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1. Introduction and main results 

A class of covering problems can be formulated as follows: Let K be a fixed "big set" 

and let B t , B z  . . . .  be a sequence of independent identically distributed random "small 

sets". We let N be the number of small sets required to cover K completely, i.e. 
�9 n N=mf{n:O 1B i K}, and ask for various properties of the random variable N. 

For example, K may be the unit circle and B; uniformly distributed arcs of a fixed 

length a; see Solomon [15], Chapter 4 for a discussion and references. More generally, 

the lengths of the arcs may be random; cf. Siegel [13], Siegel and Hoist [14], Jewell and 

Romano [9] and Janson [7]. 

One obvious generalization of this problem to two (and higher) dimensions is to let 

the big set be the surface of a sphere and the small sets be uniformly distributed 

spherical caps (with fixed or random radii); another generalization is to let the big set be 

a torus or a cube and the small sets be translates of some given set(s). Some results 

(different from ours) for the case of caps of fixed radius on a sphere have been obtained 

by Moran and Fazekas de St. Groth [11], Gilbert [6] and Peter [12]. Flatto and Newman 

[5] studied the more general problem of small geodesic balls on a compact Riemannian 

manifold, and obtained estimates for the distribution and the expectation of N. 

The purpose of this paper is to derive, for all the situations described above, the 

asymptotic distribution of N as the small sets are uniformly shrunk. In fact, we will 

more generally give the asymptotic distribution of the number of small sets required to 

cover every point of the big set at least m times (where m is a fixed positive integer), 

although most details of the proofs will be given for m= 1 only. 

In the case of subsets of R d or T d, we will for various technical reasons assume 

that the small sets are convex. (We conjecture that the results can be generalized to 
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non-convex sets with nice boundaries.) Thus, we assume that A is a random convex 

set, that X is uniformly distributed on a set V~R a and independent of A and that a is a 

positive scale factor and let the small sets be distributed as aA+X. As we will see in the 

final remark of Section 7, we should not take V=K since in that case the boundary of K 

may be the last part to be covered. To avoid complications at the boundary, we assume 

on the contrary t h a t / ~ W ,  and thus d(K, W)>0. However, this implies that, at least 

for small a, many of the small sets miss K completely. We may choose not to count 

such sets and thus define 

N' = #(i<~N: B i f) K*r 

This eliminates the influence of the set V. 

Another way to avoid boundary problems is to make everything periodic, i.e. take 

K=V=T d. In fact, the following theorem, and its proof, holds for sets K c V c T  d as 

well. 

We let IAI denote the Lebesgue measure of A and define r(A)=supxealX[. We 

assume that glA[>0. 

THEOREM 1.1. Suppose that K is a bounded subset of  R a, d>~l, with lagl=0, that 

I~cV ~ and that Ivl<oo. Suppose further that A is a random convex subset of  R a with 
gr(A)d+e<oo for some e>0, and that m is a positive integer. 

For a>0, let the small sets have the same distribution as aA+X, where X is 

uniformly distributed on V, and let Na, m be the number of small sets required to cover 

K m times. 

Let a(A) be the constant given by (5.3) and Corollary 7.4 and let U have the 

extreme value distribution ~(U~<u)=exp (-e-U). Then, as a->O, 

K d 
~ a--]~ N [KI 1) log log ~ +log ( m -  1)!-log a--> U. (1.1) (i) IVl a,m--log ~laA I - ( d + m -  

(ii) / f  

I{x: d(x, aK)<e}l = o(llog~l-b as e--->O, (1.2) 

and A4=f3 a.s., and N',  m is the number of  the small sets that actually meet K, then 

• [ l a A I  N'a m-log.~,K-~.,-(d+m-1)loglog~.,K-~.,+log(m-1)!-loga d--~ U. (1.3) 
K I ' ~laAi ~laAI 

Note that the condition (1.2), although stronger than [aKl=0, is very weak and e.g. 

satisfied for all convex sets. 
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For  the second version of  our  results, we let K be a C 2 compact  Riemannian 

manifold, i.e. a compact  C 2 manifold with a C ~ metric tensor. The metric tensor  

defines a metric on K, the geodesic distance, and a finite positive measure dr. We let 

the shaall sets be geodesic balls B(x, r)={y: there exists a curve of  length less than r 

between x and y}, and let the centres have the uniform distribution v(K)-ldv. 

THEOREM 1.2. Suppose that K is a C 2 compact d-dimensional Riemannian 

manifold, d>-l. Suppose further that R is a positive random variable with ~Ra+~<oo 

for some e>0 and that m is a positive integer. For a>0 ,  let Na, m be the number o f  

independent random geodesic balls B(X, aR), with X uniformly distributed on K 

(independently o f  R), that are needed to cooer K m times. 

Let b=Vd ~Rd/v(K), where Vd=:~d/2/F(d/2+ l) is the volume o f  the Euclidean unit 

sphere, and let a be the constant given by (9.24). Then as a->O, 

d 
badNa, m- log(baa)- l - (d+m-1) loglog(bad)- l+log(m- l ) ! - logc t - ->U,  (1.4) 

where U is as in Theorem 1. 

In particular, this applies to the problem of  covering the surface of  a sphere in 

R d + l  by small spherical caps of  fixed or random radii. If  the (d-dimensional) area of  

the sphere is normalized to be one, ba d in (1.4) may be replaced by (the expectation) of  

the area of  the small caps. 

Remarks. (1) For  arcs of  a non-random length on a circle, this was proved by 

Flatto [4]. (In this case d=  1 and ct= l.) 

(2) For  arcs of  random lengths on a circle and m = 1, this was proved by a different 

method in Janson [7]. It  was there shown that the moment  condition ~ R l + e <  oo in this 

case can be weakened to ~(RI(R>t))=o(l/lbgt) as t--->oo, but not to O(1/logt). Here  

and in the sequel I(. . .)  denotes the indicator function, i.e. I equals 1 when the condition 

inside the parenthesis holds, and 0 otherwise.  

(3) There  is also a zero-dimensional analogue, viz, the coupon collector 's  problem. 

Let  the big set be a finite set with n elements and let the small sets consist of  one 

element each (uniformly distributed). Then,  for m~> l, 

d 
N / n - l o g n - ( m - 1 ) l o g l o g n + l o g ( m - 1 ) !  --~ U, as n--> oo, 

ErdOs and Renyi  [2], which corresponds to (1.1) and (1.4) with a =  1. 

(4) There  exists a version of  Theorem 1.2 (similar to Theorem 1.1) when K is a 
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relatively compact subset of a Riemannian manifold and X is uniformly distributed in a 

neighborhood V. 

(5) The term 

  AINo 

in (1.1) is the average number of sets covering any fixed point (ignoring complications 

at the boundary). 

We note that the first order term in the asymptotic distributions is the logarithmic 

term. This term is independent of m, but the second order term (the log log) depends on 

m, and is furthermore the only term that explicitly depends on the dimension. The 

average volume of the small sets g]aA[ enters in an obvious, normalizing way, but the 

shapes of the small sets and the variation of their volumes influence the asymptotic 

distribution only through the third order term log a. (If d= 1, then a equals I and the 

asymptotic distribution is not influenced at all!) We will discuss this term in Section 9; 

for the moment we only note that a small value of a implies that the small sets cover 

efficiently compared to other sets of the same size. We refer the reader to the examples 

in Section 9 and the adjoining comments on the qualitative results that emerge. 

The paper is organized as follows. Section 2 contains a preliminary discussion on 

Poisson processes. The basic idea of the proof is to reformulate the problem as a 

problem for Poisson processes. This is done in Section 3. Sections 4 and 5 contain 

further preliminaries. The core of the proofs of the theorems follows in Section 6, and 

the proofs are completed in Sections 7 and 8. The geometric constant a(A) is discussed 

in Section 9, where it also is computed for several examples. 

Acknowledgements. I thank several of my colleagues for helpful discussions; in 

particular Sven-Erick Aim, Gunnar Br[invall, Allan Gut, and Lars Holst. 

Part of this research was carried out during a visit to the University of Lund. 

2. Poisson processes in general 

Our proof will be based on properties of Poisson processes in general spaces. Thus, we 

begin with their definition, cf. e.g. Kallenberg [10]. 

Let (f~, ~:) be a given measurable space. We let s be the set of extended integer- 

valued positive measures on (f~, ~:), i.e. the measures -= such that E(A)E {0, 1 .. . . .  0o} 

for every A E ~. Thus E-->E(A) is an extended integer valued function on (2 for each 

A E ~:, and we let ~ be the o-field on ~ generated by these functions. Hence, ff we 
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provide (~ ,  ~ )  with a probability measure 17, the mappings E~E(A) ,  A E ~, become 

random variables. Suppose that these random variables have the following properties, 

for some o-finite measure v on (g2, ~-): 

(i) if A E ~,  then E(A) has a Poisson distribution with expectation v(A) (if v(A)= oo, 
this is interpreted as E(A)=o0 a.s.); 

(ii) if A1, . . . ,A ,  are disjoint, then E(A1) . . . . .  -S(A,) are independent. 

We then say that ((2, ~ ,  17) describes a Poisson process in (f2, ~) with intensity v. A 

simple construction shows that for every o-finite measure v on (•, ~), there exists a 

unique measure 17 on ((2, ~T) that describes a Poisson process with intensity v, cf. [I0], 

pp. 7-9. 

In the definition above we regard the Poisson process as a random measure. We 

will use E to denote this random measure. However, E equals E 6~, for some (finite or 

infinite) sequence ~1, ~2 . . . .  of points in f2. (In fact, the Poisson process is constructed 

as such a sum in [10].) Consequently,  we may identify -- with the set {~i} and regard the 

Poisson process as a random (countable) subset of f2. We will often prefer this point of 

view and e.g. write t E E  for E({~))>0 and EU {~} for E+6~. 

