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Introduction 

The purpose of  this series of  papers is to introduce two new classes of  operators,  clarify 

their connection,  and then show how they may be applied to the study of  boundary-  

value problems. The first class we shall consider has as its geometric setting the Radon 

transform but it is combined here  with basic features of singular integrals. While this 

class of  operators,  the singular Radon transforms, has an intrinsic interest in harmonic 

analysis and real-variable theory,  it will also be important for us because of  its 

applicability to the second class of  operators:  the Hilbert  integral operators.  The latter 

class arises in boundary-value problems,  and is of  particular interest in the non- 

coercive Case, such as in the a -Neumann problem for strongly pseudo-convex domains. 

This class will be the subject of  a second paper in this series. 

(1) Alfred P. Sloan Fellow, also partially supported by NSF Grant No. MCS-78-27119 and No. DMS- 
84-02710. 

(2) Partially supported by NSF Grant No. MCS-80-03072. 
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Singular Radon transforms. Let f2 be a smooth manifold, and suppose that for 

each P fi ~ we are given a co-dimension one smooth sub-manifold f~e so that P fi f2e, 

and a singular integral density K(P,.) concentrated on f2p with its singularity at P. 

Then (if the mappings P---~Q~, and P--~K(P, .) are smooth) we define the singular Radon 

integral by 

R(f)  (P) = (K(P,.),  f ] , , ) ,  whenever f 6  Co(E). (0.I) 

Our first main task then is to prove the boundedness of the operator R on L p, when 

l < p < ~ .  There is also a closely related maximal function for which we might expect 

similar results. To define it fix a Riemannian metric ds 2 on f~, with ds~ the resulting 

induced measure on f2 e and do e the corresponding volume element of f~e. Let B(P, 6) 

denote the geodesic ball in Qe centered at P of radius 6, and denote by IB(P, 6)} its o e 

measure. Then the maximal function is defined by 

M(f) (P) = sup 1 f if(Q) ]doe(Q). 
0<6<1 IB(P, 6)1 .]B(e, 6) 

It turns out that in order to prove the desired results for R and M some geometric 

properties related to the family {g2e) must be assumed, and to a formulation of such 

conditions we now turn. 

Rotational curvature. There are several ways of stating the curvature condition we 

use (see Section 1). One is manifestly invariant, and reverts to a condition formulated 

by Guillemin and Sternberg [21] in their generalization of the invertibility of the Radon 

transform. Thus when the singular density K(P, .) is replaced by a C a function these 

conditions imply that the transform R is a Fourier integral operator in the sense of 

Hrrmander [26], whose Lagrangian manifold is the normal bundle of 

~={(P,Q)IQEQe} in Q x Q .  

Our analysis requires another formulation of the curvature condition: assuming 

d i m Q = m + l ,  one can cover ff~ by coordinate systems (t,x), with tER, xER m, so that 

if P=(t, x) then 

f2e= {(s,y)ls-- t+S(t,x,y)} with S(t,x,x)=O and det (a2S(t----2'x'---Y)) :4=0. (0.2) 
\ OxjaYk /x=y 

Some examples. We describe briefly several examples of the above structures 

{f2e), and their corresponding singular Radon transforms. 
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(i) Suppose ff2=R m+l, if2 0 is a hypersurface passing through the origin, and 

f~e=fl0+P is the translate of f~o by P. Then the condition is equivalent to the non- 

vanishing of all the principal curvatures of ~2o at the origin. In this translation-invariant 

setting our results for the singular Radon transform and corresponding maximal func- 

tion are closely related to earlier work of Nagel, Riviere, Wainger and one of the 

authors (see e.g. [49], and [35]). 

(ii) Even when the f~e are fiat the non-zero curvature condition may hold when the 

f2 e "rotate" in a suitable manner as P varies. An enlightening example of this occurs 

when Q is the Heisenberg group Hn={(z, t)}. Then we can take f2e to be the left group 
translate of the hyperplane f~e={(z, 0)}, i.e. f2e=P, g2o (see Examples 2 and 3 in 

Section I). In this case the singular Radon transforms were studied by Geller and Stein 

[16], [17]. 

(iii) For us the most fundamental example will be the following generalization of 

the previous one, where f~ is the boundary of a domain ~ in C "+t. Suppose r is a 

defining function for ~ i.e. ~={z  6 c"+llr(z)<0}, and let ~p(z, w) be an extension of r 

which is almost analytic in z, almost anti-analytic in w, and so that ~0(z, z)=r(z). (V and 

its variants already appear in the formula for the Bergman kernel obtained by Feffer- 

man [11], and Boutet de Monvel-Sj6strand [4].) If we take ~2e={z 6 f~l Im V(z, w)=0}, 

with w=P, then our non-vanishing curvature condition is equivalent with the non- 

degeneracy of the Levi form of ~. In this case the singular Radon transform plays a 

crucial role in the ~-Neumann problem. 

Oscillatory integrals. We study the operator R (given by (0.1)), by expressing it as 

a pseudo-differential operator in one variable, once we have chosen coordinates as in 

(0.2). That is we write 

R(f )  (t) = e ~' a(t, 2) f(2) d2. (0.3) 

Here f(2)=f(2,  x) is a function which takes its values in L2(R~n), and for each (t, 2) the 

symbol a(t, 2) is the oscillatory operator given by 

a(t, 2) ( f )  (x) = fRm e~S(" x,r) K(t, x; x - y )  f (y)  dy, (0.4) 

where K(t, x; .) are a smooth family of singular integral kernels. Thus the study of R, at 

least for L 2, is reduced to the properties of the oscillatory operators (0.4). For these 

one can prove S~/2, ~/2 estimates, i.e. 
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a I 
(0.5) 

for appropriate k and l. 

Our approach to the estimates for R draws on three sources: 

(i) The idea of "twisted convolution" for the Heisenberg group which in that case 

makes the passage to the pseudo-differential representation (0.3) entirely natural. The 

notion of twisted convolution for the Heisenberg group goes back to Segal, and was 

later exploited by many authors (the papers of Grossman, Loupias and Stein [20], 

Howe [28], Mauceri, Picardello and Ricci [30], and Ricci [42] being the most germane 

here). 

(ii) The suggestive results of H6rmander [27] for oscillatory integrals like (0.4), 

where C ~ functions replace the singular kernel K. 

(iii) The construction of appropriate analytic families of operators in order to get 

L p estimates. (This idea was used systematically in [49].) 

We should stress an important fact about the SUE , 1/2 estimates (0.5): these cannot 

hold for k+l>m. We are therefore limited in the degree of smoothness of the symbol at 

our disposal in trying to apply the Calder6n-Vaillancourt theorem or its variants. 

Fortunately one can use methods developed by Coifman and Meyer [7] for this 

purpose, and adapt them to our situation where the symbol is operator-valued (for this, 

see the appendix). 

The ideas we have alluded to allow us to prove the L p estimate for the singular 

Radon transform and maximal function, with the understanding that we always take 

dim f2~>3. (The case dim f~=2 has been considered previously in [35] by methods which 

do not use the pseudo-differential realization (0.3).) 

Model case. The prototype of the oscillatory integral (0.4) is the operator 

f---~ (Tf) (x) = fn" ei(Bx'Y) K(x-y) f(y) dy, (0.6) 

where (Bx, y) is a real bilinear form, and K(x) is a singular kernel. When B is anti- 

symmetric and non-degenerate we are dealing essentially with twisted convolutions, 

and operators like (0.6) were studied in [30], and [17]. Other special cases had been 

considered also by Sampson [43] and Sj61in [45]. 

We make a brief study of these model operators in Section 2. We do this partly to 

motivate the considerations of the more general form (0.4), but also because these 
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model operators lead us to a suggestive generalization of some notions of Hardy space 

theory, such as BMO, and "sharp-functions". 

Hilbert integrals, coercive case. As we have already stated one of our motivations 

for considering the singular Radon transforms is that they allow us to deal with the 

Hilbert integral operators which are the second class of operators we intend to study. 

Let us briefly describe this application which will be carried out in the succeeding 

paper of this series. The archetype of the Hilbert integral operator is the classical 

example 

u ---> fo = u(Y)x+ydy, x > O, u E LP(R+). (0.7) 

Another example arises in the usual Dirichlet problem for Laplace's equation. Thus in 

the upper half space  R+ +1= {(x, Q); X (= R n, Q ~ R+}, it is a classical fact that the solution 

to the problem 

A f -  -~2+ 2 f(x,o) = u(x,o) 
j=~ ax)] 

f(x, O) = 0 

can be written as 

f=N(u)+H(u) 

where N(u) is the Newtonian potential 

and 

(0.8) 

(Nu) (x, 0) = cn frt"+' (Ix-yl2 +(0-#02)-r W2 u(y,/~) dy d/~ 
+ 

/ -  
(Hu) (x, ~) = - c  a | (Ix-yl2+(o+~)2) -(~-1)/2 u(y,/~) dy all,. 

JR 

One has AN(u)=u, so H(u) is the compensating term that takes into account the 

Dirichlet boundary condition. The estimates for N are well-known (N is a standard 

singular integral operator of order -2) ,  but H is essentially an example of a Hilbert 

integral operator of order -2 .  We remark that in the coercive case sharp estimates f o r  

the Hilbert integrals are easy "and are quickly reducible to simple inequalities for 

absolutely convergent integrals, and in effect to the original example (0.7). 
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We now turn to non-coercive problems and in particular the a-Neumann problem 

on a strongly pseudo-convex domain. For this question the approach in Kohn (see 

[13]), Greiner and Stein [19] yielded sharp estimates, and the work of Phong [36], Lieb 

and Range [20], Harvey and Polking [23] and Stanton [46] (see also the survey paper of 

Beals, Fefferman and Grossman [2]), have provided us with a pretty clear picture of the 

nature of the singularity of the kernel of the Neumann operator. The problem that 

arises is how to make sharp estimates for the general class of operators whose kernels 

display this kind of singularity. It will be natural to consider such operators as further 

variants of the Hilbert integrals described above, but with significant differences which 

make their study substantially more difficult. In particular the estimates for these 

operators are essentially dependent on delicate cancellation properties, and unlike the 

coercive case are not reducible to easy estimates or (0.7). 

Instead, one can obtain the estimates for the Hilbert integrals by writing them as 

integrals of families of singular Radon transforms. The integral decomposition corre- 

sponds to a two-fold fibration. First, the domain ~ is fibered into a one-parameter 

family of copies of its boundary ~ ,  i.e. in terms of Se= {z E ~; O(z)=o}, with Q a 

defining function. Then a second integration corresponds to a one-parameter flow in 

each S e, determined by an appropriate vector-field conjugate to a/aQ. 

Concluding remarks. A preliminary announcement of our results was made in [40]; 

earlier work having some beating on the present paper is in [38], [39]. We shall now 

describe some further areas of research suggested in part by the above. 

(a) In view of Corollary 1 of Theorem 1 it seems highly likely that the analogues of 

our results for singular Radon transforms and Hilbert integrals for domains ~ will still 

hold if the Levi form of ~ has merely one non-vanishing eigenvalue. 

(b) It is possible to define a maximal singular Radon transform, via the truncations 

implicit in the definition (0.1), and it is expected that it should satisfy properties similar 

to R itself. For the case corresponding to the Heisenberg group this is carried out in 

Greenleaf [ 18]. 

(c) Our methods carry over when the codimension of f~e in f~ is small, but the case 

of general co-dimension raises interesting questions. Thus when codimension 

f2e> �89 dim Q, the analogue of the non-zero curvature condition formulated above can 

never hold. In that case the work [49] indicates that appropriate non-vanishing "higher 

curvature" or even real-analyticity would be a suitable substitute. Thus when 

dim f~=3, and f~e is the translation by P of a curve {2o passing through the origin, a 

sufficient condition is the non-vanishing of the curvature and torsion of the curve {2o, 
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or that Qo be real-analytic. Other results for higher codimension, in the setting of 

nilp0tent groups, are in Muller [33], [34], and Christ [9]. 

(d) G. Uhlmann has called our attention to the possible connection of the present 

paper with joint work done with Melrose and Guillemin (see [22], [31] and [32]) on 

Fourier integral operators with singular symbols associated to pairs of Lagrangians. 

This point merits further exploration. 

1. Singular Radon transforms 

We now give a precise description of the setting for singular Radon transforms referred 

to in the introduction. 

Let f2 be a C ~ manifold without boundary. Denote by A the diagonal in f2 x s 

i.e., A={(P,Q)Ef2xs and by xl and :rE respectively the projections from 

f~xQ on the first and Second factor. Then the submanifolds f2 e are defined to be 

~e = sr2(c~ N sr~-l(P)) 

where c~ is a given C ~ hypersufface in ~ x~2 satisfying the conditions: 

(1) c~ contains the diagonal A. 

(2) The projections 7f I and :rE are submersions near A. 

(3) Let N(C~) c T* (~2 x ~) be the normal bundle of c~ in ~ • Q, and denote by 01 and 

02 the restrictions to N(C~) of the projections of T*(Qx~) on the first and second 

factor. Then the mappings 

dos: Tz(N(C~)) ---> To~a)(T*(fl)), j = I, 2 

are isomorphisms at every point 2 6N(C~)\0 lying above A. 

Conditions such as (3) are due to Guillemin and Sternberg [21] who introduced 

them in their approach to Fourier integral operators, and related them to the Radon 

transform. Observe that they are symmetric with respect to P and Q. 

Often only a neighborhood of the diagonal in ~ is relevant to our purposes. We 

shall thus restrict our attention to an open subset cC of c4 containing A and having 

compact closure in <~, for which condition (3) holds at all/~ 6 N(cC)\0,  and assume that 

fie and Q~=ar2(~' Nar~-I(P)) are C oo hypersurfaces in Q. 

