process defines a collection $\beta(\lambda) = \{B_1, ..., B_n\}$ of (ε, η) -blocks on the orbit intervals $[u_1, h_\lambda u_1]$, $[v_1, h_{t(\lambda)} v_1]$, $B_i = \{(u_i, v_i), (\bar{u}_i, \bar{v}_i)\}, u_i, \bar{u}_i \in Y, i=1, ..., n$. Let

$$u_{i} = h_{s_{i}} u_{1}, \quad \bar{u}_{i} = h_{\bar{s}_{i}} u_{1}$$
$$v_{i} = h_{t_{i}} v_{1}, \quad \bar{v}_{i} = h_{\bar{t}_{i}} v_{1}, \quad i = 1, 2, ..., n$$

Suppose that $B_i \stackrel{\Gamma}{\sim} B_j$, i < j. Then

$$\max\{s_i - \bar{s}_i, t_i - \bar{t}_i\} \ge m$$

by (2.2) and our choice of ε . This implies via (iii) that

$$|(t_j - \bar{t}_i) - (s_j - \bar{s}_i)| \leq (s_j - \bar{s}_i)^{1-\eta}.$$

Suppose that $B_i \stackrel{e}{\sim} B_j$, i < j. It follows from the construction of B_i , B_j that

$$s_i - s_i \ge l_0(u_i, v_i, \eta) > m$$

and therefore

$$|(t_j - t_i) - (s_j - s_i)| \le (s_j - s_i)^{1 - \eta}$$
$$|(\bar{t}_j - t_i) - (\bar{s}_j - s_i)| \le (\bar{s}_j - s_i)^{1 - \eta}$$

by (iii). This implies that

$$s_i - s_i > l_0(u_i, v_i, \eta)$$

and that B_i and B_j are disjoint.

Thus $\beta(\lambda)$ satisfies all conditions of Lemma 2.4. We have

$$m_w(\beta(\lambda)) < \theta$$

by (2.22), since each $s \in A_{\lambda}$ belongs to a black interval induced by $\beta(\lambda)$. This implies by Lemma 2.3 that there is $B_{\lambda} \in \beta_{\gamma}(\lambda)$, $B_{\lambda} = \{(u_{\lambda}, v_{\lambda}), (\bar{u}_{\lambda}, \bar{v}_{\lambda})\}$ such that

 $l(B_{\lambda}) > 3\lambda/4.$

It follows then from (2.13) that

$$v_{\lambda} \in U\left(u_{\lambda}; \frac{D}{\lambda^{2\gamma}}, \frac{D}{\lambda^{1+2\gamma}}, 0\right).$$
(2.23)

This proves (1) with s_{λ} such that $h_{s_{\lambda}}u=u_{\lambda}$.

Now let $A_{\lambda} \neq \emptyset$ for all $\lambda \ge \lambda_0$ and let

$$l(A_{\lambda})/\lambda > 1 - \frac{\theta}{8} \tag{2.24}$$

for all $\lambda \in A$ with $\lambda \ge \lambda_0$. It follows from (2.24) that there are $\lambda_n \in A$, $\lambda_n \ge \lambda_0$, $n=1, 2, ..., \lambda_n \rightarrow \infty$, $n \rightarrow \infty$ such that

$$\lambda_n < \lambda_{n+1} < \frac{9}{8}\lambda_n, \quad n = 1, 2, \dots.$$

Let $B_{\lambda_n} \in \beta_{\gamma}(\lambda_n)$ be as above. We have

$$l(B_{\lambda_n})>3\lambda_n/4.$$

This and (2.25) imply that

$$B_{\lambda_n} \cap B_{\lambda_{n+1}} \neq \emptyset, \quad n = 1, 2, \dots$$

and therefore

$$B_{\lambda_n} \subset B_{\lambda_{n+1}}, \quad n=1,2,\ldots.$$

This implies via (2.23) that

$$v_{\lambda_1} \in U\left(u_{\lambda_1}; \frac{D}{\lambda_n^{2\gamma}}, \frac{D}{\lambda_n^{1+2\gamma}}, 0\right)$$

for all λ_n , n=1,2,... This says that $v_{\lambda_1}=u_{\lambda_1}$ and therefore $v=h_p u$ for some $p \in \mathbf{R}$. Q.E.D.

3. The class K(M)

Let us recall that a positive measurable function τ on $M = \Gamma \setminus G$, $\Gamma \in \mathbf{T}$ belongs to $\mathbf{K}(M)$, if τ and τ^{-1} are bounded and

$$\left| \int_{M} \varphi(x) \varphi(h, x) \, d\mu \right| \leq D|t|^{-\alpha}. \tag{3.1}$$

for some $D=D(\tau)>0$, $0<\alpha=\alpha(\tau)<1$ and all $t\neq 0$, where $\varphi=\tau-\overline{\tau}$.

LEMMA 3.1. Let $\varphi: M \to \mathbb{R}$ be measurable, bounded, $\tilde{\varphi}=0$ and let (3.1) hold for φ with some $D(\varphi)$, $\alpha(\varphi)>0$. Then given $\omega>0$ there are $P=P(\omega)\subset M$ with $\mu(P)>1-\omega$ and m=m(P)>0 such that if $x \in P$ then

$$\left|\int_0^t \varphi(h_u x) \, du\right| \leq t^{1-\alpha'}$$

for all $t \ge m$, where $\alpha' = \alpha'(\varphi) = \alpha(\varphi)/8$.

