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Introduction 

In their preprint [4], B. van Geemen and G. van der Geer stated four conjectures 

dealing with the modular significance of the surface C-C on a Jacobi variety. The first 

of these conjectures can be rephrased as follows: 

(0.1) Conjecture ([4]). Let X be the jacobian of an irreducible non-singular algebra- 

ic curve C over k=C, of genus g~>l. Let Foo be the vector space of sections of ~7x(20) 

(O a symmetric theta divisor) having a zero of multiplicity at least 4 at 0 EX, and write 

Fx={xEXIs(x)=O for all sEFo0}. Then Fx={x-ylx, yEC}. 

In loc. cit. the above authors give several partial results in this direction. Quite 

simultaneously, R. C. Gunning considered also this question in his paper [8], getting 

partial results, too (cf. also (2.1) below). Thirdly, in his bok [13], D. Mumford asked 

(we change some notations): 

(0.2) Question ([13], p. 3.238). I fD  is a divisor class of degree 0 on C such that for 

all divisors E of degree g - 1  for which IEI is a pencil, then either ID+EI~=~ or 

] - D + E I * ~ ,  then does it follow that D-a-b  for some a, b E C? 

By standard reasons (cf. w a positive answer to (0.2) would imply (0.1). 

(Actually, the answer to (0.2) is known to be negative if C is a trigonal curve.) 

In this connection it is natural to ask also: 

(0.3) Question. I fD  is a divisor class of degree 0 on C such that for all divisors E of 

degree g - 1  for which IEI is a pencil, then ] D + ~ * ~ ,  then does it follow that D=-a-b 
for some a, b E C? 
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For example, if Wlg_l(C) is irreducible, Questions (0.2) and (0.3) are the same. 

Now, in [15] M. Teixidor has shown that, except for trigonal curves, superelliptic 

curves and some curves of genus 5, W~g_~(C) is irreducible. In this way, the seemingly 

more accesible Question (0.3) almost dominates the picture. 

In the present paper we give a complete answer to Conjecture (0.1) and Questions 

(0.2) and (0.3). In w 1 we show that (0.3) is true if g>~5 (cf. Theorem 1. I). The proof is 

cohomological and is inspired from [5]. In w 2 the relation between (0.1), (0.2) and (0.3) 

is discussed. Section 3 deals with superelliptic curves, completing the answer to (0.2) 

(cf. Theorem 2.4). Finally, w 4 is devoted to the study of trigonal curves, completing the 

proof of (0.1) for g>~5 (Corollary 2.5). In Proposition 4.14 we discuss the case in which 

(0.1) turns out to be false (g=4). 

(0.4) Convention. Throughout, when speaking of a trigonal curve, it will be 

assumed implicitly that it is non-hyperelliptic. 

w 

Let C be an irreducible smooth complete curve of genus g~>5 over k=C. Let O ~ J C  be 

a copy of the theta divisor of the polarized jacobian of C, and denote by C - C ~ J C  the 

surface consisting of the differences x - y  E JC for all x, y E C. 

THEOREM 1. I. (We assume g>~5.) The following equality holds in JC: 

C -C  = {a EJCla+ S ingO c O}. 

(1.2) Remark.  There are canonical models of O and SingO in Picg-l(C), given 

respectively by W~g_ 1 and Vcgl_l (Riemann parametrization theorem and Riemann 

singularity theorem, cf. [9]). The natural scheme structure of W~g_ 1 and Wlg-i given by 

Brill-Noether theory is reduced (for W 1 this holds because of the condition g~>5). g- I  

Therefore, in writing a + S i n g O c O ,  it makes no difference to consider this as a set- 

theoretical statement or a scheme-theoretical one. 

(1.3) Remark.  The statement of (1.1) thus reads: 

VC~1- W~I = { a E Pic~ C)la + Wlg_ 1 c W~e_l} . 

This is reminiscent of the wellknown identifies (cf. e.g. [10]): 

{ a E Picd'( C)Ia + WOd_ d, C WOd} = WOd, ( O <. d ' ~ d <. g - 1 ) .  
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It would be quite interesting to know if more general equalities of this type hold 

between other VVd's (at least as long as the Brill-Noether number remains non- 

negative). For example, one could ask for a comparison between W~k--V~k and 

{a E Pic~ O<-.k<.r. We shall not consider these questions here. 

Proof of Theorem 1. I. Clearly C-C= (a E JC]a + Sing O=O}. 

--,1 1 - -  W~ ( 1 . 4 )  If C is hyperelliptic, the result is easy: Wk_t=g2t g-Z, hence, if 

a+Sing O c O ,  we have (a+g~)+ W~ . Therefore, as recalled in (1.3), a+g~E W~2. 
From this one concludes a E W~l- W~I. 

(1.5) Although we shall not need to make this distinction, we give an independent 

proof of Theorem 1.1 for a trigonal curve C, because it is elementary, too. Here ([1]) 

Wlg_l=(g~+W~g_4)tJ(K-g~-W~ If a + S i n g O c O  one deduces as above that 

a+g~EVr and that -a+g~EVr Writing a=D3-g~=g~-D; with D3, D;EW~3, it fol- 

,_ 1 h~ h~ would imply that C has a g3, lows that D3+D3-2g 3. Now but 

which is impossible (Clifford) unless g=4 (and 2g~=K) or C is hyperelliptic. Forgetting 

about these cases; it follows that D3+D'3=A+B with A, B E g~. Thus either D 3 or D~ 

contain two points of a member of the g~, hence a E ~ -  W~l, as claimed. 

If g=4, and C is non-hyperelliptic, and 2g~=K (i.e. C has a vanishing Thetanull- 

wert) the set {aEPic~ equals B~3-g~: the point is that here the 

"fight" scheme structure for Sing O is non-reduced. 