For future reference (when discussing adjoints) we set 

~'~ = r n x21(Q)), ~~' = ~i(c~ ' n rr~l(Q)). 
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We shall consider two classes of densities. The densities K(P, Q) in the first class 

are smooth in qg\A,  with principal value type singularities for Q near P in f~e, and the 

main task will be to establish L p boundedness of the corresponding operators. In the 

second class, whose study is closely related to and actually implies the results of the 

fh-st class, the densities K will be C ~* everywhere on ~r the L n boundedness is then 

easy, and of interest is rather the exact dependence of the operator norms on a suitable 

family of semi-norms for K. 

To define the first class, observe that on each f2 e there is a well-defined class 

K~ of generalized densities, namely the class of all linear functionals on Co(Qe) of 

the form 

Co(if2 e) 9 {p ----> (Lqg) (P) 

for some L 60P~,o(Qe) ,  the class of pseudo-differential operators of order 0 in f~e. A 

family of distributions (K(P, "))eel, K(P, .) 6 K~ will be said to be a smooth family 

in P if suppK(P, . )ccQ'  e and 

(K(P, .), q~lue) 6 C| for each q~ 6 Co(Q). 

Definition 1. A singular density K is a smooth family in P of distributions 

(K(P, "))eeo with K(P, .) 6 K~ 

The singular Radon transform R associated to K is then the operator given by 

(Rf) (P) = (K(P, "),flu,), f 6  Co(Q). (1.1) 

The second class of densities is simply the space of C ~ functions on ~, supported 

in W, with semi-norms defined as follows. An admissible coordinate system t is a 

covering of a neighborhood of cg, by open sets (~),  with a C | function tj on each (~gj) 

satisfying 

(a) tjl~jnA=0; 

(b) tj(P, Q) fi R dima" is for each fixed P a coordinate system (y) for Q~,; 

(c) zq(~j) is included for each j in a coordinate patch f~j, with coordinates (x). 

We assume that qg' is initially taken to be small enough for existence of at least one 

such admissible coordinate system. 

Given KfiCo(Cs an admissible coordinate system t, and integers N,M>~O, re- 

write K as a function of (x, y) and set 
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IIKII~M = sup ~ y dimf~e+lal cr  x~a-a% g(x, Y)I 
{al<<-N 
~I~M 

(1.2) 

where the sup is taken over x 6 x l (~) ,  y 6 tj(P, g2p) (x=coordinates of P), and 

Ilgll /= sup E f~ ~ K(x, y) dy 
~I~<M ~<b,l~<l 

(1.3) 

with the sup taken over 0<e~<l, and x 6:r~(cgj). 

It is readily seen that the sets of semi-norms corresponding to two different 

admissible coordinate systems are equivalent. 

Definition 2. An admissible density is a function K 6  Co(Cr ') with the above semi- 

norms. Fix a C | density dv on g) and a C | density do on cr The densities dr and do 

induce a density do e on each fiber of the submersion ~rl: cr and the singular Radon 

transform associated to K is defined to be 

(Rf) (P) = l K(P, Q) f(Q) dap(O), f 6  Co(f]). (1.4) 
J ~  P 

The manifold cr will be referred to as the Lagrangian support of the singular Radon 

transform. 

We shall also study a maximal operator naturally related to the Radon transform. 

Fix a Riemannian metric ds 2 on t2, and let ds 2 denote the induced metric on f~e, with 

do e the resulting measure on g2 e. Denote by B(P, 6) the ball of radius 6 with respect to 

ds 2 in g)e which is centered at P. Set 

(My) (P) = sup 1 l If(Q)[ doe(Q) 
0<6<1 IB(P, 6)1 JB~P. 6) 

where IB(P, 6)1 denotes the oe measure of B(P, 6). 

We can now state the main theorems about singular Radon transforms and maxi- 

mal operators. 

Assume throughout that dimf2~>3, cgcg2xg) is a Coo hypersurface satisfying 

conditions (1), (2), (3) listed at the beginning of this section, and let g2~, Q2~_f2 be two 

open subsets with compact closures. All L p norms appearing below are taken with 

respect to a fixed positive C ~ density on g). 
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THEOREM A. (a) Let R be a singular Radon transform defined by a singular 
density K on ~. Then for any p, l < p < ~  we have 

I lgfllL,(n2) -< c,.  n,, n2, KIIfl IL,(n,) 

for all fE Co(f21). 

(b) I f  K is instead an admissible density with the semi-norms (1.2) and (1.3), then 
the same inequality holds for l<p<oo with the constant Ct,,nt,n2,r depending only on 

finitely many of the seminorms. 

THEOREM B. I f  l < p ~  <oo we have 

IIMTIIL~(n2) <~ c., hi, fl2llfllLP(Qx) 

for all fE Co(f21). 

We conclude this section with some observations. 

Observation 1. It is of course possible to define Mf in terms of metrics on each 

manifold fl,o varying smoothly with P, in analogy with the introduction of admissible 

coordinate systems used to define seminorms of admissible densities. 

Observation 2. The norms for K(P, Q) are equivalent to the norms for K(Q, P) 
viewed as a density on %~*={(Q,P);PEf2~}. 

Observation 3. To establish L p bounds for certain ranges of p, we shall have to 

consider formal adjoints of singular Radon transforms, i.e., operators R* satisfying 

fa(Rf)(P) g(P) dv(P)= fnf(P) (R*g)(P) dv(P) 

for all u, v E Co(f2). Since estimates for the first class can be reduced to similar ones for 

the second class, it suffices to determine formal adjoints when R is given by (1.4). In 

this case, however, it is evident that 

(R'g) (Q) = f K(Q, P)g(P) d~r~(P) 

where do~ is the density induced on f2~ by the densities dr, do, and the submersion ~2. 

Thus R* is also a singular Radon transform, its Lagrangian support cC* also has non- 

vanishing curvature (i.e. condition (3) above) since this condition is symmetric with 
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respect to P and Q, and its density has equivalent seminorms to the density of R 

(Observation 1). Thus whichever L q estimates already established for R will hold for 

R* as well. 

Main examples. To treat the main examples in this paper, it is convenient to 

provide several different reformulations of condition (3) which may have some interest 

in their own right. Let c~=f2 x g2 be a C = hypersurface satisfying conditions (1) and (2). 

The following are then equivalent. 

(i) do" 1 and dQ2 a re  isomorphisms from Ta(N(C~)) to TQ,~)(T*(f2)) for each 

2 6 NA(c~)\0. 

(ii) Let N(~) '=  {(P, ~; Q, - t / )  6 T*(f2 • if2); (P, ~; Q, r/) fi N(Cs Then locally near 

every point above A, N(~) '  is the graph of a canonical transformation from T*(Q) to 

T*(~). 
(iii) Let cr be defined near A by an equation ~(P ,Q)=0 ,  with ~6C| 

deO(P, Q)*O, doO(P, Q)*O (this is no loss of generality since we may assume that 

de, QO*O , and on the diagonal de cb=-dQ O), and let the Hessian d2oeO be the 

differential of the map 

Q 9 Q ~ (d e O) (P, Q) 6 T~e(Q) 

which is a linear mapping from TQ(f2) to T~e(Q). 

Define the rotational curvature form Lr to be the bilinear form 

Lr Te(g2e) x T,o(f~e) --~ R 

< Lq: Vl, 02> = < ( d2Qp Vl' V2>" 

Then Lr is nondegenerate. (Observe that Lzr for 2 6 C=(~2xf2), so that the 

nondegeneracy of Lr is directly seen to be independent of the choice of cp.) 

(iv) Let x denote the coordinates of P, and y the coordinates of Q in a coordinate 

patch in ~ ,  and let CP(x,y)=O be a defining equation with dxO(X,y)*O, dyCP(x,y)*O 
near the diagonal. Then the Monge-Ampere determinant 

J(O) = det t o ar 
aO a20 
Oy k Oy k OXj 

does not vanish when ~=0 .  
t (1.5) 
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When any of these conditions is satisfied, we shall say that ca has rotational 

curvature. Note that the equivalence of (ii) and (iv) can already be found in [26], 

Section 4.1. 

In fact (i) means that N(rg) ' is locally the graph o fa  C ~ invertible mapping. As the 

normal bundle of a submanifold, N(qg) is automatically lagrangian, and hence the 

mapping is a canonical transformation. The equivalence with (ii) follows. 

Next to see the equivalence of (i) with (iv) write N(Cg) and Q~ as 

N(qg) = ((P, tdvd~; Q, tded~); ~(P, Q) = 0, t6R} 

el(P, tdp d~; Q, tdQ dp) = (P, tde d~). 

That 01 be a diffeomorphism near (P, tded~), t~-O, thus means that given 

(P',/, ') 6/~e,(fl), (P',/~') near (P, td e ~) we can find Q E f~, s E R \ 0  smoothly satisfying 

the system 

�9 (P', Q) = 0 

sde d~(p', Q) = i~. 

This in turn means that {0} x R" is in the range of the Jacobian at (t, P) of the mapping 

(s, Q)--.(e~(p, Q), sde~(P, Q)). As the Jacobian is given by 

F~ E~ t J . . . .  t--2 _ _ _  

d o ~ tdZoe �9 de ~ d2Qe 

and de 04=0, the projection of the first component is surjective, and thus the previous 

statement is equivalent to the Jacobian having maximal rank, that is, the non-vanishing 

of (1.5). 

By symmetry, the equivalence with Q2 being a local diffeomorphism also follows. 

Finally choose local coordinates (x', t)6 R "-t xR near P so that de d~(P, P)=(0, 1), 

2(I ) ' , and Tv(Qe)={(x',O);x'6R"-l}. The matrix of L~, is then (a /ax) ayk)i~j,k~._ l, while 
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J(~)  =det 

0 0 

0 

0 

1 

. . . .  0 1 

02(1) 

ax~ aye, 

=det  ~ ~  
\ax) ayk/ 

which shows that (iii)~*.(iv). 

A consequence of nonvanishing rotational curvature is the following property 

which will play a key role in the sequel. 

COROLLARY. Assume that qgcff~ x ff~ satisfies any o f  the conditions (i)-(iv) near the 

diagonal A. Then f2 admits a covering by coordinate patches, on each o f  which there is 

a coordinate system 

p___, ( t ,x)  6 R x R  dimt~-I 

so that the hypersurface f2 e can be parametrized by 

R dimfJ-I 9 Z "--> (t+S(t,  x; z); z) (1.6) 

with S(t, x; z) a C ~ function near (t, x;x) satisfying 

S( t ,x;x)  = 0 (1.7) 

( ~ z)) ,o det \ ~ ( t ; x ;  (1.8) 

Proof  of  the corollary. Since the surfaces ~v  vary smoothly with P, for each fixed 

P we can choose a curve 7 in Q which passes through P and is transversal to fie' for 

any P'  on y near P. Parametrize y by t---~,(t) with ~,(0)=P, and choose for e a c h  ~'~),(t) a 

coordinate system Q~t~ 9 P'---~x E R dim~-I centered at ~,(t) and varying smoothly with t. 

We thus obtain a coordinate system for a neighborhood V of P in f~ by letting 

V g P '  ~ (t,x) 

if P'  6 f~r<,), and x are the coordinates of P '  in f~r(,). If V is small enough, this is well 
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defined, and g2p, for P '  in V can be parametrized by (1.6) for some C = function 

S(t,x;z). Property (l.7)just says that g2p, passes through P'. As for (1.8), observe that 

and that 

S(t,O;z)=O for any (t,z) (1.9) 

0 

J(O) = det dzS 

1 

if we choose the function @ of (1.5) to be 

-d~ S - 1 - d ;  S 

a xzS -d,2 S 
0 0 

(1.1o) 

�9 (t, x; t', z) = t ' - t - S ( t ,  x; z). (1.11) 

For x=0, J(@) reduces to (-1)p~ S) in view of (1.9), and thus 

det (dZxz S) (t, 0; z)4:0. 

Shrinking V further if necessary, we obtain the desired statement by continuity. Q.E.D. 

Some of the examples discussed below can be more readily understood if we 

modify the parametrization of f2e in (1.6) to be 

y ~ (t+B(t, x ;y) ;x-y)  (1.12) 

for y near 0 in R dimo-2, and the condition (1.8) becomes 

det (dZryB+d~.B) 4: O. (1.13) 

In some sense the term drZy B represents the curvature of each hypersurface ~e, while 

dZxrB measures the rate of change with respect to P of the normal to QP. 

Example 1. In R n let H be a hypersurface passing through 0, and let q~(P)=0 be a 

defining function for H, with Id 0(e)l= 1 on H. Define ff2p as the translate to P of H. 

Then the function d~ of condition (iii) may be taken to be 

~(P, Q) = cp(Q-P), 

the mapping g2egQ--,de(O(P,Q))=-dcp(Q-P)ES n-l is the Gauss map of ~2p 

viewed as an embedded hypersurface in R", and 
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is just the second fundamental form of H at 0. Thus the condition of nondegeneracy of 

L,~ is equivalent to the nonvanishing of the gaussian curvature of H at 0. 

Example 2. In R n let f~e be for each P a hyperplane, and let v(P) be the unit 

normal to Qe. Denote by dr(P) the differential at P of the map P--->v(P). That the 

distribution of hyperplanes f~e have rotational curvature is now equivalent to the 

nonvanishing of the (n -  I) symmetric function of the eigenvalues of dr(P). 
(Note that the fact that I v ( e ) l  = 1 and simple rank considerations imply that the nth 

symmetric function, i.e., the determinant of dr(P), is always 0.) 