There are two minor technical problems in this identification: if ,~ does not 

separate points in f~, then {~) is not unique, and, secondly, if v has point masses 

(atoms), then there may be repetitions in ~1, ~2 . . . .  so that some points in {~;} have to 

be counted more than once. We disregard these rather harmless complications, which 

in any case do not arise in our applications. 

If  f is a positive measurable function on f~ 'x  (2 (n~>0), we may for each E form the 

sum r. {f(~i . . . . .  ~n, E): ~1 . . . . .  ~,, are distinct elements of E}. 

We denote this sum by E'=j"(~I . . . . .  ~,, E). The (proof of the) following lemma 

shows that this sum is a measurable function of  the Poisson process, and provides a 

formula for its expectation. 

LEMMA 2.1. I f  f is a positive measurable function on ~ 'x(2 ,  then 

. . . . .  ' , ' = - ) =  l ' " ~  ~f(e'l . . . . .  ~ ' f ( ~ l  ogn, Y~ U {ogi}~) dv(O)l) ... dv(mn). (2.1) 
./ ./ 

Proof. By monotone convergence and linearity, it suffices to prove this formula 

when f is the indicator function of  a measurable subset of  A ' x  (2, with v(A)< o0. By the 

monotone class theorem, we may restrict ourselves t o f o f  the type I(~iEAi, i=1 ... n, 

and E(B/)ECj,j=I ... m), where m>~O, Ai, B jE  ~;, v (Ai)< ~176 , v(Bj)< ~176 and C:cZ. Subdi- 

viding the sets Ai, Bj and Cj we may further assume that B1 . . . . .  B,, are disjoint, each Ai 
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equals some Bj,, and Cj= {bj}. Thus 

f =  l(~i s i = 1... n, and E(Bj)= bj, i =  1... m). 

Put nj=#{i:  Ai=Bj},  j =  1 ... m. Then, with f a s  above, 

rtl  

E ' f ( 8 ,  . . . . .  ~,, E) = H (bj),j.I(E(Bj)= bj, j =  I ... m). 
I 

Thus the left-hand side of (2.1) equals 

m m 

1 1 

m 

~- by) = H v(Bj) ((bj-nj),) e 
I 

m 

= H v(BJ)"J'ff~(E(Bj)+nJ = bj, j= 1 ... m), 
1 

which equals the right-hand side. Q.E.D. 

Before we can formulate the second general property of Poisson processes, we 

need a definition. 

Definition. A real-valued function f of the Poisson process is increasing if 

f(E)~>f(E') for every two realizations E and E' such that E - E '  is a positive measure (i.e. 

E=E'  regarded as sets). An event EE ~ is increasing if its indicator function is 

increasing. 

In our applications E will be a random set of sets and we will study the event that a 

certain set is covered by E. This is obviously an example of an increasing event. 

The importance of this property lies in the following correlation inequality. 

LEMMA 2.2. I f  f and g are two increasing non-negative measurable functions o f  a 

Poisson process ~, then 

~(f(E) g(E)) I> ~f(E) ~g(E). (2.2) 

In particular, i f  E1 and E2 are two increasing events, 

~(E1 and E2) I> ~a(E1) ~(E2). (2.3) 

For a proof of this lemma and its relation to the FKG-inequality, see [8], Lemma 

2.1. 
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3. Poisson processes in particular 

We return to the situation of  Theorem 1.I. We will in the sequel assume that the 

random convex set A is defined on a probability space (f~A, ~a,/~) such that the event 

xEA is measurable for  every fixed x 6R a. 
We will in this section use the notation /~  for the distribution of aA. (For  

notational convenience we assume that/~,, is defined on the same space ~'~a of  convex 

sets.) Thus the small sets are defined as aA+X, where (aA, X) has the distribution 

,UaXlVl-i dx. 
Let  u be a fixed real number  and let 

2(a)=~aAl(log~aA~+(d+rn-1)loglog--~Ka-~A[-log(m-l)!+loga+u). (3.1) 

Then (1.I) may be written as 

N ) \ IV] " ' '  <<- NaAIZ(a) -'> e 

or, since ~9(N., m<~n)=~9(n sets cover m times) 

as a---~0 (3.2) 

~([vl~.(a) small sets cover K m times)---, e x p ( - e - " ) .  (3.3) 

It is easy to see that we here may replace the fixed number  I Vl;t(a) of  small sets by a 

random number  M with M~o(IV[2(a)) ,  i.e. M has a Poisson distribution with 
~M=WI~.(a) (and, of  course,  M independent  of  everything else). (See e.g. [7], p. 70, 

where this is done in detail.) Consequent ly ,  (1. I) is equivalent to 

Ba(M small sets cover K m times)---> exp ( - e - " ) .  (3.4) 

However, let ~v be a Poisson process  on ~ A X V  with intensity ]Vl)./~,,• = ~3,, a 

2/z,~ xdx. Then =v consists of  M, M-~o(lVI2),  independent  elements (aAi, Xi), each ~.~, a 

having the distribution l , .xlVI -I  dx, and the set {aA+x: (aA, x)~. E~,} , i s  nothing but 

the collection of  M small sets. With a minor abuse of notation, we let ~v denote this 

set also, and (3.4) is the same as 

~t~v  times) ~ exp ( -  e-") .  (3.5) ~.-~(a),a cover g rn 

Finally, we extend : v  -x , .  to a Poisson process Ea, . on f~a•  a with intensity ).l~a• 
Thus, ~ _wv -~,a--X,. U E ~ ,  where E v~ is a Poisson process with the same intensity on 3.,a 



9 0  S. JANSON 

f~ax V e. The number of sets of =v" that meet K is Poisson distributed with expecta- ~ 2 ,  a 

tion 

fof,((aa+x)nK,e 2d.dx=Xfof,(xeK-aA)d d. 
A A (3.6) 

=2~(K-aA)  fl W I. 

If r(aA)<d(K, W), (K-aA) 13 V e = 0, and otherwise 

IK- aA] <~ Cr(K- aA) d <~ C(r(g) + r(aA))d <~ Cr(aA)d < Cr(aA)a+ ~. 

Hence 

2(a) ~l(K-aA) f3 Vel<<.CA(a)ad+~gr(A)a+e=CA(a)aa+~---~O, as a--->0 (3.7) 

and ~(some set in =v~ meets K)--~0 whence (3.5) and hence (1.1) is equivalent to ~2(a), a 

~(2ata), a covers K m t imes )~  exp (-e-U). (3.8) 

This will be proved in Section 7. 

Similarly, since the number of sets in Ea, a that meet K is Poisson distributed with 

expectation 2~[K-aAI, it follows from (3.8) that 

~glK_aAi N" <~ ~g]aAl2(a) --->exp(-e-U), (3.9) 

which, since (1.2) implies that 

~lg-aal-lgl--o(]loga[-l),  as a ~ 0 ,  

yields (1.3). We omit the details. 

A similar argument is used in the proof of Theorem 1.2, see Section 8. 

4. Convex sets 

We will need some properties of convex sets in R d. We denote the surface measure, 

i.e. the d -  I dimensional Hausdorff measure, by a~. (We will no longer need oJ to denote 

points in f~.) I fA  is convex, then to(aA)<~Cr(A) d-1. 
Let D~o(x)={y: lY-xl<6 and (v, y - x ) < 0 )  (a hemisphere). 
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Definitions. A unit vector n is a normal to A at x if x E a A  and A t { y :  

( y - x ,  n)~<O}. 

A vector o4=0 is special forA1 . . . . .  An a t x  i f x E  r'f~SAi and O~AiDDao(x) for some 

6>0. 

A convex set has at least one normal at every point of 0A. Furthermore,  the 

boundary is o~-a.e, differentiable and thus, if the interior A ~ is non-empty, the normal 

is unique a.e. on 0.4. The significance of  the special vectors will become clear in 

Section 6. 

For  the remainder of this section we assume that A1,A2 . . . .  are fixed bounded 

convex sets in R a. We will prove several lemmas showing that random translates of 

these sets a.s. intersect in nice ways. The lemmas are intuitively obvious and more or 

less trivial to prove when the sets are e.g. spheres or polyhedra. We will nevertheless 

give complete proofs, but the reader that wants to come quickly to the point can skip 

these. 

LEMMA 4.1. (i) For a.e. {xi}t a, the intersection t'lda(Ai+xi) is a finite set. 

(ii) For a.e. {xi} d+l, the intersection t'l d§ a(Ai+x i) is empty. 

Proof. (i) It suffices to prove this for xi in a fixed large cube Q. Let  Q1 be a larger 

cube with d(Q, Q~)>~supr(Ai)+l. We put, for 0 < e < l ,  A~={x: d(x, OAi)<e } and note 
e ~  that [A~I.~Cie for some constants Ci<oo. Then 

�9 . .  In(a,+x,)ldx,...dx  = f Q f Q . . . f Q l ( x E A ~ + x i ,  i = l . . . d ) d x d x l . . . d X d  
1 

= IQ N (x-A~)Idx ~< IQ~I ]-[  lATI ~< Ce u. 
I 1 1 

(4.1) 

By Fatou 's  lemma, 

SS �9 .. liminfe-dlt'l(A~+xi) ldx I ... dxd<- C <  ~.  
e---,O 1 

(4.2) 

However, if x E t'lda(Ai+xi), then t3~(A~+x~) contains the ball with radius e centred at x. 

Hence 

d d 

r~ r) a(Ai-~-xi) ~ C l i m  inf e-dl t'l (A~ +xi) I 
1 e---,0 1 
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and thus 

... # rl O(Ai+x i) dXl.., dx a< ~.  (4.3) 
1 

(ii) is proved in the same way, or by using (i). Q.E.D. 