For completeness sake: the statement of Theorem 1.1 is rather meaningless if 

g= 1,2 or if g= 3 and C is non-hyperelliptic, since Sing O is empty in these cases. If g= 3 

and C is hyperelliptic, the proof in (1.4) goes through. 

(1.6) In the rest of w I it will be assumed that C is a non-hyperelliptic curve of genus 

g~>5. We shall use ideas of M. Green ([5]). The variety Wlg_l is of pure dimension g - 4  

([1]) and, as recalled above, it is reduced. Define the subscheme Z ~ C  ~g-1) by the 

pullback diagram 

C~-l) , HCS-I(C) 

J J 
Z -' , Wlg_l. 
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We shall write 6)= W~g_lCPicg-l(c) and, for all bEJC=Pic~ 

6)b= W~g_l + bcPicg-1( C). 

Also, when using the symbols 6), 6)b in connection with other varieties (e.g. C ~-1)) 

they will mean the divisor classes on these varieties gotten by pullback of 6), 6)b" 

LEMMA 1.7. Let b E Pic~ b4=O. One has: 

n0~C(g_l)(6)b ) ~" k; Hi~?c~,_,(6)b) = 0 for i > O. 

Proof. The map c~g-l)--->6)cPicg-l(C) is a rational resolution ([9]), hence 

Hirc~_l)(6)b)~-Hi~70(6)b) for all i. It suffices then to use the exact sequence on Picg-l(C): 

o---, 0(6)b-6) )  ~ e(6)b) ---, eo(6)b) ---" O, 

plus the fact ([11]) that H/~6)b--6))=0 for all i~>0. Q.E.D. 

(1.8) Assume from now on that b E Pic~ b4=0, satisfies wlg_lC6)b. We aim to 

show that b E C-C. 
From Lemma 1.7 and the exact sequence, on C ~g-1), 

o --, %(6)b)  --' eC~-1,(6)b) --" eZ(O~) --' O, 

we conclude that the assumption is stated equivalently by asking that H~176 

( -k ,  in fact). 

(1.9) From [5], w 1, we recall that ~Oc~_~j=~7c~_~)(6)) and that there is an exact 

sequence of sheaves on c-~g-1): 

v __, - - ,  ~ z  ~ 0.  (('0 C(g - l ) ) 0 --> TC~_I)@~C~_I) v g 

This implies an exact sequence 

0 ~ Tc(g_l)|  ) "--)" eC(g_l)(6)b--6))  g ~ % ( ~ ) b  ) ~ 0 .  (1.10) 

Imitating the proof of Lemma 1.7 one finds that 

/ :~c~ -"(Ob- -  6)) -- H'eo(6)b--  6)) -----Hi+ 1 e(6) b -  26)). 

But, on Picg-l(C): 6 )b -26) - -6 )  b, 

vector space is isomorphic with 

by the Theorem of the Square. Hence the latter 
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/ r+ l  ~ -  6 b)_-_(/~-i-I O(O_b)) v , 

by Kodaira-Serre duality. Using again [11] one obtains therefore: 

Iti~c(g_o((~b--(~) { ~ Ok if i 4: g-1 
if i=g - - l "  (1.11) 

Using this together with (1. I0), the assumption (1.8) can be stated equivalently as 

Hl(Tc~_~)| ~= 0 (~- k, in fact). (1.12) 

Consider now the diagram: 

~ ( ~  C(~-1)xC q ) C 

c ( g - l ) ,  

where N is the "universal divisor" for the Hilbert scheme C <~-I), i.e. 

~J={(Dg_l,X)[X~Dg_l}. By the general theory of Hilbert schemes ([71) there is an 

isomorphism of sheaves 

Tc~_,)= R ~ (~(~). (1.13) 

The morphism p being finite, we have, by the Projection formula: 

H1(Tc~_,)| ---- Hl~(~+(~b--(~). (1.14) 

(In agreement with an earlier convention, ~)b and (~ in the right-hand side of (1.14) 

mean the divisor classes obtained on ~ by pullback via p; when occurring--in a 

moment--over ctg-1)xC, they are understood as being obtained by means of the 

projection map of this product space onto the first factor.) Consider the exact sequence 

on C(g-l)xC: 

0 --) ~c~_~)• --> ~c~_l)• ) --) 6~(~+~)b--O ) --) 0. (1.15) 

By Ktinneth one has: 

i 

j=0 
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Therefore one gets, by (1.11): 

/-/iffc~_,)• O ) k if i =  g - 1 .  (1.16) 
-~ k ~ if i = g 

We deduce from (1.15) and (1.16) that 

Hl~e(N+(~b--(~) -~ Hlf f  c~_,~xc(~+(~b--(~). (1.17) 

Applying the Leray Spectral sequence for the map q and the sheaf ffc~_~• 

H / / ~ :  = Hl'~l~q%_l)xC(~"l-0b--0 ) ~ Hi'bJ%_l)xc(~-}-~)b--O), 

we obtain an exact sequence 

0 --> H ' R  ~ ---> H'~Tc~_,,xc(~+(~b--(~) ~ H~ ---> O. (1.18) 

Combining (1.8), (1.12), (1.14), (1.17) and (1.18) we conclude that either H~ or 

HIR~ 

For any xE C, we shall denote by U x, E x the following divisors of c~-l): 

U, -- x+C ~-2)-- {Dg_llDg_ 1 >~x}, 

E x = {Oe_,lh~ >~ 2} = {D~_llOg_ , <. IK-xI). 