To establish this we use (iv) with ~(P,Q)=(v(P),Q-P). The Monge-Ampere 

determinant J(~) at (P, P) is then given by 

J ( ~ ) = - d e t  v(P) dv(p)V(P) [" (1.14) 

Observe that the first row of the above matrix is orthogonal to all the other rows since 

Iv(e)l = 1 for all P. This fact together with the value of the determinant are invariant 

under conjugation by matrices of the form 

where U is any matrix in O(n- 1). Choosing U so that vU=(O .. . . .  0, 1) we get 

110'''021 J(~) = - det A (1.15) 

:g 

= det A 

with A an (n -1 )x (n -1 )  matrix determined by 

On the other hand we have 

(n -  1) symmetric function of eigenvalues of dr(P) 
= ( n - I )  symmetric function of eigenvalues of Utdv(P)U 
= (-1)  "-1 [coefficient of ;t in det(21,-Utdv(P) U)] (1.16) 

8-868285 Acta Mathematica 15]. Imprim~ le 15 octobre 1986 



114 D. H. PHONG AND E. M. STEIN 

= Coefficient of 2 in [2 det (Mn- l -A)]  

= ( -  1) "-I  (det A). 

The desired assertion follows from (1.15) and (1.16). 

Example 3. Let H~={(z,t)EC~xR;(z,t).(z' ,t ')=(z+z',t+t'+2Imz.~')} be the 

Heisenberg group. Then there is a natural invariant distribution of hyperplanes 

f~tz, o = { ( z ' ,  t') E C n x R; t ' - t - 2  Im z-~' = 0 } .  (1 .17)  

Identify T~z ' t) (Q~z. t)) with C n, and set 

O(z, t; z', t') = t ' -  t - 2  Im z" ~'. 

It is then readily seen that the rotational curvature Lo reduces to the standard 

symplectic form on R2~: 

(L,t, vl,v2) = Im(vl'O2)=o(vl,v2), vl,v2EC n. (1.18) 

Example 4. This example is basically a generalization of the previous one. In 

C "+1, let f~ be a hypersurface defined by r(z)=0, with rECr "+1) and draeO when 

r=0. Let ~p(z, w) be an almost-analytic extension of r, i.e., ~(z, w) is a function having 

the following Taylor expansion along the diagonal 

~P(~+z, rl+z) ~ E 1 oa+#r  . . . .  a aV #V 8z--j~-8~ tz) r ~ (1.19) 
a,~ " " 

(see [4]). At each point z E fl, set 

f~z = {w E Q; Im ~(z, w) = 0}. (1.20) 

To relate the rotational curvature form Llm v, to the complex structure of f~, rewrite 

vectors 

n+l n+l 

j=l  OXj Oyj j=l OZj OZj 

with vj=aj+i~j, and observe that the real tangent space T~(F~) consists of vectors v 

satisfying 

Re \ ~  vj~-~z j = O. (1.21) 



HILBERT INTEGRALS, SINGULAR INTEGRALS, AND RADON TRANSFORMS I 

In particular TS(t2) contains the subspace T~'~ defined by 

T ~ , O ( ~ , . ~ )  _ " U = X V j ~ z + O j ~ j ;  Or v j - -=O , 
j r1  :J .= OZj 

which evidently is a complex vector space of dimension n. We shall often identify 

n+l n+l 

v =  x O O a v j - - + O j - -  with v = X v j  
azj as azj j=l jr1 

and view T~'~ as the space of "tangential holomorphic vectors" given by 

1" n+l n+l "~ 
T~,O(f2)__tv=X a jX 1 Or v j - - ;  v j - - = o ~ .  

j=t azj .= Ozj 

The Levi form .~is the sesquilinear form on T~'~176 given by 

n+l 
~(vl, v2) = ~ ,  aer(z) 

y,k=l OZjOZk Vl'jOe'k where 

Then 

(a) the tangent space of f2 z at z is just T~'~ 

n+! 

Ui= X Uij, O . 
j=l " azj 
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(b) the rotational curvature form L~w coincides with the imaginary part of the 

Levi form; 

(c) the nondegeneracy of Lim~0 is equivalent to the nondegeneracy of the Levi 

form, and thus is satisfied when f~ is strongly pseudo-convex. 

To verify the In'st assertion, observe that up to terms of second order in v 

\ j = l ( ~ O r -  Im ~O(z, z+o) ~ Im (z) oj] 

/n+l ^ \ 
~r 

= - I m  [ X - - ( z )  vii. \j=! azj / 

In particular (d(Im ~P)[(z,z), v)=-Im(E~+l i ar/Ozj(z)v) and thus vectors v tangent to t2 z 

are characterized by the two conditions 

/n+l \ /n+l ^ 
Im { X  ~ (z) v/) = O, R e l 2  ~ (z)v/] =0 

\ j = l  ClZj J ~ j = l  (YZj 

(1.22) 
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which are exactly the ones defining T~'~ The second assertion is an immediate 

consequence of  the following two facts: 

(LIm~0 O, O ' )  = Mixed terms of second order in (Im W) (z+v, z+v'). 

Mixed terms of second order in ~p(z+v, z+v') = "~j,k=lS'n+l a2r/azja~k(Z)vj v k-' -- Afro, v'). 

Finally assume that Lima(V, v ')=0 for all v' E T~'~ Then ImAm(v, v')=0 and 

Re &fly, v ' ) = - I m  A~ iv')= -Ltmv(V, iv')=0 for all v', which would imply that v=0 if Af 

were nondegenerate. The converse being obvious, the third assertion is proved. 

2. The model case: motivation 

The main ingredients in our approach are bounds for a class of "oscillatory singular 

integrals" whose study may be interesting in its own fight. To see how they arise we 

consider the case where ~ is R "+ 1= {(x, t) E R n xR},  and the hypersufface f ie  through 

P=(x, t) is given as the image of the linear mapping 

Rngy-->(x+y,t+(Bx,  y ) )ER  ~+l 

where B=(bjk) is a fixed bilinear form. Let K(y) be a kernel on R n, and define a singular 

density K0 on qg={(P, Q); QE~p}  by pushing forth to each manifold f2 e through the 

above mapping the density K(y)dy. 

The singular Radon transform R associated to ~ and Ko is then given by the 

formula 

(Ru) (x, t) = f~, u(x+y, t+ (Bx, y)) K(y) dy. 

If we denote by z~(x, lt) the Fourier transform of u(x, t) with respect to t, R can be 

rewritten as 

(Ru)(x , t )=--~  e ~' e~<B~,Y) K(y)a(x+y,Z)dy dit 

= f e at e-ia("x'X>(T ft(., it)) (x) d2 
2 

J 
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with the operators T~: Co(R")---~C=(R ") defined by 

(Tx qg) (x) = f e ~(nx'y) K(y-x)  cp(y) dy, cp E Co(R"). 

We may now write using Plancherel's formula 

fflRu(x,t)lZdxdt=4-  ff[f ea'ffza(.,).))(x)d). 2dtdx 

IIT  a(' ,  ).)ll 20a.) d). 

II T ll op ~< d).. 

Here IlTxllop denotes the norm of T~ as an operator on  L2(Rn). Thus  L 2 bounds for R 

reduce to bounds for Tx. In particular if ]]T~llop is finite and bounded independently of). 

by a constant A we may conclude that 

2 _< Ila(" d). IIRulla( .+,) "~a2 
oo 

2 2 
= A IlulIL2(R.§ 

In general, to insure the boundedness of the Ta's we need an appropriate combina- 

tion of conditions on the bilinear form B and the kernel K. For example K may be 

homogeneous of degree - n  and B may be non-degenerate (when it is also antisym- 

metric we get back the Heisenberg group of Example 3; however, in many cases of 

interest B will be neither symmetric nor antisymmetric). For our purposes, it is 

necessary to go further in two directions: first, replace K by more general homogene- 

ous kernels (to fulfill conditions for later interpolation on L p spaces; the ideas involved 

here will be taken up in the model case); second, replace the bilinear form (Bx, y) by 

more general functions S(t, x, y) depending on a parameter t. 

In the special case where K is homogeneous of degree - n  and we have a bilinear 

form as phase, the operators can be treated (see Corollary 2 of Theorem 1 and 

Corollary 2 of Theorem 2) as a consequence of Sj61in's n-dimensional version of 

Carleson's theorem on pointwise convergence of Fourier series (see [5], [44]). Since 

this case does not suffice for our needs, we require an independent approach. 
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The model ease:/3' estimates 

We shall now study the following operators 

(Tf) (x) = P.V. f e i(m'y) K(x-y) fry) dy, 
3 

f E  Co(R"), 

where P.V. stands for principal value, K(x) is C ~ outside the origin, coincides with a 

homogeneous function of degree -/~ for large lxl, with a homogeneous function of 

degree - n  for small Ix[, and satisfies the cancellation property f~l=~K(x) do(x)=O, for 

e small. Finally (Bx, y)  is a bilinear form, given by the nxn matrix B. 

TrlEOREM 1. Assume B is nondegenerate. Then T can be extended as a bounded 

operator from L2(R n) to itself, if O~l~. 

Proof. Step 1. We begin by proving the boundedness of T under the assumption 

that K vanishes for Ixl~>l. In this case we show first that 

n JB2 

where B t and B 2 are respectively the balls of radius 1 and 2 centered at the origin. To 

see this note that since the support of K(x-y) is in the set where Ix-yl~<l, in estimating 

Tf(x) for x E B I we may as well assume that f vanishes outside B 2. Now let T' be the 

operator defined by T ' ( f ) (x )=f  K(x-y)ei(BY'Y)f(Y)dy. For it we have an estimate like 

(2.1), in view of the  standard theory of singular integrals. However 

(T-T')( f )  (x)=f K(x-y)[ei<n~"Y~-e i<~'y)] f(y)dy, and in absolute value this difference 

is bounded by 

c f |e i<nx'y>-ei<ny'y>' tf(Y)ldY if x B,. 
-yl,~ [x-y[" lib')[ dy <~ c -y[~l Ix-y[ "-~' 

From this (2.1) follows. 
We next remark that while operators like T do not commute with translations, they 

do satisfy the identity 

( r_  h TZ'h) ( f )  (x) = e i(Bh' h) ei(Bx, h) T(ei(Bh, . ) f ( .  )) (X),  (2.2) 

with rh(f)(x)=f(x--h), as a simple change of variables shows. With this we get as an 

immediate extension of (2.1) the inequality 
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f z~(x-h) ITf(x)l 2 ~ c J Z2(x-h) If(x)[ 2 
f 

dx dx 

where X~ and Xz are respectively the characteristic functions of B~ and B2. If we 

integrate both sides of the inequality with respect to h we obtain 

f lTf(x)12 dx<-2n'c f lf(x)12 dx 

which establishes the boundedness of T (under the assumption that K(x) is supported in 

Step 2. We now turn to the case when K(x) is supported in Ixl~>l/2, and/~>0. It will 

be convenient to put our assumptions on K in the following more general form 

I(a~) a g(x)l ~< Aa(1 + Ixl) -~'-Lal. (2.3) 

In this setting we can always replace our original K by a family K~ with 

K~(x)=K(x)q~(ex), where q~ is a fixed C O function, where cp=l near the origin, and 

0<e<~l. The kernels K, then satisfy (2.3) uniformly in e, and for the operators 

Tt~)f=Sei(n~'Y) Ke(x-y)f(y)dy there will be no difficulty in justifying the operations 

carded out below. Once the estimates are obtained for Z ('), we then let e--->0 to get our 
desired conclusions. 

Having made these preparations we remark that the boundedness of T follows 

from that of T*T. A straightforward calculation shows that the operator T*T has as its 
kernel 

y) = [ e -i(az'x-y) I((Z--X) K(z-y) dz. (2.4) L(x, 
dII n 

The main point will be the following estimate for L: 

IL(x,Y)I <~CN[x-y[ -N, whenever N~>0, and N >  n-2/~. (2.5) 

We proceed as follows. We have (a, V z) (Bz,x-y)= (Ba, x-y) .  Therefore 

(a, V z) e -i(Bz'x-y) =i(Ba, x -y)  e -i<Bz'x-y) . 

So if we set .~z=i(a, Vz)/(Ba , x -y) ,  then 

(.~z) N e-i(Bz,x-Y) = e- i (Bz.x-y) .  



120 D.  H .  P H O N G  A N D  E. M. STEIN 

Inserting this in (2.4) with 

a= B-'( x-y  
\ Ix-yl/ 

and integrating by parts N times gives us 

CNIx-yl -N ~ f la~ g(z-x)l la~ g(z-y)l dz 
taI+LBI=N J 

as an estimate for L(x, y). It is now convenient to use the remark that 

(l+lxl)-~ <.c if O<<.o,r, and o + r > n .  

In fact, 

(2.6) 

=O((l+lxD-~ (l+lyl)-rdy 
\ Jlyl~lxl/2 

+(l+lxl)-*l (I+Iyl)-~ 
Jlyl~<3lxt 

+ fN>~2N(I +'Y')-~ dY) , 

which proves (2.6). For further reference we set down two other inequalities proved by 

this argument. 

(l+lxl)-O.(l+lxl)-'<<.c(l+lxl) "-o-~, f f 0 ~ < a , r < n ,  and o + r > n  (2.6a) 

(1 +lx l ) -~  - "  ~< c(l+lxl)-~ (2+lx l ) ,  i f  0 < o. (2 .6b )  

Now observe that if N>n-2/u, ~=lal+~, ~=131+#, with N=lal+l/~l, then a + r > n .  

Thus by (2.6) we can conclude that IL(x,y)I<-CNIX--yI-N; that is we have proved (2.5) 

when N is an integer. To treat the general case, let No<N<.No+ 1, with No an integer, 

and consider the analytic family Ls given by 

Ls(x, y) = e s2 f e -i(Bz'x-y) ir~(Z--X) K(z-y) (I + Iz-yl2) -~/2 dz 
J R  n 

in the strip No-N~<Re (s)<~No-N+ I. Observe that Lo=L while the argument we used 

in the case when N is integral gives 
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IL,( x, Y)I ~< clx-yl -N~ for Re (s) = No-N 

- N  o- I IL,(x,y)l<<.clx-yl , for Re(s)=No-N+l. 
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Thus by the three lines theorem ILo(x, y)l~fNIx--Yl -N and (2.5) is proved. 