Remark. A different proof  shows by induction that r'l~ O(Ai+xi) a.e. has a finite 

(d-k)-dimensional Hausdorff  measure. 

LEMMA 4.2. Let  k>~l. For a.e. {xi}~ holds that if  xE  N~O(Ai+x i) and n i are nor- 

reals to Ai+x i at x, then {ni} ~ span a proper cone in R a. 

Proof. Let  F be the closed set {{xi}~ERak: N~(Ai+xi)~J }. Suppose that {xi} E F  

and that n; are normals to A~+x i at x but IE c ini=O for some c,.~>0 not all zero. If  

{x;+zi} E F, then there exists y E N~(Ai+xi+z~). Consequently, y - z i E  A,.+x~, whence 

(ni, x - (Y -Z i )  )>~O, i, ..., k, and 

ci(ni, zi) = ~_, ci(ni, zi)+ cini, x - y  = ci(ni, x - y + z i )  >10. (4.4) 
I l 

This restricts {zi} to a half-space in g dk. Consequently,  (xi} k is not a point of density 

o f F .  Since a.e. point in F is a point of  density, see e.g. [16], p. 12, this completes the 

proof. Q.E.D. 

LEMMA 4.3. (i) For a.e. {xi}~, i f  xE  N~a(Ai+xi), then XeaLIkl Ai+x i . 

n n o ~  n o (ii) For a.e. {xi} l, (U,(Ai+xi)) -U,(Ai+xi)  �9 

Proof. (i) Let  ne be normals at x. By Lemma 4.2 we may assume that there exists 

some vector v with (v, hi )>0,  i=1 . . .k.  Consequently,  x + t v ~  U~ A i q - x  i when t>0,  

and x ~ (U~ Ai+x i )~ 

(ii) Suppose that x~.(U~(Ai+xi))~ ~ If  the sets are indexed such that 

. (U l(Ai+xi)) �9 x~. mid-x  i for i =  1, .., k but not for i>k, then xE N~a(mi-Fxi) and xE k o 

The result follows from (i). Q.E.D. 

We denote the closed cone {E~cini: CliO} spanned by some vectors nl . . . . .  nk by 

Cone (ni . . . . .  nk). 

LEMMA 4.4. Let  k ~ l .  For a.e. {xi} k holds that if  v is special for  (Ai+xi} ~ at x and 

ni is a normal to Ai+xi at x, i= I ... k, then v E Cone (nl . . . . .  nk). 
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Proof. Suppose that v~ Cone(nl, ..., nk). Thus, there exists a vector e such that 

(v , e )<0  and (ni, e)>~O, i=1 ... k. Since, by Lemma 4.2, we may assume that there 

exists a vectorfwi th  (ni, f ) > 0 ,  it follows that with e'=e+ef, e>0 small, (o, e ' ) < 0  and 

(hi, e')>0, i= 1... k. Consequently, if 6>0, x+6e' ~ O~(Ai+xi) and v is not special at x. 

O.E.D. 

LEMMA 4.5. Let  l<.k<.d-1. For a.e. {xi} k, the set {v: :Ix such that v is special for  

{Ai+xi} ~ at x} has Lebesgue measure zero. 

Proof. Let Vx be the linear span of all special vectors for {Ai+xi} ~ at x. By Lemma 

4.4, we may assume that dim Vx<~k<d for every x. 

Let v be special at x and let D6o(x)r-O~(Ai+xi). Suppose that ly-xl<6 and that 

some vector w is special at y. Then y E n~ Ai+x i . If (o, y -x )>O,  then for some small 

e>0, x-e(y-x)cD~o(x)~(ok(A~+xi)) ~ and it follows, since each Ai+x i is convex, that 

a neighborhood of x is included in O~ Ai+x i . We exclude this by Lemma 4.3 (i) and 

conclude that ( y - x ,  v)<.O. Then, for some r/>0, D~(y)cD~(x) and v is special at y. 

Now, let el . . . . .  el, all special at x, be a basis of Vx. The above argument applied to 

each ej shows that there exists some 6>0 (which may be chosen the same for every j) 

such that if ly-xl<6 and Vy:~=O, then {ej}ll~.Vy and thus Vx=Vy. If furthermore 

dimVx=dimVy then necessarily Vx=Vy. Hence, for every l= l  . . . . .  d - l ,  the set {x: 

dim Vx=l} may be covered by balls where Vx is constant. Consequently, there is at 

most a countable number of different spaces Vx and the set of special vectors is 

included in the union of countably many hyperplanes. Q.E.D. 

LEMMA 4.6. For a.e. {xi} d, the set {v: there exist two different points x, x' such 

that v is special for  {Ai-t-Xi}dl both at x and at x'} has Lebesgue measure zero. 

Proof. Suppose that o is special at x and at x' and put y = x ' - x .  Let n i be a normal 

to Ai+xi at x. S i n c e x ' E n  d Ai+x i , (ni, y)<~O for i= l . . . d .  We study two cases 

separately. 

Case ( i) :  (ni, y)=O for all i. Then x+ty+eniCiAi+xi, when e>0. Since 

x+tyE Ai+x i by convexity for 0~<t<~l, {x+ty: 0~<t~<l} E ndo(Ai+xi). This is covered 

by Lemma 4,1 (i). 

Case (ii): (ni, y)<O for some i, say i=I .  Let  D~o(x)=O(Ai+xi). Hence, if 

e>0 is small, D~/2(x-ey)~D~(x)~tJa~(A,+x~). However, x - e y ~  A~+xl ,  and 
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x - e y  ~(Ai+xi) ~ i=2 .i. d, since otherwise xE(Ai+xi) ~ by convexity. It follows that v is 

special for a subset of {Ai+xi} ~ at x - e y .  Thus, this case is covered by Lemma 4.5. 

Q.E.D. 

LEMMA 4.7. Let  l>~l. For a.e. {xi)~ +l, the set 

d d+l 
{v: :IxE I'10(Ai+xi), y~. I'1 O(Ai+xi) such that (v, x - y )  = 0} 

1 /+i 

has Lebesgue measure zero. 

Proof. By Lemma 4.1 (i) and (ii) the sets NalO(Ai+xi) and Plta~[ O(Ai+x i) are, for a.e. 

{xi}l a+l, finite and disjoint. Thus, the set in question is the union of a finite number of 

hyperplanes. Q.E.D. 

5. Further preliminaries 

Let A be a random bounded convex set in R d as before and let 0 < 2 < ~  _We take a=  1 

for the time being and let E be the Poisson process E~, 1 defined in Section 3. 

LEMMA 5.1. ~(There  exist d + l  different sets B1 . . . . .  Ba+IEE such that 
N d+! aBi,~Tj)=O. 

Proof. Put f (Bl ,  ...,Bd+l)----l(Ndl +! OBi4=f2J ) and denote the sought probability by ~. 

Then, by Lemmas 2.1 and 4.1 (ii), 

~ <  ~ 'f(B ! . . . . .  Bd+ I) 

. . . . .  A d + l + X d + l ) d X , . . . d X d + i d ~ i ( A l ) . . . d l . i ( A d + l )  

--0 

Definition. A vector v*0  is admissible if 

(i) for k= l  .. . . .  d - I ,  

~(3B1 . . . . .  BkE ~ and x such that v is special for {Bi) ~ at x)=0; 

(ii) ~(3B1 . . . . .  Bd and x,x '  with x4=x' such that v is special 

(Bi}dl both at x and at x')=0; 

Q.E.D. 

for 
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(iii) ~(3B1 . . . . .  Bd, B'I,...,B'aE =- with {Bi}#{B~} and x ,x '  with ( u , x - x ' ) = O  such 

that v is special for {Bi} d at x and for {B'} d at x')=0. 

LEMMA 5.2. Almos t  every v E R d is admissible. 

Proof. We treat the three conditions one by one. 

(i) We may assume that B 1  . . . . .  Bk are different (otherwise we reduce k). We let 

fo(B1 . . . . .  Bk) = l (3x  such that o is special for {Bi} at x) 

and use Lemmas 2.1 and 4.5 and Fubini's theorem to conclude 

(ii) The possibility that two Bi coincide is covered by (i). The case that B~ . . . . .  Bd 

are different follows from Lemmas 2. I and 4.6 by the same argument. 

(ii) Similar, using Lemma 4.7. Q.E.D. 

Note that the property that u is admissible does not depend on 4. It is obviously 

invariant for a change of scale A---~aA and a normalization o--,o/Iol. 
We will perform an important change of variables in the next section and we 

compute the Jacobian here. Cf. Federer [3], Chapter 3.2 for changes of variables by 

Lipschitz mappings. 

LEMMA 5.3. Let  A! . . . . .  Aa be conoex subsets o f  R d. Then F: 

RdxOAIx...XCOAd---,(Ra) a defined by F(x, yl . . . . .  yd)=(x--yl . . . . .  x--ya) has a.e. a Ja- 

cobian that equals IDet (n,4yi))d[, where n,(Yi) is the normal to Ai at Yi. 

Proof. F is a Lipschitz mapping and thus a.e. differentiable. Since the Jacobian is a 

function of the first order derivatives, its value at (x, Yl . . . . .  Yd) remains unchanged if 

OA~ . . . . .  OAr are replaced by their respective tangent hyperplanes {y;+H;}, where 

Hi=n,(yi) • However, this linearized mapping F*:RdxHIx. . .XHd--- , (Ra) a with 

F*(x, zl . . . . .  Zd)={x--Yi--Zi} d (Yi are now held fixed!), equals the composition 

F 3 o (F2xI a) o F, where, with ni=n,(yi), 

FI: RaxI'IHi---~RdxlIHi, F l (x , { z i } )=(x , {x - (x ,  ni)ni-z i}) ,  

F2: Rd--~R d, F2(x)={(x, nl}} d, and 

F3: Rdxl-lHi---~(Rd) d, r3(fa;)~, (zi)d)={aini+zi) d" 
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It is obvious that F~ and F3 are measure-preserving.  Hence  

IDet r*l = IDet r21 = IDet (ni)l. 

