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1. Introduction 

The notion of an isotopy of one set within another set is one of the key concepts of 

topology. Here is one way this concept can be generalized to a holomorphic context: 

Definition. If X is a subset of C, a holomorphic motion of X in C is a map 

f: TxX--~ C 

defined for some connected open subset TcC containing 0 such that 

(a) for any fixed xEX ,  ft(x)=f(t, x) is a holomorphic mapping of T to C, 

(b) for any fixed t E T, ft is an embedding, and 

(c) fo is the identity map of X. 

We think of t as a kind of complex time parameter. Note that in the definition, 

there is no requirement of holomorphy in the X-direction. X should be thought of with 

just its topological structure or its quasiconformal structure, although even continuity 

doesn't directly enter into the definition; the only restriction is in the t direction. We 

will see that continuity is a consequence of the hypotheses, by the lambda lemma of 

Marl6, Sad and Sullivan ([2], Theorem 2). 

This definition is applicable in a number of interesting situations. For instance, the 

limit sets of Kleinian groups often move holomorphically as parameters are varied. 

Similarly, the Julia sets for iterated rational maps often move holomorphically with the 

parameters. 

In topology, it is important to know whether an isotopy of one space within another 

can be extended to an ambient isotopy, that is, to an isotopy of the big space which 

restricts to the given isotopy of the small space. Without additional conditions, an 
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extension is not generally possible. For example, consider a loosely knotted piece of 

string within R 3. Physically, one can take hold of the ends and pull it tight. Mathemat- 

ically, this corresponds to an isotopy of the knot in R 3 which shrinks the knotted part to 

an arbitrarily small size--and finally, makes it disappear. Such an isotopy certainly 

cannot be extended to all of R 3, since the fundamental group of the complement of the 

circle is different at the beginning of the isotopy and the end. 

It is not hard to arrange the isotopy so that the motion of any point is differentiable 

in time. The isotopy can even be chosen so that it is real-analytic in the time parameter, 

if the knot vanishes and then instantly reappears. 

There are also examples in two dimensions: there are isotopies of closed sets in the 

plane which cannot be extended to ambient isotopies. The simplest example is for X a 

countable set with one accumulation point. If the set is represented as say {x;= 

1/iliEZ+ } together with x~=0, the isotopy can be choreographed by making each 

point x i swing around its two neighbors, two turns about xi+ 1 for each turn about xi_ ~, 

faster and faster as i--~ ~.  Any extension of the isotopy restricted to the first k points 

sends the arc Xk_lX k at the beginning of the isotopy to an arc which winds around x i 

by the end of the isotopy. To do this for all i would violate continuity at 0. 

The question of extending an isotopy to an ambient isotopy also has significance in 

the holomorphic context. Our main result addresses this problem, as follows: 

THEOREM 1. There is some universal constant a>0 such that any holomorphic 

motion of  any set X c C  parametrized by the disk T=D1 of  radius 1 about 0 can be 

extended to a holomorphic motion of  C with time parameter the disk Oa of  radius a 

about O. 

An important correlate of an open set moving holomorphically in C is quasiconfor- 

reality: 

PROPOSITION. For any holomorphic motion f of  C, each map ft is quasicon 

formal. 

Proof. The cross-ratio of any quadruple of points in C during the motion is a 

holomorphic function which omits the values 0, 1, and ~. The derivative of a holo- 

morphic function sends a tangent vector in its domain to a vector in its range which 

cannot be longer, when lengths are measured by the Poincar6 metrics for the domain 

and the range. Therefore, for any particular value of t and for all quadruples of points 

whose initial cross-ratios are in some compact set K of cross-ratios, the cross-ratios of 

ft of the quadruples are uniformly bounded. It readily follows that ft is quasiconformal. 
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By the theory of quasiconformal maps, the converse is also true: any quasiconfor- 

mal orientation-preserving map of C can be connected to the identity by a holomorphic 

motion. To find such a holomorphic motion, one simply takes the Beltrami coefficient 

for the quasiconformal map and multiplies it by a complex variable t. 

COROLLARY, I f  f is a holormorphic motion of a set X, then for each time t the map 

ft extends to a quasiconformal map of  C. 