It is a standard fact (of easy proof) that, i f x ,  y E C ,  x , y ,  one has, in C~-1): 

1Ox_ l = (U +Ey) 

(cf. Lemma 1.7). Taking limits as (x,y) tends to the diagonal of C •  it follows, for all 

x E C ,  in C~g-l): 

= -  (1.19) 

(Alternatively, to get (1.19) one could have used the fact that ~c~_l~(O)~-toc~_, ) (cf. 

(1.9)), plus the description of the canonical divisors of C ~-l) as {De_llDg_l~<A}, when 

AclKc[ runs through the codimension one subsystems of the canonical system of C.) 

LEUMA 1.20. The shea f  R~215 is concentrated at a finite set o f  

points o f  C, and HIR~ 
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(Actually, by (I. 10)-(1.13), (1.15) and (1.16), one has H~176 hence R~ 

Proof. Since ~ intersects the fibre of q above x E C giving U x, it is sufficient to 

show that H~ for general x E C. 

Assume that, for some xE C, H~ Fixing any Dg_ 2 E C ~g-2), the 

restriction of 6c~_,(Ux+(gb-(9) to the curve Dg_2+C equals ~Tc(x+b). Hence 

H~ which implies b=y-x for some y E C. 

It follows that, if H~ for all x E C, one would have b+ Vr W~, 

hence, as recalled in (1.3), b=0. But, by assumption, b~=0. Q.E.D. 

(1.21) The above now implies, together with (I. 18), that H~ Thus R~q:l:O and, 

a fortiori, there exists x ~ C such that HlCTc~_,(U~+(gb-(9)4:0. We shall show that this 

implies H~ By the reasoning made in the proof of Lemma 1.20, 

this will imply finally that b ~ C-C, thereby ending the proof of Theorem 1. I. 

We start recalling that, by (1.19), 

ec~_ , , ( ux+Ob-0  ) -- ~7c~,_,,(0b-E~). 

Consider the exact sequence, on C'~-1): 

0-==)" ~C(g_l)(Ob--Ex) ~ ~C(g_l)(0b)-'~ ~Ex(Ob) ~ O, 

By Lemma (1.7) we obtain an exact sequence 

0 ~ H~ ---> H~ ~ H~ ---> H' r ~) --> 0, (1.22) 

and dimH~ It suffices to show that the restriction map O is zero. 

Suppose that this were not the case. Then, in particular, Exr b in C ~-~). If we 

show that, under these assumptions, dim H~ 1, then, in view of (1.22), this will 

contradict the fact that Ht~c~_,(Ux+(gb-O)#:O. 

Now, E x is the pullback to C~-l) ofK-x-W~g_2,-Picg-l(C). The map 

Picg-2(C)--->Picg-~(C) given by ~ K - x - ~  is an isomorphism, and the inverse image of 

0 b under this map is g-x-((9+b)=(gx_ b. Since E~r b, it follows that W~162 ~_b . 

We recall that, for all r E Picg-2(C), r162 r (Jacobi inversion) and that 
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"- 3) C=O_~ is equivalent to h~ hence to h~162 Thus, if Dg_ 3 C ~-  is 

such that Dg_3+Cr b, we get 

dim H~ = 1. 

Afortiori, H~ x_b)-----k hence (cf. [9]) 

n0e x 6 ,) --_ 2(o_,_.) -_- n0e . .  

has dimension 1, as claimed. This ends the proof of Theorem 1.1. Q.E.D. 

w 

(2.1) In [4] Van Geemen and Van der Geer notice in particular that for a 2nd order theta 

function (corresponding to a choice of a Riemann matrix for C) to have a zero of 

multiplicity ~>4 at the origin is equivalent with the fact of vanishing identically along the 

canonical locus C-C of JC (cf. also Proposition 4.8 below). Motivated by a series of 

partial results, they conjecture that the locus C-C coincides with the set of common 

zeroes of the above functions. 

We shall use Theorem 1.1 and a recent result of M. Teixidor [15] to show that the 

conjecture of Van Geemen and Van der Geer (Conjecture I of [4]) holds true if g~>5. 

(For g=3 it is known to be true,---of. [4], also recalled in Proposition 4.17 below; for 

g=4 it is false, in general---of. Proposition 4.14.) 

This kind of questions have been considered also by R. C. Gunning in [8]. The 

reader will find there partial results in this direction, as well as concerning the deeper 

question of the scheme-theoretical intersection of the divisors determined by the above 

functions. 

We shall prove also a result intermediate between Theorem I. 1 and the above one, 

which answers Question (0.2) of the Introduction (cf. Theorem 2.4, Corollary 2.5 and 

(2.6), for the main statements). 

(2.2) Theta functions of second order (with zero characteristics) correspond to 

sections of the line bundle associated with the divisor 20,  where O is any symmetric 

theta divisor. The image of the (irreducible principally polarized) abelian variety by the 

corresponding map into projective space, pa,-l, is the associated Kummer-Wirtinger 

variety. We would like therefore to call the system 12OI the Kummer-Wirtinger system. 

We keep the notations of w 1, recalling in particular that 



THE SURFACE C--C ON JACOBI VARIETIES AND 2ND ORDER THETA FUNCTIONS 9 

= {~_ ,  E Pic~-'(C)l h ~  > - I )  m Pic8-'(C) 

is a canonical model of the theta divisor of JC. The different translates of the theta 

divisor of JC are obtained by taking ~)_~, as ~ varies in Picg-t(C). Notice that, if 

E Picg-l(c) and ~ ' : = K - ~  E Picg-l(C) (K being, as before, the canonical class of C), 

then ~ ) r  is the image of O_~ under the symmetry of JC. Therefore, by the Theorem of 

the Square, the divisors D = O  ~+O_~, belong to the Kummer system. 
One has, for the multiplicity of D at the origin: 

/~o(D) = M~(O)+bt~,(O) = 2h~ 

by the Riemann singularity theorem and Riemann-Roch. Thus/z0(D)~>4 if and only if 

~ESing((9)=W~_ 1. Consequently (cf. also below, Proposition 4.8, for the first inclu- 

sion): 

C-C~_(n D~t2o, D) ~ n (~-~+~-r)'~ w~_,' (2.3) 

~uo(D)~4 

We can state now: 

THEOREM 2.4. Assume g>~5. Then 

c - c=  n (6_~+6_ r) 
~ e w~,_, 

except i f  C is trigonal; in the latter case the right-hand side member equals 

(l~s--g~) U (g~-- l~s). 