This lemma motivates the following, 

Definition. Given d convex sets A! .. . . .  Ad, we let o3 denote the measure 

IDet(ni(Yi))dl&o(yO...&o(yd) on OAlx...• 

where ni(yi) is the normal to Ai at Yi. (Thus, d(o=ldto A...A dwl.) 

Q.E.D.  

We let, 

n 1 . . . . .  n k and let Cone ~ (nl . . . . .  nk) denote  its interior. 

We define, for  v E R d, if the interiors A~ . . . . .  A~ are nonempty,  

. . . . .  ad, v)=lal...Iadl(oECone(nl(Yl).l~.jo .. . . .  fl(Al nd(Yd))) d~ 

and 

as in Section 4, Cone(n1 . . . . .  nk) denote  the c losed  cone spanned by 

flo(A] .. . . .  Ad, V)=fa A . . ' s  I(vECone~ ... . .  na(Yd)))dt~, 
1 Ad 

(5.1) 

(5.2) 

and fl(A! . . . . .  Ad ,  V ) = f l o ( A l  . . . . .  A d, v)=0 if some A~ and further,  if A denotes our  

random convex set, 

a(A ,  v) = (d!)- l(NAI)-(d-l)~gfl(Al  . . . . .  A d, V), 

ao(A, v) = (d!)-I ($lAD-(d- l )$f lo(Al  . . . . .  A d, v), 

(5.3) 

(5.4) 

where AI . . . . .  Ad are independent  random sets with the same distribution as A. (We 

write the first argument of  a and ao as A although they actually are functionals of  the 

distribution # of  A.) Note  that the factors g~A I in a and ao make them homogeneous;  

a(aA, v)=a(A, v). Also, flo<.fl < . 11 d w(aAi) and thus 

ao<.a<~(~gw(OA))a(~glAl)l-d < oo if ~r(A)d < ~.  

and 
LEMMA 5.4. fl(ml, ...,Ad, V) =fl0(Al . . . . .  Ad, V) a.e. 

a(A, v) = ao(A, v) a.e. 

(5.5) 

(5.6) 
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Proof.  If B is a ball in R a, 

IB n Cone (nl(y0 . . . . .  nd(ya))l = IB n Cone ~ (nl(y0 .. . . .  nd(Ya))l. 

Hence, by the Fubini theorem 

~fl(Ai . . . . .  ad, V)dV= fBflo(al . . . . .  ad, V)dv, 

whence, since B is arbitrary, fl=flo for a .e .v .  Similarly, a=ao  for a .e .v .  Q.E.D. 

We will later (Corollary 7.4) show that in fact a(A,  v) equals a constant a(A) for 

a.e. v (this is the constant appearing in Theorem 1.I), and similarly that fl(A1, . , . ,Ad,  v) 

is a.e. independent of v. We do not know any direct proof of this fact of integral 

geometry. 

We will compute a for some special cases in Section 9. 

We also will need modified versions of these functionals. Let -='= (B: B E E and 

0r be our usual Poisson process with all sets containing 0 removed, and put, with 

D~o=D~o(O)={x: Ixl<6, (x, o ) < 0 ) ,  

fl+(A 1 . . . . .  A d, v, 2, 6) = fl(A 1 . . . . .  A d, v)/~( =- covers D~o), (5.7) 

f l - (a l '  .... a d ' v ' 2 ' 6 ) = f o  ""~OA I(vEC~176 .. . . .  nd(Yd))) 
Al d (5.8) 

x ~(=-' tJ {A i -Y i )  d cover D~o) do3 

if A~ . . . . .  A~#:O, and fl+=fl_=0 otherwise, and, parallelling the definitions above, 

a+(A, v, 2, 6) = (d!)-l(~glAl)~-d~+ = a / ~  (-= covers D~o) 

a_(A,  v, 2, 6) = (d!)-~(~[Al)l-d~fl_. 

Finally we define 

'~(A, 2 )  = 2d(~}A}) d -  i e-~.~Ai. 

(5.9) 

(5.10) 

(5.11) 

6. Covering a cylinder 

It will be convenient to do the central calculations on the infinite cylinder R•  d-1. 

We assume that r(A) is bounded above; ~(2r(A)>~6)=0 for some 6<1/2, and let in 

this section E denote a Poisson process on •A•215 d-l with intensity 2 d # x d x  

7-868282 Acta Mathematica 156. Imprim6 le 10 mars 1986 
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constructed as the process  of  random sets in R a studied in the preceding section. 

Locally,  the two processes  are the same, and the earlier lemmas hold for the process on 

the cylinder as well. 

For  simplicity, we will assume that m =  1 and leave the modifications for m > l  until 

the end of  Section 7. 

Let ,  for  t>~O, Ct be the cylinder [O,t)xTd-I=((s,x')ER• <t} a n d  

define r = r ( E ) = i n f  {s~0: (S, x ')  ~ t./E}. Hence ,  r>~t iff  Ct is covered by E. The main idea 

is, loosely speaking, to show that r is approximately exponentially distributed with 

parameter  ya.  

Le t  e denote  the vector  (I ,  0 . . . . .  0). 

LEMMA 6.1. Suppose that e is admissible and that 2r(A)<t~<l/2 a.s. Then the 

distribution o f  z is, apart f rom a point  mass at O, absolutely continuous with a density 

function qJ(t) satisfying 

y (A , ; t )a_(A ,e ,2 , tS )~(r>. t )<~qg( t )~y (A ,2 )a+(A,e ,2 ,  c))~(r>-t), t > 0 .  (6,1) 

Proof. Suppose that we have  proved this with A replaced by the random open set 

A ~ (note that a_+ and y are the same for A ~ as for A), and let E ~ be the corresponding 

Poisson process.  Using L e m m a  4.3(ii) it follows that a.s. U E ~  ~ and thus 

E ~ covers Ct~ covers Ct ~ However, for e>0,  ~9(C7 is covered)~<~(C/_~ is cov- 

e red)=~(r~>t -e) ,  whence ~a(C~' is covered)=~9(r>-t)=~9(Ct is covered), and thus the 

result for  A follows from the result  for  A ~ 

Hence ,  we may without loss of  generality assume that A is a random bounded open 

convex set. Then,  since T d-~ is compact ,  r = t  iff Ct is covered by E, but there exists 

an uncovered point x=(t,  x'). Let  B~ ... Bk be the sets B E E whose closure contain x. 

Thus xEt ' l~aB i and, if t>0,  e is special for  B1 . . . . .  Bk at x. We may ignore the 

possibility that k > d  by L e m m a  5. I and the possibility that k< d  by the assumption that 

e be admissible. Hence  k = d  and thus a.s. (with a common exceptional  null set for  all 

t>0) 

r =  t c~ 3 x =  ( t ,x ' )  and sets B I ..... Bd~E such that xE I"ld aBi , 

e is special for  B l . . . . .  B a at x, x r t.I E and E covers  C t. 

Since e is admissible, the point x and the sequence B~ . . . . .  Bd are a.s. unique (up to the 

ordering of  {Bi)). 

Le t  g be a positive measurable function on [0, 0o) with g(0)=0 and define 
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I g(t)'I(Z covers Ct and x ~ t.I E) when there exists 

a point x = (t, x ) E n d 8B~ such that e is special 

V2(B1 ..... Bd' Z) = I for B I . . . . .  B d at x, and t>0. 

L 0 otherwise. 

(6.2) 

Then, by the argument above, 

s  ~2(B ! ..... B d, Z) = d!g(r) a.s. (6.3) 

(d! terms, differing in the order of Bi . . . . .  Ba, equal g(r) while the others are zero). 

Hence, by Lemma 2.1, 

d,Eg(r) = ~ ... f g~p(A, +x, ..... ad+Xd,~ U {a;+x,}d)2d dx, ... dxddlt(a,).., dlt(ad). 
d ! 

(6.4) 

xl(e  is special for {Ai-Yi} d at 0)do). 

(6.8) 

We define 

q/(A 1 . . . . .  ad)=J. . . fSg lP(Al+xl , . . , ,ad+xd,  EO {A~+x~}dl)dXl...dx~ (6.5) 

and (6.4) may be written 

Eg(r) = ( d ! ) - l , ~ . d ~  e U)(A~ ..... Ad), (6.6) 

where A i, ..., Ad are independent random sets with the distribution/~. By the definition 

of ~0, the integrand in (6.5) is zero unless there exist x E R x T  a-1 and yiEOAi, 
i= 1 . . . . .  d, such that x=xi+y~. Hence, we make the change of variables x~=x-y~. This is 

a Lipschitz mapping of (RxTd- l )xOA!  x . . . xOAa into (RxTd-I) a and, by Lemma 

5.3, its Jacobian equals IDet(n,~i))dl a.e. where n,(yi) is the normal vector of A; at Yi. 

Consequently, with x=(t, x') (note that x~Ai+x-y~) and o3 as defined in Section 5, 

s176176 s s 
R*(A1 .. . . .  Ad)= ... g(g(t)l(gU{A~+x-Yi}~ covers Ct and x ~ O g )  

-1 AI d 
(6.7) 

xI(e is special for { A i + x - y y  at x))dtdx' dt~. 