Proof. Denote

$$s_t(x) = \int_0^t \varphi(h_u x) \, du$$
$$C(t) = \int_M \varphi(x) \, \varphi(h_t x) \, d\mu.$$

We claim that

$$\int_{M} \left[s_{t}(x) \right]^{2} d\mu \leq \tilde{D} t^{2-\alpha}$$
(3.2)

for some D > 0 and all t > 0, where $\alpha = \alpha(\varphi)$ is as in (3.1). Indeed, we have using (3.1)

$$\int_{M} [s_{t}(x)]^{2} d\mu = \int_{M} \left(\int_{0}^{t} \int_{0}^{t} \varphi(h_{s}x) \varphi(h_{u}x) ds du \right) d\mu$$
$$= \int_{0}^{t} \int_{0}^{t} C(u-s) ds du \leq 2 \int_{0}^{t} \left(\int_{0}^{t} |C(v)| dv \right) ds$$
$$\leq \frac{2D}{1-\alpha} t^{2-\alpha} = \bar{D} t^{2-\alpha}.$$

It follows from (3.2) that

$$\mu\{x \in M: |s_t(x)| \ge t^{1-\alpha/4}\} \le \tilde{D}t^{-\alpha/2}.$$
(3.3)

2-868282 Acta Mathematica 156. Imprimé le 10 mars 1986

Denote

$$A_{t} = \{x \in M : |s_{t}(x)| < t^{1-\alpha/4}\}, \quad t > 0$$
$$p_{n} = n^{4/\alpha}, \quad n = 1, 2, \dots.$$

We have using (3.3)

$$\mu(A_{p_n}) \ge 1 - \frac{\bar{D}}{n^2}, \quad n = 1, 2, \dots$$

Given $\omega > 0$, let $k_0 = k_0(\omega)$ be such that

$$\bar{D}\sum_{k\geq k_0}\frac{1}{k^2} < \omega$$

and let $P=P(\omega)=\bigcap_{k\geq k_0}A_{p_k}$. We have

$$\mu(P) > 1 - \omega$$

and if $x \in P$ then

 $|s_{p_k}(x)| < p_k^{1-\alpha/4}$

for all $k \ge k_0$.

Now let $t \ge p_{k_0}$ and let $k \ge k_0$ be such that

$$p_k < t \leq p_{k+1}$$
.

One can compute that

$$p_{k+1} - p_k = Q p_k^{1 - a/4}$$

for some Q>0 and all $k=1, 2, \ldots$. This implies that

$$t = p_k + q$$

where $0 < q \leq Qp_k^{1-\alpha/4}$. For $x \in P$ we have using (3.2)

$$|s_{t}(x)| \leq |s_{p_{k}}(x)| + \left| \int_{p_{k}}^{p_{k}+q} \varphi(h_{u}x) \, du \right| \leq \bar{Q}p_{k}^{1-\alpha/4} < \bar{Q}t^{1-\alpha/4}$$

for some \bar{Q} >0, since φ is bounded. This completes the proof.

Q.E.D.

18

4. Time changes and a conjugacy ψ

In this section we shall prove Theorem 1.

Let $M_i = \Gamma_i | G, \ \Gamma_i \in \mathbf{T}$ and let $\tau_i : M_i \to \mathbf{R}^+$ be a time change for the horocycle flow $h_i^{(i)}$ on $(M_i, \mu_i), \ i=1, 2$. Suppose that $\tau_i \in \mathbf{K}(M_i)$ and let

$$\int_{M_i} \tau_i d\mu_i = a > 0$$

$$\varphi_i = \tau_i - a$$

$$\sup_{x \in M_i} \{\tau_i(x), \tau_i^{-1}(x)\} \leq K$$
(4.1)

for some K > 1, i = 1, 2.

We shall assume without loss of generality that a=1. Let $h_t^{\tau_i}$ be obtained from $h_t^{(i)}$ by the time change τ_i and let $\psi: (M_1, \mu_{\tau_1}) \rightarrow (M_2, \mu_{\tau_2})$ be measure preserving and

$$\psi h_t^{r_1}(x) = h_t^{r_2} \psi(x)$$
 (4.2)

for μ_{τ_i} -a.e. $x \in M_1$ and all $t \in \mathbf{R}$, where $d\mu_{\tau_i}(x) = \tau_i(x) d\mu_i(x)$, i=1,2.

Let $0 < \alpha'_i = \alpha'(\varphi_i) < 1$ be as in Lemma 3.1 for $\varphi_i = \tau_i - 1$, i = 1, 2 and let

$$\eta = \frac{1}{2} \min \{ a_1', a_2' \}.$$

Let $\gamma = \gamma(\eta) > 0$ and $0 < \theta = \theta(\gamma) < 1$ be chosen as in Lemma 2.1.

Since ψ is measure preserving and μ_{τ_i} is equivalent to μ_i , i=1,2, there is $0 < \omega < \theta / (200K^4)$ such that

$$\mu_1(\psi^{-1}(A)) < \frac{\theta}{200K^4}$$

whenever $\mu_2(A) < \omega$.