Proof. By the preceding two assertions, it follows that the corollary is true when t 

is sufficiently small. To obtain the result for a general t, walk from 0 to t in small steps 

and compose the quasicoifformal maps for each step to obtain the big quasiconformal 

map. 

In a companion paper, Bers and Royden [1] will give another proof which shows 

that a can be taken to be 1/3. We do not know if the constant a of the theorem can be 

taken to be 1. 

In section 6 we will state and prove another theorem which does work globally. 

This result is obtained from our main statement by changing all holomorphic motions to 

quasiconformal motions. The definition of a quasiconformal motion of an arbitrary set 

will be found in that section. 

There is a simple but very useful special case of the main theorem which was 

proven by Marl6, Sad and Sullivan [2], which they dubbed the 2-1emma. 

THEOREM 2 (2-1emma). A holomorphic motion of a set X c C  can be extended to a 

holomorphic motion of  the closure of X, with the same time parameter set T. 

Proof. The idea is that the motion of the points of the set must be equicontinuous 

because they remain disjoint. 

This can be seen more explicitly by first choosing two finite points of X together 

with infinity, then normalizing by changing coordinates via the unique family of affine 

transformations sending these three points to {0, 1, ~}. The Mrbius transformations 

depend holomorphically on T, so the problem of extending the motion of the new 

family is the same as that for the old family. (We ignore here the exceptional case that 

there is only one point of X; the problem in this case is trivial.) 

The points in the new family---except those which are fixedmmove in the comple- 

ment of {0, 1, oo }. The map from the parameter space T to the three-punctured sphere 

takes vectors of unit length in the Poincar6 metric of T to vectors of length not 

exceeding one in the Poincar6 metric of the three-punctured sphere. 
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The motion of points with respect to T is equicontinuous, so the closure of the set 

of all the maps t~ft(x) is compact in the topology of uniform convergence on compact 

sets. Consider the closure, which consists of holomorphic functions from T to C. 

I fg  and h are any two distinct holomorphic functions on an open set T, their graphs 

intersect iff g - h  has a zero of some order at some point in T. This property is stable 

under perturbation. Therefore, the property of a pair of holomorphic functions that 

their graphs intersect is open. The opposite property, that the graphs of g and h are 

disjoint, is closed. The set of graphs of functons in the closure of our family are disjoint, 

and therefore there is exactly one through each element of X. This defines an extension 

of the holomorphic motion of X to a holomorphic motion of its closure. 

It is easy to extend Theorem 1 to the case that the parameter space T has arbitrary 

dimension. 

It is also easy to extend it to the case of the motion of a set X in an arbitrary 

Riemann surface, or even a family of Riemann surfaces depending on the parameter 

space T. For the latter case, one uses the Bers embedding of Teichmiiller space to 

translate the problem into a motion of a set in C. 

A problem closely related to the problem of extending holomorphic motions is the 

holomorphic axiom of choice: Given a holomorphically moving set, is it possible to 

choose a holomorphically moving point in the complement of the set? If we strengthen 

this slightly so that the point for t=0 is chosen in advance, then a positive answer, even 

in the case that X consists of only a finite set of points implies the general extendibility 

of holomorphic motions to all of C. 

To see this, first observe that the ability to choose an additional point with 

arbitrary initial value in the complement of a holomorphically moving finite set implies 

the same ability in the complement of a general holomorphically moving set: if FoX  is a 

large finite set of points which comes very close to every point in X, then a choice 

which starts out not too close to X and remains in the complement of F must also avoid 

X for most of the time parameter (since the distance to X remains large in the Poincar6 

metric of the complement of F). Using equicontinuity, one can pass to the limit as F 

becomes dense in X and obtain a choice, through the given point, which misses X 

entirely. Thus the ability to choose a moving point in the complement of finite sets 

implies this ability for general sets. By adding more and more moving points, after a 

countable number of steps one has a dense set of moving points, so that the motion 

extends by continuity to a motion of the complex plane. 
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2. Framework for the proof 

The strategy of the proof is to divide and conquer. We may assume that X is closed. 

First, we will show that for any point p in the complement of X the motion of X can be 

extended to a motion of some neighborhood ofp for some subset of the time parameter 

space T. We will do this so that the subset To is independent of p. We must do this 

carefully, so that it will be possible to piece together the choices from different 

neighborhoods, using a partition of unity for C-X.  