Next using (2.5) with N<n (since/z>0), for Ix-yl<~l, and with N>n, when Ix-yl>~l 
shows that 

sup falL(x, Y)I dy and sup I IL(x' Y)l dx 
x Y J R "  

are both finite, concluding the proof of the boundedness of T*T and thus T, when/~>0. 

The case/~=0 remains. Let us temporarily introduce the notation T = ~  r to make 

explicit the dependence of T on the bilinear form B and the kernel K. We also introduce 

the Fourier transform ~, defined by 

,~(f) (z) = ~ e-i{Bx'z) f(x)  dx. 
.IR n 

Finally M will denote the multiplication operator given by M(f)(y)=ei<By'r)f(y). Then 

for C o we have the identity 

(2.7) 

where B* is the adjoint to B. This identity is proved by writing the left-side as 

f e-'<~x'z>{ f ei<Bx'Y> K(x-y) f(y)dy} dx, 

interchanging the order of integration, and noting that 

f e i(Bx'y-z) K(x-y) = ~(K) dx ei(By,y-z) ( Z - - y ) . ( I )  

These formal manipulations are justified when we interpret K and ~(K) as tempered 

distributions, and restrict f to say C o. The identity (2.7) makes clear that to prove the 

L 2 boundedness of T~r it suffices to do the same for T ~ .  From (2.3) the following 

(1) For  such identities in the special case of  " twis ted  convolution",  see e.g. [20], [28]. 
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properties of  ~(K) may be proved without difficulty (here ^ denotes the usual Fourier 

transform). 

(a) ~'(K) ̂  which equals (2~) n K(-B-l.)/idetB] is bounded. 

(b) 2~F(K) coincides with a C | function in R n \ { 0 }  which is rapidly decreasing at 
00. 

(c) I~g)  (x)l<~A/Ixl". 

Now write ~(K)=KI+K| where KI=9~(K)K |  with q0ECo, and 9=1 

near the origin. Then T ~ = T I +  To,. Here T| Tx. n* is trivially bounded, because of 

property (b). Finally to prove that T~ is bounded on L 2 is merely a reprise of  step 1, 

carried out before. In fact if we set 

T'l(f) (x) = f Kl(x-y) e-i(aY'Y) f(y) dy, 

then T' 1 is bounded on L 2 because of (a), while TI-T ~ is bounded because of  (c). We 

can then continue as in the argument in step 1. This concludes the proof of Theorem 1. 

COROLLARY 1. Suppose T is defined as in Theorem 1, except now we assume only 
that rank of  B=k. l f  /~>n-k, then T extends to a bounded operator on  Le(R n) to  i t se l f .  

Proof. As in the proof of  Theorem 1 we divide consideration in two cases, first 

when K(x) is supported in [x[<~ 1. We remark that the proof given above for that case 

works also in the present situation since it did not depend on the nondegeneracy of  B. 

Thus we turn to the case where K is supported in [x]>>-l/2. 
Let  P denote the orthogonal projection on the range of B. We may assume that the 

rank of  B is ~>1.(1) 

LEMMA I. Suppose B has rank k, k>>-l, Iz>n-k, and K satisfies (2.3). Then the 
kernel L(x, y) (given by (2.4)), satisfies 

IL(x, Y)l ~cJe(x-y)l-k+a (1 + Ix--Yl)-n+k-b 

for some a>0,  and b>0. 

JL(x, y)l <<-cIP(x- y)[ -N (1 + Ix-yl)-"+k-L 

(2.8 i) 

(2.8ii) 

for some b>0,  and all N sufficiently large. 

(1) Notice that if rank B=0, the proof becomes trivial in view of the fact that/z>n. 
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Proof of the lemma. We can always find a matrix Bi so that BBI=P, and BI P=B~. 
Recall that with ~z=i(a, Vz)/(B(a), x-y), 

(~,~Z)N e -i(Bz,x-y) = e-i(Bz,x-Y).  

Then B(a)=BB~P(x-y)/lP(x-y)l=P(x-y)/lP(x-y)l. Thus Let a=Bl(P(x-Y)/lP(x-y)]). 
{B(a), x-y)  =lP(x-y)l, and 

It(x,y)l <~ cle(x-y)l -N ~ f la~g(z-x)l I~ g(z-y)ldz. 
la[+[Bl=N J 

Conclusion (ii) now follows from (2.6b) if N>~2n, by (2.3), because either ,+lal or 

/~+~l must be at least n, and I~>n-k. 
To prove (i) we may assume that n-k<lz<~n-k+ 1, since the case #>n-k+ l is a 

consequence of  the case when lz<~n-k+ 1. Next  repeat the same argument with N=k; 
thus we invoke (2.6 a) or (2.6b) with a=/z+la], r=/~+~l.  We have a+r-n=21~+k-n>l~; 
also a~>/z, and r~>/z. Therefore we get 

IL(x, Y)I ~< CIP(x-y)l -~ (1 + Ix-yl)-" log (2+ Ix-yl). (2.9) 

Next define L,(x, y) by 

Ls(x, y) = e s2 f e i{Bz'x-y) I~(Z--.I) K(z- y) (1 + IZ-yt2) -'/2 dz. 

Applying the same reasoning gives 

IL,(x, Y)I ~< clP(x-Y)l-k (1 + Ix-yl) -n+k log (2 + Ix-yl), (2.10) 

when Re (s)=oo=n-k-lz. Similarly 

IL,( x, Y)I ~< clP(x-y)l-k+~ (I + lx-yl) -n+k log (2 + Ix-yl), (2. I I) 

when Re (s)=Cro+ I =n-k-l~+ I. 
Now we have 0=(l-0)Oo+0(tro+l), with 0=-ao, and so by the three-lines 

theorem (note that Lo=L) 

IL(x, Y)I ~< clP(x, Y)l-k-~176 (I + Ix-yl) -~+k log (2 + Ix-yl); 

h o w e v e r - k - a 0 = - n + / z .  Hence,  

IL(x, Y)t ~< clP(x-y)l -n+~' (1 + lx-y l )  -~+klog (2+lx-yl) .  (2.12) 
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Therefore conclusion (ii) of the lemma follows if we take the geometric mean of (2.9) 

and (2.12). 

We are dealing with the case when K(x) is supported in Ixl~>l/2, so the assertion of 

Corollary 1 is trivial when k=0; hence we assume now that rankB~>l. Now following 

the argument of Theorem 1 we will show that T is bounded, by demonstrating that the 

kernel L of T*T can be estimated as follows: [L(x, y)l<~M(x-y), with M(x)ELI(R"). To 

do this write Rn---Rk• with R k identified with the range of B, and R "-k with its 

orthogonal complement; write accordingly x=(x', x"), with x' =P(x) ,  and x"=(I-P)  (x). 

Then by (2.8) we can take 

M(x) = c min { Ix'l -k+a, Ix'l -u} • (1 + [xl)-n +k-b, with a > O, b > O. 

Therefore, fn" M(x) dx < o~ , since 

y X t - k + a  t t " N  t [~, dx +I ,t ,lxl dx 

and j'(1 + Ix'l)-~+k-b dx"< oo. 

The proof of Corollary 1 is therefore concluded. 

Remark. When 0<rankB<n,  and/~=n-rankB,  it would be interesting to find the 

additional conditions on K that guarantee the boundedness of T on L 2. Of course when 

rankB=n, Theorem 1 shows that no additional conditions are needed; and when 

rankB=0 the boundedness holds when K has vanishing mean-value on large spheres, 

by the standard results in singular integrals. 

COROLLARY 2. Suppose K is homogeneous o f  degree - n ,  smooth away from the 

origin, and has uanishing mean-oalue. Let (Bx, y) be any real bilinear form. Then the 

operator T defined by 

P.V. I ei(Bx'y) K(x-y)  f(y) dy, f E  C o, (Tf) (x) 

extends to a bounded operator on L2(Rn), with bound independent o f  B. 

Proof. Observe that if we replace the operator T by r/6_~Tr/6, where 

tl6(f) (x)=f(6-1x), then we get an operator having the same norm and of the same type, 

with K unchanged (because of its homogeneity of degree -n) ,  but with (Bx, y) replaced 

by ~2(Bx, y) .  Thus we may assume that either B=0, in which case the assertion holds 

by the usual theory of singular integrals, or that JIB[[ = 1. In the later case, rankB~ > 1; we 
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also observe that the bounds arising in the proof of Corollary 1 depend in a uniform way 

on the entires of B, and this proves the corollary. 

We now turn to the L p theory of these operators. 

THEOREM 2. Let T be the kind o f  operator considered in Theorem 1, with B 

nondegenerate. Then T extends to a bounded operator from LP(R n) to itself under the 

restrictions that l<p<oo, and 11/2-1/pl<~#/2n. 

The proof of Theorem 2 requires the introduction of the appropriate variants of the 

Hardy spaces, BMO, and the "sharp function" in this context. These notions are here 

adapted so as to exploit the particular way our operators behave with respect to 

translations, (see (2.2)). We shall begin by doing this in a more general setting. 

Let us assume we are given a family E={eo} of functions, eQ: Rn---~C, as Q ranges 

over the cubes of R n. That is, to each such cube Q we associate a function, eQ, in our 

family. The assumption we shall make is that leQ[=XQ, where ZQ is the characteristic 

function of Q. We define an (E) atom, associated to Q, to be a function a supported in 

Q, so that la(x)l<~l/IQ], and J" a(x)e.Q(X)dx=O. We then define H t to consist of the 

subspace of L l of functions f which can be written as f =  X ;tj a j, where aj are (E) atoms, 

and 2jEC, with X I,  1<oo. Then the infimum of E ranging over all such representa- 

tions of f will be the H i norm. Similarly we define the sharp function, f~E, by 

s u p - -  If(x)-f~(x)ldx, (~) (x)  = xeQ IQI 
(2.13) 

where feQ(x)=eQ(x), f f(y)~Q(y)dy. IQI -l. We define BMO e to be the space of locally 

integrablef, for whichf~eEL ~176 and take I IIL- to be the norm. 

Observe that if eQ=XQ for each Q, then H l E, BMOe, and fie are the usual H ~, 

BMO, and f~ (see e.g. [12], [15], [30]). In the context of the operators we shall be 

dealing with we shall take the family E={eQ} to be given by 

e Q(x) = X Q(x) e - i ( B x ' x Q )  , (2.14) 

with XQ the center of Q. We shall be dealing with the operator T=T~K given by 

TSr(f) (x)=P.V. f e i(Bx'y> K ( x - y ) f ( y ) d y ,  where we shall assume that K is C ~ outside 

the origin, coincides with a homogeneous function of degree - n  near the origin, and 
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satisfies j'~,l= ~ K(x) do(x)=0 for small e>0. For large x we assume that K coincides with 

a function that satisfies the differential inequalities 

10~ K(x)l <~ Aalx[-"-Iat. (2.15) 

LEMMA 2. Let T=lex be as above, with T*=Tx, n• where K*(x)=I~(-x). Then 

(a) T* extends as a bounded operator from I-lie to L 1. 

(b) T extends as a bounded operator from L | to BMO e. 

Here the family E is given by (2.14). 

Proof of  the lemma. Statements (a) and (b) are dual statements, and in fact the 

proof of (a) is very similar to that of (b). Since we shall not be using (a) below, we shall 

restrict ourselves to proving (b). 

Write F= T(f), and assume that [[fllz| 1. In estimating F~, we shall first make the 

estimates for cubes Q centered at the origin. Now fix such a cube Q, let 6 denote the 

diameter of Q, and write Q=Q6, and CQ for the complement of Q in R ". We decompose 

f as f=fi+f2+f3, where f l = f i n  Q26 but f l=0  otherwise; f2=f  in (CQ2 ~) fl Q~-1, f2=0 

~ in (r n (CQ~_0, f3=0 otherwise. Notice that f2=0, if 6>-V7/2. Write 

Fj=T(f j ) , j=I ,2 ,  3. Now by the L 2 theory (Theorem 1) 

therefore 

Now 

fQ IFll e d.x~ f l ,  IF, I ~ dx~c f Ifd 2 dy~clQ~l, 

/0, 1 Fi[ dx ~ < IF,12ax ~ c .  
IQI 

F2(x)= T(f2)= j" e i(ax'y) K(x-y) f2(Y) dy; 

define the constant CQ by CQ=f K(-y)  f2(Y) dy. Then 

F2(x)- CQ = S ( ei(Bx' y) K(x - y ) -  K(-y)) f~(y) dy. 

However, 

e i(nx'y) K ( x - y ) - K ( - y )  = (e i(B~'y)- 1) K(x-y)+ {K(x-y) -K(-y)} ,  

which is o(6lyl-"+%~lyl-n-i), if xE Q~, and yECQ2~. Hence if xE Q=Qo, 

(2.16) 
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{f II d y  dy} IF2(x)-cQI <~ C6 [f2(Y)l dy + lyl.+t <~ c '6  I- 
lyln_i tj~l.c6_, lYl._l i~c6 l y -~  1 ~<C", 

because f2 is supported in (CQ2~)n Q~_,. So 

Next, 

Q fQIFe(x)-col dx ~ c. 

F3(x) = f e i(Bx'y) K(x-y) f3(Y) dy 

= fe'! Bx''> {K(x-y)-K(-y)} f3(y)dy+fe i<nx'y> K(-y)f3(y)dy 

= F~(x)+e~(x). 