Let $P_i = P_i(\omega) \subset M_i$, $\mu_i(P_i) > 1 - \omega$ and $m_i = m_i(P_i) > 0$ be as in Lemma 3.1 for φ_i , i=1,2. If $x \in P_i$ then

$$\left|\int_0^t \varphi_i(h_u^{(i)}x)\,du\right| \leq t^{1-2\eta}$$

for all $t \ge \max\{m_1, m_2\}$, i=1, 2. This implies that there is $m_0 \ge \max\{m_1, m_2\}$ such that

$$\left| \int_{0}^{t} \varphi_{i}(h_{u}^{(i)}x) \, du \right| \leq \frac{1}{200K^{4}} t^{1-\eta} \tag{4.3}$$

for all $x \in P_i$ and all $t \ge m_0$, i=1, 2.

Set $m=2K^4m_0$ and let $Y=Y(\gamma, \omega)\subset M_2$, $\mu_2(Y)>1-\omega$ and $0<\varepsilon=\varepsilon(Y, m)<1$ be as in Lemma 2.1 for $h_t^{(2)}$ on (M_2, μ_2) .

Since $\psi: M_1 \to M_2$ is measurable, there is a compact $\Lambda \subset M_1, \mu_1(\Lambda) > 1 - \omega$ such that ψ is uniformly continuous on Λ . Let $0 < \delta < \varepsilon/2$ be such that if $u, v \in \Lambda, d(u, v) < \delta$ then $d(\psi(u), \psi(v)) < \varepsilon/2$. Let now $0 < \delta' < \delta$ be so small that if $x \in G$ and $y \in W_{\delta'}(x)$ then

$$H_{q(t)} y \in W_{\delta/2}(H_t x) \text{ and } |q(t)-t| \le \delta t$$
 (4.4)

for all $0 \le t \le 2K^2$ (see section 1 for the definition of q(t) and W_{δ}).

Let $X=P_1 \cap \Lambda \cap \psi^{-1}(P_2 \cap Y)$. We have

$$\mu_1(X) > 1 - \frac{\theta}{50K^4}$$

For $x \in M_i$ and $t \in \mathbf{R}$ denote

$$\xi_i(x,t) = \int_0^t \tau_i(h_u^{(i)}x) \, du, \quad i = 1, 2.$$

For $u \in M_1$ and $t \in \mathbf{R}$ let z(u, t) be defined by

$$\xi_1(u,t) = \xi_2(\psi(u), z(u,t)). \tag{4.5}$$

It follows from (4.2) that

$$\psi h_t^{(1)}(u) = h_{z(u,t)}^{(2)} \psi(u)$$

for μ_1 -a.e. $u \in M_1$ and all $t \in \mathbf{R}$. Expression (4.1) implies that

$$\frac{1}{K^2}t \le z(u,t) \le K^2t \tag{4.6}$$

for all $u \in M_1$, $t \ge 0$.

Since $h_t^{(1)}$ is ergodic, there are $V_n \subset M$, $\mu_1(V_n) > 1 - 2^{-n}$ and $t_n > 1$, $t_n \nearrow \infty$, $n \to \infty$ such that if $u \in V_n$ and $|t| \ge t_n/2$ then

$$|z(u, t) - t| \le |t| n^{-1}$$
 (4.7)

and

the relative length measure of X on
$$[u, h_t^{(1)}u]$$
 is at least $1 - \frac{\theta}{40K^4}$. (4.8)

We shall use (4.7) in the proof of Lemma 4.2 below and (4.8) in the proof of Lemma 4.1. Let $r_n = \frac{1}{2} \log t_n^{1+\gamma}$ and let $V = \bigcap_n g_{-r_n}^{(1)} V_n$, $\mu_1(V) > 0$.

LEMMA 4.1. Let $u, v \in V$ and $v = g_{\alpha}^{(1)} h_{\beta}^{*(1)} u$ for some $|\alpha|, |\beta| < \delta'$. Then

$$d(\bar{v}_n, g_a^{(2)} h_\beta^{*(2)} \bar{u}_n) \rightarrow 0, \quad n \rightarrow \infty,$$

where $\bar{u}_n = g_{-r_n}^{(2)} \psi g_{r_n}^{(1)} u$, $\bar{v}_n = g_{-r_n}^{(2)} \psi g_{r_n}^{(1)} v$.

Proof. Denote

$$u_n = g_{r_n}^{(1)} u, \quad v_n = g_{r_n}^{(1)} v$$

 $u'_n = \psi(u_n), \quad v'_n = \psi(v_n).$

We have using (4.4) and (1.3)

$$v_n = g_{\alpha}^{(1)} h_{\beta_n}^{*(1)} u_n$$

$$h_t^{(1)} u_n \in U\left(h_{-\beta_n}^{*} g_{-\alpha}^{(1)} h_{q(t)}^{(1)} v_n; \frac{4}{t_n^{\gamma}}, \frac{4}{t_n^{1+2\gamma}}, 0\right)$$

for all $0 \le t \le 2t_n$, where $\beta_n = \beta t_n^{-(1+\gamma)}$, n = 1, 2, ...