The local choices near some point p are fairly easy to make in the case that the set 

XU {oo} is connected, so we will take care of that case first, in section 3. In fact, the 

local choices are made by using a solution for the case that X consists of two points. 

This solution can be transplanted (for a limited subset of TxX) if for each p, we choose 

two reasonably spaced points from the actual set X. A reasonable spacing is achieved if 

the distance between the two points and the distance of the two points from p is 

comparable to the distance o f p  from X. The hypothesis that XU {oo} is connected is 

used to guarantee the existence o f  two such points. 

To do the general case, we will need to analyze the complement of X in terms of 

the thick-thin decomposition for its Poincar6 metric. The thick part of the complement 

of X is handled like the connected case. The thin part divides into two new cases: cusps 

and short geodesics. The analysis of cusps again reduces to the case that X has only 

two points. We will construct a solution for the case of a thin part of X which contains a 

short geodesic by transplanting a solution for the case that X has exactly three points. 

This corresponds to the quadruply-punctured sphere, the simplest Riemann surface 

which can have short geodesics. 

To see that local solutions can be pieced together, it helps to picture the trace or 

graph of the motion, in T• We begin with the motion of X, which gives a foliation in 

a subset of TxC above T. For each p, we find some rule to fill in a foliation in some 

neighborhood o fp  which is disjoint from the leaves of X. We must do this so that each 

leaf projects to a uniform size neighborhood in T. 

To pass between choices made for different neighborhoods which overlap (at time 

t--0), we average them (considered as maps of T to C) using a partition of unity. To see 

what happens in any region of overlap, we make a t-dependent affine change of 

coordinates to fix two points of X at 0 and 1. These two points are picked so that they 

are near to the region in question, compared to their distance from each other and the 

distance of the region from X. There is no overlapping of different local choices in the 

region of influence of a short geodesic or a cusp--such a region is contained in a single 
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coordinate patch, so it is always possible to find two points as above. Note that the 

process of averaging is unaffected by affine changes of coordinates. 

In this coordinate system, no matter what the overlapping choices of holomorphic 

motions, they can move at speed at most 1 in the Poincar6 metric for the thrice- 

punctured sphere. Since the region at time t=0 has a distance from X (following the 

affine renormalization) which is bounded above zero uniformly for all problems under 

consideration, convex combinations of the moving choices remain disjoint from X for a 

uniformly bounded time. 

When we understand how to make local extensions of a holomorphic motion, we 

must still make sure that after averaging by a partition of unity, the motions of different 

points remain disjoint from each other. 

There are two effects to take care of. First, if the diffeomorphisms from one fiber 

to another are not near each other in the C l topology, then convex combinations of 

them might have derivative zero. In order to take care of this, we will make sure that 

(after the affine renormalization) the maps from one copy of C to another all have 

derivatives near the identity. This precaution would suffice if we were taking convex 

combinations of the different choices with constant coefficients. 

The second problem is that if the derivatives of the partitioning functions (with 

respect to the fiber variable) are too large, then convex combinations made with them 

will oscillate wildly. To take care of this problem, we will make sure that we define 

local motions on neighborhoods of uniform size (with respect to the coordinates as 

above) and that these neighborhoods have ample overlap, so that the fiber partitioning 

functions can be chosen with uniformly bounded derivatives. 

To convince oneself that these two conditions are exactly what is needed without 

actually writing down the formula, one can think of the foliation picture: picture a small 

disk in T, and enlarge it until it has size 1. Then the various local choices automatically 

become uniformly near to horizontal, so that any effect due to averaging by a con- 

trolled partition of unity is absorbed. 

3. Extending the motion of  a connected set 

Let X be a holomorphically moving set in C such that XU {oo} is connected. Consider 

any point p E C, disjoint from X at time t=O. We will extend the motion of X to include a 

motion of a neighborhood of p. 

Let r be the distance ofp  from X. Let x0 be a point in X which has distance r from 

p. The circle of radius 2r around p intersects X, since X is connected and unbounded. 

Let Xm be a point of intersection of this circle with X. 
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The points Xo and x 1 are separated by at least r and at most 3r. Normalize the 

motion of X by t-dependent affine transformations so that the points x0 and Xl remain 

fixed at 0 and 1. After this normalization, the distance ofp from 0 at time t--0 is at least 

1/3, and the distance from the point 1 is at least 2/3. Define a holomorphic motions of 

the neighborhood U of radius 1/6 about p by fixing it, in the new coordinates. 