COROLLARY 2.5. Assume g>.5. Then 

C - C =  N D. 
D~12OI 
,uo(D)~>4 

(2.6) Remarks. (i) If g=  1,2, Theorem 2.4 and Corollary 2.5 are meaningless--as 

stated here. 
(ii) If g=3,  then Theorem 2.4 makes sense iff C is hyperelliptic, and in this case the 

identity holds (cf. below). As for Corollary 2.5, it has been proved in this case in [4] (cf. 

Proposition 4.17). 
(iii) If g=4,  the statement of Theorem 2.4 holds verbatim, provided one applies 
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strictly Convention (0.4), i.e. reading "trigonal" as "non-hyperelliptic": The symbol g~ 

then means any of the two (possibly coincident) series of this type on C. Corollary 2.5 

is true except if C is a non-hyperelliptic curve of genus 4 without vanishing Thetanull- 

wert (cf. Proposition 4.14). 

As announced earlier, the main ingredient to derive Theorem 2.4 from Theorem 

1.1 is a result by M. Teixidor ([15]). By using, among others, ideas of Fulton and 

Lazarsfeld ([3]), it is proved in loc. cit.: 

THEOREM 2.7 ([15]). Let C be a smooth algebraic curve, irreducible, o f  genus 

g~5, over k=C. Then Wgl_l=Sing(6)) is reduced, and it is irreducible except in the 

following cases: 

(a) C is trigonal; 

(b) C is superelliptic; 

(c) C is an $tale double cover o f  a non-hyperelliptic genus 3 curve (hence g=5 in 

this case). 

Let us see how Theorem 2.7 implies Theorem 2.4, except for the cases (b) and (c). 

Write X l ..... X r for the irreducible components of W~_l=Sing(O). Reflection with 

respect to KEPic2g-2(C) permutates these components. We write X ~ = K - X  i. Then, 

since zEO_~+O_~, is equivalent to ~+zEO or ~ '+zEO,  one has: 

n ((9_e+(9_t , )=(zEJC I fora l l i :  Xi+zcW~_  1 or X;+zcW~g_l}. (2.8) 
~ew~_~ 

If C does not belong to the types (a), (b), (c) of Theorem 2.7 one has i=1 and 

X~-XI-W~_ 1, hence Theorem 2.4 reduces to Theorem 1.1, which has been proved 

already. If C is trigonal, we know by (1.5) that i=2 and X~ =X 2, hence the right-hand 

side of (2.8) equals 

u {z JC 2+zc 

By (1.3) and (1.5), the conclusion of Theorem 2.4 holds in this case. 

It remains to consider cases 0a), (c) of Theorem 2.7. We shall devote w 3 to their 

study. We shall see in particular that: 

(2.9) Fact. In cases (b), (c) of Theorem 2.7, every irreducible component of wl_l 

is fixed by the reflection with respect to K. 
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Thus the right hand side of (2.8) equals the right hand side of Theorem 1.1, and this 

will finish the proof of Theorem 2.4. 

(2.10) Corollary 2.5 then follows, by (2.3), except if C is a trigonal curve. In this 

case we shall need a better understanding of second order theta divisors on jacobians. 

We shall study this in w 4. The idea is that, although we dont know explicitly any other 

divisors of 12OI except those of type (~_~+6)_~,, we become more rich in geometrical 

descriptions-when looking at the traces of the divisors of [20[ on C ~  d<g, and 

particularly for d = g -  1. We shall get enough insight to show that the system cut out by 

12ol on vC~3-g~ has precisely C-C as its basis locus. By symmetry, this will finish the 

proof of Corollary 2.5. 

w 

In this section we study the irreducible components of W~_~=Singr) for superelliptic 

curves. (Some aspects have been considered already in [14] . )We shall settle in 

particular Fact (2.9), thereby finishing the proof of Theorem 2.4. We keep the assump- 

tion g>~5. 

(3.1) Let ~: C---~E be a (2 : 1) morphism of smooth curves, with E an elliptic curve. 

By Zeuthen-Hurwitz, the discriminant divisor A of ~t is a divisor on E of degree 2 g - 2  

and, moreover, the branch divisor B is a canonical divisor of C. 

Once E is given, the curve C is determined by A and a (unique) element 

a E P i c g - l ( E )  satisfying 2a=A.  In the language of schemes, C=Spe%((?eff~Te(-a)), 

where the (?e-algebra structure for (?et~)(?E(-a) is determined by the map 

(?e(-a)| given by multiplication with an equation for A. We 

shall write i for the superelliptic involution of C. Also, if D is a divisor on C, we wri te/)  

its image in E. 

(3.2) Let Dg_ 1 be an effective divisor of degree g - 1  on C. We may write it in a 

unique way as 

D~_ 1 = ~t-I(/)a)+Db, 2a+b = g - l ,  

whereD b does not contain inverse images of divisors of E. One may view sections of 

(?c(Dg_l) as sections of (?c(Zt-t(/)a+/)b)) vanishing at iD b. By the Leray Spectral 

Sequence one has: 
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(3.3) I']/O~c(.T[-I(/)a-'[-/)b))=.Tt-IHO~E(Da-F/)b)~)(.Tt-IHO{~E(/)a"[-/)b--O0) T, 

where TEH~ is an equation for B (Note that B-:t*a.) 