For $p \in \mathbf{R}$ denote

$$u_n(p) = h_p^{(1)} u_n, \quad v_n(p) = h_p^{(1)} v_n$$

$$s(p) = z(u_n, p), \quad a(p) = z(v_n, p).$$

We have

$$u'_{n}(s(p)) = h^{(2)}_{s(p)} u'_{n} = \psi u_{n}(p)$$
$$v'_{n}(a(p)) = h^{(2)}_{a(p)} v'_{n} = \psi v_{n}(p).$$

Let

$$B_n = \{ p \in [0, t_n] : u_n(p) \in X, v_n(q(p)) \in X \}, \quad n = 1, 2, \dots$$

It follows from (4.8) and (4.9) that

$$l(B_n)/t_n > 1 - \frac{\theta}{18K^4}, \quad n = 1, 2, ...$$
 (4.10)

(4.9)

if $\delta' > 0$ is sufficiently small. It follows from the definition of X that if $p \in B_n$ then

$$u_n(p), v_n(q(p)) \in P_1 \cap \Lambda$$
$$u'_n(s(p)), v'_n(a(q(p))) \in Y \cap P_2$$

and

$$v'_n(a(q(p))) \in U(u'_n(s(p)); \varepsilon/2), \quad n = 1, 2, \dots.$$
 (4.11)

Suppose that

$$s(p')-s(p) \ge m$$

for some $p, p' \in B_n$, p < p'. It follows then from (4.6) and (4.9) that

$$p'-p \ge m/K^2 = 2K^2m_0$$
$$q(p')-q(p) \ge K^2m_0$$
$$a(q(p'))-a(q(p)) \ge m_0$$

and therefore

$$|(s(p')-s(p))-(p'-p)| \le 0.01(s(p')-s(p))^{1-\eta}/K^2$$

$$|(a(q(p'))-a(q(p)))-(q(p')-q(p))| \le 0.01(q(p')-q(p))^{1-\eta}/K^2$$
(4.12)

by (4.3) and (4.6), since $u_n(p)$, $v_n(q(p)) \in P_1$ and $u'_n(s(p))$, $v'_n(a(q(p))) \in P_2$. Denote

$$p_0 = p_0(n) = \inf B_n, \quad \bar{p} = \bar{p}(n) = \sup B_n$$

$$s_0 = s_0(n) = s(p_0), \quad \bar{s} = \bar{s}(n) = s(\bar{p}), \quad \bar{s} - s_0 = \lambda_n$$

$$a_0 = a_0(n) = a(q(p_0)), \quad \bar{a} = \bar{a}(n) = a(q(\bar{p}))$$

$$B'_n = s(B_n) \subset [s_0, \bar{s}], \quad n = 1, 2, \dots$$

We can assume without loss of generality that p_0 , $\bar{p} \in B_n$. We have using (4.10) and (4.6)

$$\left(1 - \frac{\theta}{18K^4}\right) t_n \leq \bar{p} - p_0 \leq t_n$$

$$\frac{\left(1 - \frac{\theta}{18K^4}\right)}{K^2} t_n \leq \lambda_n \leq K^2 t_n$$

$$l(B'_n)/\lambda_n \geq 1 - \frac{\theta}{18}.$$
(4.13)

Let

$$A'_n = \{s_0\} \cup (B'_n \cap [s_0 + m, \bar{s}]).$$

We have

$$l(A'_n)/\lambda_n \ge 1 - \frac{\theta}{15} \tag{4.14}$$

if n is sufficiently large. It follows from (4.12) that

$$|(a(q(p))-a_0)-(q(p)-q(p_0))| \le 0.01(q(p)-q(p_0))^{1-\eta}/K^2$$

for all p with $s(p) \in A'_n$.

Denote

$$x_{n} = u_{n}(p_{0}), \quad y_{n} = v_{n}(q(p_{0}))$$

$$x'_{n} = \psi(x_{n}) = u'_{n}(s_{0}), \quad y'_{n} = \psi(y_{n}) = v'_{n}(a_{0})$$

$$y'_{n} \in U(x'_{n}; \varepsilon/2).$$
(4.15)

We have

$$x_n = g_{c_n}^{(1)} h_{b_n}^{*(1)} y_n$$

for some b_n , $c_n \in \mathbb{R}$, $n=1,2,\ldots$. Denote

$$w_n = g_{c_n}^{(2)} h_{b_n}^{*(2)} y'_n \in W_{\delta/2}(y'_n)$$

We have

 $w_n \in U(x'_n; \varepsilon)$

by (4.15). Let

$$A_n = \{s - s_0 : s \in A'_n\} \subset [0, \lambda_n]$$

We have

$$0, \lambda_n \in A_n, \quad l(A_n)/\lambda_n > 1 - \frac{\theta}{15} \quad \text{and if } s \in A_n \text{ then } h_s^{(2)} x'_n \in Y.$$
(4.16)

Let $\chi: [0, 2K^2 t_n] \rightarrow \mathbf{R}$ be defined by

$$H_{\chi(p)}\,\bar{w}_n \in W_{\delta/2}(H_p\,\bar{y}'_n)$$

where $(\bar{w}_n, \bar{y}'_n) \in G \times G$ cover (w_n, y'_n) . The function χ for w_n, y'_n is analogous to the function q for u_n, v_n . One can see that

$$\chi(q(p')-q(p))=p'-p$$

for every $p, p' \ge p_0$. For $s=s(p)-s_0 \in A_n$ let

$$t(s) = \chi(a(q(p)) - a_0).$$

We have using (4.11)

$$h_{t(s)}^{(2)} w_n \in W_{\delta/2}(h_{a(q(p))}^{(2)} y'_n)$$
 and $h_{t(s)}^{(2)} w_n \in U(h_s^{(2)} x'_n; \varepsilon)$ (4.17)

for all $s \in A_n$ with $s=s(p)-s_0$.