At time 0, the distance of X from U as measured in the Poincar6 metric of the 

thrice-punctured sphere C-{0,  1} is bounded from zero. Since the set X moves with 

speed at most 1 in the Poincar6 metric of the thrice-punctured sphere, this prescription 

gives a holomorphic motion of the neighborhood for a uniform disk in the time 

parameter T. 

These choices can be combined, using a partition of unity, to give a motion of C 

defined for a disk in T of a size which is uniform with respect to different problems of 

this form. In fact, consider the motion of another neighborhood V defined in this way 

where V and U intersect at time 0. In the coordinates for which points in U are fixed, 

the motion of V is given by a t-dependent affine transformation. The motion of V is 

governed by two points x3 and x4 of X, which at time t-- 0 are uniformly bounded away 

from each other, from infinity, from U and from V. 

The points x3 and x4 move at speed at most 1 in the Poincar6 metric of the thrice- 

punctured sphere C-{0,  1}. In any bounded subset of C, the unit circles for this 

Poincar6 metric have bounded diameter. Consequently, x3 and x4 are moving at a 

bounded speed also in the Euclidean metric. Therefore we can find a uniform disk in T 

such that the derivatives of the comparison between the U motion and the V motion are 

close to the identity. 

Since neighborhoods of the form of U can be chosen to overlap uniformly, this 

completes the proof in the case that X is connected. 

4. Solution for the quadruply-punctured sphere 

The method above does not carry over to the case that X is not connected, even if it 

contains only three points. 

For example, let C be any constant, and define a holomorphic motion of a set 

Xo=0, Xl = 1 and x 2 = e  - 2 C  by the formula 

f , (xo)  = o,  

f , ( x l )  = 1, 

f , (x2)  = e c ( ' - 2 ) .  
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We can restrict attention to the unit disk. Suppose that C is very large. The motion of 

x2 wraps it many times around the origin, while keeping it quite close to xo=0. If we 

use a local prescriptions for extending this motion based on choosing subsets of X 

consisting of two points, we see that the only reasonable choice for x very near 0 is 

based on Xo and x2, while the only reasonable choice for x near, say, - 7  is based on xl 

and either of the other two points. These choices clash fiercely with each other 

wherever they overlap. There is no reasonable way to average them and get a choice 

which works over the entire quadruply-punctured sphere. 

Luckily, there is an alternate method which gives a global solution in the case of 

the quadruply-punctured sphere, provided the set T is contractible. When this is the 

case, there is a well-defined homotopy class of maps from the complement of X at time 

0 to the complement of X at time t. Given this homotopy class, there is a well-defined 

element of the Teichmtiller space for a quadrnply-punctured sphere associated with 

each t, and the element of Teichmiiller space depends holomorphically on t. 

To extend the motion of X, we simply use the Teichmiiller maps between the 

surfaces. The Teichmiiller space for a quadruply-punctured sphere is the Poincar6 disk, 

and the TeichmOller maps depend holomorphically on Teichm011er space for the 

quadruply-punctured sphere. This holomorphic dependence of the Teichmtiller maps is 

a special feature of Teichmiiller spaces of complex dimension 1. The holomorphic 

motion can be seen more explicitly by using the fact that the universal 2-fold-branching 

cover of the quadruply-punctured sphere is isomorphic to C, with the isomorphism 

classically given by elliptic integrals. A holomorphically moving configuration of the 

three points together with oo transforms to a holomorphically moving lattice in C, which 

has an extension to a motion of all of C in the form of t-dependent real affine 

transformations. 

5. The general case 

Now we are prepared to consider a general holomorphically moving subset XcC.  We 

will use local solutions usually based on the thrice-punctured sphere, but we will switch 

to local solutions based on the quadruply-punctured sphere in neighborhoods where X 

appears to be split into two small but nontrivial pieces. 

One way to express the choice between the two kinds of local solutions is based on 

the thick-thin decomposition of the Riemann surface, considered with its hyperbolic 

metric. In the thick part of the surface (where the injectivity radius is greater than some 

fixed constant e>0), we can use the thrice-punctured sphere. Each component of the 
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thin part of the surface is either parabolic (coming from a cusp) or hyperbolic. In the 

hyperbolic thin case, we use the quadruply-punctured sphere, while in the parabolic 

case we again use the thrice-punctured sphere. 