We write 

(YP(x, A1 . . . . .  Ad)---- s s  ~9(EU{A~+x-y~} covers Ct and x ~ U E )  
AI"" d 
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By symmetry, this function is independent o fx '  and we will write it as ep(t, A~, ..., Ad). 

Thus 

�9 (A ~,..., Ad) = g(t) ~(t ,  A 1 . . . . .  A d) dt dx' 
- I  

(6.9) 

= g(t)~( t ,A~ . . . . .  Ad)dt 

and, by (6.6), 

~,g(r) = d!Adl g(t) ~ ( t , A  I . . . . .  Aa)dt. (6.10) 

Since g is arbitrary with g(O)=O, this formula shows that r is absolutely continuous on 

�9 >0, with density function given by 

= -~.2d~gdP(t, A 1 . . . . .  Ad). (6.11) q0(t) 

In order to estimate ~ we proceed as follows. We fix x=(t, x'), A1 . . . . .  Ad and Yl . . . . .  Yd 

such that e is special for {Ai -y i}  at 0. Let E~, be the restriction of the Poisson process =" 

to {B: x ~ B } ,  i.e. E with all sets covering x excluded. (Thus E' in Section 5 equals E6.) 

Note that the distribution of =" equals the conditional distribution of E given x ~ LI E. 

Furthermore, the number of sets BEE that contain x is Poisson distributed with 

expectation f .f l(x E A +y) 2 d/u(A) @=2 ~'~41 , and thus 3~(x ($ LI E) = e -~'lal. Hence 

~ { E  IJ {Ai+x-y i }  covers C t and x ~ LIE) 

= ~(E 0 { A i + x - y i  } covers Ct Ix ~ LIE). ~J(x ~: LIE) (6.12) 

= ~(=' I.J {A i+x-y i }  covers Ct)" e -'~ ~lal. ~ x  

We define D~(x) and a_ 6 R d D=D~(x), E = C t \ D .  Let De-De(O) as on and let 

E* denote E" 0 {A i+x-y i } .  The correlation inequality (2.3) yields, the events obviously 

being increasing functions of =' ,  

g~(E* covers Ct) >~ ~(E* covers EOD) >1 ~(E* covers L0 ~(E* covers D). (6.13) 

However, since neither any set A i + x - y i  nor any BEE with x E B  meets E (because 

their diameters are less than 6), E* covers Ec~E" covers Ec~E covers E. Hence 

~(E* covers Ct) t> 3D(E covers E) 3~ * covers D) 
(6.14) 

~> ~(E covers Ct) ~D(E* covers D). 
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Similarly we obtain, reversing the roles of  = and E*, 

~(E covers Ct) I> ~ E  covers E) ~(E covers D) 

= ~ E *  covers  E ) ~ - =  covers D) (6.15) 

~9(E* covers Ct)" ~(~- covers D). 

These inequalities, translation invariance, and the fact that = covers C,r yield 

~(r  ~> t). 9~(E ' tJ (Ai-y;)  covers D~e) ~< ~(E* Cover C t) 

<~ ~(r >t t)/~(E covers D~). (6.16) 

Furthermore, if e is special for {Ai-Yi}at at 0, we may assume using Lemma 4.4 that 

e E Cone (ni(Yi)) f, and, conversely, if e E Cone ~ (n,(y,.)) f and each OAi is differentiable at 

Yi (which holds a.e.), then e is special. Hence,  by (6.12), (6.16), (6.8) 

�9 (I,A ! ..... Ad)~fO A faA~J(r~t)~(EcoversD~)-le-a~tl'l(eECone(ni(Yi))al) d~b 
t ' '" d 

= e-~tlfl+(A! . . . . .  A d, e) ~(r >I t) (6.17) 

and, similarly, 

�9 (t, A t . . . . .  Ad) >I e-a~tlfl_(At . . . . .  A d, e) ~(r  >t t). (6.18) 

(6.1) follows by (6.11), and the definitions of a§  a_  and y. Q.E.D. 

LEMMA 6.2. I f  e is admissible and 2r(A)<6<l /2  a.s., then 

~(r >I t) <<. e - y a - t  (6.19) 

-~'a+(t+O) ~(r  I> t) I> e -ra+ t~9(r I> 0) ~> e . (6.20) 

Proof. By (6.1), 

d (~a ( r  t) (-q0(t)+~,ct_ ~( r  ~> t)) ~< 0, .t  e ya - 
t) eye- t > O. 

Thus ~9(r~>t) e ra- t is decreasing and, if t>0,  

~ ( r  >~ t )  e y a - t  <<. lim ~(r  >/s) e va-` = ~D(r > 0) ~< 1. 

Similarly ~9(r I> t) e r~§ t ~> ~(r  > 0). 

Finally, note that if e>0,  the two sets [0 ,e)xT d-~ and [6+e, 6+2e)xT d-~ are 
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covered with the same probability ~9(r~>e) independently of each other. Hence 

~(r  I> e) 2/> ~(r  I> 6 +2e) I> e-~'a+(6+2e)~(z " > 0). 

We obtain, as e--->0, since ~9(r~>e)---,3~(r>0)>0, ~(r>0)~>e -ra§ which completes the 

proof. Q.E.D. 

7. Covering a set in R a 

In this section we return to R d. We first estimate the probability of covering a cube. We 

keep the notation of the preceding sections, in particular e=(1,0 .. . . .  0). In this section 

all cubes are closed and have sides parallel to the coordinate axes. 

LEMMA7.1. Suppose that e is admissible and that 2r(A)<6 a.s. I f  Q is a cube in 

R d with side s>6, then 

~(~- cover Q) <<. e -y(A'A)a-(A'e';t'6)sd (7.1) 

~(~ cover Q) >I e -y(A'2)a+(A'e'A'8)(s+6)d (7.2) 

Proof. The change of scale s--->as, 6--->a6, A--,aA, ~--->a-a2 preserves ~(E covers 

Q) and a_+ and changes V into y(aA, a-d2)=a-dv(A,2). Hence it is sufficient to prove 

the inequalities for a specific s. 

For (7.1) we may thus assume that s=l/2.  The closed cylinder CT! may be 

decomposed into 2 a cubes of side 1/2. Each of these is covered (by the process on 

R x T  d-l) with the same probability as Q, and thus, by Lemma 2.2, ~(r~>I)=~(C1 is 

covered)~>~(Q is covered) 2d. Hence (7.1) follows from (6.19). 

For (7.2) we assume that s + 6 = l .  Then Q may be regarded as a subset of the 

cylinder C1-~ and, by (6.20), 

~(Q is covered) ~> ~(Cl-~ is covered) = ~(r > 1 -6 )  >I e -~%. Q.E.D. 

The next step is to approximate the set K by a union of cubes. (We are squaring the 

circle !) 

Let ~ be the family of cubes {x: nis<~xi<~(ni+ 1)s, i= 1 ... d}, where nl .. . . .  nd are 

integers. 

LEMMA 7.2. Suppose that K is a bounded set in R d and let n s=#{QE ~ :  Q c K } ,  

m , = # { Q E  ~ :  QnaK:Of~}. I f  e is admissible and 2r(A)<6<s a.s., then 
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~(E covers K) ~< e -~'a-(s-6)a% (7.3) 

~(E covers K) I> e -~'a+(s+6)d(n~+m') (7.4) 

n a Proof. Let {Qi}l ={QE~: , :  QcK} ,  and I n  x/i'+m'-lr)E~;s: QnaK4=r Further- 

more, let O-~ be the cube with the same center  as Qi and with side s-eL Then, the events 

{E covers Q_i}, i =  1 . . . . .  ns are independent and, using (7.1), 

3a(E covers K) ~< 3~(~ covers every O-i, i= 1 . . . .  , n s) 
/1 s 

= ]-I  ~(E covers O-i) ~< e-ra-(s-6)%. 
(7.5) 

In the opposite direction we note that K~-t.l~ '+ms Qi. Hence,  the correlation inequality 

(2.3) yields 

3~(- = covers K)I> ~(E covers every Qi, i=1 . . . . .  ns+m s) 

~is+ms 

I> I-I  ~9(,~ c o v e r s  Qi). 
1 

Lemma 7.1 now completes the proof. 

(7.6) 

Q.E.D. 

LEMMA 7.3, Suppose that K is a bounded set in R d such that 1OKI=0 and that 
~fr(A)a§ for some e>0. Suppose further that v is admissible and that 

a(A, v)=Cto(A, v). l f  a---,O and 

 flaalA-log I gl  - d l o g l o g ~ l K I  A - log a(A, v)---> u, - o o < u < ~  (7.7) 
~aAI [ 

~(Ex, a covers K)---> e x p ( - e - a ) .  (7.8) 

then 

Note. The conditions on v hold a.e. by Lemmas 5.2 and 5.4. 

Proof. We may assume that v is a unit vector; further we may assume that v=e. 

(Otherwise we rotate everything.) 

We truncate the distribution of A by defining 

A(R) = ~'A. when r (A)<R (7.9) 
t o  when r(A) I> R. 
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=(R) Let  ,,~,~'~R)a denote the Poisson process defined as E~, a but based on A (R). Thus -a,a 

differs from E~, a only in that the sets aA+x with r(aA)>~aR have been deleted. 

We choose R=a '1-1 where r/>0 is such that 1-rl>d/(d+e). (Thus R---> oo as a-->0.) 

Then, the number of  sets in E~, a ~  .,~(R) that meet K is a Poisson distributed random 

variable with expectation (a is tacitly assumed to be small enough) 

f f I ( x E a a - K ) . l ( r ( A ) ~ R ) 2 d x d g ( A ) = ; t ~ ( l a A - K l l ( r ( A ) > ~ R ) )  

<. 2 ~g(C(ar(A) + r(K))aI(r(A) >t R)) 

<~ C(a_alog 1 )  ~((aar(A)a + 1) I(r(A) >- R)) (7.10) 
a 

C ~'( ( r (A ) d log R + R d/( l -q) log R) I( r(A ) >>- R ) ) 

<~ C~g(r(A) dm-~) log r(A). I(r(A) >1 R))--.O as a-->O. 