Expressions (4.16) and (4.17) show that the subset $A_n \subset [0, \lambda_n]$ satisfies conditions (i)-(ii) of Lemma 2.1 with x'_n , w_n instead of u, v respectively. We claim that A_n satisfies (iii), too. Indeed, let us show that if $s, s' \in A_n$, s < s' and

$$\max\left\{(t(s')-t(s)), (s'-s)\right\} \ge m$$

then

$$|(t(s') - t(s)) - (s' - s)| \le (s' - s)^{1 - \eta}.$$
(4.18)

So let s' = s(p'), s = s(p), s < s', $s, s' \in A_n$ and suppose that

$$s'-s \ge m$$
.

Denote

$$a' = a(q(p')), \quad a = a(q(p)).$$

We have using (4.12)

$$|(s'-s)-(p'-p)| \le 0.01(s'-s)^{1-\eta}/K^2$$

$$|(a'-a)-(q(p')-q(p))| \le 0.01(q(p')-q(p))^{1-\eta}/K^2.$$
(4.19)

Also

$$t(s') - t(s) = \chi(a') - \chi(a)$$

$$|(a - a_0) - (q(p) - q(p_0))| \le 0.01(q(p) - q(p_0))^{1 - \eta} / K^2.$$

This implies that

$$\chi(a) = (p - p_0) + f \tag{4.20}$$

where $|f| \le 0.02t_n^{1-\eta}/K^2$. Let

$$h_{p-p_0}^{(1)} x_n = g_{c(p)}^{(1)} h_{b(p)}^{*(1)} (h_{q(p)-q(p_0)}^{(1)} y_n).$$

It follows from (4.9), (1.3) and (4.20) that

$$h_{\chi(a)}^{(2)} w_n \in U\left(g_{c(p)}^{(2)} h_{b(p)}^{*(2)}(h_a^{(2)} y_n'); \frac{0.02t_n^{-\eta}}{K^2}; \frac{0.02t_n^{1-\eta}}{K^2}, 0\right).$$

This implies that

$$|(\chi(a') - \chi(a)) - (p' - p)| \le 0.08(s' - s)^{1 - \eta}$$

by (4.19), (1.2) and (4.6). This and (4.19) show that

$$|(\chi(a')-\chi(a))-(s'-s)| \leq (s'-s)^{1-\eta}$$

or

$$|(t(s')-t(s))-(s'-s)| \leq (s'-s)^{1-\eta}.$$

Thus we have proved (4.18) assuming that $s'-s \ge m$. Similarly, we can prove (4.18) assuming that $t(s')-t(s) \ge m$.

Thus $A_n \subset [0, \lambda_n]$ satisfies all conditions of Lemma 2.1. Using this lemma and (4.14) we conclude that there is $s_n \in A_n$ with

$$h_{t(s_n)}^{(2)} w_n \in U\left(h_{s_n}^{(2)} x'_n; \frac{D}{\lambda_n^{2\gamma}}, \frac{D}{\lambda_n^{1+2\gamma}}, \varepsilon\right).$$

$$(4.21)$$

Let $s_n = s(p_n) - s_0$, $a_n = a(q(p_n)) - a_0$. We have via (4.9)

$$h_{t(s_n)}^{(2)} w_n \in U\left(h_{-\beta_n}^{*(2)} g_{-\alpha}^{(2)} h_{a_n}^{(2)} y_n'; \frac{2K^2}{t_n^{\gamma}}, \frac{2K^2}{t_n^{1+2\gamma}}, 0\right)$$

This implies via (4.21) that if we denote $s(p_n) = \bar{s}_n$, $a(q(p_n)) = \bar{a}_n$ then

$$h_{\hat{a}_{n}}^{(2)}v_{n}' \in U\left(g_{\alpha}^{(2)}h_{\beta_{n}}^{*(2)}h_{\hat{s}_{n}}^{(2)}u_{n}';\frac{DK^{2}}{\lambda_{n}^{\gamma}},\frac{DK^{2}}{\lambda_{n}^{1+2\gamma}},\varepsilon\right).$$
(4.22)

We have

$$\bar{v}_n = g_{-r_n}^{(2)} v'_n, \quad \bar{u}_n = g_{-r_n}^{(2)} u'_n, \quad e^{2r_n} = t_n^{1+\gamma}.$$

This implies that

$$d(\bar{v}_n, g_\alpha^{(2)} h_\beta^{*(2)} \bar{u}_n) \to 0, \quad n \to \infty$$

by (4.22), (4.13) and (1.1), since $0 < \tilde{a}_n \le 2K^2 t_n$ and $0 < \tilde{s}_n \le t_n$. This completes the proof. Q.E.D.