For simplicity, instead of this hyperbolic description of choices for local solutions, 

we will use an approximately equivalent but more direct description in terms of the 

Euclidean geometry of C, 

Let p be any point in C-X.  Choose a point Xo which is at least as close to p as any 

other point of X. Change coordinates so that p is at 1, x0 is at 0, and normalize the 

motion (via a t-dependent translation of C) to keep Xo fixed at the origin. Choose a 

small number e (fixed throughout this case). 

Case (i). (The thick case.) Suppose that there is some other point q in X such that 

e<~lq]<<-l/e. Then choose xi to be an element of X which minimizes I log Ixlll. Define a 

local motion around p to be the affine motion governed by Xo and xl. 

Case (ii). (The cusp case.) Suppose that (i) fails, and either there is no point in X 

with modulus greater than that of p, or there is no point except 0 in X with modulus less 

than p. By inverting if necessary, we can assume that there is no point of X inside the 

unit disk except for the origin. Let x~ be a point of X with minimal modulus m. Define a 

motion in the disk of radius 2ern about 0 to be the affine motion governed by Xo and Xl. 

We use only one Such choice for this entire disk, governed by Xo and some point of X of 

minimal modulus. 

Case (iii). (The short geodesic case.) Suppose that (i) and (ii) fail, so that p is 

contained in an annulus bounded by circles of radii 0< r<e<  1/e<R<~ which touches X 

on its two boundary components, but is otherwise disjoint from X. Let xi be an element 

of X of modulus r, and let x2 be an element of modulus R. Define a motion of the 

subannulus of inner and outer radii s = r/2e< 1 <2Re=S by restricting the solution for the 

quadruply-punctured sphere. Make only one such choice for this annulus. 

These solutions have been chosen so that they are defined on sets which have 

ample overlaps. Overlapping can occur only 

between cases (i) and (i), 

between cases (i) and (ii), or 

between cases (i) and (iii). 

Overlapping between a pair of thin cases ((ii) or (iii)) is not possible. 

The first kind of overlap is exactly like the kind we have already considered for X 

connected; only the constants are different. 
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The second kind of overlap is just like the first kind of overlap--it is an overlap of 

two thrice-punctured sphere coordinates in a region where both choices are reasonable. 

The third kind of overlap is somewhat different. To understand it, we must first 

understand the behaviour of the solution for a quadruply-punctured sphere which has a 

short geodesic, in the vicinity of its thick part. 

Any quadruply-punctured sphere with a short geodesic can be arranged so that its 

puncture are Xo=0, x~, xz, and x3=oo, where the ratio XE/Xl is very large. The short 

geodesic separates Xo and Xl from x2 and x3. By symmetry, we can focus on the thick 

part of the quadruply-punctured sphere which is in the half containing Xo and x~. To get 

a convenient coordinate system, normalize so that xi becomes 1. 

LEMMA, In the coordinates above, the derivatives of the maps fromfiber to fiber 

given by thin quadruply-punctured sphere solutions are uniformly equicontiuous in the 

region P~C obtained by removing e-disks about 0, 1, and oo. (An e-disk about oo means 

the complement of a disk of radius 1/e about 0.) 

Proof. As long as the shape of the quadruply-punctured sphere remains in a 

compact region of the modular space of the quadruply-punctured sphere, the deriva- 

tives automatically remain equicontinuous in P. Thus, the problem is to show that as 

the quadruply-punctured sphere gets thinner and thinner, these derivatives remain 

reasonable. 

The universal 2-fold branching cover of any sphere over four points is C. We will 

transfer the question to C by taking these universal two-fold branching covers. 

The preimage of the branch points forms a lattice in C. We can normalize the 

lattices in C so that the origin is a preimage of 0, and so that is a preimage of 1 nearest 

to the origin. Thus, the lattices all contain the integers. 

The Poincar6 metric of the plane minus the lattice maps isometrically to the 

Poincar6 metric of the quadruply-punctured sphere, so as the length of the short 

geodesic goes to zero, the distance between the two thick parts of the quadruply- 

punctured sphere tends to infinity, and the distance from the row of lattice points which 

are integers the next row also tend to infinity. In the limit, the branched covering from 

C to C converges to a branched covering map of C to C, with 2-fold branching above 

O=xo and 1 =xl. 