However IK(x-y)-K(-y)l<~clxVlyl "+t if x fi Q~ and y E eQ2 ~, and therefore 

le~(x)l <- c,~ f~._c~ lyl ndy------V <~ c' 

which gives 

(2.17) 

1 fQIF~(x)ldx~r (2.18) 
lel 

Finally, by Plancherel's theorem 

felF~(x)12 dx <~ f.nlF~(x)12 dx = c f lK(-y)12 if3(Y)le dy 

~< / lY1-2~dy c'6"" 
J[yl~c6 -1 

Thus (1/IQI) fQ IF~(x)l dx~<c. Altogether then (1/IQI) fe  IF(x)-col dx<.c, and as a result 

1 ~lF(x)-FQI dx ~< 2c, (2.19) 
IQI JQ 

where FQ is the mean-value of F over Q. We can now use the translation formula (2.2) 

to drop the assumption that Q is centered at the origin. The result is 
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IQI IY(x)-Y~(x)ldx <~ c, (2.20) 

F~(x) = XQ(X) e -i(Bx'xQ) (F(" ) e i(B" ,XQ))Q 

and so (b) of the lemma is proved. 

We shall also need the following: 

LF~MMA 3. Suppose FELZ(Rn), and 2~<p< oo. If F~eELP(Rn), then FELP(Rn), and 

IIFIIL,~Ro) ~< c, llFgllL,<Ro). (2.21) 

This lemma is an immediate consequence of the special case for the standard sharp 

function (see [12], w In fact let G(x)=lF(x) I. Observe that 

1:o IQI [IF(Y)I-IF~(Y)IIdy<~F~x) if xeQ; 

but [F~(y) I is constant in Q. Thus 

I fQ[G(y)--GQI dy ~< 2Fe#(x), 
IQI 

and as a result G#(x)<<.2F#e(x), for all x. The known inequality [IGIIL,<~c, IIG#IIL, then 
implies our result. 

Proof of Theorem 2. We can now prove the theorem by using the complex 

interpolation method of [12]. To do this we consider first the case/ t<n,  and break up 

our kernel K as Ko+K~, where Ko is supported in Ixl~<l, and K| is supported in 

[xl~>l/2. Define the analytic family of operators Ts by 

(Tsf)(x)=e:{P.V. f e  i(Bx'y) Ko(x-y)f(y)dy+fei(Bx,Y>K| 

When Re(s)=0 we get by Theorem 1 (where one uses only estimates like (2.3) for the 

second term) 

IIT,(f)llL2 ~< cllfll,:, 
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which implies 

# II(L(f))ellL2 ~< cllfll:, Re (s) = 0. (2.22) 

Also by Lemma 2, (b), we have 

II(L(f))~IILo < cllfll: ,  Re (s) = I. 

Thus by complex interpolation we obtain 

II( To(f ) )~ellL, <<- cllfllL, 

where 0<0<1 ,  1/p=(1-0)/2+0.0.  But To=cT, c~O, if ~=nO, and this gives (via 

Lemma 3) the result when I/2-1/p=lz/2n. The result when 1/p-1/2=/~/2n follows by 

duality, and then the rest of the range is fdled in by the M. Riesz convexity theorem. 

For/z= n the argument is similar with Ts = T for all s. Finally the case p > n  is trivial since 

the kernel of T is then integrable near infinity. 

COROLLARY I. Let T be an operator as in Theorem 2, except that we now assume 

only that rank B=k. Then T extends to a bounded operator on LP(R ") for 1 < p <  oo under 

the condition that [1/2-1/p[<~-n+k)/2k when k>~l, and iz=n when k=O. 

To prove the corollary we may assume rank B>0,  for otherwise it is a simple 

consequence of standard facts about singular integrals. Now the case rank B~>I is very 

much the same as that of Theorem 2, except that the assertion (b) of  Lemma 2 needs to 

be reexamined. We write F= T( f )  as before and estimate F = F  1 + F 2 + F  3. The estimates 

for F 1 and F 2 are unchanged; next F3=F~+F ~, and the estimate for F~ is also un- 

changed. We come therefore to F~(x) which equals J" e i(Bx'y) K(-y) f3(Y)dy.  

Now the matrix B can be written as O~ AO 2, where O~ and 02 are orthogonal 

matrices and A is a diagonal matrix, with entries a~, a 2 . . . . .  a , .  Because of our assump- 

tion that rank (B)~>I, we may also assume that a~=0. Now write x=(x~,x'),with x I E R ~ 

and x' E R "-~. Then if we set F~(x)=F~(O~ x), K(y)=K(O2 ~ y), f3(y)=f3(O2 ~ y), we have 

I~(X) ~- fR' eia'x'Y' g(Yl, X') dy I (2.23) 

where 

g(Yl' X') :- fR._ I e i(B'x''y') I ( ( - y )  f3(Y) dy'. 

9-868285 Acta Mathematica 157. Impdm6 le 15 octobre 1986 
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We make the following estimate for g(y~, x') 

Ig(Yl, x')l ~< c min (& lyd-~). (2.24) 

In fact first take lyd<~c~ ~-~, where c I is sufficiently small. Then since f3(y) is supported 

in the set where lyl>~c6-1, we have 

Ig(y,,x')l< c lY'l-"dy' <~cd. 

Next if lyd>~c~ ~-1, use the estimate that 

Ig(y. x')l ~< f le3(-y)l dy' <~ c f~o_l(lY ,12 + lY'12)-n/2 dY '<- clY,1-1- 

Therefore (2.24) is proved. Hence  by Plancherel 's theorem in R 

f l~.~(x,,x,,12dXl<~C(flr dy, .1_~2I dy,)=cr 
ll~>a-' lYl[ 2 Jly,l~<~-' 

Thus an extra integration in x' gives 

fo,(o.~)'f~(x)'2 dX = fQ 'F~' 2 dx <~ ctS~' 

and finally 

1 Je[ IF~(x)l d x  <~ c.  IQ~I 
This concludes the proof  of  Corollary 1. 

In the same way as we showed Corollary 2 of  Theorem 1 we get the corresponding 

result for L p. 

COROLLARY 2. Let T be the operator considered in Corollary 2 of Theorem 1. Then 
T extends to a bounded operator on LP(R n) to itself, if l < p < ~ ,  with bounds inde- 
pendent orB. 

3. Estimates for the singular Radon transforms 

The bulk of the proof  of  Theorem A is contained in the following localized version. 

Set Rn+I=RxRn; a point in R n+l will be written as (t, x), t E R ,  x E R  or (s,y), sER, 
y E R  n. we will always take n~>2, and work in a fixed compact  neighborhood of  R ~+~. 
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We assume that through any point (to, Xo) in our compact neighborhood, there 

passes a distinguished hypersurface, given as a graph by the equation s=  to+S(t o, xo, y) 
where S is a smooth function. Thus S(to, x o, x0)=0. Now our singular integrals will be 

defined by giving for each (t 0, x 0) a kernel concentrated in the hypersurface assigned to 

(t 0, x0). The formal expression of this kernel will be 6(s-t-S(t,  x, y))K(t, x;x-y), where 

K will be specified below. There will be several ways of writing out our operator R, 

which maps functions on R "§ to functions on R "+~. Iff(s,y) is a function on R "+~ , 

f(2,  y) will denote its Fourier transform in the s variable. Then we shall write R as 

(Rf ) (t, x) = - ~  f ea' f eaS(t'x'Y' K(t, x; x-y)  f (2, y) dy d2 (*) 

or more compactly as a pseudo differential operator 

1 f (**) (Rf) (t) = ~ et~ta(t, 2)f(~.) d2. 

Here f(2) is a function which for each 2 takes its values in the Hilbert space L2(R"), 

withf0~)= f(~., y). Also a(t, ;t) is for each (t, 3.) a bounded operator from L2(R ") to itself; 

a(t, 2) has as its kernel representation 

2) f(x)) = f eaS(t'x'Y)K(t, x;x-y) f(y) dy. (a(t, (***) 

Our assumptions on S and K are as follows: S is a real C = function such that 

S(t,x,x)=O foral l  (t,x). (3.1) 

f 8 2 ) 
For  each t, the Hessian ~ S ( t ,  x, y)} is a nonsingular n• matrix. (3.2) 

t aXj ay k j 

K(t, x; z) is C ~ with fixed compact support and satisfies 

8 a 8 P x;z) I <<.Aa#,yizl -"-I~1 (3.3) 

and 

(3.4) 

Our main theorem is as follows. 
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THEOREM 3. Assume n>~2, and S and K satisfy (3.1) to (3.4). Then R ( f )  initially 

defined for f E  C o extends to a bounded operator on L p E (R n+l) to itself, l<p<oo ,  

AIR(f )lip <<.Ap IIf~ll. 

With S given, the bound Ap depends only on finitely many o f  A~,a,e, and Aa,# in (3.3) 

and (3.4). 

For the proof  we shall embed the operator  R in an analytic family T e, 7=a+ifl, so 

that to=R, and when a is negative we can make L 2 estimates, while for a positive, the 

situation becomes  more akin to the usual singular operators.  To define T e we choose a 

fixed C | function tp on [0, o0] which is= 1 near the origin, and has compact  support. We 

then write Ty=Tl+T2y, where T 1 has as its symbol (see (**)) al(t, 2), with al(t, 2) having 

as its kernel 

q0([x-y122) e us('' x, y) K(t, x; x -y) .  (3.5) 

has as its symbol the operator  a2y(t, 2), whose kernel in turn is 

(1 - q0(lx-y122)) Ix-Yl-2r e i2s(t'x'y) g(t, x; x -y ) .  (3.6) 

LEMMA 1. The operator al(t, 2): L2(R ") ---~L2(R n) whose kernel is given by (3.5) 

satisfies the estimates 

and more generally 

Ilam(t, 2) l[op ~<A, (3.7) 

( o ~k [ 0 ~'al(t, 2) o ~<A(I+I2[) *~2-'/2. 
p 

Thus al(t ,2) is a symbol o f  type S~1/2,1/2. 

(3.7') 

Proof. Let us show first the estimates for the norm of a~(t, 2). 

We break up R n into a disjoint mesh of  cubes {Q~j}, so that diameter Q~j=2 -t/2. 

Since the kernel of  al(t ,2) is supported in the set Ix-yl<<.c2 -~/2 we see that if f is 

supported in Q~j, then al( t ,2) f  is supported in *Q~j, where *Q)) is a ball having the same 

center as *Q~j, but whose diameter is (c+1)2 -1/2. However the balls *Q~j have the 

property that every point is contained in at most  a bounded number of  such *Q~j's. Thus 

it suffices to prove that 
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Ila'(t, 2)fllL2 ~< A II fllL~ 

for eachfsupported in Q~, where the bound A is of course independent of Z andj. To do 

this let yj denote the center of Q~j. Now S(t, x, y)=S(t, x, x)+ s~(t, x). (y-x)+ OIx-yl 2. But 

S(t,x,x)=O, while S~(t,x)=Sl(t, yj)+O(lx-y[). Thus since Ix-Yjl<.(c+l)2 -~/2, and 

Ix-yl<.(c+ 1)2 -1/~ we get 

S(t, x, y) = Sl(t, yj)" (y-x)+O(lAl-~/21x-yl) 

SO 

ei;~s(t, x, y) = ei~Sl(t, yj)y e -/~SI (1' yj) "X-I[ - o141 /21x-y1. 

Hence for each f supported on Qj we can write 

al( t ,2) f= Ma 3 (t,4) ~ I [ ~_yl_<clal-,~ [ -Y[ [f(Y)ldy 

where M is the multiplication operator 

Mf(x) = e -us' (/'yj)xf(x), 

and aa( t ,  4 )  is the operator with kernel 

~0(Ix-ylZ2) K(t, x; x -y) .  

Now a3(t, 4) can be handled by the usual theory of singular integrals. In view of the 

smoothness of K in the first two variables and the compact support we can write 

x, x - y )  = f I~r a, x - y )  K(t, ei(tr+x.o) dr da 

with each/~(r, a, z) satisfying 

a ,t . 

and 

KOr, a,z)dz ~<A(r,o), independent of e, 0 < e ~  < 1 
<lzl-<l 

with A(r,a) rapidly decreasing as Irl+lol---,~. The boundedness on L2(R ") of the 

operators with kernels 
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q~(lx-yl2A) I~(o, ~, x-y) ,  

with bounds rapidly decreasing in cr and r, and uniform in 2 then follows by a known 

argument (see [47] pp. 35 and 51). This proves the boundedneses of a3(t, 2)and hence 

al(t, ~) on Q~j completing the proof of (3.7). 

The proof of (3.7') proceeds by noting that the kernel of (O/at)k(O/OA)la~(t, 2) c a n  

be written as the sum of two kinds of terms. One kind occurs only when l=0, and all the 

kS~St derivatives fall on K(t, A, x-y) .  This type of term is, because of (3.3) and (3.4), 

similar to a~(t, 2) and hence the bound (3.7) already proved takes care of it. The other 

kind is, in view of the fact that S(t, x, x)=0, given by kernels majorized by 

AIAIk'lx--Ylk'+tlx--Yl -n, where k' +l~ l, 

and these kernels are supported on the set where Ix-yl <-cA -1/2. This immediately 

leads to the estimate 

alAIr f~l-<ca-'~ Ixlk'+t-n ax = AIAI rr2-u2 ~< A(I + IAI) ~2-~2 

for the norms of these terms, when 121>11, and thus Lemma 1 is completely proved. 

LEMMA 2. The operators a2y(t, ~) whose kernels are given by (3.6) satisfy 

( ~ )  k ~ a  \ - ~ ,  ~ta2(t'A) r ~ ~< A(I + IAI)ta2-t/2' 

as long as k+l<n+2Re(y). 

The basic facts we shall need are contained in the following. 

(3.8) 

PROPOSITION 1. Suppose ~=dP(x,y) is a smooth real function whose Hessian 
{a2dp/axjdyk} is nondegenerate. Suppose cpl(x) is a C | function, oanishing near x=0, 

and =1 for large x. Suppose ~O(x, y) E C~0 (RnxRn), and K(z) satisfies 

la~K(z)l ~A~lzl-~+m-% z*O. 