(3.4) The class Oa-F/)b-Ct has degree - a .  Therefore, by (3.3), if a>0, H~ 

can be identified with the space of sections of :r-lH~ vanishing at iD b, that 

is, with H~ Therefore, if a>0, one has dim IOg_ll>~l if and only if a~>2. 

On the other side, if a=0 (/)a=0), the space HO~E(/)a-I-/)b--Ot) is zero unless 

/)aq-l~)b--Ct-"=O. If this vector space is zero, one may identify again H~ with the 

space of sections of :r-lH~ vanishing at iD b, getting IDg_ll={Dg_i}. 

(3.5) Consider again the subscheme Z c ~  "(g-l) of (1.6). It is of pure dimension g - 3  

and, as shown in [5], it is reduced. We shall treat it therefore as a variety. Write 

Z' = {a'-I/)2+D#_5[/)2 E E (2), De_ 5 E Cte-s)}. 

This is an irreducible subvariety of C (g-l), of dimension g - 3 ,  thus it is an irreducible 

component of Z. By cohomological reasons, Z has other irreducible components (cf. 

[14]): If Og_3~ C (g-3) is general, then Dg_3-FC (2) intersects Z' with total multiplicity 

~g-3)  (g-4);  on the other side, by Brill-Noether theory ([6]) (Dg_s+C (2)).Z=�89 

Since we are assuming g~>5, the claim follows. 

PROPOSITION 3.6. / f  g~>6, Z has precisely two irreducible components: Z' and 

Z"={Dg_l[L)g_l=-Ot, dim IDg_tl~>l }. 

Proof. Write Z=Z'  tJ ~ '  with Z" the union of the remaining irreducible components 

of Z. By (3.4), Z" is contained in the divisor 

Y" = (D~-ll/)~-i  ~ a} = C w-l). 

On the other side, Z' is contained in the divisor 

Y' = {ar-i~-+Dg_sl.f EE, Dg_3 E C (g-3)} c= C (g-l). 

Call A the subvariety of C (~-~) gotten by intersecting set-theoretically Z' and Y", i.e.: 

A = (u- lD2+Dg_sl2D2+/)g_s -= a}.  

LEMMA 3.7. I f  g>-6 then A is irreducible (of dimension g-4).  
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Proof. Given/)2 ~ E(2) and Dg_ 6 ~ C (g-6) there exists a unique point $ E E such that 

2/)2+/)g_6+$ E [a[. This defines a morphism f: Et2)x c(g-6)-->E. Consider the pullback 

diagram 

P , C  

1 1 
E(2) x C (g-6) i E 

f 

The image of P in Et2)xC <g-5) maps onto A. It suffices therefore to show that P is 

irreducible. Now, P is a (2 : 1) covering of E (2) x C tg-6) and a necessary condition for it to 

be reducible is that every component off*A has even multiplicity. By direct inspection, 

however, this is found to be not the case. (If g=6 this is immediate, ifg~>7 one can use 

e.g. restriction of f to c u r v e s / ~ 2 X ( O g _ 7 - ~ C ) . )  This proves Lemma 3.7. Q.E.D. 

LF.MbIA 3.8. If  g~6, every irreducible component of Z" contains A. 

Proof. It follows from (3.4) that ZA Y'=Z',  hence that Zfl Y' A Y"=A. Let Z~' be an 

irreducible component of Z". If Z" A Y' 4=~, then dim ~ '  n Y' = g - 4  (Intersection formu- 

la) and therefore ~ ' n  Y'cZfl  Y"A Y'=A implies ~'A Y'=A, by Lemma 3.7. 

It remains to see that ZI.' fl Y' = ~  is impossible. Suppose that Z~" n IF' = ~ .  In the first 

place, using (3.3) and arguing like in (3.4), one shows easily that, if Dg_ 1 ~ Y", then 

dim IOg_d~>2 if and only if Og_l=~-lD3+Og_ 7. The hypothesis Z~'A Y '=~  therefore 

implies that, for all Dg_ 1EZI', dim IDg_~l--1. 

Hence: the image of Z~" in Picg-l(C) is an irreducible component '~,i" of wig_l, and 

Z" is its inverse image in C <g-l). Since the subvariety A of C ~g-l) too is the inverse 

image of its image A in Wt_l, it follows that Z~' would not meet ,4. But A is the only 

codimension 1 component of the singular locus of Wl_l (cf. e.g. [15], Lemma 1), and, 

following Remark (1.8) of [3], we derive a contradiction with the connectivity result of 

that paper. Namely, since the complement W~g_~\A is Cohen-Macaulay and non- 

singular in codimension one, its connected components coincide with its irreducible 

components. So ~ '  ought to be a connected component of wlg_l\A and, not meeting 

A, it would be a connected component of wlg_r But W~_ l is connected ([3]) and 

contains at least one more irreducible component other than 2,~', namely the image Z,' of 

Z'. This contradiction concludes the proof of Lemma 3.8. Q.E.D. 
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To finish the proof of Proposition 3.6 it suffices, in view of Lemmas 3.7 and 3.8, to 

show that Z has two branches at a general point of A. 

One of these branches will correspond to Z';  the remaining ones correspond to the 

irreducible components of Z" and lie therefore in Y". Now, recall that Z is the basis 

locus of the (canonical) system of C ~g-1), consisting of the divisors EA= {Dg_IIDg_I<~A) 
as A runs through the codimension one subsystems of the canonical system of C (of. 

Section 1, immediately after (1.19)). We shall be done, therefore, by showing that, 

given a general point Dg_~ EA there exists A such that E A meets Y" transversally at 

Dg_~ (because then Z can have at most one branch at that point, contained in Y"). 