The advantage of  passing to the branched covers, C, is that the Teichm(iller maps 

between quadruply-punctured spheres lift to R-linear maps of C to itself. They are 

represented by matrices of the form 
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y) 
The distance between two of the lattices in Teichmtiller space depends only on the 

matrix A which transforms one into the other, not on particular lattices. Therefore, a 

sequence of Teichmiiller maps between pairs of quadruply-punctured spheres with 

bounded Teichmtiller separation always has a geometrically convergent subsequence, 

as one passes to the limit, which is a thrice-punctured sphere. The limiting thrice- 

punctured sphere is identified with the thrice-punctured sphere defined by 0=Xo, 1 =xl, 

and ~ =xs. The geometric limit map, lifted to the branched coverings C of the thrice- 

punctured sphere, is also a R-linear map, described by a matrix A of exactly the same 

form. 

Since the Teichmtiller space for the quadruply-punctured sphere is equivalent to 

unit disk, and the Teichmtiller metric is its Poincar6 metric it follows that, in a 

holomorphically moving family, the Teichmtiller distance between quadruply-punc- 

tured spheres defined by the motion of four points does not exceed the Poincar6 

distance in the parameter space. 

The lemma follows. 

With the aid of the lemma, we can take care of overlaps between coordinate 

neighborhoods of types (i) and type (iii), thus completing the proof of the main 

theorem. 

6. Extending quasiconformal motions 

What is the right definition for a quasiconformal map between two arbitrary subsets of 

C? It does not work to study only what happens to the sphere of a given radius about a 

point in the set: such a condition would say absolutely nothing about any of the 

geometric Cantor sets contained on the line which are obtained by iteratively removing 

the middle a subinterval, when a <  1/3, since the spheres about points in such a Cantor 

set intersect the Cantor set in at most one point! Similarly, it does not work to look just 

at what happens to quadruplets of points whose cross-ratios lie in any given compact 

set, because one can construct Cantor sets such that the cross-ratios of points in that 

set avoid the given compact set of cross-ratios. 

Definition. A quasiconformal homeomorphism f: X---> Y between subsets of C is a 

home0morphism such that the cross-ratio of any quadruple of points in X has a 

bounded distance from the cross-ratio of the image points in Y. The distance between 
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cross-ratios is measured using the Poincar6 metric on the space of values of the cross- 

ratio function, namely the thrice-punctured sphere C-{0,  1, oo}. A quasiconformal 

motion of a subset X c C  is a map from T x X  to C, where T is a connected space 

(frequently an interval of time), such that 

(i) for some basepoint to E T, ft0 = id, and 

(ii) for any t E T and for any e>0 there is a neighborhood of t such for any 

quadruple of points in X, cross-ratios of the various images of the quadruple for time 

parameters in the neighborhood all lie within an e-ball in the Poincar6 metric of the 

thrice-punctured sphere. 

This definition precisely captures the property of holomorphic motions which we 

used to make the definitions for local holomorphic motions. The definitions immediate- 

ly suggest the following statement: 

THEOREM 3. For any quasiconformal motion of  any subset X in C whose time 

parameter space is an interval I, there is an extension of  the motion to all of  C defined 

over all of  L 

Proof. We may suppose that two finite points of X are 0 and 1, and that these two 

points do not move. 

First we extend the motion to the closure of X, by passing to limits of sequences of 

motions of points. The motion of other points is equicontinuous in the Poincar6 metric 

of C-{0,  1} (since the cross-ratio of 0, 1, oo and x changes at a controlled rate) so the 

closure of the set of functions f , (x)  which define the motion of points is compact. Two 

distinct functions g and h in the closure of this set of functions have disjoint graphs, 

since the cross-ratio of 0, 1, g(x), h(x) changes at a controlled rate, so it can never reach 

0, 1, or oo in a finite time. 

For small neighborhoods in the T plane, the extension of the motion from the 

closure of X to all of C is done just as for the extension of holomorphic motions. These 

extensions can be pieced together using a partition of unity of I, to obtain a global 

quasiconformal extension. 