Hence 

K)_  ~(,=~m K) --o 0. (7.11) ~(~'~,,1., a covers -~, a covers 

For ~r ~" ~-a, a covers K) we use Lemma 7.2 (with A replaced by aA~R)), taking 6=2aR and 

s=61/2. Thus, s---~0 and t~/s---~O as a--*0. 

With the notation of  the proof  of  Lemma 7.2, 

n s n s + m  s 

I . J Q i c K c  I,.J Qi 
1 I 

and thus 

Furthermore, 

and thus 

Consequently, 

n s s  a <- [KI ~< (ns§ s a. 

n s + m  s 

U 
n s + l  

Qic{x:  d(x, OK)<<.V~-d's}, 

mss a< . J{x: d(x, OK) <~ x/--d-s }l---> IOKI = 0 

mssd--->O and nssd--*[KJ, 

(7.12) 

as s--~O. (7.13) 
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whence 

Furthermore, 

105 

n,(s-6)a--> Ig I and (n,+m,)(s+6)a---~ Ig I. (7.14) 

By (7.10), 

and thus 

and 

~,(aA, 2) = (2 ~aa[)'t( ~aA[)-I e - a~ l  

= (log ~aA[) a( l + o(1)) ( ~aA[) -1 

IKl-l (a, e)-le -u. 

- loga(A,e)-u+o(1))  (7.15) 

2(~aA[- ~aA<m[) = 2~([aAIl(r(A ) >>- R))-~ 0 

~aA tin, 2)/y(aA, 7) -* 1 

7(aA tin, A)~lKl-la(A, e)-le -". (7.16) 

The only step remaining before we can deduce (7.8) from (7.3) and (7.4) is to show 

7(.4 (r), ad2 ) R a = Rd( ad2 )d( ~A (r))d- I e-ad).g~Atr) I 

<~ ~'(A, ad2) I-'l/2(ad,~)dq/2(~A(r))(d- t)q/2Rd 

= C(ady(aA, 2))l_q/2(ad2)d,1/2Rd (7.18) 

<~ Cad(l-'l/2)(logl ) d't/2Rd = /C~ a lOga \ d'l/2 --->0. 

Furthermore, ,.0~"~(r)~--ad). covers D2e t) increases as a",~0, whence a+(A(r),e, ad2,2r)<-.. 

Ca(A <r), e)<oo. Consequently, the exponent in (7.17) tends to 0 and 

~fwtr)~_aq covers D ~ )  >~ exp ( - ~ ( A  (r), ad2) a+(A r e, ad2, 2r) (4R+2r)d). 

By the definition of $ and (7.15), 

(7.17) 

thata+_(aA~R),e,2,2aR) convergeto a(A,e). We fix r suchthat ~A<r)/~A>~l-rl/2. Then, 

since D ~  is included in a cube of side 4R, Lemma 7.1 (with t~=2r) yields, for R>r, 
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Thus 

•[,•(R) GIJl'~(r) D ~ )  --'* 1. l ,-aq covers De ~ )  ~ ,, ~,- q covers (7.19) 

a+(aA (m, e, ~, 2aR) = a*(A (m, e, ad2, 2R) 

- ~,~a (m ,,~. o~C'~(m D~R)-I--'-> a ( A ,  e).  - -  ~ , . ~  , , ~ :  ,~, ~,,. .~ad 2 covers 
(7.20) 

In order  to show that a_  converges we fix A I  . . . . .  A d and y~ . . . . .  Yd such that e is 

special for  {Ai-Yi} d at 0. Thus {Ai-yi}  covers De ~ forsome u>0.  As ad2 increases E ~  

contains more and more sets and it is obvious that D2er\D7 eventually becomes 

covered, i.e. 
~[~(r) '  2r ~r 

~--ad 2 covers D e \De) - ->  1. (7.21) 

Since ,~,(r)' and ~'(') coincide 2R 2, on D e \ D  e , it follows from (7.19) that ~ad2 ~ad2 

~[,~(r)' Oe2R\O2e3"'> 1. ~,-aq covers (7.22) 

Together,  these estimates yield 

~[,~(r)' ~r O {ai--yi}al covers D ~ )  >I ~" l,-aq t3 {Ai-Yi} covers  D~ R) ---> 1. (7.23) ~ ~ad~, 

By dominated convergence,  it now is clear from the definitions (5.8) and (5.2) that 

fl_(A 1 . . . . .  A d, e, aa2, 2R)---> Bo(A l . . . . .  A d, e) (7.24) 

a nd  

a_(aA ~R), e, 2, 2aR) = a_(A tR), e,adA, 2R)---~ao(A, e). (7.25) 

Q.E.D.  

COROLLARY 7.4. a(A, v) is a.e. independent o f  v, i.e. there exists a constant a(A) 

with a(A, v)=a(A)  a.e. Similarly, fl(A1 . . . . .  Aa, v )=f l (A l  . . . . .  Aa) a.e. 

Proof. I f  L e m m a  7.3 applies to both v and w (for some K), then obviously 

a(A, v)=a(A,  w). This proves the statement for a by Lemmas  5.2 and 5.4. The result for  

fl follows easily f rom this if we, for  fixed Ax . . . . .  Aa, consider the random set A that 

equa l s  A i with probabili ty Pi (~diPi= 1) and vary { P i } "  Q.E.D.  

Lemma  7.3 proves (3.8) and thus Theorem 1.1 for m = l .  

For  m > l ,  essentially the same argument works. The main modifications are as 
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follows: We define r m as inf{s~>0: ( s , x ' ) E R x T  a-I is not covered m times by -=} and 

find as before that (a.s.) rm=t>Or there exists x=(t ,  x ' )  which belongs to the boundary 

of  exactly d sets B1 . . . . .  Bd and to the interior of  exactly m - 1  sets Ba+~ . . . . .  Bd+m-i 

such that e is special for  B~ . . . . .  Bd at x. We define ~pm(B~ . . . . .  Ba+m-~,E) as ~p but 

with the extra conditions that E covers Ct m times and XEBd+~ . . . . .  Bd+m-]. This 

gives 

~ '  ~m(B! . . . . .  B d+m_l, ~-) = d ! ( m -  l)!g(r). E 

We use Lemma 2.1 as before and make the same change of  variables x i = x - y i ,  Yi E aAi, 

i= 1 . . . . .  d as before and put x i = x - y i  for i=d+ 1 . . . .  , d + m -  1. This yields that r,,, has a 

density function 

~m(t) ---- ( ( m -  1) [d!)-IA d+m-I ~tYP m(t, A I ..... , Ad+m_l) 

with 

~m(x,A 1 . . . . .  fa,+ 
covers Ct m times and if B E E  then x g i B ) . l ( e  is special for  

{Ai-Yi}  d at O) d~v dYd+l ... dYd+m_ I. 

We define am+=a/~9(~ covers  D~ m times), 

1 ~f -(d+m-2)~ . . .  

a m - = ~ . . ( ~ l )  faAl faAdfAd+"'Ld+,_ga(E'u{ai--Yi} d+m-' 

cover D~o m t imes) ' l (e  6 Cone~ ... nd(Ya))) dff: dYd+l ... dYd+m_ I 

and 

_ 1 ~td+m-l(f~Al)d+m_2e-a$~l 
~/m (m -~ l) ! "-- '" 

and proceed as above. 

This completes the proof  of  Theorem 1.1. 

Remark .  We close this section with an example o f  the misbehavior when the 

c o n d i t i o n / ( c  W of  Theorem 1.1 is not satisfied. 
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Let V=K be the unit cube [0, 1] d and let A be the cube [ -  1/2, 1/2] d. Thus we try to 

cover a cube with small cubes of  side a and centres uniformly distributed inside the big 

cube. We take m= 1. By Example 1 of Section 9, a =  1. 

First, we assume that d=2. Suppose that a--->0 and a22-1oga-2-21ogloga-2--.u 
(7.7). It follows from Lemma 7.3 that if Ka=[a/2, l - a /2 ]  2, ,~v ~(-~,u covers ga)"~ 
e x p ( - e - " )  since E~,~ and E~,~coincide on/Ca. However, on the boundary the intensi- 

~v is a Poisson ty of (=v_4,~ is smaller. For example, on /(~)-{0}x[a/2,- l -a /2] ,  -~,~ 

process of intervals of length a with intensity 2~=a2/2. Since a2~-loga - 1 -  

logloga-  ~ --~u/2+log2, Lemma 7.3 yields 

~(.E 4,v a covers K~2 )) ---, exp ( - �89 e - u/2). 

Hence (7.8) fails for ~v and (1.1) fails for this V. In fact, it is not difficult to show ~ 2 ,  a 

that 
~(-a.=v a covers K)---~exp (-2e-"/2-e-U) (7.26) 

and thus the left hand side of (1.1) converges to a random variable with this distribution 

function. 

If d>2, the situation is even worse. If ;t is as in (7.7), the intensity on an edge is 

(a/2)a-l;t~d21-dloga -l, which is too small to cover. In fact, the correct result is 

ffJ(adN,, l_2d-l log a-l_2d_l loglog a_d << U)___~ exp (_2d-l e_,,/2s-~ d - 1  2d_l e_ul2d'2 ) 
" d " 

(7.27) 

The asymptotic behaviour is governed exclusively by the edges and the two-dimension- 

al facets of K, the interior being covered much sooner. 