LEMMA 4.2. If $u \in V$ and $v = h_p^{(1)}u$ for some $p \in \mathbb{R}$ then $d(\bar{u}_n, h_p^{(2)}\bar{v}_n) \rightarrow 0$ when $n \rightarrow \infty$, where \bar{u}_n, \bar{v}_n are as in Lemma 4.1.

Proof. Let $p \neq 0$ and let u_n , v_n , u'_n , v'_n and $s: \mathbb{R} \to \mathbb{R}$ be as in the proof of Lemma 4.1. We have

$$u_n \in V_n$$
$$v_n = h_{pt_n^{1+\gamma}}^{(1)} u_n$$
$$v'_n = h_{s(pt_n^{1+\gamma})}^{(2)} u'_n$$

It follows from (4.7) that

$$|s(pt_n^{1+\gamma}) - pt_n^{1+\gamma}| \le |p|t_n^{1+\gamma}n^{-1}$$

if n is so big that $|p| t_n^{1+\gamma} \ge t_n$. This implies that

$$d(\bar{v}_n, h_p^{(2)} \bar{u}_n) \leq |p| n^{-1}$$

if n is sufficiently large. This completes the proof.

COROLLARY 4.1. There are an $h_1^{(1)}$ -invariant subset $\Omega \subset M_1$ with $\mu_1(\Omega) = 1$ and a subsequence $\{n_k; k=1, 2, ...\} \subset \{n: n=1, 2, ...\}$ such that if $u \in \Omega$ then $\lim_{k \to \infty} \tilde{u}_{n_k} = \zeta(u) \in M_2$ exists and $\zeta(h_p^{(1)}u) = h_p^{(2)}\zeta(u)$ for all $p \in \mathbb{R}$, $u \in \Omega$.

Proof. Let $M_2 = \bigcup_{n=1}^{\infty} K_n$, where K_n are compact and $\mu_2(M_2 - K_n) < 2^{-n}$, n = 1, 2, Denote

$$K_n = M_2 - K_n$$

$$F_n = g_{-r_n}^{(1)} \psi^{-1} g_{r_n}^{(2)} \tilde{K}_n, \quad n = 1, 2, \dots.$$

We have

$$\sum_{n=1}^{\infty} \mu_1(F_n) < \infty.$$

Let

 $F = \{u \in M_1: u \text{ belongs to finitely many } F_n\}.$

By the Borel-Cantelli lemma

$$\mu(F) = 1. \tag{4.23}$$

Q.E.D.

If $u \in F$ then \bar{u}_n belongs to finitely many \bar{K}_n . This implies that there is a subsequence $n_k(u)$, k=1,2,... such that $\bar{u}_{n_k(u)}$ converges in M_2 .

Let $V \subset M_1$, $\mu_1(V) > 0$ be as in Lemmas 4.1 and 4.2. In view of (4.23) we can assume that $V \subset F$. Since $\mu_1(V) > 0$, there is $u^0 \in V$ such that

$$\nu(V \cap W_{\delta'}(u^0)) > 0$$

where ν denotes the Riemannian volume on the stable leaf $W(u^0)$. Since $u^0 \in F$, there is a subsequence $n_k = n_k(u^0)$ such that $\bar{u}_{n_k}^0$ converges in M_2 . Let

$$\Omega = \{h_p^{(1)}w: p \in \mathbf{R}, w \in V \cap W_{\delta'}(u^0)\}.$$

The set Ω is $h_t^{(1)}$ -invariant and $\mu_1(\Omega) > 0$. Since $h_t^{(1)}$ is ergodic, $\mu_1(\Omega) = 1$. It follows then from Lemmas 4.1 and 4.2 that $\lim_{k\to\infty} \bar{u}_{n_k} = \zeta(u)$ exists for every $u \in \Omega$ and $\zeta(h_p^{(1)}u) = h_p^{(2)}\zeta(u)$ for all $p \in \mathbb{R}$, $u \in \Omega$. This completes the proof. Q.E.D.

Proof of Theorem 1. Let $\Omega \subset M_1$, $\mu_1(\Omega) = 1$ and a subsequence $\{n_k\} \subset \{n\}$ be as in Corollary 4.1. We can assume without loss of generality that $\Omega = M_1$ and $\{n_k\} = \{n\}$. Thus

$$\lim_{n\to\infty}\bar{u}_n=\zeta(u)$$

exists for all $u \in M_1$ and

$$\zeta(h_n^{(1)}u) = h_n^{(2)}\zeta(u)$$

for all $p \in \mathbf{R}$, $u \in M_1$. This says that the map

$$\zeta: (M_1, \mu_1) \to (M_2, \mu_2)$$

is a measurable conjugacy between $h_t^{(1)}$ and $h_t^{(2)}$. In fact, ζ is measure preserving (see [6]). It follows from the rigidity theorem [6] that there are $C \in G$, $a \in \mathbb{R}$ such that

$$C\Gamma_1 C^{-1} \subset \Gamma_2$$
 and $\zeta(u) = h_a^{(2)} \psi_C(u)$ (4.24)

for μ_1 -a.e. $u \in M_1$, where $\psi_C(\Gamma_1 g) = \Gamma_2 Cg$, $g \in G$. It follows from Lemma 4.1 that if u, $v \in V$, $v = g_a^{(1)} h_\beta^{*(1)} u$ for some $|\alpha|$, $|\beta| < \delta'$ then

$$\zeta(v) = g_a^{(2)} h_{\beta}^{*(2)} \zeta(u).$$

This implies that a=0 in (4.24) and therefore

$$\zeta(u) = \psi_C(u)$$

for μ_1 -a.e. $u \in M_1$.