This is an infinitesimal computation, like in Section I of [5]. Let Dg_ 1 =~t-l/)2+Dg_5 

be a fixed (general) point of A (thus Dg_l--2D2+ff)g_5 ~ loll). The divisor Y" of C ~g-l) is 

obtained by means of a pullback diagram 

y', ( , C~-" 

L Ir , 

Taking cotangent spaces and using standard deformation theory ([7]) we have a 

diagram 

II 

T~,(Dg_O' T~-t,(Og-O 

T T 
o, HO%, O, 

II 

%,_,) 

with the square a pushout diagram. As the image of H~ in H~174 ~D~_~) is non- 

zero (a non-zero element of HOwE pulls back to a 1-form on C having B as divisor of 

zeroes), we deduce an exact sequence: 

0 ~ T~(Dg_I) §174 ) <---HOW E <"--0. (3.9) 
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This shows that Y" is smooth at  Dg_ 1 and computes its cotangent space there. 

As noticed earlier, the sheaves w c and :r*C?e(a)-~?c(B) are isomorphic. One must 

keep in mind, however, that their natural i-linearizations are opposite: The space of 

invariant 1-forms is (/z}=:t-lH~ while the antiinvariant subspace of H~ is 

(T), T being (cf. above) an equation for the divisor B. Therefore the vector space of 

antiinvariant 1-forms, (H~ -, corresponds with (H~176 under this 

isomorphism. 

Using this, one finds that one may choose g - 2  (linearly independent) elements of 

(H~ -, 21 ... . .  2~_3,2, such that, writing/)2=QI+Q2, -1 _ , , ~Z a i - Q i - I - ~ 2 ,  Dg_5--Eg-15 pi:  

(i) For i= 1 .. . . .  g - 5 :  ~i(ei):~=O'~ ~i(x)~.O if X ~ Supp (Dg_ l )  , x=l=ei; 

(ii) 2e_4(a~),/1.g_4(Q' ~ ~=0; ze_4(x)=0 if x E Supp (De_l), x4=Q~, Q'(; 

(iii) ~ . . . . .  g-3(Q2), ,~g-3(QI2 r) =[=0; ,~g_3(x)=O if  X ~ Supp (De_l), xdFQ2, Q2, 

(iv) 2(x)=0 for all xE Supp(Dg_l), and 2 has a zero of order 1 either at Q'p Q'~ or at 

Q~, Q~ (in fact: at all four points, afortiori). 

The equation ;qA...A2g_3AAAp=0 defines a divisor E A of [~c~_,(Elgl) 1. Let zp z 2 be 

local coordinates of E at Qt and Q2, and let z'l, z'; and z~, z'~ be the induced local 
! tt f it t _ p coordinates of C at Q1, Q~ and Q2, Q2 respectively. Put lu(Qi)-cidz i (c 1, c24=0, cf. 

before (3.9)). 

A straightforward computation shows that the cotangent space of E^ at Dg_~ is 

given by the quotient of 

defined by the element: 

I-1~ ,(O~c| ,)= ~ O)c(X) 
_ _ xESupp(Dg_l ) 

dZ , d 2  d2 , d2 , 
Cl ~Z~ (Q2)-I-C,-~Z~ (QI2r)--C2 "~Z~ (Q,)--C2 ~Ztlt (QI)" 

Thus only four entires in ~)Wc(X) are involved, and at least one of these is non-zero. 

Since  (~(X))xESupp(Dg_l) has all its entries non-zero, and g~>6, the claimed transversality 

follows, finishing the proof of Proposition 3.6. Q.E.D. 

We conclude from this, by recalling that Kc=:r*a: 

COROLLARY 3.10. Let C be a superelliptic curve o f  genus g>~6. Then Wle_I has 
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exactly two irreducible components, and these are left fixed by the reflection with 
respect to K E Pic2g-2(C). 

Finally: 

(3.11) Proof of  Fact (2.9). By (3.10) it suffices to consider the case of a curve C of 

genus g=5, non-trigonal and non-hyperelliptic. In this case (cf. [15], e.g., for details) 

W41 is a curve which is an admissable (2 : 1) covering (in the sense of Beauville) of a 

plane quintic F with ordinary double points (at worst). The superelliptic structures of C 

correspond with lines contained in F (if existent), and the curve belongs to case (c) of 

Theorem 2.7 if and only if F contains a smooth conic. By the admissability of the 

covering map W4L--~F, the irreducible components of W~ are the inverse images of the 

irreducible components of F. The conclusion then follows from the fact that the map 

induced on W~ by the reflection with respect to K coincides with the covering 

involution for WI--*F, Q.E.D. 

w 

�9 (4.1) The present section is devoted to the study of a few general facts about 2nd order 

theta divisors on Jacobi varieties (quite well-known, but not easy to refer to), with 

special regard to the case of trigonal curves. Our aim is to prove Corollary 2.5 of w 2 for 

trigonal curves, which is the only case left (cf. (2.10)). 

We keep the notations of w 2 and introduce furthermore the following one: Let d>0 

be fixed, and let A be a linear system on C, of dimension ~>d- 1. We shall write E A for 

any divisor o fC  ~d~ obtained as {DdIDd<~A'}, where A ' c A  is some subsystem of A, of 

dimension d - 1 .  More precisely, given A ' c A ,  let s I . . . . .  s d be a basis for the corre- 

sponding vector space of equations. Then the divisor E^ determined by A' is defined 

scheme-theoretically by the equation s~A...ASd=O on C ~m. It is clear that the linear 

equivalence class of E A in C td~ depends only on the linear equivalence class of the 

divisors of A in C. 