8. Covering a manifold 

In this section we suppose that K is a C 2 compact Riemannian manifold. We denote the 

geodetic distance by d and the Riemannian measure by v. Let, for 2>0 and R a positive 

=K be the Poisson process on Kx[0,  oo) with random variable with distribution/z, -a,R 

intensity 2dvxdlz and identify it with the corresponding Poisson process of geodesic 

balls {B(x, r): (x, r)E 2~.R}. The argument of Section 3 shows that the case m= 1 of 

Theorem 1.2 is equivalent to the following lemma. The case m> ! is entirely similar, but 

we omit the details. 
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LEMMA 8.1. Suppose that ~Rd+E<oo for some e>O. Let 

b = :ttd12F( d + l )- l  ~Ra/v(K) 

and let a be given by (9.24). I f  a-.O and 

bado(K) 2-log 1 _  d log log 1 _ log a -,, u, 
ba a ba a 

then 

(8.1) 

-x K) ---~ exp(-e-~). (--~,,~ covers (8.2) 

Proof. For simplicity we assume that supR<oo; the general case is treated by 

truncation as in the proof of Lemma 7.3. 

The manifold K may be covered by a finite number of maps (U, ~0~). Furthermore, 

there are compact sets Kic Ui such that K= U Ki, the interiors K7 are disjoint, and each 

boundary aKi has measure zero. By shrinking Ui somewhat, we may also assume that 

the geodetic distance on 90,(U~) is equivalent to the Euclidean distance. We let ~:t be the 

mesh of cubes defined in Section 7 and put 

Thus 

and 

cf. (7. I2)-(7.14). 

~fl"l ~ ni+ml = (QE ~;t: Q n aq~i(Ki)4=Z }. {Qu}j%, = (Q 6 ~,: Q c cpi(Ki)}, t',:O,J= . : ,  

n i 

v(Qu)--~ v(r~) 
j = l  

ni+m i 

x~ v(Qo)_ ~ v(K~) 
] = 1  

as t--+ O, 

For each cube Qo we select a point xoEQo and define a new map (Ui,~o.oqDi), 
where ~P0 is the linear map of R d onto itself that is defined by g,(xu) ~/2, where gi is the 

coordinate representation of the metric tensor on the map (Ui, ~). Thus, on the map 

(Ui, ~puo~i), the metric tensor is given by the identity matrix at ~,o(xu) and hence by 

l+O(d(x, xo.)) at ~o(x),xE Ui. 
Consequently, for some C not depending on i,j or t (less than some to), a geodesic 
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ball {y: d(x, y)<r} with r<t on this map that intersects ~Po(Qo) lies between the two 
Euclidean balls (y: Ix -y l<r(1-Ct )}  and {y: Ix-yl<Kl+Ct)}. Further, the intensity of 
the centers is 2do=,~(l+O(d(x, xiy))dx. 

Consequently, if F,~, a denotes the Poisson process on R a defined in Section 3 for 
the random set A={x: Ixl<R} (i.e. a sphere with random radius R), 

~9(~p~j(Q~j.) is covered by E~_ct)~,t1_c,)~)<~ ~(~p~-t(Q~) is covered by -~.~r ~R) 
(8,3) 

~< ~9(~po.(Q~/) is covered by E(l+~t)x.(l+COa). 

We note that a(A)=ct by (9.24) and that ~IAt=bv(K). 

Let s=t  2 and apply Lemma 7.2 to each ~Po(Qo), noting that 

Sans <~ l~p0(Q0)l <~ sd(ns + m ~), sams <~ Ctllp0.(a0.) I 

and 

whence 

Since 

(1 -Ct)  v(Q o) <~ IW0(Q)I ~< (1 +ct) v(Qo.), 

( 1 -  Ct) v(Qo. ) <~ sans <~ sd(ns + ms)~<(1 + Ct) v(Qo. ). (8.4) 

y ( ( 1  - Ct) aA, (1 - Ct) 2~) ~ (I - CO ga(ua~Rd aa)d- t e-~l- ct) ~a% ~m 

<~ 7"(aA, ,~) e ct~d, (8.5) 

(7.2) yields 

~(q~i-l(Q~/) is covered) >~exp(-7:(aA,g)eCtXda+(l+Ca/s)(l+Ct)u(Qu)) (8.6) 

and hence, by the correlation inequality, 

~(K is covered)~> ]-[ ~(99,.-t(O,y) is covered) 
ij (8.7) 

~> exp (-y(aA, 2) e ctl~ l/"a+(1 + C a/s) (I + Ct) ~ u(Qi)). 
i , j  

With t=a", 1/2>~>0, tlog 1/a--->O as a---~0 and the right-hand side of (8.7) converges, cf. 
(7.15) and (7.20), to exp ( -u (K) - la - l e -Ua(A)  u(K))=exp (-e-W). 
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Similar estimates in the other direction are obtained by studying slightly smaller 

cubes Qij with sides t - C a ,  cf. the proof of Lemma 7.2. Q.E.D. 

9. The constant term 

To avoid trivial complications we assume henceforth that A~ (a.s.). We recall that 

a(A, v)=a(A)  a.e., where a(A, v) is given by (5.3). We begin with a criterion for a given 

v to satisfy this equality. (It follows that the condition in Lemma 7.3 that v be 

admissible is superfluous.) 

LEMMA 9.1. l f  a(A, v)=ao(A, v), then a (A)=a(A ,  v). The corresponding result for  

fl holds too. 

Proof. In fact, we show that for every 04=0, 

ao(A, v) <~ a(A ) <~ a(A, v), (9.1) 

flo(Al . . . . .  A d, v) <~fl(A 1 , . . . ,A d) <~fl(A l . . . . .  A d , v). (9.2) 

Let B be a ball. By Fubini's theorem and (5.1), 

fl(Al . . . .  , Aa) = IBI-' ffl(Ai ..... Ad, V) dv 
JB 

(9.3) 

= f0A, "'" f0Ad 'B N C~ (n'(Yl) ..... nd(Ya))'/'B'dc5" 

Let B shrink to v; then 

l(v 6_ Cone ~ ((ni)f)) ~< lim inf IB n Cone ((n i) f)I/IBl 

<~ lim sup IB N Cone ((ni)f)l/IBl 

<~ l(v 6. Cone ((ni)~)), 

and (9.2) follows. (9. I) follows by (5.3), (5.4). Q.E.D. 

Let COd=2W~/2/F(d/2) be the area co(S d-l) of the unit sphere. We note the follow- 

ing analogue of (9.3) 

fl(A, . . . . .  Ad)= rod! f "'" l (I)(sd-l N Cone (ni(Yi))d) dd). (9.4) 
JOA 1 .JOA d 
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When the random set A has a centrosymmetric  distribution, we may simplify the 

expression for a. (In particular, this is true if each small set is centrosymmetric,  but 

that is not necessary.)  We define 

fl*(A~ ... . .  Ad)=fa ""fa dtfi=t~(OA~x'"xOAd)" 
AI A d 

(9.5) 

LEMMA 9.2. I f  - A  and A are equidistributed, then 

a(A ) = ( d !)-12-d( ~lA D-(d-l) ~fl*(A 1 ..... A d). (9.6) 

Proof. Let  ei = + 1, i= I . . . . .  d. If  nl . . . . .  n d are linearly independent,  then a.e. v E S d-1 
belongs to Cone(el  nl ..... edna) for exactly one choice of  {ei}. Hence,  summing over 

the 2 d possible choices and using (9.4), (Det (n,(yi))4=O a~-a.e, by the definition of  a~) 

Z fl(el AI . . . . .  edAd) = fOA,'" foa d ~ w(sd-l fl 

A,"" Ad l(Det  (ni(Yl)) * 0) de) = fl*(A l . . . . .  Ad). 

(9.7) 

Thus ~ * ( a  1 . . . . .  Ad) = 2d~fl(al .. . . .  Ad). Q.E.D.  

When the distribution of  the small sets is isotropic, i.e. when their orientations are 

random, we may simplify further. We begin with a preparatory lemma. 

LEMMA 9.3. I f  el . . . . .  ed are independent, uniformly distributed unit vectors in R d, 
then 

~lDet  (el . . . . .  ed)]= ~ - m r ( d ) d F ( - ~ - ) - ( d - l )  (9.8) 

Proof. Let  X~ . . . . .  Xd be independent standard normal random vectors in R d. Then 

Xi--IXilei, with ei as above and ~il has the chi distribution Za, Ixil and ei independent.  
Thus 

~ Det  (Xl . . . . .  Xa)[= ~ (01XiH Det (el . . . . .  ca)l) 
= (~zd)d~ Det (e 1 . . . . .  ed)[. 

(9.9) 
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A standard computation yields 

However, 

d + l  d 

] Det  (X1 . . . . .  Xa)l = IXlll~x,(Xz)ll~x, x2(X3)l ... I~x,...x~_,(Xa)l, 

where :~x~...xk(Xk+l) is the projection of Xk+l onto the orthogonal complement of 

X1 .. . . .  Xk. Given XI, ...,Xk, this projection is a (d-k)-dimensional standard normal 

random vector and thus 

~([~x,...x,(Xk+,)llXl...Xk)=~gZd_k=V'TF(.d-k+l)/~(-~). (9.10, 

Consequently, 

d-, ( _~ ) /(_~_)=2at2F(d+l]/( .{1,  ~ ~[Det (XI .. . . .  Xa)I=I-[vTFd + 1  , k=0 \--~--}/[\--~/ (9.11) 

and (9.8) follows from (9.9) and (9.11). Q.E.D. 

LEMMA 9.4. If R(A) and A are equidistributed for every rotation R of R d, then 

a(A)= 2-dyr-l/2(d[)-lF(~)-(d-l)F(--~)'l(~w(OA))d(~lAl)-td-I). (9.12) 

Proof. For simplicity we assume that Lemma 9.2 applies. (This is necessarily true 

if d is even. The proof in the general case is similar, using (9.4).) Let R1 ... . .  Rd be 

independent, uniformly distributed random elements of the compact group of rotations. 