Define the operator B(2) by 

(B(;t)f) (x) -- [ ~(Ix-yl2;t) ~p(x, y) e~X,y)g(x-y) f(y) ay. 
J 
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Then 

IIe(A)llop ~ A(1 + I&l) - ~  (3.9) 

as long as m<n. Moreover the bound A depends only on finitely many of  the A~, a 

lower bound for the determinant of  the Hessian of eD, and upper bounds on finitely 

many derivatives of  Cb, q~l, and ~. 

Proof. The operator B(2) is clearly bounded for each/~. It suffices to compute the 

operator norm IIB(A)B*(,I)II since this equals IlB(2)ll ~. Now the operator B(2)B*(2) has 

kernel La(x, y) given by 

= f q~;t(x, Y, z) ~p(x, y, z) e iz(~'(x' z)-~,(y, z)) K(x-z)  Iii(z-y) dz (3.10) Lz(x, Y) 

with q~x=cp~(Ix-zl2Z)qh(Iz-y]2;O; ~(x,y ,z)=~(x,z)~(z ,y) .  Note that tpx is supported 

where Ix-zl>-d -1/2 and Iz-yl>~d -~/2, while tp(x,y,z) has compact support; thus 

B(2)=0 for small )~, and we need to prove (3.9) only when 121~>c~>0. For the kernel 

Lx(x, y) we shall make the following estimate 

[La(x, y) <~ a [;q,a2-m (3.11) 
(i,ll,/2 Ix-yl)  N 

whenever N~>0, and N > 2 m - n .  
We prove (3.11) first when N is an integer N>~O, N > 2 m - n .  For this purpose we 

introduce the differential operator D=E;= 1 aiO/Oz ~, and observe that 

O(~(x, z)-dp(y, z)) = E a2 [a2/3xk Ozj~(y, z)] (Xk--Yk)+OIx--Y[ 2. 
j,k 

Thus for appropriate aj smooth in z, with laj[~<l 

D(~P(x, z ) - r  z)) = A(x, y, z), with IA(x, y, z)l ~AIx-yl 

for Ix-y[ sufficiently small.(1) Since 

[(c2A)- 1D]N e a(o(x' z)-O~, z)) = ea(O(x, z)-Oe:, z)), 

the N corresponding integrations by parts in (3.10) give the bound 

(1) If  we assume ,  as we may,  that  the  support  o f  ~p is sufficiently small. 
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f IX~ I - n + m - k  ILz(x,y)l< a(I; llx--Yl)-No< N J Zl I Z - - y l - " + m - l d z  (3.12) 
c z >~lz-yl>~cl).l -u2 

However each integral in the sum above is actually majorized by 

fcl,~1-1~ -< Izl ~ c2 
Izl ~ 2 ~ + 2 m ~ k  ~ I dz, 

and each of these integrals is in turn majorized by 

A(I,~I-I/2) -n+2m-N, a s  long as - n +  2m-N<O.  

Substituting this in (3.12) gives (3.11) when N is an integer satisfying N~>0, and 

N > 2 m - n .  To drop the integrality condition on N we can use a simple convexity 

argument. More precisely, we first establish the analogue of (3.11) for 

m=mj, Nj integers satisfying Nj~>0, Nj>2mj-n,  j=0 ,1 ,  and K(z) replaced by 

IzI-m+mJK(z). Then whenever 0<0<1,  N=(I-O)No+ON l, m=(1-O)mo+Oml, we have 

that (3.11) holds as a consequence for N, and m. Therefore (3.1 I) is completely proved. 

From (3.11) we get as a result that the norm of B(2)B*(2) is majorized by 

AN, 121 '~2-m I (I,~l'/Zlxl) -N~ dx +AN2 IZI "/2-m f (t,~11/21xl) -N2 dx 

where we take 2 m - n < N l < n  (which is permissible since m<n), and N2>n. It follows 

that IIBB*II<. .AI I -m, and (3.9)is proved. 

We turn to the proof of Lemma 2 and the inequality (3.8). Looking back at the 

formula (3.6) for the kernel of the operator a2y(t,,~) we see that the required estimates 

(3.8) can be reduced to those of the operators of the type B(2), using the same device as 

was used in the proof of Lemma 1 when writing K(x, t, x - y )  as a Fourier transform. 

The relevant operators B(2) that occur have m=k+l-2Re(y) ,  thus the restriction m<n 

yields the restriction k+l<n+2Re(y) of Proposition 1, and its conclusions give the proof 

of (3.8). 

We shall need the following consequence of Lemma 2. 

COROLLARY 1. Suppose aZy(t, 2) is as in Lemma 2; assume that k and I are integers 

with k+l<n+2 Re (y). Fix two functions q~, ~p 6 Co(R), such that 11, is 1 for [xl~<l, while 

q~ vanishes near the origin and equals I near Ix[=l. For any u, 0<u~<l, write 
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cle(t, 2 )=(~ )k ( -~ ) t (aZe (u t ,  u-12)qg(U)O ). 

( O ~ ' a 2  c2~ (t, ~) = \-a-s ~ (t, ~) vv(z). 

T h e n  

[[C~ (t,A)llop ~ A ,  

with the constant A independent of  u, O<u~<l. 

(3.13 a) 

(3.13b) 

This is merely a simple rewording of inequality (3.8). Note that C2ydoes not depend 

on/ , ;  its only role is to handle small frequencies. 

COROLLARY 2. Suppose aZy (t,2) and Cr (t,2) are as in the above corollary (where 

the upper index j has been dropped for convenience). Assume we are given 

m 1, m 2, with 0<ml~<l, 0<m2~<l , and so that k+l+ml+m2<n+2Re(2'). Then in addi- 

tion to (3. I4) we have 

[ICr(t+hl, A)-Cy(t,A)Hop <<_alhll m' (3.15) 

[ICy (t, 2 + h2)-Cy (t, ~.)[Io p <- alh21 m2 (3.16) 

IlCr(t+hl,A+h2)-Cr(t+hl,A)-Cr(t,A+h2)+Cy(t, 2)[Iop <<.Alhllm'lh2l m2 (3.17) 

with A independent of  u, 0<u~<l. 

Proof. Let 7o, 2'1, 2'2, be such that 

Re(y0) = Re(y)-(m I +m2)/2, 

Re(y 1) = Re(y)-  (m i + m2)/2 +�89 

Re(y 2) = Re(y)-(m I +m2)/2+ 1. 

Then IICro(t,2)llop<~A, by the previous corollary. Similarly 

0 a C . t 
-~-~ ~ t ,~,) op<~a. 

The first inequality gives 

9"['-868285 Acta Matheraatica 157. Imprim~ le 15 octobre 1986 

j - -  i, 2 (3.14) 
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1] C~o (t+h 1, A+h2)-Cyo(t+h ,,2).-Cyo(t, A+h2)+Cyo(t, 2)[ op ~ A 

while the second yields 

[] Cy2(t+h 1, 2+h2)-Cy2(t+h 1, 2)-Cy2(t, 2+ h2)+Cy2(t, 2) op ~< A[h,I Ih21. 

By similar reasoning one can show that 

]C~(t+h 1, A)-C~,(t, A) op ~ AIh,I, 

IIC~,(t, 2+h2)-Cy,(t, 2)llop ~< Alh2l, 

and thus 

IIC~l(t+hl, 2+hz)-Cy,(t+h p 2)-C~i(t, 2+h2)+Cy,(t, lain 2 �9 

A combination of these inequalities via complex interpolation then gives (3.15) to 

(3.17), proving the corollary. 

We now invoke a version of the Calder6n-Vaillancourt theorem for boundedness 
0 of pseudo-differential operators with symbols of the class $1/2,1/2. What is important 

here is that there is a version where the symbol a(t, 2) is operator-valued, (a(t, 2) takes 

its values as bounded operators from ~1 to Y(2); moreover we need to be careful about 

the degree of smoothness required for the symbol. Notice that here the variables t and 2 
range over R 1. 

PROPOSITION. Suppose a(t, 2) is given, and write 

C1(t, 2) = ~ (a(ut, u-12)cp(uA)), O<u~<l ,  C(t ,2)= ~ a(t,2)~2(2) 

with cp and v 2 as in Corollary 1. Suppose/=0, or 1; m1>1/2, mz:>O and CJ(t,2) satisfies 
the conditions (3.15) to (3.17), uniformly in u, O<u~<l, j= l ,2 .  Then the operator 

T(f) (t) = ~ e ~t a(t, 2)f(A) d2 

extends to a bounded operator from L2(R, ~1) to L2(R, ~t~2). 

(For a proof see the Appendix.) 

In applying the proposition note that k+l+ml+m2=l+ml+m2 and so it applies 
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whenever (3/2-n)/2<Re (y); and in particular when n~>2 we get a strip which includes 

the origin in its interior. The result is 

IIz~ (f)llz ~< A(y)Ilfllz, (3.18) 

when 

Re (y) > (3/2-n)/2, (3.19) 

where the constants A(y) depend on only finitely many of the bounds Aa, a, r and A~,a 

appearing in (3.3) and (3.4), and are of at most polynomial growth in y for y in any strip 

of the form yl~<Re(y)~<yz, with yl>(3/2-n)/2. These conclusions are arrived at by 

combining Lemma 1, Lemma 2 and its second corollary. 

We shall now consider the operator T~,, y=a+ifl, with a = R e  (7)>0. We shall write 

T~ in its kernel expression with 

Ty(f) (P) = f KT(P, Q)f(Q)dQ 

where Kr is a singular kernel on R "+1 •  "+1 , with dQ the Euclidean measure on R "+~. 

Going back to the definitions (see (*), (**), (3.5) and (3.6)) we see that we can write 

where 

KT(p ' Q) = ix_yl_2~y( s + S - t  ix_yl2 ) K(t, x ; x - y )  

t,tf0 dP~,(U) = - ~  e-iU~ 2-Y d~.. (3,20) 

Here we have used the notation to to indicate that ~.-r has been modified near 3~=0 

so as to be smooth here; also P=(t, x), Q=(s, y). 
It will be natural to take P as the center of a coordinate system, with Q the variable 

point. Thus we define this coordinate system by assigning Q the coordinates [o, z], with 

cr E R, z ~ R n, where 

a=s+S(t ,x,y)- t  

z = y - x .  
(3.21) 

This assignment of coordinates for Q varies smoothly with P. Also it is to be noted 

that we can think of Q as the fixed point (i.e coordinate center), with P varying near Q; 
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then [o, z] also give coordinates for P near Q. When we do this, and integrate with 

respect to P, it will be useful to observe that dP~dz do. 

Now the coordinate systems we have introduced define a family of "balls" (and a 

resulting quasi-distance) which will be controlling in what follows. Thus with P--(t, x), 

Q=(s,y) we write d(P, Q) <6 (with d~<l), if 

Ix-y  I < O, i.e Izl < a and I t - s -S( t ,  x, Y)I < ~2, i.e. Iol < a 2. (3.22) 

Keep P fixed, and let Q~, Q2 be two points with coordinates (centered at P) given 

by [ol, zd and [02, z2] respectively. Then it is not difficult to prove (see the analogous 

argument e.g. in Folland-Stein [14], p. 475-6) that 

[Zl--Z2I ~ cd(Ql, Q2) (3.23) 

IOl-O21 ~< c{d(Ql, QE)E+d(P, QO d(Q1, Q2)}. 

From this it can be seen without difficulty that d(Q1, QE)-~d(Q2, Q1), and the 

quasi-triangle inequality holds. 

We shall temporarily write 

Ky(e, Q) = M(P; o, z) 

where [o, z] are the coordinates of Q with respect to P. We observe the following 

differential estimates for M: 

LEMMA 3. Let a = R e  (y)>0. Then 
(i) for Iol<<,lzl 2 

(a) IM(e ;o ,  z)l <<- clzl -"-=~ Iol - ' + ~  

(b) fl~z-M--M (P; o, <<. c l z l - " - ' -2 " lo l  - ' + ~  , 

(c) ~ (e,-o, z) ~< ~lzl-"-=~176 
G O  

(ii) for Iol~>lzl 2 

(a) IM(P;o, z)l <~ clol -"~2-1 

(b) aM (p; o, z) <<- clo1-'2-3'2 
az~ I 

(c) a_~_M (e,o, z) <. cla1-"~2-2. 
( 7 0  

j = 1 .. . . .  n. (3.24) 

(3.25) 
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Proof. These estimates follow directly from the definition (3.20) viz. 

Ky (P, Q) = M(P, o, z) = Izl-2~y(a/lzlZ) K(e, z), 

the property (3.3) of K(P, z), and the fact that 

(I) (U)=~O e-iUy~.-Yd~. 

is O(lul-l+~), and ~'r(u) is O(lul as u--->0, while q)r is rapidly decreasing with its 

derivatives as lull~176 
At this stage the basic fact about the kernel Ky(P, Q) will be contained in the 

following lemma: 

LEMMA 4. Assume Ke(P, Q)=M(P, or, z) satisfies the conclusions (3.29) and (3.25) 

of the previous lemma. Then 

f lK~ dP <~ a (3.26) (e, al)-gv(e ,  a2)[ 

where the integral is taken over the region where d(P, Q1)>>-~d(QI, Q2), and ~>>1. 

To prove the lemma we begin by considering E~.= o ~oj(u)= 1, a standard partition of 

unity of R, with ~Oo(U)= 1 for [ul~>2, and ~y(u) supported where [u[~ 2 -J, with I o (u)l cZ. 
Write KJ(P,Q)=K(P,Q)~pj(cr/[zl2)=M(P;o,z)~Oj(o/Iz2[). We are going to estimate 

KJ( P, QI)-KY( P, Q2), when j  ~>1 first. We fix QI, Q2 so that d(Q1, Q2)<~a, and P will vary 

where d(P, Q2)>>-Pa. Here P will be a constant (which will be fixed later as large) and a is 

to take all values in (0,1]. 