(4.2) Fix a general element ~d E Picd(C), and consider the map Pa: c~dL-->JC sending 

D d to Dd--~d. Let ~, ~'E Picg-l(C) be such that ~ + ~ ' - K ,  but otherwise general. We 

compute the inverse image/~1(0_r One has: ~d(Dd) E (~_~ iff h~ 

which is Dd+~=--Dg, l+~d for some Dg_ 1. If Dg_I+D'g_I=K, we may write this equiv- 

alently as: Dd+D'g_I+~--K+r i.e.: Dd<~I~'+~d[. We deduce:  /~ffl(O_~)=El#,+~al. Simi- 



THE SURFACE C--C ON JACOBI VARIETIES AND 2ND ORDER THETA FUNCTIONS 17 

larly,/zal(O ~,)=El~+Cal. Hence, for all ~d 6 Pica(c) and all ~E Picg-l(C) ( ~ ' : = K - 0  we 

obtain: 

bt~ ~jc(20) = ~Tc~(EI~+~I+EI~,+r (4.3) 

In a similar way one gets the following (well-known) fact: ff 6: CxC--->JC denotes the 

difference map, it is 

6"~sc(20) = ~Tc• + K2+ 2A), (4.4) 

where KI=KXC, K2=CxK, K being a copy of the canonical divisor of C. 

Let now JC be the blowing up of JC at the origin, and call E the exceptional 

divisor, E=PTjc(O)=P g-1. The map 6 extends to a morphism c~:CxC---~JC, and 

A=c~-I(E). Writing M o for the line bundle corresponding with ~7~c(20-2E), one has, 

by (4.4), 

6*Mo ~- ~c• + K2). 

Note that H~ M0) can be identified with the subspace H~ of H~ 

consisting of those sections which vanish at the origin (hence, being even sections---in- 

variant under the symmetry of JC they vanish doubly there). 

Furthermore, ~e(E)---(~_~(- 1), hence ~e(M0)---~Tv._l(2), and the restriction map 

/-/~ = H~ M0) ---> H~ =/-/~ ) = S2H~ (4.5) 

translates geometrically into the map sending a second onder theta divisor passing 

through the origin of JC with multiplicity 2 to its projectivized tangent cone. (In terms 

of theta functions, it sends a 2nd onder theta function having a zero at OEJC to the 

(initial) term of degree 2 of its Taylor expansion.) 

In particular, the kernel of the morphism (4.5) is the vector space H~ 

(notation of [4]) of sections having a zero of multiplicity ~>4 at 0 E JC. 

On the other side, taking inverse images by 5 gives a map 

H~ = H~ M o) ---> H~215 + K  2) = ( ~ 2 H ~  (4.6) 

But, since under 5 the symmetry of JC (inherited from the symmetry of JC) corre- 

sponds to the symmetry of C x C ,  and that, secondly, the sections of H~ are 

2-868285 Acta Mathematica 157. Imprim~ le 15 octobre 1986 
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invariant under the symmetry of JC,  the image of the map (4.6) lies actually in the 

subspace S2H~174176 of the symmetric tensors. Thus (4.6) actually is: 

H~ --~ S2H~ (4.7) 

We claim that, under the natural identification S2tt~176 the maps (4.5) 

and (4.7) become identified, at least up to multiplication with a non-zero constant. 

To see this, we check that they induce the same rational map of projective spaces. 

Observe first that O_~+0_~, with ~ E O \ S i n g  ~) span the subsystem 120[0 of 120 I 

consisting of the divisors passing through the origin. In fact, ff 

~: Jc-- ,  12ol v = ~ - 1  

denotes the Kummer-Wirtinger map, there exists exactly one hyperplane H in p2~-~ 

such that Or (actually: g,-l(H)=20). By Wirtinger duality ([12]) this hyper- 

plane corresponds with the subsystem [20[0cl20 I, hence 120[0 is spanned by the 

divisors as above, with ~ E O. Clearly we may drop Sing O, getting the same result. 

Since O \ S i n g  ~) spans [20[o and it is positive dimensional, it suffices to see that 

~:'- rD' ] hence the two maps in question coincide at this set. Write ~=[Dg_l], ~ - t  g-l j, 

h~176 and Dg_l+D'g_l=K. The image of O_~+O,~, in [~7v~_~(2) I is the 

double hyperplane 2K, since the projectivized tangent spaces of O_~ and O_e, at the 

origin are both equal to KE [~Tv~_~(1)l=ltOc[ (Riemann-Kempf singularity theorem, cf. 

[9]). 
On the other side, O_~and 0 ~ ,  cut out on C x C  the divisors 

t A+D~_ IXC+CXDg_ 1 and A+Dg_~xC+CxDg_~ respectively. Hence the divisor of 

[(Tc• [ obtained from O_g+~)_~, equals K x C + C x K ,  thereby ending this proof. 

We deduce the following fact, which is proved also in [2] as well as in [4]. (The 

latter authors attribute this result essentially to  Frobenius.) 

PROPOSITION 4.8. Let D E [2Ol be a second order theta divisor. Then/%(D)~>4 is 

equivalent to (C-C)cD. 

Next we shall restrict ourselves to trigonal curves, aiming towards the proof of 

Corollary 2.5 in this case. We know that the right hand side member in Corollary 2.5 is 

contained in the union (l~3-g~)U (g~-W~), by Theorem 2.4 and (2.3). Since the inter- 

section appearing in Corollary 2.5 is a symmetric subvariety of JC, it is sufficient to 
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prove that the divisors D E 1201 with/z0(D)~>4 cut out on W~3-g ~ precisely the locus 

C-C. 
Consider the map/z3: C~3)--->JC sending D 3 to D3-g ~. Write S c C  ~3) for the (set 

theoretical) inverse image of C-C. 
One has (cf. (1.5) and (4.1), and also (0.4)): 

S = EI2g~I. (4.9) 

Proposition 4.8 implies that D E 12OI satisfies/z0(D)~>4 iff #~-~(D) contains the surface S. 