Then, for fixed A1 ..... Ad, 

~fl*(RI(AI) ..... Rd(Ad))=~fa ""fa [Det(Ri(ni(Yi)))ldw(Yl)'"dw(Yd) 
A l A d 

= ~a ... faad ~[ Det ((ei)~)ldog(yl) ... d~O(Yd) (9.13) 

= ~1Det ((ei)~)lw(oao... w(aAd). 

Hence 

~fl*(A 1 . . . . .  A d) = ~fl*(RI(A,), .... Ra(Ad)) = ~ Det ((ei)d)](~w(aA)) d 

and (9.12) follows by Lemmas 9.2 and 9.3. 

(9.14) 

Q.E.D. 

8-868282  A c t a  M a t h e m a t i c a  156. Imprim6 le 10 mars 1986 
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Thus, in the isotropic case, the asymptotic distribution of Na, m in Theorem 1 

depends only on ~41 and ~w(aA). If d=2, (9.12) is a(A)=(4:t) -1 (~w(aA))2/~[AI, and if 

d=3, a(A)=(~r/384)(~gw(aA)) 3 (~41) -2. 

If d = l ,  f l (A0=l  for every nonempty convex set Al. Thus, if ~9(A4=0)=1, a(A)=l  

and the asymptotic distribution of Na, m depends only on ~A I. 

If d=2 and A is a non-random centrosymmetric set, the same is true. 

LEMMA 9.5. I f  A is a f ixed centrosymmetric set in R 2, then a(A)= 1. 

Proof. Let z(9) be the boundary OA parametrized e.g. by the direction from the 

origin. Since A i s  centrosymmetric, z(~p+~r)=-z(q0). Thus 

f l*(A,A)= Idz(qg)xdzOP)[ = Jo 2 J~ dz(q~)xdz(~) 

(9.15) 

-- 2 d z ( ~ ) x ( z ( ~ + ~ ) - z ( q ~ ) )  4 z ( ~ ) x & ( ~ )  -- 8131 
= O0 

and thus a(A)= 1 by (9.6). Q.E.D. 

It may similarly be shown that if A1 and A2cR 2 are centrosymmetric, 

~8*(A1,A 2) equals the mixed volume V(AI,A2), cf. [1]. ~*  is not a mixed volume 

when d>2; it has the wrong homogeneity.) 

Next, we show that the symmetrization of A to +A never increases a for d=2. We 

do not know whether this is true or not for d~>3. 

LEMMA 9.6. Let A be a random convex set in R 2, let R be a random rotation 

independent o f  A with an arbitrary distribution (not necessarily uniform) and let +_A 

equal A or - A  with probability 1/2 each (independently o f  A). Then 

In particular, 

a( +A) <~ a(R(A)). (9.16) 

a(+A) <- a(A). (9.17) 

Proof. The mapping y---~n(y) defined a.e. maps aA into the unit circle T. Hence, the 

arc-length measure o) on aA induces a measure VA on T. 

Let k be the periodic function given by 

k(t) = (2~r)-ltsint for -3r<~ t<~ r .  
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It follows immediately from (9.4) that 

and hence 

ff ~(A~, A2) = k(s- t)  dvA~(s) dVA~(t) = ~(n) VA,(n-~------T" ) C'A~(n) (9.18) 

oo 

~fl(A,, A2) = ~ ~(n)[ ~g~a(n)l 2. (9.19) 
- - o o  

We note that ~a (-- 1)= Pa(1) = Seit dVA(t) = foA n(y) dto(y)=0 by Gauss' theorem. Fur- 

thermore, ~P+_a(n)=~PA(n ) if n is even and 0 if n is odd, and, if2 is the distribution of 

R, I~P~(A)(n)l----Is with equality for n=0. An elementary compu- 
tation shows that ~(n)=(-1)n+l(2:t(n2-1)) - l  for n~r and thus/~(n)<0 if n~=0 is even 

and ~n)>0  if n4=+l is odd. Hence 

~fl(+A"+A2)= E ~n)[~gr 2<" E fc(n)[gOa(a)(n)l 2 
n e v e n  n eyccll 

~< ~f l (RI (AI )  , R2(A2)). 

This yields (9.16), and the special case R=Identity yields (9.17). 

With the notation of the proof above, 

f l*(A,,ao=fflsin(s-t)ldva,(s)dva2(t).  (9.20) 

Furthermore, it may be shown that 

(9.21) 

where kl(t)=(2at)-l(:t-ltD[ sin t l, -at~t~a~. Hence, ifA is a (non-random) convex set in 

R 2, 21A[+fl(A, A) = ~3*(A, A) and thus 

1 +a(A) = 2a(+A). (9.22) 

This combined with (9.17) yields 

a(A) I> 1, (9.23) 
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where equality holds iff A is centrosymmetric. (This yields an alternative proof of 

Lemma 9.5.) We will see that (9.22) and (9.23) fail when d~>3. 

We return to arbitrary d in our final lemma. We remarked in Section 5 that a is 

homogeneous; in fact, a much stronger invariance is true. 

LEMMA 9.7. I f  T is a linear map ofR a onto itself, a(T(A))=a(A). 

Proof. An immediate consequence of Theorem 1.1, since T(K) is covered by 

{ T(aA+X)}={aT(A)+ T(X)} iff K is covered by {aA +X). Q.E.D. 

Example 1. Let A be a cube with edges parallel to the coordinate axes and random 

side L. If A1 . . . . .  Ad are such cubes with sides L1 ..... Ld, we choose v=(1, 1 . . . . .  1) and 

obtain from (5.1), (5.2) and (9.2) fl(A i,..., Ad) = d ! L d- 1..... Lda - 1. Hence 

a(A) = (~Ld-I)d/(~gLd) d-l= ([[L[[d-~IIL[]d) a2-d. 

In particular, ifA is a fixed cube, a(A)= 1 (for all d). If d> I and the side is random, 

a(A)<l.  

Example 2. Let A be a rectangle [O, Lx]x[O, Ly] in R 2 with edges parallel to 

the coordinate axes. Then, as in Example 1, if Ai has sides 
i i . _  Lx, Ly,t_l,2, thenfl(Al, _ I 2 2 1 A2)-LxLy+LxLr and a(A)=~gLx~Lr/*LxLy. Hence a(A)>l 

iff the sides are negatively correlated. 

Example 3. I rA is a box [O, LdX[O, L2]x...x[O, Ld] in R d we similarly obtain 

a(A)= d~=l~(jI~. L i ) ' ( ~ ( O L i ) )  '-d 

In particular, if L1 . . . . .  La are independent, a(A)= 1. 

That a fixed (non-random) box always gives a = 1 also follows from Example 1 and 

Lemma 9.7. 

Example 4. I fA is a sphere with random radius R, it follows from Lemma 9.4 that 
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If the radius R is fixed we obtain for low dimensions: a=  I for d= 1 and d=2 (cf. Lemma 

9.5), a=3at2/32 for d=3, a=64/81 for d=4. 

Example 5. If A is a cube of fixed size and random rotation, Lemma 9.4 yields 

a(A)= Jt- l/2 dd['( d ) d['( ~-~ ) -(d-i)( d ,)-l . 

If d--2, a=4/~ and if d=3, a=9~/16. 

Example 6. If d=2 and A is the triangle with vertices at (0, 0), (1,0), (0, 1), we 

obtain from (9.2), with v = ( - 1 , - 1 ) ,  cf. Example 1, fl(A,A)--2 and thus a(A)=2. 

By Lemma 9.7 a(A)=2 for every fixed triangle. Similarly 

a(A) = (d!) d- l((d- 1) !)-a=dd- l/(d- 1)! 

for a fixed simplex in l~ d. 

Example 7. If A is a fixed triangle, it follows from Lemma 9.2 or by (9.22) that 

a(+A)=3/2. 

Example 8. If A is an equilateral triangle of fixed size and random orientation, 

Lemma 9.4 yields a(A)=3VT/~t. 

We recall that smaller a corresponds to more efficient coverings. Thus, for 

example, if d--2, small squares and discs (of the same area) cover asymptotically 

equally efficiently, but if d>2, a(sphere)<l=a(cube) and small spheres cover better 

than cubes (i.e. with less overlap), although the difference is minor. Furthermore, if 

d~>2, small sets of a fixed size cover less efficiently than sets of varying size of the same 

shape and orientation. On the other hand, long and narrow sets pointing in different 

directions give a large a and a less efficient covering. 

The examples above show that cubes of a fixed size with a fixed orientation cover 

better than cubes with a random orientation, while equilateral triangles with a random 

orientation cover better than triangles with a fixed orientation, although triangles with 

just two opposite orientations cover even better. Lemma 9.6 shows tha this behaviour 

is typical in two dimensions. 

Some of these results are far from obvious and the detailed behaviour of a raises 

several questions, such as 

Problem 1. Does Lemma 9.6 extend to d~3? In particular, ifA is centrosymmetric, 

and A' is the set A with random orientation, does a(A)<.a(A') always hold? 
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Problem 2. Lemma  9.4 (or Examples  2 and 3) implies that a(A) may be any positive 

real number  if A is random, but  what  happens if A is non-random? Thus,  what  is 

inf{a(A): A is a fixed convex set in Rd}? What is the supremum? Which convex sets 

are extremal? Spheres (and thus ellipsoids also) and simplices? (For  d=2 ,  the infimum 

is 1 by (9.23), and the supremum is 2 (which is attained by triangles by Example  8). We 

omit the proof.)  
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