We shall write f~e,e~)~>~aIK~(P, QI)-KJ(P, QE)ldP asf i+~u,  where the region I is 

defined (for each j) to be the set of P where d(Q1, QE)=a>c_2-Jd(P, QI), and II the set of 

P where d(Ql, Q2)<~c_2-Jd(P, QI). Here _c is a positive constant, which will be fixed later 

to be small. 

Let us consider first J'i. We shall write 

f IKi(P, Q2)I dP <- fI IKJ(P, Q,)I+ ~ IKJ(P, Qe)IdP. 

Now d(P, Q0~-Izll§ 1/2, but lall2:~lz,I e on the support of K j (because of the cut- 

10-868285 Acta Mathematica 157. Imprim6 le 15 octobre 1986 
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off function  j(o/Izl2)) thus [zll~d(P, Ql)<<-c2d(Ql, 02)=c:~a, since we are in the region 

I. Hence  by (3.24) (a), 

~la(V, Qz,~ca IKi(P, Ql)l dP <~ C ~ c:<l~d< c2:,a lZl'-"-2 dZl dal " 2(l-~'" 
[Izll z ~ la~l 2/ 

But 

C f~coa<lztl<c22Ja]Zl[-n-2dzl d(y~ C ~c Iz~l-"dz~" 2 -i 
Llzll 2 ~ Iozl~ i a < Iztl < c2~da 

<~ co(logj+c3)2 -~. 

Thus, 

~]d(P, Ql)>~ca IK(P' Q,)I de <~ c(logj+c)2 -~j. (3.27) 

The integral of  [K(P, Q2)I taken over the same region is handled similarly. In fact 

since d(P, QO>~dd=d(QDQ2) where ~ is large, then by the triangle inequality 

d(P, Q2)>~ca. Also d(P, Q2)<~c{d(P, QO+d(Q1, Q2)}<~c"2ia in region I. Thus we can 

apply the same argument that worked for K(P, Q1) giving 

f{za(e ' [K(P, 02) IaP  <~ c(logj+c)2 -"i. (3.27') 

Ql)>~ca 

In making the estimates for the region II, we shall consider Q1 as fixed; then we 

can think of  [01, zl] as coordinates specifying the point P. Also [02, z2] (which were 

originally the coordinates of  Q2 in the coordinate system centered at P), can be thought 

of  as functions of  P, and hence of  [or1, zl]. 

Let  us observe that if we are in the region II, then whenever 

01/[Z112~-2 -y, then also 02/1z212~2 -j. In fact Iz~-zzl<-cd(Qt, Q2) (see (3.23)), so 

I z :  z21 <~ ca <~ cc_2-Jd(e, QO <~ c'c2-Jlz,I. 

Thus if _c is sufficiently small, then Iz21~lz,I  . Next,  again by (3.23), Io~-o21<-c(a2+lzda), 
and since as we have seen a<.cc_2-Jlzd, with c small, we get I o 2 1 - 2 - ~ 1 z 2 1  . The same 

argument shows that if [a, z] are the points in the line segments joining [a~, zJ to [02, z~] 

and [a 2, z~] to [02, z2] then Iol/Izl2~-2 - j  throughout. 
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Now 

KJ( P, QO-KJ( P, Q2) = M(P, o I , zO~j(ol/]zll2)-M(P, 0 2, z2)~j(a2/Iz212) = A + B 

where 

A =M(P, tra , zl) Wj(trl/lzal2)-M( p , a2, Zn) ~j(a2/Izd 2) 

and B has a similar definition. 

However (3.24) (c) allows us to make the following estimate: 

Ia[ ~< clzd-"-4lo~-o212<2-a~i~pj(Io~l/lzxl 2) (3.28) 

when ~j is the characteristic function of  the set c~ 2-J<lod/Iz~12<c2 2-Jfor two appropri- 

ate constants c~ and c 2. 

Also by (3.24)(a) we can say that 

IA[ ~< clzll -n-2" 2~l-~ �9 (3.28') 

Combining these two yields 

Ial ~< clzd-n-2-2~(lOl-O212JY2~-a)J~j(l~ 0 ~< e ~< 1. (3.29) 

However lo1- 2l ~< c(a2+alzll), by (3.23) as we have already remarked, therefore, since 

Izd>~ca, we get 

Ial ~< clzd-~-~a~2~J2"-a)4P~(lo~l/Izd2) �9 (3.30) 

Thus 

]AldP~ f[A]dz~do~ ~c2e2 -~/, i f e > 0 .  
" II 

d(P, QI) ~> ea 

The same estimate holds for the contribution of B (here we use (3.24)(b) instead of  

(3.24)(c), and things are even a littler simpler). Altogether then (taking into account  

(3.27)), we have 

fdie, al)>~d~Ol,a2) IKJ(P' QI) - /~ (P '  Q2)I dP<~ c(l~ 2-~/+2~j2-"/) (3.31) 

whenever 0<e~<l. Now we merely need to take 0 < e < a  and sum i n j  (the term j = 0  is 
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dealt with separately via inequalities (3.25); the argument is the same as before, but is 

now in its simplest form). The conclusion is (3.26) and Lemma 4 is proved. 

We can now invoke the theory of singular integrals in the setting for which there is 

a quasi-metric d(P, Q) of the type we have used (see e.g. Coifman and Weiss [8], 

Chapter liD. We observe that our proof of (3.26) showed that A=Ay grows only 

linearly in fl=Im(7), as fl___~oo, when Re(y)>0, and by (3.18), (3.19) the operator T~ is 

bounded on L 2 for Re (y)>0, with bounds growing at most polynomially in ft. The 

conclusion is that Ty is bounded in L p, l<p~<2, Re (7)>0, again with bounds growing at 

most polynomially with ft. Invoking (3.18) (3.19) this time with Re(y)<0 we get that 

R=To is bounded on L p, l<p~<2. The case 2~<p<~ is handled by duality. That this can 

be done is an immediate consequence of the Observations 2 and 3 of Section 1. The 

proof of Theorem 3 is complete. 

We can now give the 

Proof of Theorem A (case (b)): Let (tfflC:C:(t~2 be small neighborhoods of the 

diagnonal in cr and x(P, Q) a C ~ function which is 1 in ~gl and 0 outside ~2. Then Rf 
may be decomposed as 

(Rf)(P) = f•; (P' Q) K(P' Q)f(Q) d~ I.,2, [ I-•(P' Q)] K(P' Q)f(Q)d~ 

= ( R l f )  (P)+(R 2 f) (P). 

The density (1-z(P,  Q))K(P, Q) is smooth with C O norms bounded by cllKII ~176 Thus 

we may write using the fact that the support of u is included in the compact set ~ 

f.21R2f(e)lPdv<  cr fu2 [ fuelY(Q)ldae(Q) ] pdv(P) 
W(O)ea~ 

J02 JOe 

= Co,,K I [f(Q)Fdo( P, Q) 
n(fl2• 

p 
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Turning to R~, we may assume that ~'~1 ~---~')2, and by use of a partition of unity, that 

they are contained in coordinate patches. If the support of X is narrow enough, the 

coordinate patches may be taken as in the Corollary in Section 1, with condition (1.8) 

holding uniformly in the sense that det (82S/axjdyk) is bounded away from 0 by a fixed 

constant. In terms of these coordinates, the density K on cr can be written as a C = 

function K(t, x; z) and its seminorms as an admissible density are routinely checked to 

be equivalent to the best constants Aa,~,y satisfying (3.3) and (3.4). Thus R l reduces to 

an operator of the form (*) defined at the beginning of this section, the desired 

hypotheses hold, and Theorem 3 applies. This proves part (b) of Theorem A. Part (a) 

follows from part (b) by standard approximation procedurs. Q.E.D. 

4. The maximal function 

Our setting is as before in w 2, but now at each P we consider the ball of radius e>0, on 

Me centered at P. We let A e ( f )  denote the "average" of f over this ball and we are 

concerned with lim~_..oA~ ( f )  and sup~>01A,(f)l. 

Following the localization we have used in w 3, we define (on Rn+l), the operator 

A, as follows 

Ae(f) (t, x) = f c~( t -s-  S(t, x, y) )Ip~ (x -y )  rl(t, x) f (s ,  y) ds dy. (4.1) 

Here ~rIe(U)=~)(U/E)e -n, where ~O is a fixed C o function on R" supported in lull>l, 

~p>-O,f ~0 dx= 1; and r/is a fixed cut-off function of compact support. 

We shall have to compare the averages A,, with others which can be handled by 

more standard methods. Thus we define 

Be( f )  (t, x) = Scp~(t-s-S(t,  x, y))~OE(x, y)rl(t, x)f(s,  y)dsdy (4.2) 

where ~v~(u)=e-Zg(u/e2), with q0 a fixed C | function in R 1, q~>0, S~q~(u)dt t= I. 

The averages (4.2) correspond essentially to mean-values taken over the balls used 

in w 3 above and defined by (3.22). 

The basic estimate we shall make will be in terms of a square function G, defined 

by 

G ( f )  (e, x) = I A , ( f ) - B , ( f ) I  z . (4.3) 
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THEOREM 4. Assume n>~2, then 

IIa(f)ll,<~Apllfllp, l <p<.2. 

The way to deal with the function G is to consider a closely related linear operator 

T from LP(Rn+I), to LP(Rn+I,~) where ~ is the Hilbert space LE(de/e,(O, 1)). T is 

defined by 

(Tf) (t, x, e) = S(6( t - s -S( t ,  x, y))-rp~(t-s-S(t ,  x, y))~2~(x-y)rl(t, x)f(s, y)dsdy (4.4) 

where we consider the right side of (4.4) as a function on the (t, x) space (i.e. R n+l) 

with values in L2(de/e, (0, 1)). 
We shall also use the "pseudo-differntial" version of (4.4), in analogy with w 3, 

where 

(Tf) (t) = ~ e~'a(t, X)f(2)d2 (4.5) 

where f(A) is a function which for each 2 takes its values in the Hilbert space L2(Rn), 

with f(2)=f(A,y). Also a(t,2) is for each (t,A) an operator from L2(R ~) to 

L2(R~)xL2(de/e,(O, 1)); a(t, 2) has as its kernel representation: 

a(t, 2)f(x) = (1 - q3(e2;t))fRn eaS~t'x'Y)~O~(x' Y)rl(t' x)f(y)dy. (4.6) 

Together with the operator T, we shall consider an analytic family of operators Te, 

such that To=T. The operator T r will be defined in analogy with T (see (4.5)). However 
now its symbol a~,(t,2) will be the operator from L2(R n) to L2(R~)xL2(de/e), (0, 1)) 

which has as its kernel representation 

(4.7) ar( t, 2) = (I -I- e4 ~,2)-Y/2 a( t , ,~.). 

In analogy with Section 3 and in particular with (3.8) we shall prove for ae(t, ~) the 

estimate 

a t i~.l)k:E_l/z (~tt)k( '-~ -) ay(t,2)op~<A~(l+ (4.8) 

when k+l<n+ 2Re(y). 
For this it will suffice (using the notation of Proposition 1) to consider the 

operators Br(2) (from L2(R n) to L2(Rn)xL2(de/e, (0, 1)) given by 
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(/~y(~))(f) (X, E) = (1 --(~) (E2/L)) (1 +e422)-e/2faea~(x'Y)We(x, y)f(y)dy 

where ~0e (x, y) is supported in Ix-yl<~e, with 0<e~<l,~p~ satisfies the estimates 

(-~x)a(--~y)#~Oe(x,y) <~Aa,#e -n-'a'-~l+~. 

Under these assumptions we shall show that 

IIB~(,Z)llop ~< A(1 + 121) -~/2, 

when 

Writing out 

shows that it equals 

- 1  < c~ < n+2 Re(7). 

~olfR IBy(jO(X, e)12dx de 
n E 

147 

(4.9) 

f fa.• L~ (x, dy, y)f(x)f(y) dx 

where the kernel L~ is given by 

L~ (x, y) = II-~(e2~.)12( l +e422)-Re(~IX(x, y, e) de 
e 

where 

e) = fR n eat*(~'x)-| ~(z, x)O~(z, y) dz. II (x, Y, 

Now in view of our assumptions on ~ it is obvious that 

I/XI ~ A~-~+2~Z~(x-Y) 

where X~(u) is the characteristic function of the ball lul~<2e. Invoking the integration-by- 

parts argument preceeding (3.12) then shows that 

[I~(x, y, e) I <~ANe-n+Ea(l +elAI Ix-yl)-NX,(x-y) (4.10) 
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for every N~>0. Thus since 

11-r z ~< A - -  
E4A 2 

1 +e42 t  2 ' 

(recall that r E Co, and q~(0)= I), we have 

f/ e-~+3+26a),2(1 + e4~,2)-Re Y-1(1 + el~,] Ix-yl)-Nde. (4.11) IL~( x, Y)I ~< AN -yl/2 

Observe that if 12l~<l, this shows that IL~(x, y)l<~AIx-yl -'+2§ since the function L(u) 

which is O(lu1-~+2+2~), lul~<l and vanishes when lul>2 is integrable when 6 > - 1 ,  we get 

IlBr(A)llop~<a, when IAl~<l, and 6 > - 1 .  

To consider what happens when I;tl~> I, make the change of variables replacing e by 

el21-1/2. Then the right side if (4.11) is majorized by AN2n/2-~L~(IAII/2(x-y)), with 

Lr(u) = •3-n+26(1 + e4)-Re0')- 1 (1 + elul) -N de, 
I/2 

and LY(u) is O([ul ~-26§ when lul-->o and is O(]ul -n-l) if N is sufficiently large, and 

this gives an integrable function over R ~ when - l < 6 < n + 2 R e ( ) , ) .  This proves 

llS~(,~)llop~<Al,~l-~/2if I~1~>1 under those conditions, and therefore (4.9) is proved. 