Theorem 2.5 will be proved for trigonal curves by showing that for every point in the 

complement C ~  there exists a D E 1201 such that Iz~(D)=S but/z~t(D) not contain- 

ing that point. 

Let Dg_ 4 E C ~g-4) be a general element-, fixed from now on for a while. Consider the 

map /zg_l:C~g-l)-->JC sending Dg_ 1 to De_I-D~_4-g ~. By (4.3) applied to 

~g_~=De_4+g ~ we have, for any ~, ~'E Picg-l(C) such that ~+~'-=K: 

/z*_ 1 ~7jc(20 ) ~ 6c~_t,(Elr ). (4.10) 

Secondly, as in the proof of Lemma 1.7, we obtain a surjection 

HO~71c(20) ._>> Ho(C(g- 1),/.t* l ejc(20)). (4.11) 

This implies that, for every divisor of IOc~_,,(Et,+o,_,+~i+Ele,+o,_,+e]t)[, its restriction to 

C (3) by the inclusion 

C 0) f +Dg-4 , C(g -1) 

yields an inverse image/z~I(D) for some D E I2OI. 

Taking in particular ~=D~_,,+g~, the sheaf (4.10)is r Since 

Dg_ 4 E C ~-4) is general, dim ]2Dg_4+2g~I=g-2. According to our conventions (cf. 

(4.1)), the symbol Eizg~+2og_41 therefore stands for a unique divisor on C ~-1). We claim 

that, writing Dg_4=E P/, 

+ 3) 
Ei2Dg_4+2gll fl (Dg_ 4 C ( )---(I.,I (Pi+C(2)))  LI S.  (4.12)  

In fact, Dg_4+D3<<.12Dg_4+2g~l is equivalent to h~ But, since 
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h~ (cf. 0.5)) and that D~_4 is general in C (g-4), we have h~ 

Therefore the left hand side of (4.12) equals the divisor of C (3) given by 

Eto~_4+2~r=E (Pi+C(2))+Ei2g~l, as claimed. 

(4.13) Secondly (cf. w 3, after Lemma 3.8), the basis locus of ]~Tc~_i)(Elrl) j equals the 

locus Z, in the terminology of loc. cit. The intersection of this basis locus with 

Dg_4+C (3) consists of the elements D 3 E C (3) such that h~ 

Now we allow Dg_ 4 E C ~-4) to vary. Let D 3 E C(3)\S. A general choice of Dg_ 4 

implies D 3 (~ U (Pi+C(2)). On the other side, D 3 (~ S implies h~ = 1 hence, for general 

Dg_ 4, h~ 1 too. Making a common choice of Dg_ 4 with respect to these 

conditions, one obtains a divisor in 

]ec~-1)(El2D s_4 + 2g~] "~-EJK[)] 

containing S and not containing D 3. This finishes the proof of Corollary 2.5. Q.E.D. 

It remains to consider the cases g=3,4 (cf. (2.6)). 

PROPOSITION 4.14. Let C be a non-hyperelliptic curve of genus 4. Call g~ and h~ 

its (possibly coincident) series of  degree 3. One has: 

n z ) =  (c-c) u 
DE12Ol 
,Uo(D);~4 

Therefore, if g~h~ (i.e., if C has no vanishing Thetanullwert) this locus exhibits two 

isolated points, besides the surface C-C. 

Proof. We begin as after Proposition 4.8, taking account of Remark (2.6) (iii). The 

left-hand side member of the above equality is contained in 

(W~3-g ~) U (g~- I ~  = (V~3-g ~ ) U (14A~3- h~). 

By symmetry, it suffices to compute its intersection with W~3-g ~. As in (4.11), we have 

a surjection 

H~ --~/-/~176 ~'.zc(20)). (4.15) 

In analogy with the previous argument, we choose ~=g~, getting 
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#~' ~7jc(20) = ~7~3,(S+E1~ ). (4.16) 

By (4.15) and (4.16), the intersection with W~3-g ~ we are looking for is the image (by/~3) 

of  S 0 (basis locus of  IEihql). The basis locus of  [Eit~l is g~ 0 h~cC ~3), hence we obtain 

(C-C) 0 {h~-g~}. This proves the first statement in Proposition 4.14. 

As for the second one, if h~-g~ t h e n  h ~ - g ~ - x - y  for some x, y E C would imply 

that h~+y-x+g~. As C has no g2, this implies that g13 and h~ have members  sharing 

two of their th ree  points. But, looking at C as the intersection of  a (non-degenerate) 

quadric and a cubic in p3, the two series are cut out by the two rulings of  the quadric. 

So the above is impossible, and h~-g~ ~ C-C, proving Proposition 4.14. Q.E.D.  

Finally, we recall Van Geemen and Van der Geer '  s proof  of  Corollary 2.5 for g = 3. 

PROPOSITION 4.17 [4]. I f  g=3 theti 

I'1 D=(C-C).  
DEI2OI 
/~0(D)~>4 

Proof. We may assume that C is non-hyperelliptic (cf. (2.6) (ii)). The map (4.5) is 

surjective (this goes back to Wirtinger), hence 

dim HO~?sc(20,oo = dimHO~Tjc(20)o_dimS2HO~oc= 2g_ i _  (g  2 1 ) .  

For g=3  this yields 1. There exists therefore (cf. Proposition 4.8) a unique divisor in 

12OI containing C-C. As the cohomology class of  C--C is [C] ~-[C]=[20] ,  they coincide. 

Q.E.D.  
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