Now we have to show that

 $\psi(u) = h_{\sigma(u)}^{(2)} \psi_C(u)$

for some $\sigma(u) \in \mathbf{R}$ and μ_1 -a.e. $u \in M_1$.

Let $0 < \eta$, γ , θ , ω , $\varepsilon < 1$, $m \ge 1$, Y, $P_2 \subset M_2$ and P_1 be chosen as above.

Let $S \subset M_1$, $\mu_1(S) > 1 - \omega$ and $n_0 \ge 1$ be such that if $u \in S$ and $n \ge n_0$ then $d(\bar{u}_n, \zeta(u)) < \varepsilon$.

Let $n \ge n_0$ be fixed. Denote

$$\bar{X} = g_{-r_n}^{(1)}(P_1 \cap \psi^{-1}P_2) \cap S \cap \zeta^{-1}(Y).$$

We have

$$\mu_1(\bar{X}) > 1 - \frac{\theta}{50}.$$

Let $Q \subset M_2$, $\mu_1(Q) = 1$ be the generic set of \tilde{X} for $h_t^{(1)}$. This means that if $u \in Q$ then the relative length measure of \tilde{X} on $[u, h_t^{(1)}u]$ tends to $\mu_1(\tilde{X})$ when $t \to \infty$. Denote $\tilde{Q} = Q \cap \tilde{X}, \ \mu_1(\tilde{Q}) > 0$.

Let $u \in \bar{Q}$ and let

$$A = A(u) = \{s \in \mathbf{R}^+ : h_s^{(1)}u \in \bar{X}\}.$$

We have

$$l(A \cap [0, \lambda])/\lambda \to 1 - \frac{\theta}{50}$$
(4.25)

when $\lambda \rightarrow \infty$. Denote

$$v(u)=\bar{u}_n\in M_2.$$

For $s \in \mathbf{R}$ define t(s) by

$$h_{t(s)}^{(2)}v(u) = v(h_s^{(2)}u)$$

We have

28

$$h_{s}^{(2)}\zeta(u) \in Y$$

$$h_{t(s)}^{(2)}v(u) \in U(h_{s}^{(2)}\zeta(u);\varepsilon)$$
(4.26)

for all $s \in A$. Also $0 \in A$. This and (4.26) show that A satisfies conditions (i)-(ii) of Lemma 2.1 with $\zeta(u)$ and v(u) instead of u and v respectively.

Let us show that A satisfies (iii), too. Indeed, let s, $s' \in A$, s < s' and let

$$\max\{s'-s, t(s')-t(s)\} \ge m.$$

Suppose for definiteness that

$$s'-s \ge m$$

and show that

$$|(t(s')-t(s))-(s'-s)| \le (s'-s)^{1-\eta}.$$
(4.27)

Let

$$u_n(s) = g_{r_n}^{(1)}(h_s^{(1)}u)$$

and let $z: \mathbf{R} \rightarrow \mathbf{R}$ be defined by

 $z(p) = z(u_n(s), p)$

where z(u, p) is defined in (4.5). We have

$$u_{n}(s) \in P_{1}, \quad \psi(u_{n}(s)) \in P_{2}$$

$$u_{n}(s') = h_{t_{n}^{1+\gamma}(s'-s)}^{(1)} u_{n}(s)$$

$$\psi(u_{n}(s')) = h_{z(t_{n}^{1+\gamma}(s'-s))}^{(2)} \psi(u_{n}(s))$$

$$t(s') - t(s) = t_{n}^{-(1+\gamma)} z(t_{n}^{1+\gamma}(s'-s)).$$

It follows from (4.3) that

$$|z(t_n^{1+\gamma}(s'-s)) - t_n^{1+\gamma}(s'-s)| \le [t_n^{1+\gamma}(s'-s)]^{1-\eta}$$

and therefore

$$|(t(s')-t(s))-(s'-s)| \leq (s'-s)^{1-\eta}.$$

This proves (4.27) when $s'-s \ge m$. Similarly, we prove (4.27) when $t(s')-t(s) \ge m$.

Thus A=A(u), $u \in \overline{Q}$ satisfies all conditions of Lemma 2.1. Using this lemma and (4.25) we conclude that

 $v(u) = \bar{u}_n$ lies on the $h_t^{(1)}$ -orbit of $\zeta(u)$ for every $u \in \bar{Q}$.