As a consequence of  this and in parallel with the argument leading to (3.18) (using 

pseudo-differential operators of  class S~/2,1/2) we obtain the L 2 estimates for our opera- 

tor Ty, namely 

IIL(f)ll2 ~< A(y)Ilfl12 (4.12) 

whenever 

Re(~,)>(1 -n)/2. 

We now pass to L p estimates for Ty, when Re (~)>0, ~=a+ifl. To do this we write 

Te in its kernel expression 

T~,(f ) (P, e) = SKy(P, Q, e) f (a)dQ, 

where Ky is a function on Rn+lXRn+lx(0,1), and dQ euclidean measure on 

R n+l. (Recall we are viewing Ty as an operator from scalar-valued functions on 

R n§ to L z (de~e, (0, 1))-valued functions on Rn§ Going back to the definitions ((4.4), 
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(4.5), (4.7)) used in (3.21) and the notation a=s+S(t, x, y ) - t ,  z=y-x ,  we see that we 

can write 

Here 

Ky(P, Q, e) = e-2g~,(o'/e 2) ~e(z)" ~(0", Z). (4.13) 

Ky(u) = f~_~ e-i~(1 q-~,2)-y/2(l--~(,~)) d,~., 

with ~p,(z)=e-n~p(z/e), and ~0 a C | function with support in Izl~l,  and fl(tr, z)=rl(t, x). 

Now for Ky(u) we make the following estimates 

Igv(u) I ~<Alu1-1+Re<y), u~0,  K~(u) rapidly decreasing as lul--->oo (4.14) 

OKy(u) ~<alul_2+Re<r) ' u~O, aKy(U)rapidlydecreasingaslul-->~. (4.14') 
a u  

In fact Ky equals a function in the space 5 P plus a Bessel function for which the above 

estimates are well known (see e.g. [47], pp. 130-134). 

Following closely the argument in Section 3 and using the parallel notation 

M(P; o, z) for Ke(P, Q, e), we claim 

LEMMA. The analogues of  (3.24) and (3.25) hold for M(P;o, z). It is understood 
that in the present context IM(P; o, z)l stands for 

with similar definitions for IOM/Ozj (P; a, z)l and IOM/Oo(P; o, z)l. 

Let us consider 

I ' lK~(e, ~)1 ~ de Q, 
E 

By (4.13), the fact that ~p,(z) is supported in tzl<e, and using (4.14) we see that 

~01 --~-- fl~ ~ IKr(P, Q, e)l 2 <~ c e_2._41Kr(o/e2)12 de 
Izl e 
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with 

~ llu J(u) = e2n+41Kr(e2)12 de 
dO E 

Now J(u) remains bounded as u- ,0,  since K~(u) is rapidly decreasing as u--->oo. More- 

over J(u)<~cu -2n-4a, a=Re(~,), since IK (u)l-<lul -'+~ Thus the analogues of (3.24)(a), 

and (3.25) (a) are proved. The other inequalities are shown similarly, if one uses also 

(4.14'), and the lemma is proved. 

If we then apply Lemma 4 of Section 3, and the theory of singular integrals as used 

above, one proves that Tr is bounded on L p, l<p~<2, when Re(~)>0.(~) Arguing as 

near the end of Section 3, one can then prove using complex interpolation that To = T is 

bounded on L p, l<p~<2. 

This completes the proof of Theorem 4, giving the L p inequality for the square 

function. 

COROLLARY 1. Suppose l < p ~  < ~ ,  and M(f)(t,x)=SUPo<,< llA~(f)(t,x)l. Then 

IIM(f)llp<-~apllfllp. 

Proof. Since this result is clear when p = ~ ,  it suffices to prove it for l<p~<2. We 

may also assume that f'~0. 
Let 

f0 
hT/(f) = sup 1 A~(f)de. 

But 

-~fo~AE(f)de=-~fo6(AE(f)-Be(f))de+-~fo#Be(f) de. 

The second term on the right is majorized by the usual maximal function associated to 

the balls corresponding to the metric d given by (3.22). For it the Vitali covering 

arguments hold (see [8]), therefore 

sup B~(f)de 
1>~6>0 -~- 

(1) Notice that all constants depending on ~, are at most of polynomial growth in Im(y) as long as Re(y) is 
restricted to compact subintervals. 
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is bounded in L p, l<p .  However if 0<6<1 

1 6 ~4.e(f)-Be(f)]2-~ - ) = S(f). --~ A~(f)-B,(f)de <<- 

Thus by Theorem 4, f-->M(f) is bounded on L p, l<p~<2. On the other hand 

A,(f)>~cA6(f) if 6-..<e-.<26, so that 

26 A~(f)de >>- cA~(f)de = c'A~(f). 

Thus suP0<6<lt2A6(f) is bounded on L p. Finally, supl/2<~<lA~(f)<<-cAl(f), and this is 

easily seen to be bounded on L p. Therefore the corollary is proved. 

COROLLARY 2. SupposefEL p, 1<p~  <w.  Then 

limAc(f) = f .  
e---~0 

This follows from the previous corollary in the usual way. 

Proof of Theorem B. With Theorems 3 and 4, the proof of Theorem B is immedi- 

ate. In fact, the same arguments used to handle R2 in the proof of Theorem A shows 

that the operator M2f defined by 

= sup 1 f~ If(Q)l d~ (M2f) (e) 
a<~<~l ]B(p, 6) I (e,6) 

will send LP(f2) to LP(f~2) for fixed a>0.  Taking a small enough and using a partition of 

unity the problem reduces to the study of averages over balls which are contained in 

coordinate patches of the type introduced in the Corollary of Section 1. We are brought 

back then to the setting of Theorems 3 and 4 (with a C | extra factor y(x, t;y, s) under 

each integral which is due to changes of variables; such factors obviously do not affect 

the arguments there). The desired estimates follow. Q.E.D. 

Appendix: Pseudo-differential operators of class Sv2, 1/2 

In this appendix we describe a proposition giving the L 2 boundedness for pseudo- 

differential operators with operator-valued symbols of the class $1/2,1/2, which is used 

in w167 3 and 4 above. Part of the complication of the formulation and proof of the result 
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below is due to the fact that we need to be conservative in the degree of smoothness 

required of our symbols. 

First some preliminary definitions. ~1 and ~2 are two separable Hilbert spaces; 

~(~l ,  ~2) denotes the bounded linear operators from ~l to )~2, with norm I1" II. The 

space L2(R% )~) consists of the usual square-integrable ~-valued functions on 

R ~. When 0 < m l < l ,  and 0<m2<l  we define A myra2 to be the Banach space of functions 

a: RnXRn-->~(~(l, ~I~'2) so that 

h I m t ][a(x,~)ll~a, [IAxa(X,e)i[~A]h,I ,  
(A.1) 

h 2 []A~2a~x,e)l[ ~Alh2] m2 and 11~2'~, a~x,e)[[ ~Alhllm'lh2] ''2. 

Here Ah~(b(x, ~))=b(x+hl, ~)-b(x, ~), etc. We take the norm of A'%'~to be the smallest 

A for which the inequalities (A. I) hold. When ml, m I are non-integral positive numbers 

we extend the definition of A rot' '~ by requiring that 

~x 8~a(x, ~) E A m'-[mll' m2-[m2], (A.2) 

for all a, fl, so that [ctl~<[m2], [fll~<[ml] with [m] denoting the largest integer in m. We 

take the norm of a to be the sum of the norms (in A m~-Wj]'m2-["2l) of ~ O~a(x, ~), with 

Ifll<~[m2], lal~<[md. 
Next with rn~ and m 2 fixed we define the symbol class S0,0to consist of those a, for 

which a E A ''1'm2. In addition we define the symbol class Sllz,u2 as follows. Fix scalar- 

valued functions q0, y2 E C O (R"), so that q0(~)= 1 for [~] near 1, q0=0, and y2= 1 near the 

origin. Then a ~. Sl/2,1/z if for each 0 < u <  I, a(ux, u-~Ocp(u,$) ~- So. o uniformly (i.e. uni- 

formly with respect to the A '%m2 norm)in u, 0<u~<l, and a(x, ~)y2(~)E S0. 0. It is not 

difficult to see that the definition given for Svzl/Z is in fact independent of the particular 

q0 and y2 used. We are interested in the operator. 

(Tf) (x) - 1 f e i~x a(x, ~)f(~) d~, (A.3) 
(2~r)" JRn 

defined for appropriate functions f which take their values in ~l.  Then, of course, T f  
will take its values in ~z. 

PROPOSITION 1. Suppose aESo, o, with m~>n/2, m2>n. Then T defined by (A.3) 

extends to a bounded operator from LZ(R n, )i~'l) to LZ(R n, ~2)- 
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PROPOSITION 2. Suppose aESvz, v2, with ml>n/2, mz>n. Then T defined by 
(A.3) extends to a bounded operator from LZ(R n, Y(1) to LZ(R ", Y(z). 

In the case a is scalar-valued (i.e. Y(1 and ~z are one-dimensional) then a sharper 

result, requiring only ml>n/2, mz>n/2 holds, and this is essentially contained in 

Coifman and Meyer (see [7], Thror~me 7, p. 30). However there is a difficulty in 

passing from the scalar case to the case of operator-valued symbols. It is this: 

Plancherel's theorem holds for  vector-valued (more precisely, Hilbert-space valued) 

functions; but it fails for oper/~tor-valued functions, (unless one would substitute the 

Hilbert-Schmidt norm for the operator norm, which is inappropriate here). However 

given this caveat one can follow the broad lines of the argument in [7] to prove the 

above propositions. This we shall now outline. 

For simplicity of presentation we shall restrict ourselves to the one-dimensional 

case, n= 1, since anyway this is the case we apply above. The general case requires 

only slight changes. We can then take m1>1/2, and mz>l.  For any non-negative m we 

define LZm(R, YO to consist of those fE  Lz(R, XO for which 

(1 +1~12) m If(~)t2 d~ = II/IIL~ < ~ .  

When 0 < m < l  an equivalent norm is given by 

{ f ,:(x),Z dX+ fsf " . . ,1 ,2  , f ( x - y ) - f ( x ) , 2 ~ l  . (A.4) 

(See [47], p. 13%140 in the scalar case; the proof is the same i f f takes  its values in 

a Hilbert space.) 

LEMMA 1. Suppose x--->a(x) takes its values in Jd(Y( m, ~2) and Ha(x)[l<~A, 

Ila(x+h)-a(x)ll<.alhl ml, x, hER. l f  fEL~(~) and g(x)=a(x)'f(x), the gELS(Y(2), 

whenever 0 < m < l  and m<m 1. Moreover, [IgtlL~<-~A'IIfltL~. 

Proof. According to (A.4) it suffices to estimate 

f[g(x)12dx and fsf,~O,--y)--~,x)te~X~ [yll+2m " 

We have g(x-y)-g(x)=a(x-y).  [f(x-y)-f(x)]+(a(x-y)-a(x)).f(x).  Thus 

[g(x-u)-g(x)[ <~ A[f  ( x - y ) - f  (x)[+ A min [I, ]y[m,] if  (x)l" 
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Also Ig(x)l<~AIf(x)l, and so the required estimates follow from the corresponding ones 

for f ,  in view of the fact that ml>m. 

LEMMA 2. Suppose fkE L2( ~), m>l/2  and X IIAIl~L<oo, Then f defined by 

belongs to L2(~a), and 

f(x) = 2 fk(x) e ih (A.5) 
k 

oa(  
This is the "almost-orthogonality" lemma of [7, p. 13]. The proof in the Hilbert 

space case is the same as in the scalar-valued case. 

LEMMA 3. Suppose aES0. 0 (i.e. a E A ml"m2) with ml>l/2,  m2>l. Also assume that 
a(x, ~) is supported in I~1<1. Then T defined by (A.3) maps L2(R, ~1) to L2(R, ~2), /f 

m<mi; the bound depends only on m and the norm of a. 

We follow in part the proof in [7, p. 17]. Write 

a(x ,  ~) = 2 a ( x ,  ~+2kat) = 2ak(x)e ik~ 
k k 

with ak(x)=(1/2~r)S2~(x, ~)e-iked~. Also a(x, ~)=a(x, ~)q0(~) where tp is a suitable C o 

function. Then T(f)=T(g), with ~(~)=q0(~)f(~), and ~g)=Ekak(x)'g(x+k). Clearly g 

for every m, and so do the g(x+k), k~Z all with the same norm. belongs to L 2, 

However 

and 

ikak(x)= 2-~ fo2~-~ a(x,~)e-ik~ d~, 

ik( eikh--1) ak(x) = 2-~ fo2n (-~ff~ ~(x, ~ + h )-- ---~ dt(x, ~) ) e-ik~ d~. 

Therefore Ik(e~h-1)lllak(x)ll<~Alhl m2, for all kEZ, hER.  It follows that 

Ilak(x)ll<-A(Ikl + 1)-mL if we take h= I/k. Similarly 
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I �9 ikh 2 h I Ahxt,h 2[ a , ~))e_ikr tk(e - 1) A x ak(x) = ~ tX~ ~ - ~ a ( x ,  

from which we see that IIA~lak(x)ll<-~Alhtlm'(Ikl+l) me, because a E A  m~'m2. Since 

E 1/(Ikl+ 1) m~ converges (m2>l), our conclusion follows from Lemma 1. 

Proof  o f  Proposition 1. (See [7], p. 15.) Fix a real C o function 9,  supported in 

I~1-<1, so that Ek(9(~-k))2= 1. Write bk(x , ~)=a(x, ~+k)9(~), and T k the operator with 

symbol b k. Define fk by fk(~)=tp(~)f(~+k). Then 

(Tf )  (x) = ~ Tk(f k) (x) e ikx , 

and the proposition follows from Lemmas 2 and 3, if we choose m so that 1/2<m<ml,  

and observe that 

~ Ilfkl122 = ~ f Ifk( )l 2 If( )l 2 

= llylt 2 

Proposition 2 follows from Proposition 1 exactly as in the argument given in [7, pp. 

35-36]. 
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