7. Naturality 

It would be good if we could define an extension of a holomorphic motion which 

would be completely canonical--in particular, a canonical extension would entail that 

(a) it would be invariant under any change of coordinates by a M6bius transforma- 

tion, and 



EXTENDING HOLOMORPHIC MOTIONS 255 

(b) it would be independent of choice of origin in the T plane. 

Condition (b) seems quite hard. In particular, it would entail that the motion could 

be extended globally, over the entire T plane. In the companion paper by Bers and 

Royden, they give a construction of  an extension of a holomorphic motion which 

depends on the choice of origin in the T plane but is otherwise canonical, so that 

property (a) is satisfied. 

Condition (a) does not come as easily from our point of  view, since the construc- 

tion we made involved arbitrary choices of local holomorphic motions, subject to 

certain inequalities. To get around the fact that our choices are arbitrary, we can 

average different choices, but another difficulty crops up: the averaging procedure we 

have used itself depends on an arbitrary choice, the choice of the point at infinity. A 

probability measure on C has a well-defined mean, provided the measure is not too 

dense near oo. When the measure is transformed by a M6bius transformation, its mean 

is not usually the image of its old mean. 

To circumvent this problem, we can define a more general mean: if At and v are 

probability measures on the Riemann sphere, we will define the mean of At with respect 

to v. 

First, if v is a measure concentrated on a single point Q, then the mean of At with 

respect to v is the obvious mean, calculated by sending Q to infinity, forming the mean 

of At, and transforming back to our original coordinates. 

For  arbitrary v and At, the mean will not always exist, but if there are disjoint round 

disks containing the support of  v and the support of At, that is sufficient to guarantee 

existence. The idea in the general case is that the measure v defines a transformation Tv 

from probability measures on the Riemann sphere to probability measures on the 

Riemann sphere. The transformation is defined by taking the mean of mean of  At with 

respect to the various points in the support of v, and weighting them according to v. 

LEMMA. / f  the support of  At is contained in a disk D1 and the support of  v is 

contained in a disjoint disk D2, then the support of  Tv(At) is contained in a proper 

subdisk Di of  D1. 

Proof. This is transparent. 

COROLLARY. / f  the support of  At and the support of  At are contained in disjoint 

disks, then the sequence o f  measures ~nOt ) converge to a measure concentrated at a 

point. 
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Proof. The sequence of images of/~ by Tv is supported in a shrinking sequence of 

disks. If minimal support disks were to converge to disks of finite radius, then there 

would be a subsequence of the measures which would converge weakly to a measure 

such that Tv would violate the previous 1emma. 

Definition. The mean of one probability measure kt on the Riemann sphere with 

respect toanother measure v is defined to be the support of the limit of ~n~) ,  provided 

this limit exists and is supported on a single point. 

Now we are prepared to construct an extension of a holomorphic motions of a set 

X which is equivariant with respect to any group F of M6bius transformations which 

preserves the original motion. The extension to the closure of X is immediate from 

the lambda lemma, so we may assume that X is closed. We may also suppose that the F 

is a closed subgroup of the group of MObius transformations---otherwise, form its 

closure. 

To extend the motion equivariantly to the complement of a closed set, the idea is 

that we pick a collection of triples and quadruples of points in X together with a 

measure/zp on this collection for any point p, to govern the motion of p. (The measure 

here is a generalization of a partition of unity.) The collections of triples and quadru- 

ples, and the measures on them can easily be made equivariant. Since thin parts of the 

complement of X are disjoint, we can also make sure that for each thin part there is 

exactly one triple or quadruple associated, which will govern the motion on the bulk of 

this thin part. We can make sure that the measures vary slowly, so that the total 

measure of any set of triples and quadruples has a bounded derivative with respect to p 

as measured with the Poincar6 metric of the complement of X. 

In addition, we can choose for each point p ~ S2-X  a measure vp on X, in such a 

way that vp depends equivariantly on p and has bounded derivative with respect to p. 

Now we can define the motion of p to be the mean with respect to vp of the 

motions ofp  weighted according to #p. This mean exists for a definite neighborhood of 

0 in T, by the corollary. It depends holomorphically on t, since it is obtained by a 

procedure of averaging laolomorphic motions. The motions of different points are 

disjoint for a definite neighborhood in T, by the same considerations as before. 
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