We have

$$\zeta(g_{r_{u}}^{(1)}u) = g_{r_{u}}^{(2)}\zeta(u)$$

for μ_1 -a.e. $u \in M_1$. This implies that if we denote

$$Q_n = g_{r_n}^{(1)} \tilde{Q}, \quad \mu_1(Q_n) > 0$$

then

 $\psi(u) = h_{\sigma(u)}^{(2)} \, \zeta(u)$

for some $\sigma(u) \in \mathbf{R}$ and all $u \in Q_n$. The set

$$\tilde{\Omega} = \{ u \in M_1 : \psi(u) = h_{\sigma(u)}^{(2)} \zeta(u) \text{ for some } \sigma(u) \in \mathbf{R} \}$$

is $h_t^{(1)}$ -invariant and contains Q_n . This implies that

$$\mu_1(\bar{\Omega}) = 1$$

since $h_t^{(1)}$ is ergodic and $\mu_1(Q_n) > 0$. This completes the proof. Q.E.D.

Proof of Theorem 2. We can assume without loss of generality that p=1 in the theorem. So let $\tau_i \in \mathbf{K}(M_i)$ and $h_1^{\tau_i}$ be ergodic, i=1, 2. Let $\psi: (M_1, \mu_{\tau_1}) \rightarrow (M_2, \mu_{\tau_2})$ be m.p. and

$$\psi h_1^{\tau_1}(x) = h_1^{\tau_2} \psi(x)$$

for μ_{τ_1} -a.e. $x \in M_1$.

Let $0 < \eta$, γ , θ , ω , $\varepsilon < 1$, m > 1, Y, $P_2 \subset M_2$ and $P_1 \subset M_1$ be as above.

Since ψ is measurable, there is $\Lambda \subset M_1$, $\mu_1(\Lambda) > 1 - \omega$ such that ψ is uniformly continuous on Λ . Let $\delta > 0$ be such that if $u, v \in \Lambda$, $d(u, v) < \delta$ then $d(\psi(u), \psi(v)) < \varepsilon$. Let

$$Z = \Lambda \cap P_1 \cap \psi^{-1}(P_2 \cap Y), \, \mu_1(Z) > 1 - \frac{\theta}{50K^2}$$

and let Q be the generic set of Z for $h_1^{r_1}$, $\mu_1(Q)=1$. Let $\bar{Q}=Q\cap Z$, $\mu_1(\bar{Q})>0$. We claim that

30

RIGIDITY OF TIME CHANGES FOR HOROCYCLE FLOWS

if
$$u, v \in \bar{Q}$$
 and $v = h_p^{(1)}u$ for some $|p| < \delta$
then $\psi(v) = h_q^{(2)}\psi(u)$ for some $|q| < \varepsilon$. (4.28)

Indeed, let $\xi(p)$, r(p), $p \in \mathbf{R}$ be defined by

$$\int_0^{\xi(p)} \tau_2(h_s^{(2)}\psi(u)) \, ds = p = \int_0^{r(p)} \tau_2(h_s^{(2)}\psi(v)) \, ds$$

and let

$$B = \{ n \in \mathbb{Z}^+ : h_n^{\tau_1} u, h_n^{\tau_2} v \in \mathbb{Z} \}$$
$$A = \{ \xi(n+p) : n \in B, \ 0 \le p \le 1 \}.$$

We have

$$l(A \cap [0, \lambda])/\lambda > 1 - \frac{\theta}{50}$$
(4.29)

for all $\lambda \ge \lambda_0$. Also

$$h_{\xi(n)}^{(2)}\psi(u)\in Y \tag{4.30}$$

for all $\xi(n) \in A$ with $n \in B$. For $\xi = \xi(n+p) \in A$ define

$$t(\xi)=r(n+p).$$

If $\xi = \xi(n)$ for some $n \in B$ then

$$h_{t(\xi)}^{(2)}\psi(v) \in U(h_{\xi}^{(2)}\psi(u);\varepsilon).$$
 (4.31)

As in the proof of Theorem 1 we show that if $\xi = \xi(n) < \xi' = \xi(n')$, $n, n' \in B$ then

$$|(t(\xi') - t(\xi)) - (\xi' - \xi)| \le (\xi' - \xi)^{1 - \eta}$$
(4.32)

whenever

 $\max\left\{(t(\xi')-t(\xi)),\,(\xi'-\xi)\right\} \ge m.$

Arguing as in the proof of Lemma 2.1 we show that (4.29), (4.30), (4.31) and (4.32) imply that

$$\psi(v) = h_q^{(2)} \psi(u)$$

for some $|q| < \varepsilon$.

Thus we proved (4.28). We omit the rest of the proof, since it is completely similar to the proof of Theorem 3 in [6]. Q.E.D.

References

- [1] DANI, S. G., Dynamics of the horospherical flow. Bull. Amer. Math. Soc., 3 (1980), 1037-1039.
- [2] MOORE, C., Exponential decay of matrix coefficients. To appear.
- [3] ORNSTEIN, D. & SMORODINSKY, M., Continuous speed changes for flows. Israel J. Math., 31 (1978), 161–168.
- [4] RATNER, M., Horocycle flows are loosely Bernoulli. Israel J. Math., 31 (1978), 122-132.
- [5] The Cartesian square of the horocycle flow is not loosely Bernoulli. Israel J. Math., 34 (1979), 72-96.
- [6] Rigidity of horocycle flows. Ann. of Math., 115 (1982), 587-614.
- [7] Ergodic theory in hyperbolic space. Contemp. Math., 26.

Received March 26, 1984